A CLASS OF PIECEWISE LINEAR MAPS

FRANCO FINESCHI

ABSTRACT. Piecewise linear functions defined by p-maps, linear only on a
subset of r vectors and components, are introduced. Universal properties for
this maps are proved. Spaces of extensions of differential forms by piecewise
linear functions are considered.

1. INTRODUCTION

Piecewise linear functions are useful in several different contexts, piecewise linear
manifolds, computer science or convex analysis are examples. A definition of a
piecewise linear function is the following, see [8]. Let C a closed convex domain in
N4, a function @ : C — N is said to be piecewise linear if there is a finite family
Q of closed domains such that C = UQ and @ is linear on every domain in Q.
A linear function ¢ on %¢ which coincides with @ on some Q; € Q is said to be
a component of @. In this paper is considered a more general class of piecewise
linear functions. It is defined the set of maps SW(E™, T') which are linear only on
a subset of r vectors and components. Then an exponential functor F is defined
from linear spaces to the set SW(E™, T'). It is proved the uniqueness and existence
of a function ® as universal element for the functor F. It is defined a r-subsetwise
linear skewsymmetric @ = va Ab¢ map and it is proved that this is completely
determined by its values for A} and on a basis of E. A r-determinant function
is defined as a r-subsetwise linear skewsymmetric map @ : E™ — I', where I is
an arbitrary field of characteristic 0. Some properties of r-determinant maps are
considered. It is defined the adjoint for a linear map ¥ € L(E, F), where E and F
are linear spaces, and the development of a r-determinant function by r- cofactors.
Extensions of differential forms are defined by r-subsetwise skewsymmetric maps.
Basis and spaces of generalized differential forms are studied.

2. R-SUBSETWISE LINEAR MAPPINGS

Some properties of linear functions are extended to mappings which are linear
only on subsets of r variables. I' denotes an arbitrarily chosen field such that
char I' = 0. The multindex I of lenght r is defined by

I' ={@1,....i;): 1<ii<iry<---<i, <n}
besides, for a fixed natural k
UMk = {G1, ... ip,... i) 1Sy < <ip=k <---=Zi, <n,

where 1 <k <n} -
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for the indices ji,..., jx € I,:’

D gy i =10 ipyseeesippseeendr)
I1<ii<-<ip=j1<...<lip, =jk<-=i, <n}

Let {e,} be a basis of an n-dimensional vector space E and let x* = Y7 _ xl'e,

be vectors of E, n > 1.

Definition 2.1. Let L(E", T) be the space of linear mappings of E” into the vector
space T. Consider a mapping

®: E"->T

b : (xl,...,xm)»—>vak’,fqﬁ(x,’,“ev,...,x,’f’ev) 1<r<n 1<r<m, AMerl
where the sum is over every system of indices u = puy,....u, € I, v =
Vi,...,vp € I". If n = m then r < n = m. The sum (x}7ey,, + -+ Xy ey,)

is denoted in short by x!7e,, and ¢ : E" — T is an r-linear mapping. Then @ is
said to be r-linear with respect to the r-subsets of vectors and components, that is,
an r-subsetwise linear mapping. The linear mappings ¢ are the components of @.

Ezample 2.1. The function @ : #1*% — R defined by
D(x,y) =2x+ 3y

is an 1-subsetwise linear function.

Graph of the function @. (Obtained by Mathematica).

Ezample 2.2. The map @ : (0?)? — %?*? defined by

D[(x11,x21), (X12, X22), (x13, X23)] = A 12 (x11 x12) + 13 (x11 x13) +

X21 X22 X21  X23
X X

LYz X3 W e %
X22  X23

is an 2-subsetwise linear map.
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Example 2.3. Let fi1,..., f; be a linearly independent set of the space L(E”", T), a
r-subsetwise linear map is defined by

D(x1,..,xm) = ) MAfilxlre) - frlxl2en) - fr(xhren) Moer
m,v

Theorem 2.1. An r-subsetwise linear mapping @, with r < m, is not linear

Proof. For any r-subsetwise linear mapping @, r < m,

DXy, ooy Xi+ Vig ooy Xm) = Zk’,fq&(x,’flev,...,x,’,ev,...,x,‘f’ev)
oy

i
+ E AMo(xBle,, ... yey, ..., xb"e,)
W,y

F DXL,y Xiy ooy Xm) FP(X1, oy Vinev o s Xm)

in the first sum on the right side u = py,...,7,..., i, € 1. Unlike, in the second
SUM b = [1y...si,..., br € (I")i, so this sum cannot be @(x1,..., Yi,...,xm). O

As a special case, if r = m then @ is linear.
If t : T — H is linear and @ is r-swlin (subsetwise linear) map, then

tod =1y M) =) Moo

and ¢ o @ is a r-swlin map.
By the set SW(E™, T) of the r-swlin maps, the following exponential functor F,
from linear spaces to sets, is defined by

F(T)=SW(E™,T) for any linear space T

F():
(1) : F(T') —> F(H) for any lineart : T — H
Fit):Pr>tod

Theorem 2.2. For any r-swlin mapping ¥ : E™ — H there exists a unique linear
mapping f : E®---® E — H such that

Jx1 @ ®xpm) = W(X1,.... Xm)

That is, the mapping ® : E™ — T is an universal element for the functor F.

Proof. The proof generalizes to swlin maps the classical proof of universality of the
tensor product, see [4], [6].

Uniqueness. Suppose that ® : E”™ — T and & : E™ — T are universal elements
for the functor F, then, there exist linear maps

[T —>T and g:T—>T
such that
SxX1® - ®Xp) =x1@®xp  and  g(X1@-®Xp) = X1 @+ ® Xpy
that is
gof(X1® - ®Xpm) =X1 P ® Xy and fog(x(®--@®xXm) = X1®--- DX
by the universality of ® and & it follows, respectively
It =gof and lg =fog
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thus f and g are inverse linear isomorphisms.
Existence. Consider the free vector space C(E”) generated by the space E”. Denote
by N(E") the subspace of C(E") spanned by the vectors

®i w ®i w
(xpley,...,81y1+ 822, ...,x07ey) —61(xp ey, ooy V1 ena, Xy €))
i w
—8a(xy ey, 2, Xy ey)
forp=pi,...,ur €I, v=vi,...,v €I §; € I and xYe,, y1,y, € E.

Set S = C(E")/N(E") and let m : C(E") — S be the canonical projection. Define
the map

®: E"—=>S
. 13 Mn1 Mr
®: (X1 Xm) > D, ATy ey, Xy ey)

Since m is a homomorphism, it follows that ® is an r-swlin map.
If z € S, then it is a finite sum

z = Z(S’(Z AMa(xBle,, ..., xkre,)),
T w,v
= Z8’(x1 ® - ®Xm)r

so Vz € S, z is spanned by the products x; ® --- ® x;, and [, ® = S.
Moreover let ¥ : & — H be a r-linear map. Since C(E") is a free vector space,
there exists an unique linear map g such that the following diagram commutes

J

Er— S C(E")

v g
H
where j is the insertion of E” in C(E”). So
glxhiey,, ... xtrey) =y (xftey, ..., xkrey)
If
z=(xMey, .. 81y + 822, xBre,) = 81(xE ey, .y, X))

— 8 (xtey, ...y, ... xHrey)
is a generator of N(E"), then
g(2) =v(@) =Y (xtle,, ..., 801 + 822, ..., xEre)) = S1y(xKley, ...y, .. xETey)

=8y (xtley, .. ya, ... xHrey)
=0

then N(E") € Ker g. For the principal theorem on factor spaces, see [5], there
exists an unique linear map f such that the following diagram commutes
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C(E)y—LF—— §

that is, 7 is an universal element. So

(fo@)(x1....xm) = [ Ma(xlie,, ... xley))
IR
=) M fom(xhie,.....xke,)
W,V
= Zk’jg(xﬁlev, s xbrey)
IR

= Zk’jl//(xﬁlev, coxbrey)
w,v

=‘I/(X1,...,Xm)

Example 2.4. Consider the 2-swlin function @ defined by

B (W) >N
@ (x1,x2,x3) > A2 (xp, x0) + A3 ey, x3) + A2 (x2, x3) MZAB A8 en

where the bilinear function (—, —), on the right side, is the inner product in %?. By
the theorem 2.2, the map ® : (M?)* — RZ@R2 ®NR? is universal, so an unique linear
function f : R? ® R? ® N2 — N exists such that f(x; ® x3 ® x3) = P(x1, X2, x3).
Since N2 @R @R is free, the function f is determined by its values f(x;®x, ®x3)
on the free generators x; ® x, ® x3.

Corollary 2.1. For any r-swlin map @ : E™ — T

®(X1, ey Xm) = Zk‘j (xtle, ® - ®@ xkre,)

w,v
. 75 wr LK wr
Proof. Since m(xy ey, -, x5"ey) =X ey Q-+ ® Xy, ey, by the theorem 2.2

B(x1s . Xm) = ([0 ®)((X1,. . xXm) = SO M (xey ® - ® x1ey)
W,V

d

Example 2.5. Let @ : (I'")" — T be a 2-swlin map. The tensor product ® :
' xTI" — M™" is defined by x;, ® x;, = xilxlfz, x; € T'", see [4], then & :
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Ir"" -r"*"®---® I'" is given by
X ®® Xy = Z A(ilaiz)xil ® xi,
(i1,i2)el}

G1i2) yr s g onn i)y iy s
Z(il,iz)EIf)‘ X1iy X1ip Z(il,iz)elé')\ X1i1Xniy

(1502) y . L. (1502) . .
Z(ilaiz)EIS A Xniy X1ia Z(il,iz)elé' A Xniy Xniy

3. {r,A}- DETERMINANT

If o is a permutation, 0 € S,, then the mapping o¢ : € — F is defined by
op(x1,...,%Xr) = P(Xg,,...,Xg,). More generally

Definition 3.1. Let @(x1,...,Xn,) be an r-swlin map, for any permutation o € S;,
the mapping 0@ : E™ — T, is defined by

OP(X1,...,Xm) = Z)»’,fmﬁ(X,’flev, cxbre)) = Zk’jqﬁ(x,‘,’(“‘)ev, x0T

w,v nsv
Definition 3.2. An r-swlin map @(x1,...,Xy) is said skewsymmetric if for any
0 €S, is0® = €;P where ¢, =1 (¢, = —1) for any even (odd) permutation o.

Theorem 3.1. An r-swlin map @ = Y Ah¢ is skewsymmetric if and only if ¢ is
skewsymmetric.

Proof. Suppose ¢ skewsymmetric, then

od = ZAﬁaq&(x,’f‘ew s xbrey) = Zk’jeaqﬁ(x,’f‘ev, cooxbre)) =€,

J7RY 78"

Conversely, 0@ = €, ® implies

Z)\ffd(]ﬁ = Z)‘ljeafp
Hov Hov
SO D M(op —exp) =0 for all xi'le,, ..., xl ey, then 0¢p = €,¢. O

Theorem 3.2. Every r-swlin map @(xy, ..., X;;) determines an r-swlin skewsymmet-
ric map ¥, given by

¥ = E €c0P = E E Mes op(xble,, ... xEre,)
o w,y o

where the second sum on right side is over all permutations o € S,.

Proof. For any t € S;
W = Z r(z Mesop) = ZET(Z Mesop) = ET(Z Zk’jegaqﬁ) =€ W
M,V o M,V o uw,y o

d

Theorem 3.3. Let @ = Zu,v Ay# : E™ — F be an r-swlin skewsymmetric map,
then @ is completely determined by its values on a basis of E and by the constants
Ay
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Proof. Let {e,} be a basis of E. Let x' = 22’:1 xéeg, i =1,...,m be vectors in E
and X = (xé), then

D(X1,...,Xm) = @(Zg=1 xsleg, o Zg=1 xg'eg)

= )»’,fq&((zg’:l xgleg)v, e (22’:1 xé”eg)v) vell peln
= Zp,,v Alj(Zp:pl,...,pr pr‘l’;ll Tt x‘lf/:r ¢(ev,01 [ evp] )) pE S’

= Zu,v )‘llf|X#|¢(ev1 sees )

where X} is the square submatrix of X determined by rows indexed by v and
columns indexed by . O

Ezample 3.1. Let @ : (%) — R3 be a 2-swlin skewsymmetric map defined by
D(x1. X2, X3) = adrdz g (Xinie o Xiga
(1, %2, %3) Z 2 ¢ Xiz,ji Xiz.ja
(i1:02).(1-72) €13
where x; = 213{=1 Xkiek €N, Then

— § : JisJ2
D(x1,X2,x3) = )‘il,iz D (Xiy jy iy + Xiyjy Cins Xiy j€iy + Xiyjr€i)

(i1,i2),(j1,j2)€l3

_ J1:J2
- Z Ailaiz

(i1,i2),(j1,j2)€l3

Xig,jr o Xitja
Xiz,j1 - Xiz,ja

¢ (ei, . eiy)

Definition 3.3. Let {e,} be a basis of E, then an r-swlin skewsymmetric map
Ag(X1,...,xm) : E™ — I such that ¢(e,,,...,ey,) =1, v € I}, is said an
r-determinant function.

The scalar det,p X = 3, , A01X0| will be said the (r, A)-determinant of X =
(xé), relative to the basis {e,}. If Ay = | X}‘| we denote det, X = | X|, = Do | X2,
see [2].

Ezxample 3.2. In order to obtain a non-trivial example of r-determinant function,
consider a 2-swlin function @ = Y_ A)'¢ defined by

D(X1,... X)) = Zk’,f(e*“l,x,’flev)---(e*“’,x,’f’ev)
W,y
that is
d(xtle,, ... xbre,) = (e xey) - (e™Hr xHre,)

where {e,}, {e*'} are a pair of dual bases in E and E* = L(E) ={f: f: E —
I, f linear} respectively, with dim E = dim E* > r. The bilinear function (,) is
non-degenerate and it is defined by

(" xMie,) = e*i(xFie,)
then

D(X1,..n, X)) = Zkl’j(e*“l,xl‘jllem) e xhrep, )
w

"

_ J7o SR

- 2 :)‘uxm Xty
"
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The set of the r-swlin maps is denoted by SW(E™, T'). The exponential functor
F, from linear spaces to sets, is defined by

F(T)=SW(E™,T) for any linear space T

{F(z) . F(T) — F(H)

for any linear ¢t : T — H
Fit):®@—>tod

The following proposition states the universality of the r-determinant function.

Theorem 3.4. Let Ap =3}, , Ay¢ o E™ — I' be an r-determinant function in E,
then for any r-swlin skewsymmetric mapping ® = 3, , AbO : E™ — F, there is
an unique vector f € F such that

Ot ... xm) = (Ap(x1.....xm)(f) = Y _MXE Sy pell vell. xi€E
W,V

where f, are the components of the vector

f = (G(evll,...,evrl),...,e(e (s -5 € (;l)))
v vy
and v’ are the (") elements of I/.
Proof. Let {e;}, i =1,...,n be a basis of E such that
Ap(xr,....xm) = Y MIXEplen, ... ) = ) MIXE

w,v wsv

that is , ¢(ev,,..., ey, ) = 1.

Then, for any r-swlin skewsymmetric map
W(xt...xm) = ) MIXE Y = (Ap(xi.....xm) (/)

J78Y

it follows

Yiev,,....en) =¢ley,,....en)0(en,,....6e)
=1-0(ey,,....00,)

so ® and ¥ have the same values on the basis {e,} and by theorem 3.3 it follows
O=v. O

If Ag and A’ are two r-determinant functions in E, then nAg+60A%;, n, 0 € I',
is a r-determinant function too.
Let Ar be an r-determinant function in F and let ¥ : E — F be a linear mapping
of vector spaces, where dim E =n, dim F =t, then Ay : E™ — I', defined by

Ayt Xm) = Ap(xt. .o ¥xm) = 3 AP e, (P,
w,T

is an r-determinant function in E, where ¢f : F” — I is an r-linear mapping on
F,pel tell.

By theorem 3.4, Ay = Ap(f) = ), , . A¢|X[| v for an unique vector f = (f).
Let A’ be another nonnull swilin skewsymmetric map, then

Ap=Ap(g) = Y MIX]|g

w,v,T



A CLASS OF PIECEWISE LINEAR MAPS 9

and

Al = Ay (9) = (Ar(/NEQ) = Y MIX]|fugy = AR(f)
W,V,T
so the vector f does not depend on the choise of Ar and it is determined by the
map V¥, then the notation f = det .

Fzxample 3.3. Let ¥ and Ay be a linear map and its matrix respectively, defined
by

VT LRNE L0
Ay =[0 1
Yo(x,y) e (L y,x + ) 11

besides let Ags : (R?)? — R be a 2-determinant function and x; € %2, then

Ay = Ags(Yxr, Yxo, ¥xs) = A2 (xr, Yxa) + Ao (Wxr, yxs) + Ao (Yrxa, Yxs)

2 2 2 2
=120 xiver, Y xnve) + 2O xuven Y xisper)

i=1 i=1 i=1 i=1

2 2
+ A”q&(Z xXi2vre;, Z Xizye;)
i=1

i=1

=AX 2 p(Yer ver) + AP X P p(Wer, Yea) + AP | X2 B(Yer. Yer)

where | XV | = YY) Gince
X2i  Xaj
1 0 1 0 0 1
¢(1/f€1,1/f€2)=¢((1,0,1),(0,1,1))=)»120 1‘-1-)»131 1‘-1-)»231 1‘

=A1a+ A1z — A2
then
Ay = A2 X P detyy ¢ + AP X B dety ) ¥ + AP | X dety 5 ¥
= Ags(detr . ¥)

The expression for det y may be obtained immediately by the matrix A, see [2]

0
1 1 1

1 0 + A3 +A23 0

1 1 1

0
=hizly 1‘ 1 1‘

=A12+A13—A2s

1
delz,)LAv, = del‘z,)L 0
1

Theorem 3.5. Let ¢ : E — F be alinear mapping and Ay = (@) its matrix relative
to the bases {e,}, {fc},v=1,....,n,t=1,...,t. Let Ap = Zmr)\’fq&p cF"™ > T
be an r-determinant function. If ¢ (£, ..., f") =1, then

i)
Ap(re.oxm) =D MO IXHAT) pel vell telf
v

J7%% 4
ii)
Ayler.....en) = Y _ AV AL|
V,T
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where A} is the submatrix of 4 determined by rows indexed by v and columns

indexed by 7, for v =vy,...,v, € I’, T =11,..., 7, € Il. The vectors xi, ..., Xpm,
relative to the basis {e,}, are expressed by x* = 21'5:1 xte,, w=1,...,m and
X = (x5).

Proof. 1)

Ay(X1, ey xm) = Ap(YXt, .. ¥xm) = Ar(Qh_ X ey, ..., >0 xMprey)

= AF( o X Y e O fra Y XY fY)

= Ap(X ooy (Cymy X0 frs ooy Yoemy (T Xp') f2)

= MOy X ) fo), - (= X6 ) fr) tell, pel”
= Y e M g € X ) (T X VR (S )

p €Sy, by

n n
T,
Yoo O xta™) O xlragry = X A7
v=1 v

P=P1.pr  v=1
it follows i).
ii) It is a special case of i) for X = I,. O
The scalar det, 3 = Y., , A[Ay| will be called the (r,1)-determinant of ,
relative to the bases {e,}, {fu}. If A} = |4}|, then duw | A4 |? will be denoted by
det,yr or Y], .

Theorem 3.6. Let ¥ : E — F and 6 : F — G be linear mappings of vector spaces.
Let Afr be a determinant function in F. If xq,..., x;;, are vectors in E, then

Agoy (X1, ..., Xm) = Ago Ay (X1, ..., Xm)
Proof.

Agoy (X1, ..., xXm) = Ag(@ oY (x1,...,xXm))
=Ag(Y(x1,...,¥Xm))
= AQOAV,(Xl,-.-axm)

4. THE (T,K)-FORMS

Let 0 be the tangent space of R" at the point p and let (%})* be the dual space.
Let Ak (?ﬁ;’,)* be the linear space of the k-linear alternating maps ¢ : (?ﬁ;’,)k - N,
then denote by Alt‘ (?ﬁ;’,)*, with k <t < n, the set of all k-linear alternating maps

o (?ﬁ;’,)’ — 9. The set A’,‘ (MP)*, by the usual operations of functions, is a linear
space.

If ¢1,..., ¢ belong to (R7)*, then an element ¢ A... A ¢y € A’t‘(?ﬁ;’,)* is obtained
by setting

$1(v1) - Pr(v)

(A1 A AP, v) = detipdi(vi) = | - .
dr(v1) - Pe(vi)

where i =1,...,¢, j =1,...,k and v; € N".
Observe that ¢1 A ... A ¢y is k-linear and alternate.
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Example 4.1. When ¢1, ¢, ¢3 belong to (9{13,)*, an element ¢1 Ao A3 € A%(?ﬁ;)*
is obtained by the 2-swlin skewsymmetric map

$1(v1)  P1(v2)
(D1 A2 Ad3)(vi,v2) = dety 3 i (V) = |P2 (V1)  @2(v2)

$3(v1)  P3(v2)
¢il (Ul) ¢i1 (UZ)
o ¢i, (V1) @iy (v2)

.. 3
(11,12) (S 12, )‘iliz eNn

)‘iliz
2

and ¢1 A ¢2 A ¢3 is a bilinear alternating map on the vectors vy, vs.

Let x' : | — % be the function which assigns to each point of R” its i
coordinate. Then (dx'), is a linear map in (%")* and the set {(dx?),; i = 1,...,n}
is the dual basis of the standard {(e;),}. The element (dx™), A --- A (dx'), is
denoted by (dxt A--+ A dx'), and belongs to A’,‘(?ﬁ;‘,)*.

Theorem 4.1. The set {(dxil /\---/\dxi’)p}, i1,...,i; € I is a basis for A’,‘(?ﬁ;‘,)*.

Proof. the elements of {(dx’t A --- A dx''),} are linearly independent. In fact,
suppose

> ahidX A AdxT =0

iy perig €11
then, for any (ej,,...,ej, ), with ji,..., jx € I}, it follows
i i
E iy, i dX"V NN dX (e, e,)
iy sensir €11
e, ... ip.
dx'te;, dx'tej,
— § iy iy | o .
i1 seensir €I]! dx'tej, .-+ dx'ej,
i i
8]1 8jk
= E allaall ..‘. e .:.
i1seir €11 A
Lpsslt €4y 8“ 8]k
n
= § )\rl,...,r,arl,...,r, Ii,oo., 1t € (It )jl,...,jk
Fls.-estt
=0

Without loss of generality, suppose A, ..., all equal, then the (Z) equations Zrl,...,r, Aryrr =
0, riv....re € UD)j > Jis---sJx € I, are a linear omogeneous full rank sys-
tem, so it has only the trivial solution. That is a;,,...;, = 0.

The set {(dx’t A+--Adx'),} spans Ak (MP)*, in other words any ¢ € Ak (MP)* may
be written

¢ = Z ail,...,i,dxil/\---/\dxi’ i1y i €I}
iy senig €11
in fact, if

¥ = Z G(eiys ..., ei)dxt Ao Adx"

iyseensig €10
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then V(ei,,....e,) = ¢lei,...,e;,) for all iy,....i; € I]', so ¥y = ¢. Setting
vei,,....e,) =dai,..i, it follows the expression of ¢. O

The above proposition generalizes the known theorem about the basis {dx1 A
-+« A dx'k} of the space Ak(m;‘,)*, see [1].

Theorem 4.2. The linear spaces A’f(?ﬁ;’,)* and Ak(ﬂi;’,)* coincide.

Proof. Let @ = (¢1 A+ A ) (v1.....vk) € AF(R)*, then

¢iy(v1) - i (vg)
w = Z Migooin

i1 ik €I Gi, (V1) - Py ()

= Z Ay @1 A A )1, .., V)
il,...,ikEII?

sow e AF (MP)*. Conversely, let 0 be the null function in (R})*, then any ¥ €
Ak(m;’,)* may be written as

V=1 A AV ) = A AYRAOA A0 (Ve k)
so Y € AF(RL)* . O
Ifwe A’,‘ (MP)*, then w may be decomposed by elements of A’t‘_ j (MP)*, where
k <t—j=<t,in fact
Theorem 4.3. Let @ = (¢1 A ... Ad)(v1.... k) € AF(R2)*, then

Miyoosis—
_ Loolie) Z(q&il/\.../\¢i,_,-)(U1v-~ka)
(t=k)(t—k=j+1) £

—j

w

Proof.

Aiy sy
=" S @i A A )i v
I

t—1

A

_ (t_k)___(;:];_j+l)ltzj(¢il Ao NG )i, V)

—j

indeed w is the sum of (;{) determinants, the last right side has the same number

t--(t—j+2) (z—j)(z—j+1)
t-k)y---¢t—-k—j+0D\ £k t—j




A CLASS OF PIECEWISE LINEAR MAPS 13

REFERENCES

[1] M.P. do Carmo Differential Forms and Applications Springer, Berlin, 1994.

[2] F.Fineschi, R.Giannetti Adjoints of a matriz Journal of Interdisciplinary Mathematics, Vol.
11 (2008), n.1, pp.39-65.

[3] W.Greub Linear Algebra Springer, New York, 1981.

[4] W.Greub Multilinear Algebra Springer, New York, 1978.

[5] S.MacLane, G.Birkhoff Algebra MacMillan, New York, 1975.

[6] M.Marcus Finite Dimensional Multilinear Algebra Marcel Dekker, Inc. New York, 1973.

[7] D.G.Northcott Multilinear Algebra Cambridge University Press, Cambridge, 1984.

[8] S.Ovchinnikov Maz-Min Represenattion of Piecewise Linear Functions Beitrage zur Algebra
und Geometrie, Vol. 43 (2002), n.1,pp. 297-302.

DEPARTMENT DISAG, UNIVERSITY OF SIENA, P1AzzA S.FRANCESCO, 53100 SiENA, ITALY
E-mail address: fineschi@unisi.it



