
DEPARTMENT OF INFORMATION ENGINEERING AND MATHEMATICAL

SCIENCES (DIISM)

UNIVERSITY OF SIENA, ITALY

COMPUTER ARCHITECTURE GROUP

PHD PROGRAM OF INFORMATION ENGINEERING AND SCIENCE (IES)

CYCLE: XXIX

AN EFFICIENT NOC-BASED FRAMEWORK TO

IMPROVE DATAFLOW THREAD MANAGEMENT

AT RUNTIME

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

Doctoral Candidate:

Somnath MAZUMDAR

Director of the PhD Program in IES:

Prof. Antonio VICINO

July 2017

ii

iii

“Not everything that can be counted counts. Not everything that counts can be
counted.”– William Bruce Cameron [Informal Sociology: A Casual Introduction

to Sociological Thinking]

iv

Acknowledgements

It was indeed an amazing journey. Similar to other PhD students, there are
many times where the academic grind and struggle of completing this doctoral
degree seems overwhelming. However, I must thank Prof. Antonio Vicino, Prof.
Stefano Maci, Prof. Marco Maggini and Prof. Chiara Mocenni for putting me in
the right place to keep me going and giving me the peace of mind to complete
this doctoral work. I also have to say thank you to Alberto Scionti, Prof. Marco
Pranzo and Prof. Anoop S. Kumar allowing me to explore interesting research
works, and most importantly supporting me through this doctoral work. It was
invaluable to have such supporters who supported my ideas and worked with
me to solve them.

From the personal note, I have to thank my mother and my father for their
consistent emotional support. These people are the ones more excited than me
about this PhD!! I also offer sincere thanks to Mr. Prem G. Krishnan, Choti, and
Bachcha for their uncountable supports in the crucial time of my PhD.

v

ABSTRACT
This doctoral thesis focuses on how the application threads that are based on dataflow

execution model can be managed at Network-on-Chip (NoC) level. The roots of the

dataflow execution model date back to the early 1970’s. Applications adhering to such

program execution model follow a simple producer-consumer communication scheme for

synchronising parallel thread related activities. In dataflow execution environment, a

thread can run if and only if all its required inputs are available. Applications run-

ning on a large and complex computing environment can significantly benefit from the

adoption of dataflow model.

In the first part of the thesis, the work is focused on the thread distribution mecha-

nism. It has been shown that how a scalable hash-based thread distribution mechanism

can be implemented at the router level with low overheads. To enhance the support fur-

ther, a tool to monitor the dataflow threads’ status and a simple, functional model is

also incorporated into the design. Next, a software defined NoC has been proposed to

manage the distribution of dataflow threads by exploiting its reconfigurability.

The second part of this work is focused more on NoC microarchitecture level. Tra-

ditional 2D-mesh topology is combined with a standard ring, to understand how such

hybrid network topology can outperform the traditional topology (such as 2D-mesh). Fi-

nally, a mixed-integer linear programming based analytical model has been proposed

to verify if the application threads mapped on to the free cores is optimal or not. The

proposed mathematical model can be used as a yardstick to verify the solution quality

of the newly developed mapping policy. It is not trivial to provide a complete low-level

framework for dataflow thread execution for better resource and power management.

However, this work could be considered as a primary framework to which improvements

could be carried out. [303 words]

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Thread management issues . 3

1.2 Research problem and associated solutions 4

1.3 Thesis structure . 7

2 Background 9
2.1 Dataflow threads . 9

2.2 Hardware overview . 14

2.3 Interconnection subsystem . 20

2.4 Summary . 28

3 Thread Distribution 29
3.1 Introduction . 29

3.2 DF-Threads and its scalability . 31

3.3 Program Execution Model (PXM) . 33

3.4 Proposed Architecture . 35

3.5 Hash Scheduling Function . 38

3.6 Evaluation . 39

3.7 Summary . 41

3.8 Acknowledgement . 41

4 Monitoring 43
4.1 Introduction . 44

4.2 System model . 44

4.3 RADA’s implementation . 46

4.4 Dealing with heterogeneity . 48

4.5 Evaluation . 52

4.6 Summary . 55

4.7 Acknowledgement . 56

5 Thread Management at Software defined NoC 57
5.1 Introduction . 58

5.2 System overview . 59

5.3 NoC software interface . 61

vii

viii CONTENTS

5.4 Proposed Network-on-Chip architecture . 62

5.5 Evaluation . 65

5.6 Summary . 68

5.7 Acknowledgement . 68

6 Customised NoC Architecture 69
6.1 Introduction . 70

6.2 System overview . 72

6.3 Proposed Network-on-Chip architecture . 73

6.4 Evaluation methodology . 80

6.5 Applicability and future improvements . 90

6.6 Summary . 93

6.7 Acknowledgement . 94

7 Analytical Model 95
7.1 Introduction . 95

7.2 Problem description and assumptions . 97

7.3 Mathematical formulation . 101

7.4 Simulation results . 103

7.5 Summary . 114

7.6 Acknowledgement . 115

8 Conclusion and Future Work 117
8.1 Contribution . 117

8.2 Future work . 119

Bibliography 121

List of Figures

1.1 Solution overview: Target chip overview for the manycores clustered pro-

cessor. Cores are organised into clusters (i.e., nodes) connected each other

through a 2D mesh. Within each node, cores and other shared resources

are linked via a ring. Each node has a dedicated node manager that con-

trols the runtime and also monitor the system. Each core has a local

scheduling unit to distribute the threads. Blocks that are addressed in

the thesis are highlighted via dotted line. 8

2.1 Block diagram of parallelism: application level parallelism (left), thread

level parallelism (middle) and instruction level parallelism (right) 10

2.2 Thread execution using control and data signals 10

2.3 Programming models classification . 11

2.4 Some well-known topology for interconnect subsystem 21

2.5 XY DoR routing direction (left) and block diagram of a mesh router archi-

tecture is presented (right) . 23

3.1 Instruction count normalised to the matrix size 256. 32

3.2 Speedup of user cycles count normalised to the matrix size 256. 32

3.3 Scaling of read and write operations for DF-Threads. 33

3.4 A simple kernel application adhering with the proposed PXM and a possi-

ble mapping of threads on the PEs. 35

3.5 Chip organization: tiles contain a PE (white box) and router (gray box).

The scratchpad substitutes the traditional L1-data cache. 36

3.6 Thread Dispatcher module organization (left) with the internal structure

of the H(·) function (right). 37

3.7 NoC performance: distribution of threads on the PEs (a), average through-

put (b), and power consumption (c). 40

4.1 System overview: the abstract machine model used to managing execution

of dataflow threads. 45

4.2 Implementation of the proposed system. 47

4.3 Negative feedback closed-loop based task scheduling system of the RADA. 48

4.4 A code snippet of the recursive Fibonacci kernel: the code highlight the

software interface exposed by RADA, which simplifies the amount of code

needed to synchronise threads’ activities. 51

4.5 Recursive Fibonacci sequence: evaluation of the RADA and OpenMP exe-

cution. 52

ix

x LIST OF FIGURES

4.6 Block matrix: evaluation of the RADA and OpenMP execution. 53

4.7 Number of requests issued to the SU by the recursive Fibonacci kernel

(single node, 8 cores). 53

4.8 Score function obtained from the execution of the BMM kernel running on

host CPU and Intel Xeon Phi accelerator. 55

5.1 Mapping between the physical network with a 2D-mesh topology, and a

multi-level virtual topology. Links to the physical network are organised

into local rings (blue lines) and a global 2D-mesh among rings (purple lines). 59

5.2 The lightweight router microarchitecture. Ring stations (RSs) have injec-

tion and ejection ports, and bypass (blue squares) and power-gating (red

squares) bits. Inter-ring switches are power-gated depending on the state

of the RS (grey circles are OR/AND gates). 63

5.3 The internal structure of a RS with BP/PG bits and the link counter in the

network interface (dashed lines represent selection signals for multiplex-

ers/demultiplexers). 64

5.4 An example of virtual topology mapping: Grey structures represent com-

ponents (i.e., interconnections, RSs or inter-ring switches) of the router

that are power-gated. Red lines correspond to active links used to build

local rings, while green lines show links of the mesh. Furthermore, green

boxes represented components set in bypass mode and used to construct

the mesh among the virtual rings correctly. 65

5.5 Distribution of random traffic over 1024-based CMP. 66

6.1 An instantiation of the proposed scalable NoC: 256 PEs organised into

4× 4 block units, each connecting four ringlets. 74

6.2 Modified 2D-mesh router microarchitecture: two groups of local/global

channels are used to manage traffic within the 2D-mesh and traffic ex-

change with local ringlets. 75

6.3 Timing: a) best-case (success) and b) worst-case (failure) of pre-arbitration. 76

6.4 The microarchitecture of the RS of the ringlet’s master: horizontal dimen-

sion is used to create the bidirectional ring connection, while vertical di-

mension connects the mesh router and local PE of the ringlet. 77

6.5 Packet header organisation. 79

6.6 Static and dynamic power distribution . 82

6.7 Total power consumption with increasing network size. 83

6.8 Average packet latency in uniform random traffic pattern. 85

6.9 Average packet latency in bit-reversal traffic pattern. 85

6.10 Average packet latency in transpose traffic pattern. 86

LIST OF FIGURES xi

6.11 Average network throughput in uniform-random traffic pattern. 87

6.12 Average network throughput in bit-reversal traffic pattern. 87

6.13 Average network throughput in transpose traffic pattern. 88

6.14 Average packet latency with increasing network size. 89

6.15 Average network throughput with increasing network size. 90

6.16 Comparing average network throughput and average packet latency with

increasing network size. 91

6.17 Internal organisation of the morph control packet (left), and the corre-

sponding control structures in the mesh router (right). 92

7.1 Representation of multiple application running on a NoC 98

7.2 NoC model representation: via architectural model (left) and also via the-

oretical model (right) . 98

7.3 Basic system graph representation including application threads and as-

sociated single memory controller . 100

7.4 T2C mapping process in zig-zag heuristic algorithm for NoC size 4× 4 . . 103

7.5 Relative average traffic performance . 110

7.6 MC influence on four algorithms while objective function is energy cost

and latency . 111

7.7 Comparing latency with energy cost with different network sizes 111

7.8 Performance comparison between 5× 6 and 4× 8 113

7.9 Comparing the queue length for network size 4× 8: (left) MC=1, (right)

MC=2 . 113

7.10 Comparing the queue length for network size 5× 6: (left) MC=1, (right)

MC=2 . 114

xii LIST OF FIGURES

List of Tables

2.1 Theoretical performance of 8x8 mesh for six synthetic traffic patterns . . 25

4.1 The execution trace (first 10 entries) for the RFS kernel with the input

size set equals to n = 10. 54

4.2 The execution trace (first six entries) captured from one PE when running

RFS kernel with size n = 10. 54

6.1 Mesh-router: main microarchitectural parameters. 76

6.2 Area and power comparison between a standard router architecture and

the proposed mesh router. 81

6.3 Relative resource utilisation in Vivado (values are in percentage). 81

7.1 Experiment configuration . 104

7.2 Problem size for the MILP0 model . 105

7.3 Performance of MILP0 model while the objective function is minimisation

of energy cost . 106

7.4 Performance of MILP0 model while the objective function is minimisation

of latency . 107

7.5 Performance of MILP model while the objective function is minimisation

of energy . 107

7.6 Performance of MILP model while the objective function is minimisation

of latency . 108

7.8 Gap from the LB(MILP) which is the best attainable for the three algo-

rithms (MILP, ZZ, RND) while minimising the latency 109

7.7 Gap from the LB(MILP) which is the best attainable for the three algo-

rithms (MILP, ZZ, RND) while minimising the energy cost 109

xiii

xiv LIST OF TABLES

1
Introduction

In recent years, applications have evolved from simple, monolithic, centralised execu-

tion model to highly agile, distributed and dynamic model. These transformations have

forced to make changes in the hardware microarchitecture for better support at the

software level. The functional part of computation unit has also evolved a lot due to the

changing nature of user applications. Some well-supported features of the current ap-

plications are: i) dynamic scaling (up and/or down) of number of processing cores as the

execution time progresses (e.g., MapReduce programming framework); ii) requirement

of heterogeneous processing cores (supported by e.g., asymmetric CMPs (chip multi-

processors), Cell broadband engine processor, ARM’s bigLITTLE technology). Today’s

applications also started to become communication-centric. A huge part of the proces-

sor chip’s power budget is used to transport the data packets from/to cores and also to

the memory modules. Current and future multi-/many-cores will be hosting multiple

applications to improve the performance per unit energy. The primary aim of sharing

the CMPs by multiple applications is to improve the overall resource utilisation of the

system. However, improving the resource utilisation without creating the resource con-

tention and also the workload imbalance is a very critical task. The solution should

be holistic and must follow Hardware/Software Codesign approach. Here, the software

could be used for flexibility, and hardware for higher performance.

The nature of the execution flow in the applications can differ significantly. Thus,

the proposed software solutions cannot be generic. The higher proportion of today’s

software application follows traditional control-flow approach. As a consequence, the

state-of-the-art hardware is also tailored to that. There is another execution model that

execute threads based on the availability of input data called Dataflow execution model.
The advantage of this model is that independent portion of the application can be ex-

ecuted in parallel when their input data are available. In this doctoral work, dataflow

based execution model is used. Parallelism can be achieved at different levels. Applica-

1

2 Chapter 1. Introduction

tion threads allow parallelizing code inside the applications to reduce overall execution

time. Most common form of parallelism are i) instruction-level-parallelism, ii) data level

parallelism (DLP) and iii) thread-level-parallelism (TLP).

Dataflow architecture was initially introduced for ILP [Den80]. It was also initially

implemented in the form of “restricted dataflow” in a superscalar processor [HP86].

Later, a similar concept had been investigated by [AN90] also to support threads. Soon

this effort led to an explicit token-store (ETS) architecture based machine known as

Monsoon [PC90]. The dataflow execution model also supports DLP, but this work is

focused on the TLP support of dataflow. During TLP, the total execution time would

be equal to the execution time of the longest-executing thread if all threads in an ap-

plication started to execute independently. In applications, TLP can also be exploited

using other execution models (such as fork-join, master/slave, divide and conquer). Cur-

rent CMPs can run a variety of complex applications consisting of a massive number of

concurrent threads. Today, a single core can support concurrent execution of multiple

threads (known as simultaneous multithreading (SMT)). Well-known hardware such as

Intel’s core architecture supports two threads each core and Xeon Phi co-processor that

can support four threads per core.

Today’s applications are long running, multithreaded and have different resource re-

quirements. Only the microarchitectural advancements are not enough to execute appli-

cations in the best possible way along with proper programming model. Both hardware

and software support for threads is also necessary. Hardware-based support for explicit

multithreading can facilitate smooth execution of fine-grain threads and offer advan-

tages over managing them at the software level. Conversely, software based thread

supports can lead to higher performance loss (as the number of thread increases). The

situation may get worst for large, complex and long running parallel applications. In

general, dedicated hardware module offers low overhead and faster execution time, but

requires altering existing hardware. On the other hand, software components are eas-

ier to add and manage, while new hardware support could increase performance. Before

proposing a dedicated or new hardware module into the existing system, we should con-

sider the associated design time, also the increased area and power cost.

The functionalities and also the complexities of manycore chips are increasing due to

the immense evolution of chip’s microarchitecture. Different applications have different

resource requirements. A typical hardware execution unit consists of various depen-

dent components (such as cores, local memory, DRAM controller, I/O controllers) and

software plays a crucial part to tie them together for executing applications. With in-

creasing core counts, contention reduction among shared resources is a challenge. The

interconnection subsystem is becoming a vital component for better performance for

manycore chips. Stable performance becomes dependent on the contention of other cru-

Section 1.1. Thread management issues 3

cial functional components (such as memory hierarchy and interconnections) as the core

count of the chips are increasing. Today’s, popular interconnection subsystem for CMPs

is known as Network-on-chip (NoC) which is mainly an embedded switching network to

interconnect the processing cores inside a CMP.

Multiple topologies are available or proposed from the scientific community. Two-

dimensional mesh (2D-Mesh) is the most popular topology. In recent years, the NoC

research domain has matured enough. Managing threads at low-level have several ad-

vantages (such as fewer hotspots, better performance, efficient power utilisation are few

among others) unfortunately managing the threads at NoC level has not gained more

attention. NoC is not just a topological layout of processing cores inside a silicon die, but

also an effective network to route the data packets between the cores and also between

the primary memory. Here, we advocate for the adaptation of NoC level thread manage-

ment. This approach can facilitate the adaptation of low-level thread management for

better control of data packets and also the floor planning for energy efficient execution.

This method could also adapt itself to operational conditions (such as hotspots). In this

work, a dataflow-based program execution model (PXM) has been used to map and dis-

tribute threads. Next, a software defined NoC, and also a hybrid NoC topology has been

proposed keeping in mind to be used with the proposed thread distribution mechanism.

1.1 Thread management issues

The application threads are executed in a dynamic environment. For the smooth and

efficient execution of applications, the system architecture needs to dynamically adapt

the “ever changing” situations with minimal commotion to the functionality they offer.

The change can come from various sources (such as resource contention, failure of hard-

ware components, or may be a specific requirement of running applications). The known

issues can be broadly grouped into two groups. They are:

• Non-uniformity and in-elasticity Each application (no matter whether they

are a regular type of application or irregular type of application) may be composed

of several hundreds of concurrent threads. A single solution may not be appro-

priate for all types of application threads, so customisation is needed for better

performance. The main issue of today’s applications is that their natures are not

predictable easily. Managing threads at runtime using available resources are

not easy. The traditional approaches to tackling the runtime thread management

limit the overall flexibility of the underlying hardware.

• Runtime prediction Runtime prediction for resource requirements by threads is

very complex to envisage. It is very complex to forecast the influence of the appli-

4 Chapter 1. Introduction

cation on the current system. There also exists I/O stalls or hardware component

failures to make the situation more complicated.

Resource sharing opportunity arises when multiple computing elements connect in-

side a system. A proper resource management must be in place to harness the inherent

facilities in a distributed computing platform where opportunities [MHH+15, CGMP10]

of sharing processor core’s content, hardware resources [GAD+13], and other services

exists. However, developing an effective resource management ecosystem for “oppor-

tunistic” computing environment is not easy. An application is a collection of multiple

sub-tasks which can communicate each other and also may be dependent on each other.

These scenarios are ideal for I/O stalls or memory stalls. Furthermore, this situation

can lead to reduced performance. Thus, we need to make a (low-level) ecosystem which

is simple, scalable and yet efficient enough for executing applications at higher perfor-

mance and with lower energy cost. In general, multiple efficient software, as well as

the hardware based solution, have been proposed for addressing the issues belonging to

the groups as mentioned above. Some of the recently proposed solutions also consider

the current hardware microarchitectural changes (such as increased complexity at last

level cache (LLC), prevailing heterogeneity at core level).

1.2 Research problem and associated solutions

Recent times power aware computing has gained importance. As a consequence, the

microarchitectures are becoming more energy efficient. Power-aware approach some-

how leads to multicores concept and later to the manycores. Apart from the increased

core count, this approach also helps to steer the microarchitecture from homogeneous

to heterogeneous. The increased core count offer the higher degree of parallelism. In-

terconnection and memory modules are the critical subsystems which are shared by

all cores for data exchange. NoC is a scalable communication architecture that offers

advantages compared to other alternatives (such as bus, ring) because both topologies

suffer from high energy consumption, low scalability, and low bandwidth for connecting

a large number of processing cores. Apart from that, NoC also offers better scalability,

productivity and more deterministic performance [DT01].

For better energy efficiency and scalability, this research work advocate for an ap-

propriate means of distributing and monitoring dataflow based application threads at

NoC level. However, the proposed approach is also flexible enough to be used for control-

driven applications. Results also show the efficiency of the simple hash based policy pro-

posed for concurrent, large thread distribution model. A hybrid NoC architecture has

been developed on the state-of-the-art FPGA device for underlying support. The pro-

Section 1.2. Research problem and associated solutions 5

posed hybrid NoC is application-aware by providing the support to scale (up or down)

its size as per applications requirement. The primary research question that has been

addressed in this work is:

How a NoC-based framework composed of multiple components (mainly
for thread execution, distribution and monitoring) can improve the runtime
adaptability of dataflow program execution models?

In other words, the goal of this research is to enhance the runtime adaptability of

dataflow thread management policy by providing a scalable and efficient hybrid NoC

topology. The framework can manage and also monitor the threads while lowering the

energy consumption. The proposed hybrid NoC design is also flexible enough to adapt

to the changing resource requirements of applications at runtime. The doctoral work

solves the research problem via five steps. They are:

Step: 1 (Aim: Thread Distribution and Execution): How to easily distribute the

massive number of concurrent threads at low levels so that it become energy efficient?

Article I (Chapter 3) gives the detailed the hash-based thread distribution scheme

that can be very efficient with simple hardware modification. The proposed scheme tar-

gets dataflow execution model and offers abstraction and flexibility.

Based on the Paper: “Enabling Massive Multi-Threading with Fast Hashing” by Al-

berto Scionti, Somnath Mazumdar and Stéphane Zuckerman.

Status: Accepted for publication at IEEE Computer Architecture Letters (CAL).

Step: 2 (Aim: Thread Monitoring): How can we monitor the multithreaded

dataflow applications?

The main aim of Article II (Chapter 4) is to propose a simple tool to analyse dataflow-

based applications at runtime. It aims at a faster evaluation of hierarchical dataflow

execution model. The output provided by the tool can be of great help in analysing the

traffic generated by the scheduling activity.

Based on the Paper: “Analysing Dataflow Multi-Threaded Applications at Runtime” by

Somnath Mazumdar and Alberto Scionti.

Status: Published at the 7th IEEE Advance Computing Conference (IACC-2017).

Step: 3 (Aim: Thread Execution Support): How to manage threads at Software-

defined NoC level?

Article III (Chapter 5) discusses this challenge by proposing a scalable Software de-
fined NoC (SDNoC) architecture for future manycores. The proposed interconnect allows

mapping different types of topologies (virtual topologies). In this work, the software

layer can directly control the network topology to accommodate different application re-

quirements and communication patterns.

Based on the Paper:“Software defined Network-on-Chip for scalable CMPs” by Alberto Scionti,

Somnath Mazumdar and Antoni Portero.

6 Chapter 1. Introduction

Status: Published in IEEE International Conference on High Performance Computing

& Simulation (HPCS), (pp. 112-115), 2016.

Step: 4 (Aim: NoC microarchitecture): Provide an efficient NoC microarchitec-

tural design to exploit the network traffic localisation for better traffic management at

low energy cost.

Article IV (Chapter 6) gives a detailed account of a hybrid, scalable and efficient

NoC microarchitecture that is designed to support future manycores chips. Similar to

Article III, it also fuses ring and 2D-Mesh topology to provide high-performance while

processing local (rings) and global (mesh) traffic efficiently. The results show that it is

indeed efficient compared to the traditional 2D mesh topology.

Based on the Paper: “A High-Performance Interconnect for Future Scalable Manycore
CMPs” by Somnath Mazumdar and Alberto Scionti.

Status: Under review at Journal of Parallel and Distributed Computing, Elsevier.

Step: 5 (Aim: Thread-to-Core Mapping): Provide an efficient analytical mapping

model to certify the mapping of threads onto the cores are optimal or not.

Article V (Chapter 7) proposes a mixed integer linear program based formulation to

map threads on cores at worst-case scenario by keeping into account the spatial topology

of 2D-mesh NoC. The proposed analytical model is general enough to consider a different

optimising policy (either optimising energy or latency) together with a variable number

of memory controllers.

Based on the Paper: “An Analytical Model for Thread-Core Mapping for Tiled CMPs” by

Marco Pranzo and Somnath Mazumdar.

Status: Under review at IEEE Transactions on Computers.

1.2.1 Solution overview

The proposed framework incorporates a flexible dataflow thread management mech-

anism that can efficiently distribute dataflow threads across the available processing

cores. The proposed hybrid NoC topology can manage the traffic inside the NoC first by

dividing them as local and global. Apart from that, the topology exploits the idea of “traf-

fic localisation” to improve the overall energy cost to transport data packets. The con-

tribution on the main research issues related to the problem is described in figure 1.1.

The figure presents the target architecture with its basic functional block diagram, and

the dotted line represents the contribution of this work. The proposed framework relies

on three main components:

• Dataflow based approach: is used to enhance the degree of parallelism avail-

able in a dataflow application. Dataflow mainly explores the “spatial parallelism”

upon the input available. Spatial parallelism is based on the concept that a thread

Section 1.3. Thesis structure 7

can execute in parallel if there exist enough space (resources or processing cores)

and the associated input is available. We consider the dataflow model as it has

fewer management issues and the available general purpose hardware can be used

to exploit the inherent parallelism of the dataflow applications.

• Thread distribution and monitoring: is a critical feature while managing a

huge amount of concurrent threads at runtime. In the framework, hashing based

an effective thread distribution policy is used with a small amount of HW over-

heads. This work also proposes an analytical model for evaluating the solution

quality of mapping threads on the free cores (in a 2D-mesh NoC). It provides a

(theoretical) optimum solution for variable NoC sizes. Finally, a simple, yet pow-

erful tool has also been proposed to monitor the threads at runtime.

• Hybrid NoC topology: takes into account the infrastructural maintenance is-

sues during the thread execution. To counter the runtime management issues, a

hybrid NoC architecture works in such a way so that with increasing data traffic,

the system is stable with the continuous rise in throughput and also with better

power consumption compared to the traditional 2D-mesh topology. The current

state-of-the-art NoC subsystem is complex enough to maintain the threads at such

low level with efficient topology layout and smart thread management but with a

few overheads for implementing hardware-based thread distribution policy.

1.3 Thesis structure

The thesis is organised as:

• Chapter 2 presents state-of-the-art of the related works. It presents the basic

information about the used programming model, with its execution models along

with its related hardware supports. The brief information about some current

manycores and the NoC has also been given.

• Chapter 3 presents hash-based thread distribution scheme for manycores. It

describes how this distribution scheme can solve massive concurrent thread man-

agement issues at the hardware level with little overheads.

• Chapter 4 details a runtime analysis tool that can be used to evaluate the

dataflow applications. It aims to be a simple simulation tool for fast evaluation

of applications adhering to dataflow PXMs.

• Chapter 5 presents a scalable Software defined Network-on-Chip (SDNoC)
architecture to provide the execution support for threads based on dataflow PXMs.

8 Chapter 1. Introduction

Figure 1.1: Solution overview: Target chip overview for the manycores clustered
processor. Cores are organised into clusters (i.e., nodes) connected each other
through a 2D mesh. Within each node, cores and other shared resources are
linked via a ring. Each node has a dedicated node manager that controls the
runtime and also monitor the system. Each core has a local scheduling unit to
distribute the threads. Blocks that are addressed in the thesis are highlighted
via dotted line.

• Chapter 6 details a proposed hybrid NoC implementation that have been de-

veloped to support both control-driven and data-driven execution model with bet-

ter scalability, throughput and improved latency along with lower power and area

cost.

• Chapter 7 presents an analytical model to map application threads on to the

free cores to achieve optimal performance (such as energy cost and latency).

• Finally, Chapter 8 summarises the chapters and also discusses some perspectives

for future research works.

2
Background

This chapter discusses the dataflow threads and also provides a generic overview of

current hardware together with the relevant description about Network-on-Chip (NoC).

The discussion is presented in three parts: Section 2.1 describes the brief summary

of dataflow threads, including its program execution models (PXMs) and associated

dataflow languages. Next, Section 2.2 discusses the current multicore domain from

general purpose architecture (mainly focusing on the manycore architecture and the

heterogeneity) perspective and also about the dataflow based hardware support. In this

chapter, a brief overview of the FPGA device has been given as the proposed customised

NoC design has been implemented on FPGAs. Finally, in Section 2.3, we discuss the

NoC including its traditional topologies and the related works that are relevant to this

doctoral work.

2.1 Dataflow threads

Today’s multi-/many-cores support massive level of (thread) parallelism. For better sup-

port, the functional components and its capabilities are changing. Current systems now

wrap hundreds of processing cores in a single silicon die to execute a huge number of

concurrent threads. Simultaneous execution of multiple threads reduces the latency

occurred in the system so that performance can be improved. An application consists

of a collection of tasks which further can be abstracted into multiple threads. Multiple

threads can run in parallel if they do not become dependent on each other. It is always

worth to be noted that more the parallelism exists in the application code, better the

application would be parallelized. In Figure 2.1, we have shown the canonical way to

achieve parallelism at different levels from an application. In coarse grain, an appli-

cation can be divided into multiple tasks which work on particular data sets. Next,

Each task can be further split into multiple threads known as thread-level-parallelism

9

10 Chapter 2. Background

(TLP, see Figure 2.1 (middle)). In Figure 2.1(right) a thread is divided into a set of in-

structions (blocks) to provide instruction-level-parallelism (ILP). With large core counts,

Figure 2.1: Block diagram of parallelism: application level parallelism (left),
thread level parallelism (middle) and instruction level parallelism (right)

each core can generate an enormous amount of data traffic inside the chip. It can further

lead to a resource contention (such as I/O stalls or memory stalls). Hence, it is needed

to efficiently manage the increased level of parallelism to avoid performance degrada-

tion. In general, the program execution flow is governed by either control dependency or

data dependency. In control dependency based execution, threads are instantiated when

some conditions are met. In data dependency model, threads are started to run when

needed input data are available (see Figure 2.2). Most of the conventional (high-level)

Figure 2.2: Thread execution using control and data signals

programming languages are control driven, and dataflow programming languages are

mainly data driven. The available programming models can be broadly classified into

five groups. They are: i) shared memory based programming model, ii) distributed

Section 2.1. Dataflow threads 11

memory based programming model, iii) partitioned global address space (PGAS) pro-

gramming model, iv) dataflow programming model and v) heterogeneous programming

model (displayed in the Figure 2.3). Until now, the most popular program execution

Figure 2.3: Programming models classification

models are based on von Neumann architecture. Due to its limitations (such as mem-

ory latency, synchronisation) [I+88], dataflow model of computation has gained pop-

ularity. However, the roots of the dataflow execution model date back to the early

1970’s. Dataflow [Den80, Den86] is an asynchronous as well as synchronous [KGA01]

distributed computation model. Dataflow threads are set of synchronised and sched-

uled instructions. It can support non-preemptive execution, but the compiler controls

thread granularity. In general, dataflow model can be classified either as static [DM75]

or dynamic [GKW85]. Applications adhering to such program execution models (PXMs)

follow producer-consumer model, which offers a natural way for synchronising parallel

activities. By allowing threads to schedule the execution of other consumer threads, the

synchronisation mechanism set to the required number of input data to an appropri-

ate consumer thread. The dynamic form of dataflow can support a higher level of par-

allelism by supporting repetitions [GP+77]. An application written based on dataflow

language creates a directed acyclic graph (DAG). In DAG, each node represents a thread,

and the arc is the data path to other threads. Computation occurred when the needed

data arrived at the nodes, and dependent threads will not resume until their data ar-

rives at the nodes via the arcs. All the nodes that have input data available can im-

mediately start their execution. In this doctoral work, the employed dataflow threads

exhibit some features such as i) a dataflow thread triggers its execution only when all

input data are available, ii) it does not support any jump, iii) simultaneous read-write is

not permitted, and iv) supports shared memory model. During the execution, a dataflow

thread can have any one of the following states:

• Waiting: when all the inputs are not available.

• Ready: when all the inputs are available.

12 Chapter 2. Background

• Execution: thread is assigned to a specific core for its execution.

Yazdanpanah et al. in their paper [YAMJGE14] classify hybrid dataflow/von-Neumann

models compared to block level execution model, control and dataflow execution models.

Nowatzki et al. in their work [NGS15] claim that dataflow model can achieve good per-

formance by reducing energy up to 40%. In this paper, authors also argued that if a core

provides support for both dataflow and out-of-order execution mode, then applications

can achieve better performance at lower cost (by automatically switching from one mode

to another).

2.1.1 Dataflow execution model

Unlike conventional control driven execution, in the dataflow execution a DAG is used

to represent the data dependencies among the threads. It allows the consumer thread

to run once all the required inputs are available. This way of triggering the execu-

tion helps to exploit the TLP because it reduces the amount of traffic generated by

the synchronisation activities on multicores. Dataflow-based PXMs offer a lower syn-

chronisation cost with a better use of processor resources. Hardware support for such

PXMs are implemented in various early architectures ([CGSVE95, N+90]). Both High-

Performance Computing (HPC) and High Throughput Computing (HTC) applications,

as well as Cloud Computing, can significantly benefit from the adoption of dataflow

PXMs. Some dataflow based PXMs are: DF-Threads [GF14], Codelets [SZG13], Data

triggered threads (DTT) [TT14, TT12, TT11], Data driven multithreading (DDM) [KET06]

and Scheduled Dataflow (SDF) [KGA01].

• DF-Threads is a variant of dynamic dataflow that can be easily interfaced to li-

braries and hardware implementations.

• Codelet is a fine-grained dataflow model for supporting multiple nodes connected

via an interconnection subsystem. A codelet represents a non-preemptive, single

unit of computation. Codelet relies on an abstract machine model (AMM). It pro-

vides an abstraction of the features which is required by the hardware processors

to support the thread execution. The two levels adopted in the Codelet model al-

lows better use of the data principle of locality. For efficient execution, multiple

codelets are connected to form a codelet graph (CDG).

• Data triggered threads (DTT) proposed a dataflow-inspired execution model called

data-triggered thread execution. It has been suggested for CMP and SMT domain.

Software supports for DTT can run on any parallel machines. CDTT is a compiler

framework which supports C/C++ and generates data-triggered thread executable

(which can run by the runtime). It adds four new instructions for runtime support

Section 2.1. Dataflow threads 13

and an extra hardware support for house-keeping jobs. DTT tries to exploit the

redundant computation to speed up the execution.

• Data-driven multi-threading (DDM) execution model has inherited data availabil-

ity based on execution feature from dynamic dataflow model (more precisely from

decoupled data-driven (D3) graphs [EG90]). In DDM, applications are partitioned

into a data-driven synchronisation graph and threads at the compile time. DDM

effectively separates threads that are data dependent and independent. DDM

model requires storing the application dataflow graph (DFG) locally to select ready

threads and scheduling new ones. Similar to conventional dataflow, this non-

blocking mode of execution is another way to hide synchronisation and commu-

nication latencies by running other independent threads in a shared memory ad-

dress space.

• Scheduled dataflow (SDF) architecture represents a decoupled memory/execution

implementable on multithreaded architecture using non-blocking dataflow threads.

Both SDF and Codelet supports self-scheduling property where it is not required

to store the application DFG, and the threads are dynamically scheduled at run-

time. However, the Codelet model differs from the SDF for the hierarchical organ-

isation of the threads.

Recently some of these PXMs also receive some hardware supports ([STE06, TT11,

GS15]).

2.1.2 Dataflow languages

Some of the well-known dataflow languages are Lucid [AW77], Lustre [HCRP91], actor

model based (such as CAL [EJ03]) (see figure 2.3).

• Lucid programming language is a non-procedural/functional language. Dataflow

computation can be achieved using its temporal operators. In Lucid code, the

statements are mainly equations. It is described in such a way so that a calcula-

tion of rational numbers can be done.

• Similar to Lucid, Lustre is also an another functional language. It is a syn-

chronous dataflow programming language. The Lustre code has three main parts:

clocks, flows and nodes. The code can be compiled to multiple target languages

(such as C).

• CAL is a dataflow-inspired actor based programming language. CAL describes

modular, non-shared dataflow components called Actors. Actors are threads run-

ning C or C++ language and can communicate with thread-safe software FIFO

14 Chapter 2. Background

buffers. The FIFO’s are protected by the mutex, but it suffers from high latency

issues. Actors only can communicate via I/O ports. Actor intakes token, changes

its state and produces another token. During execution, CAL produces a network

of actors. Reading a thread will suspend until a producer thread does not produce

all needed tokens/inputs for input port (data-driven approach).

2.2 Hardware overview

Today’s HPC applications have two main requirements: i) higher performance and ii)
better energy efficiency. In recent years due to the immense growth in silicon industry,

the microarchitecture also started to become complex and powerful (e.g., the prototype

of a Kilocore which connects 1024 cores in a single system [BSP+16b]). The changes

can mostly be grouped into two classes: increased core count (lead to multicore and now

manycore chips), and different processing capability fused inside a single die (hetero-

geneity). The increased core count provide immense computing power and to support

them multiple programming models also started to develop. The system with increased

core counts are also known as accelerator or co-processor (such as Intel Xeon-Phi). How-

ever, in recent time, building low powered single board computer with very good amount

of computational power is getting popular, and few of them are Parallela, Kalray’s MPPA

256. The growth in core count will help to share the chip area and resources to run mul-

tiple applications concurrently but the concurrent execution of multiple threads will

immensely stress the system. So proper resource management together with heat re-

moval mechanism must be incorporated into the system. In this section, the discussions

will be focused on some (co)-processors which either supports control-driven execution

or data-driven execution.

2.2.1 Hardware support for control-driven execution

2.2.1.1 Intel Xeon-Phi co-processor

Many integrated core (MIC) architecture is an HPC accelerator built upon X86 archi-

tecture and manufactured using 22-nanometer lithography. Xeon Phi has processor

cores that can run its own operating system. Each core has an L1 cache (of 32 KB for

data and instruction), L2 cache (of 512 KB for both instruction and data) but not L3

cache. All L2 cache have their tag directories and translation lookaside buffers (TLBs).

These distributed tag directories are used to provide uniform access and to track cache

lines in all L2 caches. It supports MESI (Modified-Exclusive-Shared-Invalid) protocol for

cache coherency and memory coherency. Each core is multithreaded (up to four threads)

Section 2.2. Hardware overview 15

and follows in-order execution. Cores are interconnected by a bidirectional ring topol-

ogy (dual-ring). MIC supports single instruction, multiple data (SIMD) taxonomy and

also supports specialised SIMD instruction sets (such as advanced encryption standard

new instructions (AES-NI), MMX, or streaming SIMD extensions (SSE) (extension of

MMX)). Apart from that, the accelerator card only understands X87 instructions. Phi

micro-architecture is based on scalar pipeline and vector processing. Each core has a

dedicated 512-bit wide vector floating point unit (VPU) and is crucial for the higher per-

formance. It also supports fused multiply-add (FMA) operations. If FMA is not used,

then performance will be turned to half. Each core can execute two instructions (one on

U-Pipe and another on V-Pipe) in its core pipeline in every clock cycle. Only one floating

point or vector instruction can be executed in any one cycle. The instruction decoder

is a two-cycle unit and hence, at least two threads are needed to attain maximum core

utilisation.

Recently, commercial manufacturing of single board computers with multicore chips

and an accelerator (on the same circuit board) have started. Below two are the example

of such systems.

2.2.1.2 Parallella

Parallella [Ada13] is a scalable, open-source, superscalar, RISC (Reduced instruction set

computing) based manycore architecture which relies on MIMD (multiple instructions,

multiple data)-based execution model. It provides scalability and low power consump-

tion (e.g., using 5 volts 16-core based Parallella board can attain 32 GFLOPS as peak

performance). Parallella is based on Epiphany system-on-chip (SoC) that wraps Zynq

with dual-core ARM Cortex-A9 as host processing core. ARM cores have its kernel and

follow master-slave execution model. The Epiphany architecture has been designed to

extend the floating point computing power with very low energy consumption. Each co-

processor is of 32-bit wide with the max clock speed of 1 GHz (average 500 to 600 MHz)

and has variable-length instruction pipeline. Each core mainly has six components one

each for integer operation, floating point operation, 64-bit general purpose registers,

program sequencer, interrupt controller and debugging unit. Similarly, to Xeon Phi,

it also supports FMA operations and can perform two floating point operations at ev-

ery clock cycle. Parallella supports 32-bit wide little-endian based flat shared-memory

architecture, and each core has unprotected, a local memory (both for data and instruc-

tion) of size 32KB that are further divided into four sub-banks. Each co-processor has

a unique global address and can transfer 8-bytes of data or instructions at every clock

cycle. Each core connected by 2D low-latency NoC. It provides three lines for reading

and two for writing (one for off-chip and on-chip) operations. It is based on ANSI-C/C++

and OpenCL programming environments. The read operations are non-blocking and the

16 Chapter 2. Background

read-write operation for local memory follows strong memory model, but the read-write

operation for non-local memory does not follow any strict order execution. However,

memory constraints and memory access issue (such as concurrency or memory quirks)

are big problems for it’s performance in real applications.

2.2.1.3 MPPA-256 processor

Kalray’s MPPA-256 is a multi-purpose processor array (MPPA) based single-chip many-

core processor that is built using 28nm CMOS lithography [dDdML+13]. The MPPA

includes quad-core CPUs coupled with the manycores. Each MPPA core is based on a

32-bit very long instruction word (VLIW) architecture and also comes with an FMA func-

tionality. Each core has it’s L1 instruction and data cache. It wraps 256 processing cores

and 32 system cores on a chip (thus many counts total 288 cores). Each compute cluster

consists of 16 identical cores with own standard FPU and memory management unit

(MMU). The cluster cores work non-preemptively, which is ideal for very specialised

computation, but not suitable for the high-level application. This MPPA architecture

consists of an array of clusters linked by two 2D torus-based NoC (one for data move-

ment and the other for control). The NoC provides a full duplex communication between

clusters and a lightweight POSIX kernel is running inside each cluster. In every clock

cycle, it can support up to five 32-bit RISC-like integer operations. The processing cores

in the array used their local memories and dedicated DMA to perform their global mem-

ory addressing. It seamlessly supports C based dataflow and pthread based execution

models and is also well-suited for applications such as image, audio, signal processing.

2.2.2 Hardware support for dataflow execution

The hardware support for dataflow execution has started from early 1990’s. Dataflow

inspired architectures are meant to offer low cost, efficient and flexible platform for

dataflow computational model. Dataflow approach can offer the highest level of paral-

lelism if the application has a huge number of concurrent independent threads. The

dataflow systems support both static and dynamic dataflow based execution and also

the explicit token-store architecture (such as Monsoon). Few known dataflow supported

hardware are Monsoon [PC90], Efficient Architecture for Running THreads (EARTH)

[The99], WaveScalar [SMSO03] and the latest Maxeler processing platform [PL13].

2.2.2.1 Monsoon

Monsoon is an explicit token-store (ETS) based architecture prototype for dataflow based

execution. In ETS architecture, token carry pointers and each token descriptors are ad-

dressed in a global memory which is partitioned among the cores. In Monsoon, each

Section 2.2. Hardware overview 17

core supports the eight-stage pipeline. In instruction fetch (IF) stage, an explicit token

address is computed from the frame address and an offset. Next, the availability of

the operands is checked. When data arrived, it is stored in the frame slot of the frame

memory. When all the data arrived, the execution stage starts.

2.2.2.2 WaveScalar

WaveScalar is a tile-based processor architecture for executing conventional pthreads,

and also dataflow threads. To support multithreading, WaveScalar extended its instruc-

tion set. Its thread spawning mechanism tries to parallelize small loops inside the ap-

plication. WaveScalar supports threads that do not have their stack and cannot make

functions call but has it’s thread identification. WaveScalar provides each thread with

a consistent memory view and lets application to manage the memory ordering directly.

To support the concurrent thread execution, it supports multiple, independent sequence

of ordered memory access.

2.2.2.3 Efficient Architecture for Running THreads (EARTH)

EARTH belongs to the group of hybrid dataflow/von Neumann execution model. The

PXM of EARTH was customised to support dataflow threads. For efficient runtime ex-

ecution, programs are divided into threaded procedure (similar to functions, but differ

on frame allocation, thread invocation, scheduling and parameter passing) and fiber.

Fiber supports three states during its lifecycle such as enabled, active, and dormant.

Fiber supports sequential execution of its instruction sets and non-preemptive execu-

tion. When a thread is ready, the system enables the fiber, and it executes the threaded

procedure. Procedures are invoked automatically by the application but can be ter-

minated explicitly. After invoking the procedure, the system creates a context for the

procedure and executes other housekeeping jobs. Finally, when execution is complete,

fiber is removed from the processor, but the associated threaded procedure may stay

alive.

2.2.2.4 Maxeler

Maxeler is an FPGA-based platform which could be a promising candidate for accelerat-

ing the HPC applications. It is a combination of synchronous dataflow, vector, and array

processors. This platform has PCIe-based connectors to connect X86 processors, and

FPGA to offload the task. The Maxeler ecosystem maps the application on the FPGA

using static graph. Maxeler processing platform comprises of multiple dataflow engines

(DFEs) with their local memories connected to the host CPU via interconnect. Multiple

DFEs are linked by a high-bandwidth interconnect called MaxRing. DFEs execute the

18 Chapter 2. Background

tasks in a dataflow fashion and supports both fast and large memory. DFE can manage

one or multiple kernels (for main execution) and a manager for data movement within

DFEs. Maxeler has its compiler to generate dataflow implementations which can then

be called from the CPU via a special interface called SLiC (Simple Live CPU). Together

with the compiler, it also has it’s software middleware between the Linux and DFEs for

runtime data transfer and optimisation. Maxeler is an FPGA-based accelerator which

comes with it’s programming methodology to help to develop a customised energy effi-

cient (runtime) system.

2.2.2.5 Transport Triggered processor

Transport triggered processors (TTPs) are mainly based on the scalable transport trig-

gered architectures (TTAs) where operations occur as side effects of data movements [Cor97].

TTP is an evolution of VLIW processor while TTP directly sends data from one fetch unit

(FU) to another without involving the registers or memory [Cor94]. TTPs (are of single

instruction multiple transports type) support ILP and can also be used as application-

specific architectures. Unlike others, TTAs do not include any instruction set. Thus the

programmer defines the data movements between FUs. The memory access speed in

TTP is low, and data transport defines the cycle time of the processor. Adding new FU

to TTA is easy, in turn, addition also linearly increases the complexity.

2.2.3 Heterogeneity

Increased core count does not only offer a higher number of cores but also pose chal-

lenges (such as concurrent programming issues, controlled power consumption, and

improved scalability). The heterogeneous system architecture (HSA) is an approach

where it tries to achieve better parallelism using low-power cores with different capa-

bilities [KFJ+03]. Asymmetric CMPs (ACMPs) [SPS+07, KTJR05] are one of the first

successful approaches to embed heterogeneity into the CMPs. The heterogeneity does

not only improve the power but may also successfully satisfy the application require-

ment. Generally, ACMPs contain one or multiple large, powerful, out-of-order cores and

also few small, simple and power efficient cores on the same die. ACMPs can effectively

accelerate both fine grains and coarse grain thread execution.

A popular heterogeneous computing model is created when a host processor (such as

general purpose core) combines with an accelerator (such Xeon Phi). In this ecosystem,

host CPU works as a master while Xeon Phi is used as an accelerator to speed up the

whole process (slave). However, the offloading cost of computation must be computed

before initiating the task off-loading. Based on the amount of task, the offloading may

Section 2.2. Hardware overview 19

become costly. Super computer (such as Tianhe-2) is also built upon CPU-Xeon Phi

ecosystem.

Commercial product such as ARM’s heterogeneous multicore big.LITTLE [ARM13]

is another example of multicore ACMPs. It wraps a powerful application processor

(Cortex-A15) with simpler cores (Cortex-A7). This architecture gives a trade-off between

high performance and low power consumption. To schedule the jobs on these cores, two

possible ways are CPU migration and task migration. In CPU migration, processes are

mapped first on the simpler core and later moved to a larger core. In real time execu-

tion, the scheduler only sees one logical core for each set of big.LITTLE cores. However,

in task migration, all the cores are exposed to the scheduler. The main task started to

execute on the bigger core and simpler tasks are performed on the simpler cores. The

cost of migration between core happens only at a coarse granularity. In general, the

energy consumed by an instruction is partially related to the number of pipeline stages

it traverses.

2.2.3.1 FPGA

Field-Programmable Gate Arrays (FPGAs) offer a quick prototype of hardware designs

and also re-designing features via reconfiguration capabilities. FPGAs can be pro-

grammed via various ways such as high-level synthesis (HLS), circuit schematics or

by using a hardware description languages (such as VHDL, Verilog).

The two most important components of FPGA are configurable logic blocks (CLBs)

or logic array block (LAB) and look-up-tables (LUTs). Every CLB consists of multiple

LUTs, a configurable switch matrix, selection circuitry (MUX), registers and flip-flops

(FFs). LUT is nothing but a hardware implementation of a truth table. LUTs are used

to implement any arbitrarily defined Boolean functions in CLBs. LUTs are also used

as small memories or small RAM. In general, there exist two types of FPGA: one-time

programmable (OTP) FPGAs and widely used SRAM-based (can be reprogrammed as

the design evolves). SRAM blocks are interspersed in the fabric and can be chained

together to build deeper wider memories or RAMs. For processing data, FPGA also has

hard IPs (such as a multiplier, DSP, processors–e.g., ARM Cortex-A9 dual-core MCU is

used in Zynq-7000 SoC from Xilinx). Apart from that, there is also software-based core

or softcore which can be a simple microcontroller or a full-fledged microprocessor. It has

less clock speed compared to hard IPs. However, it can be easily modified and tuned to

specific requirements, custom instructions (e.g., OpenRISC is a softcore). For a faster

communication, FPGA also offers high-speed serial I/Os and all state-of-the-art FPGAs

incorporate multi-gigabit transceivers (MGTs) for very high-speed communication.

20 Chapter 2. Background

2.3 Interconnection subsystem

Broadly, the research topics discussed in [SC13, MOP+09, OHM05] could be classi-

fied into multiple research streams: (i) microarchitectural domain (mainly deals with

network topology, architecture, capacity management); (ii) the communication infras-

tructure (mainly proposing the models, switching techniques, congestion control, power

management, fault tolerance); (iii) analytical methods for evaluating proposed NoC’s

performance; and (iv) mapping applications on the processing core.

For large core counts, NoC is a critical component responsible for better performance.

NoC’s architectural components such as channel width, buffer size, routing algorithms

are very critical for better flow of the data packets inside the chip. Latency improve-

ment, hotspot mitigation or deadlock free traffic movements are the main research is-

sues in interconnection subsystem. During thread execution, all the core communica-

tion and the data transfer is done using interconnection subsystem. Inside the chip,

last-level caches (LLCs), the bandwidth of interconnect as well as memory have become

very critical for better performance. For better throughput and lower latency, the on-

chip interconnect bandwidth should be high. Inefficient interconnection subsystem may

lead to reducing the overall system performance and consume a significant portion of

the area and power budget of the chip [HVS+07].

Apart from that, application mapping on manycore processors is not easy when per-

formance constraints (such as power consumptions, latency, throughput) must be satis-

fied. Multiple processing cores are connected by NoC, which provides the shared commu-

nication medium for information exchange. Typically, a processing core of a tiled CMP

consists of first level cache, last level cache, a network interface (NIC) and a router.

The NIC manages the cache level information and breaks the information into the flow

control units. Next, the messages are composed of one or multiple packets. The ele-

ments that mainly characterise a NoC are the topology, routing algorithm, flow control,

and crossbar based router microarchitecture. Below we are describing them in brief (for

more details, please refer to [DT04a]).

2.3.1 Topology

A key aspect of NoC-based interconnections is the topology, i.e., the way routers are con-

nected to each other. The topology mainly describes the floor planning of routers to use

the interconnect subsystem efficiently. It defines the hop count to refer to physical im-

mediacy between the cores; more the hop count higher the latency for the packets are.

The interconnection subsystem does not only connect cores, but also other functional

components such as LLC, memory and DMA controller. Hierarchical or hybrid topolo-

Section 2.3. Interconnection subsystem 21

gies started getting introduced, when designers started to face performance challenges

for connecting multiple cores using simple topologies (such as bus or ring). In general,

some of the well-known topologies are bus, ring, 2D-mesh, torus, flattened butterfly

(discussed below (see figure 2.4)).

Figure 2.4: Some well-known topology for interconnect subsystem

• Bus topology is a simple, inexpensive topology that connects cores along a sin-

gle connection wire. Ethernet 10Base2 was a practical example of the first bus

topology in action. However, the bus topology started to suffer from high energy

consumption, low scalability, and low bandwidth for connecting a large number

of processing cores. The main reason was the physical capacitance of bus wires

22 Chapter 2. Background

which started to grow with the number of connected modules, thus resulting in a

growing wire delay.

• Ring topology connects multiple cores along a single wire in such a way it forms

a closed loop. The ring topology is also a simple and inexpensive topology. It can

continue to serve increased core count after exceeding its capacity but with slow

speed. In general, scaling up or down the ring capacity can affect the network

service. Similarly, for the ring, the average latency started to increase with the

proportional number of cores inside the chip and making the bandwidth a poten-

tial bottleneck.

• In direct topology, cores are connected in a two-dimensional space. This kind of

organisation helps to remove the routing overheads with increased core counts us-

ing the low radix routers. The 2D-mesh is an example of direct network topologies.

In a 2D-mesh, all the core connecting wire length are equal in length. Thus the

area and power consumption grow as the number of connecting core grows.

• Similar to the 2D-mesh, a 2D-torus is an another example of direct topology. Torus

is also known as k-ary n-cube. It means that k number of cores can be connected

in the n-dimensional space (in each dimension). It is interesting to note that ring

is an example of one dimensional torus. Unlike 2D-mesh, the 2D-torus can lead

to higher latency because the each edge cores are further connected to routers of

the opposite edge via wrap around wires. This feature has alleviated in folded

2D-torus where the wires are of the same length.

• Concentrated mesh or C-Mesh network [BD06] is a modification of 2D-mesh to a

radix-4 mesh where each router maintains four processing core of the network. It

helps to reduce the latency (hops) proportional to the concentration degree of the

network, while providing few number of channels with higher bandwidth. The

C-Mesh network uses dimension-order routing with the express links for packet

transfer.

• Flattened butterfly [KBD07] is another improved layout of mesh to reduce the la-

tency for better communication among the cores. It is based on the high-radix

routers (radix=10) and non-minimal global adaptive routing. It provides a maxi-

mum of two hops but with longer wires. Though the longer wire increases cost, it

also provides a better way to store temporary packets intermediately.

For smaller core count, topologies such as bus, ring were very popular, but as the

core counts inside the chip started to increase we need newer topologies such as the C-

Mesh or flattened butterfly. However, for very high core counts hierarchical topologies

Section 2.3. Interconnection subsystem 23

Figure 2.5: XY DoR routing direction (left) and block diagram of a mesh router
architecture is presented (right)

have also been proposed (such as bus and 2D-mesh based [DEM+09], mesh and ring

based [AFY+16] are few of them).

2.3.2 Routing

The routing algorithm selects the links that a packet must follow to reach its destination

from the source. Two most common class of routing algorithms for NoC are adaptive

routing algorithm and deterministic routing algorithm. In adaptive routing, packets

are moved from source to destination using different links. However, when the links

are busy, different links can be selected based on user defined metrics. A cyclic link

is not created to avoid deadlocks. In the deterministic scheme, the same set of paths

is always selected for the same set of source and destination cores. In this work, the

XY dimension-ordered routing (XY DoR) (see figure 2.5 (left)) has been used. In this

routing scheme, all the packets always traverse first in the X direction (i.e., east or

west) and then turns towards Y direction (i.e., north or south) in the figure red colour is

the forbidden path, and green colour shows the allowed path.

2.3.2.1 Flow control

Flow control (FC) controls the flow of packet by allowing it to flow along its allowed path

and also to stay temporary in some buffers when the link is busy. FC optimises the

packet latencies and also the throughput at higher loads. It works in close collaboration

with the routing scheme to make sure that packets reach its destination. There are two

types of flow control policy: circuit switching and packet switching. In this work, packet

switching has been used. The packet switching follows store and forward mechanism. In

this policy, resources are allocated to the whole packet. The entire packet is stored before

forwarding to the next link. It can increase latencies when packet consists of multiple

flits. Packet-switched flow control can be classified into store-and-forward (used in this

24 Chapter 2. Background

work), virtual cut-through and wormhole (mainly for flits) which are further explained

in short below.

• As the name suggests, in store-and-forward (SAF) flow control, an entire packet

must be received completely in the router before being forwarded to next router.

For efficient storing, buffers and link bandwidth are allocated for the packet (based

on packet size). It offers higher per-hop latency, but still, large buffers are needed

for large packet size.

• Unlike SAF, virtual cut-through (VCT) flow control reduces per-hop latency for

large packets but still need large buffers. It reduces the per-hop serialisation

delay by forwarding some flits of a packet before receiving all flits of the packet.

• Wormhole flow control mainly works at flit level granularity. It is an improved

control mechanism compared to SAF and VCT. Similar to VCT, it allows the flits

serially to move to the next router given there is a space for it to store. It improves

the buffer utilisation but suffers from the head of line (HOL) blocking. HOL refers

to the problem where a flit of a packet at the FIFO queue gets blocked due to the

congestion at its next router, then other packets behind it also get blocked.

2.3.3 Router microarchitecture

A basic microarchitecture of a crossbar switch based mesh router has been shown in

figure 2.5 (right). The input channels of a mesh router have input buffers. Each input

channel connects to a crossbar switch and then connect to any output channel. The in-

put buffers consist of multiple virtual channels (VCs). In general, routers are pipelined

to improve the packet latency. Logic (router wraps I/O ports, route compute unit, an

arbitration logic, and VC status table) are used at every step to make sure that packet

arrives at it’s destination based on the header information. There are three main oper-

ations performed by the router. They are route computation, switch allocation (SA) and

VC allocation (VCA).

In route computation, the packets are routed based on the routing algorithm. In SA

process, packets are arbitrated to access the crossbar switch. It is mainly a mapping is-

sue between the VCs of the router to the free output port of the router. VCA makes sure

that the whole packet gets a VC at the next router. Round-robin arbitration is widely

used arbiter and has been used in this work because it provides better fairness. Allo-

cator maps incoming requests to available resources (VCs and crossbar switch ports),

while arbiter matches requests to a single free resource.

Section 2.3. Interconnection subsystem 25

Table 2.1: Theoretical performance of 8x8 mesh for six synthetic traffic patterns

Traffic Pattern Avg Hop Count
Throughput

(flits/nodes/cycle)
Uniform Random 5.25 0.50

Bit-Reverse 5.25 0.14

Transpose 5.25 0.14

Bit-Complement 8.00 0.25

Tornado 3.75 0.33

Shuffle 8.00 0.25

2.3.3.1 Traffic patterns

There are six well-knows traffic patterns to represent the real-time application’s traffic

behaviour. The patterns, their theoretical latency (average hop count) and theoretical

throughput for 8x8 mesh router using with XY-DoR routing are presented in table 2.1.

It is worth to note that the injection rate was one packet per cycle (worst case scenario).

From the table, we can see that the mesh has performed best in the uniform random

traffic pattern, but uniform random traffic pattern does not identify the load imbalance

of the design because in this pattern every source with equal probability can send pack-

ets to every destination. Hence it is always recommended to analyse the design using

multiple traffic pattern. In this work, first three traffic patterns are used.

2.3.4 Hybrid NoC architectures

In the past years, NoCs received much attention from the research community [ODH+07,

BM06a]. Where some of the works focused on proposing low latency router microarchi-

tectures ([KPKJ07, HVS+07]) and power efficient microarchitectures ([WPM03, MCM+04]),

other researchers focused on proposing different topologies. For instance, Dragonfly

[KDSA08] and Flattened butterfly [KBD07] are few among others. Other works (such

as [AFY+16, DEM+09, BZ07]) tried to improve the performance-power consumption

trade-off through the introduction of hierarchical NoC topologies.

2.3.4.1 Ring and mesh-based approaches

HiRD [AFY+16] is a hierarchical ring-based NoC design for improved energy efficiency,

where buffers within individual rings are not used. It provides buffer support between

different levels of the ring hierarchy, and upon the saturation of buffers, flits are de-

flected in the rings. It needs four levels of hierarchy to connect 256 PEs. CSquare [ZGHC15]

proposes a way of clustering routers so that clusters adopt an internal tree-like organi-

sation. It is a topology with clusters forming a global parallel structure to provide high

26 Chapter 2. Background

scalability. The authors also showed that this topological design improves throughput,

while lowers the average latency over mesh-like topologies under the uniform traffic

pattern. Transportation network inspired NoC (tNoC) [KKM+14] is another proposed

hierarchical ring topology. It employs hybrid packet-flit, credit-based flow control mech-

anism for better scalability, as well as priority-based arbitration for achieving better

performance. tNoC allocates channels with a flit granularity, while buffers are allocated

with a packet granularity for reducing buffer counts. Koohi et al. [KAH11] proposed

2D-HERT, a two-dimensional hierarchical expansion of a ring topology focusing on opti-

cal NoCs. Kilo-NoC [GHKM11] is a topology-aware QoS-oriented architecture, adopting

a low-diameter topology. It provides a service guarantee for applications with reduced

power and area costs. It reduces the extent of hardware support to portions of the die,

which in turn reduces router complexity to support large core counts. In [BZ07] authors

present a hybrid architecture where a large 2D-mesh is partitioned into several smaller

sub-meshes. Next, the sub-meshes are connected using a hierarchical ring interconnect

for delivering global traffic. In this work, a bridge module is used for driving traffic to

the different levels of the hierarchy. The addressing and routing scheme has also been

modified to support the proposed topology.

2.3.4.2 Other approaches

In [DEM+09], a two-tier hierarchical topology consisting of local networks managed

through a bus, and a global network controlled by a low-radix mesh router has been

proposed. Authors showed that proposed topology could reduce the latency, power con-

sumption and energy-delay product only for localised communication-based applica-

tions. Apart from hybrid ring-mesh or bus-mesh topologies, concentrated mesh (CMesh) [BD06]

is a modified mesh architecture with replicated sub-networks where express channels

are used to incorporate the second network without increasing the die area and wire

length. This approach aims at reducing the hop count and load imbalance. Channel

lengths are kept short to reduce energy dissipation, while express channels are used to

improve energy efficiency.

2.3.5 Application Thread-to-Core Mapping policies

In general, the problem of mapping application threads onto a NoC is a graph embed-

ding problem [AR82] and also the mapping problem is an instance of NP-hard prob-

lems [GJ79]. Further mapping a graph onto another graph is an example of quadratic

assignment problem (QAP) [GJ79]. Several different approaches are mentioned in the

literature to map the application threads to free processing cores, and they can roughly

be classified into exact and heuristic approaches.

Section 2.3. Interconnection subsystem 27

2.3.5.1 Exact approaches

In [SBSK12], multi-commodity flow (MCF) based integer linear programming (ILP) has

been proposed to derive optimal static schedule tables for calculating upper bounds of

the worst-case execution time. The model was employed on a time-division-multiplexed

(TDM) NoC meant for hard real-time systems, and the model also considers different

topologies. In [Tos11] author proposes a cluster-based ILP formulation for application

mapping problem for 2D-mesh NoC. Both the application and the mesh are represented

as graphs and further partitioned into smaller sub-graphs. The proposed ILP is used to

map each sub-graph onto the corresponding sub-mesh. In [OB04] the authors, suggest

an MCF based ILP formulation provide optimal routing and wavelength assignment

for optical networks. The cost function is based on a piecewise linear, monotonically

increasing, link cost function with a penalty term for the constraints violations. Among

the exact approaches, authors in [HM05] proposed a branch-and-bound based algorithm

for both application mapping and path allocation problem for 2D mesh NoC. It maps

the cores to tiles and generates a suitable deadlock-free routing function to optimise the

total communication energy cost by bandwidth reservation.

2.3.5.2 Heuristic approaches

Among the heuristic approaches for the thread-to-core mapping problem (T2CMP), Sorensen

et al. [SSPH14] propose a metaheuristic scheduler for inter-processor communication in

multicore platforms using TDM NoCs. The scheduling problem has been modelled as

a fixed-flow, minimum-time integer MCF problem. In [HZC+06], authors, propose a

polynomial time approximation algorithm for MCF based formulation to minimise the

power consumption of a NoC. It’s constraints are to satisfy the global communication

latency while optimising network topologies and wire styles. [SC05] also presents a

polynomial time heuristic for application mapping on mesh-based NoC to minimise the

communication energy. In this proposed solution, bandwidth, as well as latency con-

straints, are also satisfied. Authors in [MBDM05] proposed a unified design approach

for building application specific NoCs to automate application mapping operations onto

cores. It uses a tabu search algorithm for mapping and MILP for physical planning.

The author claims that the model guarantees QoS by satisfying constraints (such as the

delay/jitter, real-time constraints) of the traffic streams. Multi-objective genetic algo-

rithm based heuristics are also used for application-core mapping mainly to optimise

performance and power consumption [ACP04, HAQT+04, LK03].

In [EF15], a fractional MCF based algorithm has been proposed to design NoCs with

guaranteed QoS. It determines the widths of the interconnections as well as the routes

of the flits by giving topology, mapping of tasks, and traffic pattern. [MDM04a] pro-

28 Chapter 2. Background

pose a mapping algorithm for 2D mesh-based NoC architecture to minimise the average

communication delay by satisfying the bandwidth constraints. The proposed algorithm

is based on fractional MCF. It is developed for both single minimum-path routing and

split traffic routing. There are also research works (such as SUNMAP [MDM04b] a

tool for automating the topology selection and generation process, a link speed assign-

ment algorithm [SK04] with voltage scalable links to minimise the energy cost, or an

application-to-core mapping algorithm [DAM+13] to place bandwidth-intensive applica-

tions closer to the MCs) that are worth to mention.

2.4 Summary

In this chapter, the background of the relevant domains has been presented. It mainly

follows the top-down approach. The discussion first started with the programming en-

vironment mainly focused on dataflow programming model, then move to the dataflow-

inspired program execution model and some of the proposed runtimes from academia is

also presented. In general, there is a vast set of programming models that are available

to use, and the mentioned background does not intend to be an exhaustive background.

However, the basic information about dataflow execution model, then its languages and

some proposed dataflow based PXMs are discussed.

Next, the discussion focuses on the hardware level that is relevant to the current

time and also with the used programming models. Here, the provided background of the

targeting hardware or the dataflow based hardware is not only proposed from academia,

but also from the industry. The proposed hardware was supposed to offer dataflow

model, but unfortunately, they do not become a mainstream model because of the lack of

an integrated approach towards dataflow computation based ecosystem (which consider

the different levels of computation from hardware to programming model to program-

ming languages with proper compiler support and active dataflow community). Finally,

an overview on the interconnection subsystem is given. In the next chapter, a hashing

based dataflow thread distribution mechanism is presented.

3
Thread Distribution

This chapter lay the first brick of this doctoral thesis work and is mainly divided into

two segments. In the first part, the chapter discusses the scalability features of dataflow

threads (using DF-Threads). Next, it has been shown how a hash-based distribution

scheme can be very efficient with simple hardware modification. As current chips are

becoming more powerful and getting more complex, so it is also needed to provide an

infrastructure to harness their capability. The proposed distribution scheme offers ab-

straction, structure and flexibility and targets dataflow execution model. The data-

driven runtime or the languages can be benefited using the proposed thread distribu-

tion policy. The chapter is organised as follows: Section 3.1 gives the generic overview

of the problem in the context of multi-/many-cores. In Section 3.2 a brief overview of

DF-Threads (with its APIs) is given and also results are presented to show its scala-

bility. Section 3.3 provides the description of the implemented (another) dataflow PXM

to be used with the proposed hardware extension for distributing and managing the

threads. Section 3.4 provide the complete overview of the proposed architecture, while

Section 3.5 explains the hashing mechanism. Section 3.6 mentions some of the primary

results to show the efficacy of the proposed hardware extension using some synthetic

applications. Finally, section 3.7 summarises the contribution of the chapter.

3.1 Introduction

Exascale machines are expected to execute large, multiple applications at higher speed.

To meet this goal, these machines have to manage a number of threads that is orders

of magnitude greater than in current petascale machines, with more stringent power

and resiliency constraints [D+11]. Recent CPU designs favour the integration of a vast

number of simple, single-issue, in-order cores [LKGF+12] to increase the number of

threads that can be executed in parallel. However, traditional program execution mod-

29

30 Chapter 3. Thread Distribution

els (PXMs) derived from the von Neumann model and used by such systems, exhibit

a large thread synchronisation overheads. Their inherent sequential nature makes it

tough to guarantee correctness and race condition freedom in multithreaded program

executions [Lee06]. Furthermore, when fine-grain threads are exploited, their synchro-

nisation activity quickly becomes the main performance limiting factor [GZM+17], also

contributing to energy waste. Instead, PXMs which rely on explicit producer-consumer

semantics and are self-scheduled [Den74] can drive the design of efficient and less power

hungry chip architectures [YAMJGE14].

The eXplicit Multi-Threading (XMT) architecture [VDBN98] introduces an abstract

execution model, where switching from serial to parallel execution is made through

explicit spawn/join instructions. Specifically, such instructions create a group of concur-

rent threads executing the same code block, while microarchitectural support remains

generic. DDM proposed a scalable architecture which, however, requires a large amount

of storage to maintain a local copy of the threads’ dependency graph, while a flat thread

distribution model is applied. Recently, TERA-FLUX [GBB+14] proposed a chip ar-

chitecture for the explicit exploitation of a dataflow PXM, where cores are organised

into fixed-size nodes. Although it was proposed as a scalable solution, many drawbacks

remain: locality of computations is not guaranteed (threads cannot explicitly restrict

execution within a node), and an efficient selection of the target execution cores is not

described. In recent years, GPUs are emerged as the preferable platform to acceler-

ate computations [SIL+15], thanks to their capability of running hundreds of fine-grain

threads in parallel. However, their architecture is optimised for regular applications

and does not adapt well to irregular data and control problems.

In the first part of the chapter, the scalability features of a dataflow PXM (such as

DF-Threads) are shown. Later, in the chapter, a Data-Enabled muLti-Threaded Archi-

tecture (DELTA) is proposed – which attempts to: i) implement an effective mechanism

to select target execution cores, as well as to guarantee locality of computations. ii)
supporting the execution of a large number of concurrent threads with a lightweight

synchronisation mechanism, and iii) provide a simple programming interface. Starting

from a manycore tiled chip, we augment the NoC router structure with a hardware unit

responsible for the threads’ creation and distribution over the application lifetime (we

are agnostic with respect to the processing element architecture). Also, a fast hash-

based mechanism allows the system to efficiently distribute the threads among the

available processing resources, leading to more dynamic scaling-up capabilities and less

power consumption.

Section 3.2. DF-Threads and its scalability 31

3.2 DF-Threads and its scalability

Synchronisation and distribution of data can be managed efficiently by reorganising the

execution in such a way that the threads follow more closely the data flow of the program

(such as with DF-Threads). DF-Threads can be efficiently implemented by a distributed

hardware thread scheduler [GS15] which support fault tolerance at the hardware level

and efficient fine grain dataflow thread distribution. To reduce the thread management

overhead, the scheduling needs to be accelerated in hardware, by mapping its structure

into the FPGA. A DF-Thread is defined as a function that expects no parameters and

returns no parameters. The body of this function can refer to data which reside at the

memory location for which it has got the pointer. The DF-Threads API’s [Gio12] are

summarised below:

• void *DF_TSCHEDULE(bool cnd, void *ip, uint64_t sc): Allocates the

resources (a DF-frame of size sc words and a corresponding entry in the dis-

tributed thread scheduler or DTS) for a new DF-Thread and it returns a frame

pointer fp. The ip is the instruction pointer of DF-Thread. The allocated DF-

Thread is not executed until its sc reaches 0 and together also satisfy the boolean

condition cnd.

• void DF_DESTROY(): To release allocated resources held by current DF-Thread.

• uint64_t DF_TREAD(uint64_t offset): Loads the data indexed by offset

from the current thread of DF-frame.

• void DF_TWRITE(uint64_t val, void *fp,uint64_t off): The data val

is stored into the DF-frame pointed to by fp at the specified offset off.

• void *DF_TALLOC(uint64_t size, uint_8 type): Allocates a block of mem-

ory of size words and returns the pointer (or null) while type specifies the special

purpose memory type.

• void DF_TFREE(void *p): Frees memory pointed to by p.

The scalability of the DF-Threads has been tested using the HP-Labs COTSon sim-

ulator [AFF+09] which uses “functional-directed” approach. The simulator can perform

a full-system simulation. We have reported the experimental results (in Figure 3.1, 3.2,

and 3.3) consisting 1, 2 or 4 nodes while the employed execution model is based on DF-

Threads. We use well-known blocked matrix multiplication as application benchmark.

The scalability of DF-Threads is tested using three matrix sizes: n=256, 512, 1024

while the block size is fixed to four b=4. The parallelization is based on the ratio be-

tween the matrix size n and the block size b (i.e., the expected number of DF-Threads is

32 Chapter 3. Thread Distribution

1

2

4

8

16

32

64

Size=256,b=4 Size=512,b=4 Size=1024,b=4

No. of Nodes=1

No. of Nodes=2

No. of Nodes=4

2*N^3n

n n n

n

Figure 3.1: Instruction count normalised to the matrix size 256.

n/b). In the experiments, the number of DF-Threads are 64, 128, 256 respectively.

The interesting result is related to the total number of instructions. We can see from

Figure 3.1, for each matrix size the instruction count has almost the same value once

we vary the node sizes from 1 to 4 (three superposing lines). The reason for that is due

to the small overhead to manage DF-Threads across nodes. Moreover, the number of

instructions follow the theoretical increase (i.e., the number of instructions increases as

O(n3)) in the case of a classical block-matrix multiplication closely. We normalised the

total number of instructions for each curve to the case of matrix size n=256 to compare

the three experimental cases and the theoretical O(n3) line in Figure 3.1.

1

2

4

No. of Nodes=1 No. of Nodes=2 No. of Nodes=4

Size=256,b=4

Size=512,b=4

Size=1024,b=4

n

n

n

n=256,b=4

n=512, b=4

n=1024, b=4

b=4n=256, b=4

Figure 3.2: Speedup of user cycles count normalised to the matrix size 256.

Section 3.3. Program Execution Model (PXM) 33

Next, the scalability improves significantly when there are a larger number of threads

(see Figure 3.2). The speedup is almost ideal (for four nodes the speedup is almost 4)

in the case of n=1024, b=4. The effect of different block sizes are not reported, but

for smaller block sizes typically it achieves better scalability [Gio15]. It is worth to

note that there is a possibility to scale performance across nodes which have separate

address spaces.

R. Giorg i e t a l 233

PS7

DDR

AXI lite interconnect

AXI mem
interconnect

ACP

GP0

AXI
DMA

Tx

+ -
MGT
clk+ -

Rx

Aurora
64b/66b

+

-

Figure 5: Block Diagram Of The Experimental System Within
Each FPGA Chip

Table 3: Resource utilization of the current experimental sys-
tem on the Zynq 7045 SoC.

LUTs LUTs (%) FFs FFs (%) BRAMs BRAMs (%)
10583 4.8% 12452 2.8% 5 0.9%

4.2 Transport Level

An initial implementation of the AXIOM NIC driver has been
performed on top of a set of virtual machines based on QEMU
ARM 64bit, running a Linux buildroot minimal distribution.
The QEMU installation has been based on top of the QEMU
distribution provided for Xilinx Ultrascale+.

The architecture implemented is composed of the following
components:

• A set of registers and interrupt generation routines im-
plemented inside a QEMU frontend, used to emulate the
main features of the interconnect.

• A QEMU backend that is responsible for receiving and
forwarding the packets handled by the simulated over
a set of host TCP/IP connections directed to a separate
process simulating the network topology and routing.
The network topology can be set as basic ring/2D mesh
topologies, as well as custom topologies using an exter-
nal description file.

• A Linux driver implementing RAW DATA and RAW
NEIGHBOUR message send and receive.

• A user space library making available the AXIOM mes-
sage API to user space applications.

• A set of user space applications that provide an imple-
mentation of the discovery and routing algorithms de-
scribed in the previous sections, as well as a set of utility
applications such as ping, traceroute, netperf, and others.

Future version of the runtime implementation will include
support for RDMA and LONG DATA messages, and will
provide an Ethernet frame encapsulation to give the possibility
of routing TCP/IP over the AXIOM interconnect.

4.3 Interconnects Level

In our initial set of experiments, we performed a first evalua-
tion of the DMA engine, and the physical network intercon-
nects medium; we connected the processing system (PS7) to
a DMA engine, and the latter using the AXI stream protocol
with the Aurora IP. In our current configuration, the Aurora IP
utilizes only one MGT transceiver. Figure 5 shows the block
diagram of the experimental system that was mapped on two

0

100

200

300

400

500

1 4 32 256 4096 32768 65536

av
er

ag
e

th
ro

u
gh

p
u

t
(M

B
/s

ec
)

data size in words

single-trip round-trip

Figure 6: Network throughput when using the Aurora IP to
exchange data between two ZC706 FPGA boards with a single
MGT transceiver.

1

2

4

8

16

32

64

128

256

512

Matrix Size 128 Matrix Size 256 Matrix Size 512

READ BYTES
WRITTEN BYTES

Figure 7: Scaling of Read and Write Data sets for DF-Threads.
We present the case for Matrix Multiplication and we use
128x128 as baseline. This behaviour is same for the cases of 1,
2 and 4 nodes.

ZC706 FPGA boards, connected with SMA cables. Table 3
breaks down the reconfigurable resources utilization; LUTs
and FFs utilization is less than 5% and 3% respectively. The
Aurora IP configuration generated the user clock at 156.25
MHz that was also used to clock the DMA engine.

The PS7 run on bare-bone software a set of experiments for
single and round-trip data transmissions between the two
boards, ranging from 4 to 256 KBytes. Figure 6 shows the
achieved throughput, which can be up to 490 MB/sec or 3920
Gbits/sec (single trip); a processing node with 4 MGTs can
have a network throughput of up to 15.6 Gbits/sec.

4.4 DF-Threads Initial Results

In this sub-section, we report our experimental results on
the read-write operation. For the experiment, we have used
COTSon simulator [28].

In this case, the execution model is based on the DF-Threads
(sub-section 3.4). For the evaluation, we have used the
blocked matrix multiplication (Figure 2). The overhead to
manage more DF-Threads is negligible even in small size

Ada User Jour na l Vo lume 37, Number 4, December 2016

Figure 3.3: Scaling of read and write operations for DF-Threads.

Finally, in Figure 3.3, the total amount of read and write data set size (bytes) are

also reported. However, unlike the previous cases, the matrix size is n=128, 256,

512 while the block size is fixed to eight (b=8). In the figure, 128x128 is used as the

baseline with increasing node counts. The read and write data set size follows a linear

trend and is also not creating a saturation effect with increasing core count.

3.3 Program Execution Model (PXM)

PXMs define how a computation must be carried on a target machine, on concurrency

(how threads are created, scheduled, and destroyed), memory behaviour (how memory

is addressed, and what ordering rules it obeys), and synchronisation (how threads can

synchronise/wait for each other). Contrary to programming models, which describe what
high-level action should be done (and when), PXMs describe how such an action is car-

ried in the system. For example, OpenMP’s programming model allows a programmer

to define a region of code as parallel but makes no explicit mention of threads. However,

OpenMP’s PXM specifies that when a parallel region is encountered, a team of threads

has to be created and must also be destroyed when the end of the region is reached.

34 Chapter 3. Thread Distribution

Here, we use an execution model directly derived from the Codelet Model [SZG13],

where assisting hardware provides large performance improvements over a pure soft-

ware implementation. The applications are divided into a set of fine-grain threads, each

totalling no more than a few tens or hundreds of instructions. Fine-grain threads are

exploited in a way that allows maximising the utilisation of the system.

Threads represent the quantum of execution: they exchange data with each other by

resorting to an explicit producer-consumer scheme. It allows the construction of a data-

flow graph (DFG) at compile time, which explicitly shows data dependencies among

threads. Each thread holds a local storage space (frame) used to receive input data from

producer threads, as well as to write intermediate results. It also contains a scheduling
slot (SS) counting the number of inputs still required for the execution. A thread context

contains the frame data and a unique thread identifier. To preserve locality and allow for

better latency hiding, threads are grouped into asynchronous functions (AFs). Similarly,

DELTA provides a mechanism for dynamically grouping processing elements (PEs) to

form virtual nodes (VNs) as part of the hashing mechanism, so that threads within an

AF are forced to be executed on the same VN. With the aim of exposing these charac-

teristics at the programming level, the proposed architecture extends the PE ISA with

a reduced set of dedicated instructions (eventually wrapped by high-level programming

language functions, e.g., C/C++) as follows:

• CreateThread(*code,SS,frame): creates a new thread context, i.e., the SS,

the type of the thread, a unique identifier, and the required space to hold the

thread’s data frame and allows to schedule the execution of threads belonging to

the same TP within the same VN;

• CreateAF(*code,SS,frame,TT): as the above instruction, but it allows a new

asynchronous function (i.e., a new thread spawned outside the VN);

• ReadData(offset): reads data from a thread’s frame, at a specific offset within

the frame;

• WriteData(TID,frame,offset,data): writes data to a thread’s frame, at a

specific offset within the frame (both within and outside the current VN);

• DecreaseSS(TID,dep_cnt): allows to decrease the SS of a thread by the num-

ber of resolved dependencies;

• DeleteThread(): removes the context of a thread that has completed the execu-

tion;

• SetVN(N_pe): sets the number of tiles of each VN and sends a broadcast message

to all the tiles indicating the number of PEs composing each VN.

Section 3.4. Proposed Architecture 35

T0
AF0T1

T2

T3

T4

T5
T6

T7
T8AF1 AF2

AF3

main

CreateAF

CreateThread

WriteData

T0

T1T2 T3

T4 T5 T6T7

T8

VN0

VN1

VN3

VN2

Thread mapping on
DELTA chip

Figure 3.4: A simple kernel application adhering with the proposed PXM and a
possible mapping of threads on the PEs.

• ConfigRouter(*config,Rd,B): allows to configure routers, by specifying the

memory address where the configuration is stored. Destination router identifier

is contained in the Rd variable, while flag B indicates if the configuration is broad-

cast to all routers.

With the aim of further optimising the execution, the compiler can aggregate multiple

writes (e.g., dealing with large loops) and use a single DecreaseSS signalling operation

to update the corresponding SS field.
Every time a new thread is spawned, a PE within the current VN is automatically

selected and signalled. Similarly, every time a thread creates a new AF, the destina-

tion PE is selected within the whole chip. Hence, the creation of a new AF is led

back to the scheduling of the root thread of the DFG contained in the AF. Figure 3.4

shows an example of a simple kernel application consisting of 4 asynchronous functions,

each with its DFG. Both asynchronous functions and threads are directly managed

by the compiler, which is responsible for mapping high-level programming constructs

(e.g., #pragma omp for when using OpenMP) with the correct sequence of CreateAF

and CreateThread instructions. Figure 3.4 also shows that AF scheduling requests

and write operations remain well confined on the local VN. By monitoring the schedul-

ing slots, the hardware unit automatically fires threads became runnable, without the

need of executing an explicit instruction. On the contrary, the execution completion is

signalled by the DeleteThread instruction that allows freeing resources held by the

thread.

3.4 Proposed Architecture

Figure 6.1 shows the proposed chip organisation: a dedicated Network-on-Chip connects

a large group of tiles covering the entire chip area. Each tile contains a PE coupled with

36 Chapter 3. Thread Distribution

L1-I$

Data Scratchpad
(SRAM)

E
M
W

D
F

E
M
W

E
M
W

RF

W-to-E

TH
RE

AD
 D

IS
PA

TC
HE

R
&

RO
UT

IN
G

R

PE

Many-core chip Tile organization

Tile 0

Tile N

Thread Storage

DRAM
Bank 0

DRAM
Bank N

3D
 S

TA
CK

ED

CA
M IN

TE
R-

RI
NG

SW
IT

CH
ES

E-to-W

N-
to

-S

S-
to

-N
X-

di
m

. r
in

gs

Y-dim. rings

Figure 3.5: Chip organization: tiles contain a PE (white box) and router (gray
box). The scratchpad substitutes the traditional L1-data cache.

a lightweight router supporting a 2D-mesh topology. Routers are augmented with our

fine-grain thread hardware support: a local unit called Thread Dispatcher (TD) man-

ages the threads during their lifetime. In particular, it allocates internal space for

storing thread contexts every time new threads are created, removes previously allo-

cated resources whenever threads complete, reads from (respectively writes to) associ-

ated frames. Since the software controls the behaviour of threads through the extended

instruction set, the TD directly interact with the decoding stage of the PE. We assume

that only one thread at a time can be executed in each PE, although our approach can

benefit from the implementation of a form of local simultaneous multithreading.

Chang et al. already showed how to apply a dynamic hashing mechanism to dis-

tribute the workload in a peer-to-peer system [CCLL08]. Here, we propose to apply

hashing for thread allocation in a hardware system, in a much more constrained envi-

ronment. On the one hand, the hashing mechanism must avoid the creation of hot-spots

in the chip (i.e., areas of the chip particularly stressed). In fact, an imbalance in the

load distribution quickly and significantly increase the power and temperature of the

more stressed portion of the chip and thus contributing to decrease the overall reliabil-

ity (e.g., device ageing is accelerated). Load imbalance can also create congestion in the

network since some of the links drive more traffic than others. On the other hand, the

hashing mechanism used to distribute the threads must guarantee locality of compu-

tations. To this end, our hashing scheme allows placing a group of dependent threads

(asynchronous function) on the same group of PEs (VN), while still preserving a fair

thread distribution within the VN by selecting PEs in a random fashion. Similarly, the

hashing scheme allows to randomly schedule asynchronous functions on different VNs

across the whole chip. It is worth noting that choosing PEs that minimise the commu-

nication distance between producer and consumer threads in a reasonable amount of

clock cycles is not a trivial problem. In fact, our PXM implies more than one producer

Section 3.4. Proposed Architecture 37

can generate input data for a single consumer, as well as producers can be scheduled

and executed at different points in time.

Each thread in the system is identified by a unique thread identifier (Tid) over the

whole application execution. It is composed of three main fields: the source field, the

destination field, and a local counter (CNT). The source and destination fields are in

turn formed by two sub-fields representing the core identifier of the PE (Cid), and the

VN identifier (Nid). While the content of the source field is fixed for each tile (once the

number of cores in each VN has been selected), the content of the destination field is

produced at run-time by the hashing function H(·). These fields allow the system to

generate unique identifiers that are conveniently stored in a 64-bits register. The orga-

nization of the Tid is illustrated in figure 3.6. By passing to the H(·) module both the size

of VNs (Npe) and the indication of the executed instruction – Iex (i.e., the CreateThread

or the CreateAF instruction), it uniquely identifies the PE responsible for the execution

of the newly generated thread (i.e., 〈Nid, Cid〉dst = H(Npe, Iex)). Once selected, the PE

is signalled by sending a message over the network. Since the destination is encoded

in the Tid, any subsequent operation on the thread can easily be forwarded to its cor-

responding PE, without any further calculation. This contributes to the speedup of the

system.

H().

SRAM CAM

...

TDT

Lo
ad

 IR

THREAD DISPATCHER

PE
 In

-B
uf

.

PE
 O

ut
-B

uf
.

Processing Element

Pr
io

rit
y

En
c.

Routing Logic

type N-ID

....
LUT

#C
or

es

S-
NI

D
D-

CI
D

S-
NI

D
D-

CI
D

S-
NI

D
D-

CI
D

S-
NI

D
D-

CI
D

…
.

D-
NI

D
D-

CI
D

…
.

In
st

ru
ct

io
n

ty
pe

Cr
ea

te
Th

re
ad

Cr
ea

te
TP

Control
Logic

CIDNIDCIDNID

Thread-ID

Source Destination

CNT

Figure 3.6: Thread Dispatcher module organization (left) with the internal
structure of the H(·) function (right).

3.4.1 Thread descriptor table

Threads are managed through a data structure called Thread Descriptor Table (TDT)

that is organised in two fixed-size local memory arrays (their total area is comparable

38 Chapter 3. Thread Distribution

with that of an L1 data cache). Input and intermediate data are stored in the scratchpad

memory. Every time the context of a thread is updated, the Tid is used as a search key

within the CAM. In case of a match, the returned base address of the frame Fb is added to

an offset Fo to determine the location access (i.e., l = Fb + Fo). Finally, a priority encoder

selects the thread with the lowest Tid among those runnable (SS = 0 – see figure 3.6).

Every time the selected PE is devoid of free resources, it can access to a larger but slower

memory area called Thread Storage, implemented as a 3D stacked DRAM layer. It is

organised in banks (one for each PE) representing a larger TDT structure. When a PE

receives a new thread, it first selects the entry in the local TDT and compares the SS

value of the new thread and the one currently stored. The thread with the highest SS

will be swapped on the DRAM memory bank.

3.4.2 Network-on-Chip Architecture

The basis of our system is a 2D-mesh NoC implemented with lightweight ring-based

routers [SMP16]. Such kind of routers allows implementing a flexible 2D-mesh topology

on top of four unidirectional rings. The internal crossbar switch is substituted with

four ring stations, each capable of driving the network traffic in the same direction or

steering it to the opposite dimension. The ring stations are coupled with two additional

modules (inter-ring switch – IRS) that are responsible for ejecting traffic travelling in

one dimension or to inject traffic in the opposite dimension. An internal table describes

how traffic flows in the links.

3.5 Hash Scheduling Function

The purpose of the hash scheduling function H(·) is to map new threads to PEs for

their efficient execution. In our case, the hardware module assigns to the newly cre-

ated thread the tuple 〈Nid, Cid〉dst depending on the VN size and the executed instruc-

tion. To be effective, the scheduling function H(·) has to distribute CreateAF and

CreateThread requests among the available resources fairly. The effectiveness of the

hashing function derives from the ability to limit the number of times two distinct input

values result in the same output value for the hashing. In our distributed scheduling

scheme, this translates in avoiding different PEs selecting the same destination, given

two different Tid. In that case, the PEs’ load (i.e., the number of threads to execute) is

balanced, thus avoiding the formation of hot-spots and increasing the overall system

reliability. To this end, we found that the following scheme provides very good results

while maintaining a low area overhead and preserving the capability of dynamically

changing the size of VNs. Another important aspect of our scheme is that it works in

Section 3.6. Evaluation 39

a completely distributed fashion, meaning that single-point-of-failure is not present, as

desired in a system equipped with thousands of PEs possibly. The H(·) module con-

tains a set of maximum-length linear-feedback shift registers (LFSRs), each providing a

pseudo-random sequence with a different length Lrnd. Let n be the number of bits com-

posing the LFSR, the length of the sequence is given by Lrnd = 2n − 1, i.e., the register

cycles through all the 2n configurations except for the configuration containing all 0s.

The structure of the LFSR is thus modified, in such way all the 2n configurations can

be generated. The use of LFSRs allows the H(·) module to select every time a different

PE in a round-robin fashion (although it is a random sequence). Compared to simple

counters, LFSRs guarantee a homogeneous spatial distribution of the threads among

the PEs in a VN, over the time (since the LFSRs are initialised with a different seed

the generated sequences are different over the time). It again preserves the chip from

the emerge of local hot-spots and contributes to reducing pressure on the NoC links,

reducing link contention and thus improving performance. Depending on the executed

instruction (CreateThread or CreateAF), LFSRs are used to generate the destination

Cid or both the Cid and Nid. In the case of the CreateThread, the destination VN is the

same of the PE spawning the new thread. The H(·) module computes the destination

PE for different VN sizes in parallel; while the selection of the actual one depends on the

effective VN size, and it is performed by a multiplexer. For instance, a VN containing 64

PEs requires an LFSR 6-bits long. The executed instruction also controls which tuple

(i.e., the one formed by both the newly generated Cid and Nid, or the one formed by only

newly generated Cid) to copy in the destination field of the Tid through a second multi-

plexer. This mechanism is shown in figure 3.6, right side. Note our scheme guarantees

that locality of computations: threads belonging to the same asynchronous function are

kept close to each other since they are executed on PEs placed closely in the chip albeit

randomly selected (see also figure 3.4). At the same time, asynchronous functions are

homogeneously distributed among the VNs. Finally, to deal with space limitation for

thread management, each tile can eventually reschedule a thread on a different PE for

a limited number of time.

3.6 Evaluation

We evaluated the proposed architecture regarding scalability and power consumption,

as well as we evaluated the capability of the hashing function of well-distributing input

requests. The simulated manycore design comprises up to 256 PEs implementing a 5-

stage RISC-V compliant in-order execution pipeline (16 KiB I-cache + 16 KiB scratchpad

memory), supporting our proposed instruction set extension, and integrating a 2-stage

lightweight router [SMP16]. We generated network traces using an in-house simulator

40 Chapter 3. Thread Distribution

and monitoring the set of requests send to the TD units. We performed the scalabil-

ity and power consumption measurements implementing the NoC infrastructure on an

Altera Stratix III-based device.

(a) (b) (c)

HASH FUNCTION PERFORMANCE1000

800

600

400

200

0

PE/Router Identifier

64 128 256192

Di
st

rib
ut

io
n

of
 T

hr
ea

ds
/R

eq
ue

st
s

Distribution of the ThreadCreate
requests among PEs

Distribution of threads
scheduled by H() function.

256

Random Traffic
MatMul

O
ve

ra
ll

N
oC

 th
ro

ug
hp

ut
 (p

ac
ke

ts
/c

yc
le

)

200

150

100

50

0
128 25616 32 64

No. PEs in the NoC configuration

DELTA NETWORK-ON-CHIP THROUGHPUT
Static

Dynamic

128 256
0

0.5

1

1.5

2

3.5

2.5

4

O
ve

ra
ll N

oC
 p

ow
er

 d
iss

ip
at

io
n

(W
)

16 32 64 128 256
No. PEs in the NoC configuration

3

DELTA NETWORK-ON-CHIP POWER DISSIPATION

Figure 3.7: NoC performance: distribution of threads on the PEs (a), average
throughput (b), and power consumption (c).

Figure 3.7 (a) shows the performance provided by the proposed hashing function im-

plementation. The purpose of this experiment was to show how a huge number of input

keys for the H(·) module (e.g., thread scheduling requests, write operations) were dis-

tributed among the PEs. To that end, we simulated a random traffic pattern in the NoC

by allowing each tile to randomly injecting a schedule request (injection rate was 1.0)

towards a randomly selected VN and PE. This kind of pattern is more effective in show-

ing the capability of the hashing mechanism since the traffic cannot be predicted. The

green line represents the initial distribution among the PEs of the CreateThread re-

quests, while the blue line shows the effective distribution of threads as they have been

scheduled by the H(·) modules. The high fairness in the assignments of the threads to

different PEs greatly contributes to the high overall performance of the network. Sim-

ilar results have been obtained simulating the traffic pattern generated by a block ma-

trix multiplication kernel. The same traffic patterns have also been used to assess the

NoC throughput and power consumption. Such traffic patterns are effective in showing

the capability of our hashing scheme to balance threads’ requests, thus avoiding par-

ticular links to be overloaded. Figure 3.7 (b) shows the average throughput obtained

for different configurations. Irrespective of the growing of the number of PEs in the

system, the throughput grows almost linearly. Finally, figure 3.7 (c) demonstrates the

other advantage of the proposed thread distribution approach: power consumption is

relatively low if compared with an implementation based on traditional crossbar switch

routers. In general, the area and power consumption for the scheduling logic are very

low, while that of the TDT is in line with that of an L1-data cache (it is worth noting

that the scratchpad memory substitutes the L1 data cache, and represents the main

data-exchange point between routers and PEs).

Section 3.7. Summary 41

3.7 Summary

Improper management of huge amount of concurrent threads can create resource con-

tention, leading to overall degraded system performance. Execution models and many-

core chips are expected to overcome limitations of current systems, by leveraging more

effective approaches to distributing threads on the available resources. In this chapter,

first, the scalable feature of a data-driven PXM is shown and later a distributed thread

management mechanism is proposed. A manycore tiled architecture where NoC routers

are extended to support the proposed execution model has been considered. The efficacy

of hash function for distributing threads with low overheads has also been shown here.

By extending the structure of NoC routers in such way, a fair thread distribution pol-

icy can be achieved. The proposed extension is analysed, as well as a set of specialised

instructions, are also proposed for supporting thread management. Simulation results

confirm that the proposed design can manage a large number of simultaneous threads,

relying on a simple hardware structure and also its capability to effectively scale with

an increased number of PEs, while future investigations are needed to port complex

applications to the proposed PXM and also extended some support if needed.

3.8 Acknowledgement

First segment of this chapter (Section 3.2) contains the selected results from two pub-

lished papers entitled AXIOM: A Hardware-Software Platform for Cyber Physi-
cal Systems by Somnath Mazumdar, and others, at Euromicro Conference on Digital

System Design 2016, and Modeling Multi-Board Communication in the AXIOM
Cyber-Physical System by Roberto Giorgi, Somnath Mazumdar and others at Ada

User Journal, vol. 37, no.4, 2016.

The second part of the chapter (Section 3.3-Section 3.6) is an edited version of the

accepted paper entitled Enabling Effective Hash for Massive Multi-Threading by

Alberto Scionti, Somnath Mazumdar and Stéphane Zuckerman at IEEE Computer Ar-

chitecture Letters (CAL).

42 Chapter 3. Thread Distribution

4
Monitoring

In the previous chapter, how to distribute dataflow threads has been discussed, and

now the main aim of this chapter is to provide an overview for monitoring the dataflow

threads at runtime. In recent years, dataflow based execution models have started to

gain popularity. The popularity mainly is driven due to its better support for concur-

rent, multithreaded applications. Some dedicated hardware (see Chapter-2) also been

proposed to harness the capability of dataflow-based execution models. However, un-

derstanding the behaviour of a huge number of concurrent threads, and also the best

achievable performance on a given hardware platform, remain a big issue. Moreover,

the evaluation process of running applications often requires the usage and modifica-

tion of complex simulation frameworks. To counter these challenges, a runtime anal-

ysis tool (RADA–Runtime Analysis of Dataflow-based Applications) for dataflow-based

applications has been proposed. It is a simple simulation tool for fast evaluation of ap-

plications adhering to a hierarchical dataflow execution model. It provides an abstract

model for different hardware platforms by hiding the unnecessary hardware details,

and also allow to optimise the application for the execution on heterogeneous systems.

In particular, it integrates an efficient scheduling mechanism, in the form of a runtime

library, which allows the system to distribute the workload efficiently while minimis-

ing the synchronisation overhead. The primary output provided by the tool are of great

help in analysing the traffic generated by the scheduling activity. Preliminary evalua-

tion results show the significant benefit in adopting this kind of tool for the assessing

the dataflow based applications and its execution models.

The chapter is organised as follows: Section 4.1 introduces the issue and in Sec-

tion 4.2, the abstract machine model has been introduced and also the dataflow thread-

ing model that is used by the proposed tool. Section 4.3 describes the actual implemen-

tation of the simulation environment, while Section 4.4 describes extensions enabling

the evaluation of application’s execution on a heterogeneous system. Finally, Section 4.5

43

44 Chapter 4. Monitoring

presents experimental results, while Section 4.6 summarises the chapter with the find-

ings and also the future works.

4.1 Introduction

Performance scaling remains a concern despite multiple achievements in manufactur-

ing technology and architectural designs. Harnessing built-in parallelism from current

multi-/many-core processors requires the adoption of effective program execution mod-

els (PXMs). In general, effective PXMs limit the communication and synchronisation

overheads experienced by concurrent threads. Until now, the most well-known execu-

tion models for executing massively parallel applications are mainly based on the von

Neumann architecture. Due to its limitations [I+88], in recent times, dataflow model of

computation has gained popularity. However, the roots of the dataflow execution model

dated back to early of 1970’s [RRB69]. Applications adhering to dataflow PXMs follow

a simple producer-consumer communication scheme for synchronising parallel thread

related activities. In dataflow execution environment, a thread can run if and only if all

its required inputs are available. By allowing threads to schedule the execution of other

consumer threads, the synchronisation mechanism is set to the required number of in-

put data to the appropriate consumer thread. Applications running on a complex and

large computing domain (such as high-performance computing (HPC), high through-

put computing (HTC) and Cloud computing) can significantly benefit from the adoption

of dataflow PXMs. In this chapter, a tool called RADA (RADA–Runtime Analysis of

Dataflow-based Applications) for runtime analysis of dataflow-based applications has

been proposed. The contributions of the proposed tool are three-fold: i) it enables the

execution of a multithreaded dataflow application on a highly parallel system, exploiting

the advantage of modern multi-/many-core processors. ii) it allows the system designer

to assess the performance of the given application. iii) it allows evaluating the effect

of the scheduling policy on the performance and the traffic generated by the intercon-

nection subsystem. This tool allows integrating the scheduling features directly inside

the applications, while an abstract execution model allows running the application ef-

fectively on different hardware platforms. It is worth to note that the latter feature

becomes essential to evaluate the impact of scheduling algorithms on heterogeneous

systems. Preliminary results are presented to show its potential, and the advantages

carried out by the dataflow execution.

4.2 System model

Abstract machine models (AMMs) provide the abstraction for the class of multi-/many-

core processors and software systems that implement the actual execution substrate.

Section 4.2. System model 45

FSM logic
Global Interconnects

No
de

No
de

No
de…

PE PE

LL$ LL$

Local Interconnects

Memory and I/O controllers

DRAM

SU…

computing system

node scheduling unit

FF StatusPE ID

PE ID T FP TIP

Figure 4.1: System overview: the abstract machine model used to managing
execution of dataflow threads.

The tool has been designed taking into consideration an AMM providing the set of

features needed to execute fine-grain threads in a data-driven fashion (supporting the

dataflow execution environment). Figure 4.1 shows the architecture of the proposed

AMM. Current hardware can also provide performance enhancement through hetero-

geneity [MV15]. When a particular hardware platform is not available, the only way

of assessing the performance of an application is to use a simulation environment.

Execution-driven simulators emulate the behaviour of the real platform to execute the

application unmodified. Conversely, in the trace-driven approach, the application is ex-

tended with additional information. Such information allows the application to extract

values from a set of monitored parameters (e.g., the number of jumps, executed floating

point operations, cache misses) [UM97]. From this viewpoint, RADA offers an efficient

trace-driven approach for assessing the performance of a dataflow application following

a hierarchical PXM and executing on modern multi-/many-cores. The system consists of

a set of computing nodes which are connected each other through a global interconnects.

Such interconnection subsystem provides the set of resources, as well as it exposes the

set of features required to allow dataflow threads to communicate each other. Nodes

resemble general purpose multi-/many-cores. Each node contains several processing el-

ements (PEs) equipped with their cache hierarchy. Figure 4.1 highlights the last level

cache module (LL$) which interfaced to the rest of the main memory through a memory

controller module (external DRAM memory modules can be used to build a shared mem-

ory environment). The latter also embeds the logic to manage I/O operations (memory

and I/O controllers). A dedicated local interconnection provides resources to manage

the communication among the PEs, as well as to interface with the global interconnects.

The scheduling unit (SU) is a dedicated core, which is responsible for managing the life-

cycle of dataflow threads within the node (i.e., keep track of the resources allocated to

the threads, update the threads state). It is also responsible for migrating threads ev-

46 Chapter 4. Monitoring

ery time internal node resources are exhausted. Whenever a thread is created, a private

memory region is assigned to it. This region referred to as the frame block, and it can

be written by producer threads (but can be read only by the owner thread (consumer)).

A table in the SU tracks the list of frame blocks assigned to each PE, and their status

(i.e., assigned or free).

A second table is used to keep track of threads allocated to each PE (scheduled for

the execution). The table contains the link to the assigned frame block, and the pointer

to the code to execute as well. A PE locally maintains look-up data structures. In

particular, each assigned thread can be in one of three possible states: (i) waiting –

when the input dependencies have not completely satisfied, (ii) ready – all the inputs

have been produced and the thread can be executed, (iii) running – one thread at a time

can be in this state, meaning that PE executes the thread. Synchronisation counter
(SC) is a counter that is set to the number of required inputs. PEs can track the input

dependencies for each thread, by using the SC. Every time a new input is received, the

corresponding SC is decremented by one. Threads become ready once the SC is reduced

to zero. Each PE also maintains the list of pointers to pre-assigned frame blocks (used

to speed up scheduling), the list of waiting threads (WT), and the list of ready ones (RT).

WT list is implemented as a small look-up table containing SCs.

4.3 RADA’s implementation

RADA is meant to be an effective tool for assessing the performance of dataflow appli-

cations. To achieve this goal, it has been implemented in such way so that it can run

on commodity multicore machines while providing all the characteristics of the AMM

(described in section 4.2). The tool has been implemented as a runtime library which

provides scheduling and synchronisation features to application threads. Applications

are written using conventional high-level imperative languages (C and C++), while the

access to scheduling/synchronisation features is mediated by a set of dedicated func-

tions. It is worth noting that the behaviour and semantic of such functions can be im-

plemented as processor instructions allowing to access dedicated hardware modules. In

the beginning, a set of working processes (workers) is created to emulate the structure of

a node. Workers keep track of all assigned dataflow threads. The worker with the small-

est process ID (PID) in the group is designated as the SU. Shared memory in the host

platform provides the substrate for the communication among the PEs. Mechanisms for

managing communications in a distributed memory environment (e.g., using MPI) can

be applied to allow the inter-node communication. Fast look-up of internal data struc-

tures is ensured by the usage of red-black trees, with a computational complexity equals

to O(log n). Figure 4.2 shows the implementation of the proposed system.

Section 4.3. RADA’s implementation 47

HOST PLATFORM

frame blocks

synch. counters

interface interface interface

SU
. . .

worker 1 worker 2

Waiting thread Ready thread Running thread

Figure 4.2: Implementation of the proposed system.

4.3.1 Software interface

To support the thread management, a minimalistic set of functions for scheduling, dy-

namically allocating/de-allocating private memory blocks and removing threads, as well

as to read and write from/to frames has been provided. Such functions represent the

RADA’s software interface, specifically:

• ThreadCreate(): schedules a new dataflow thread by allocating resources to it,

and generating the thread context (i.e., instruction pointer to the thread code, the

pointer to the frame block, and the SC). The actual worker is selected by the SU,

which receives the request from the scheduling worker.

• ThreadRemove(): releases all the resources held by the thread.

• ThreadMemAlloc(): allows the threads to dynamically allocate a private memory

block of a given size (the size is specified in terms of number of words).

• ThreadMemFree(): frees a memory block previously allocated through the Thread-

MemAlloc function.

• ThreadMemRead(): allows the dataflow thread to read a value stored in its frame

memory block.

• ThreadMemWrite(): is invoked by a producer dataflow thread to write a value in

the frame of a consumer thread. Every time a ThreadMemWrite is executed, the

corresponding SC entry is decremented by one.

48 Chapter 4. Monitoring

Allocator
FeedBack

PU0

PU1

PUN

S0

S1

SN

FBN

FB1

FB0

... …

…

QoS

Task
Allocator

T1 T2 T3 T4 T5

Local
Queues

Main Task Queue

...

s1

s0

sN

q

y1

yN

y0

Figure 4.3: Negative feedback closed-loop based task scheduling system of the
RADA.

4.4 Dealing with heterogeneity

Programmers can take advantage from running their applications in a heterogeneous

environment since portions of the application code can be better executed on specific

hardware. The tool supports heterogeneity by two-ways. First, nodes can be hosted

on different machines equipped with processors exposing different features but using

the same instruction set architecture (ISA). Second, by allocating a variable number

of workers, it is possible to emulate the behaviour of multi-/many-cores, (i.e., systems

equipped with a small number of cores, as well as an enormous number of cores). The

last case is interesting because some distributed programming framework (such as

MapReduce) support variable workers at different time of task’s life cycle. Dataflow ap-

plications can use an extended version of the ThreadCreate() function to support such

features, which allows scheduling the thread execution also on a different node. This

support can be accomplished at the software interface level by adding a function call pa-

rameter. Threads that run on the same node form a task. Moreover, PXMs (such as the

Codelet model) provide a hierarchical organisation of threads, that can be exploited to

define tasks at the application level. Figure 4.3 shows the task scheduler implemented

by the proposed tool. Task scheduling is more complex than thread scheduling since it

deals with executing application code blocks exposing different characteristics regard-

ing memory, processing and I/O resource usage. The tool allocates an individual node

(actually, it is a dedicated process on the host machine) that is responsible for schedul-

Section 4.4. Dealing with heterogeneity 49

ing tasks across nodes exposing a different set of resources. Such differences also reflect

differences in the host microarchitectures. In fact, nodes can be mapped on different

host platforms (e.g., a general-purpose X86 CPU and an Intel Xeon Phi accelerator).

In general, the feedback control is used when a system must be controlled for better

stability, improved performance and robustness (or need to guide the runtime system

behaviour). Any change in the system output should trigger a reaction of the controller

for which feedback control is used. Feedback control is reactive or error-driven, while

the feedforward is a proactive model. The feedback controller uses the measured errors,

compute changes to the inputs, and sends those inputs to the system. In feedback con-

trol, the outputs of the system are measured, and the controller has feedback from the

output of the system which quantifies “how far” is it from the desired state. RADA can

take fast decisions by implementing a negative feedback control loop for the task sched-

uler, which exploits both information gathered, at runtime, from performance counters,

and a linear power model used to build a ranking function.

4.4.1 Execution efficiency model

Migration of tasks from host core to co-processor is a popular approach to speed up the

execution process, but during task migration, we also need to consider other parameters

(such as input data transfer). In general, the decision of migrating a certain task on a

given node is taken at runtime and based on the measured execution efficiency. At the

basis of the proposed approach, there is the following observation: energy consumed per

amount of work done is directly proportional to the effectiveness of the system. Thus,

a simple yet powerful energy-based cost metric to evaluate the efficiency has also been

proposed. As a single instruction also consumes energy, the proposed tool takes into

account the overall energy used by the instruction to be executed (EPI – energy per

instruction). An energy model has been developed and integrated, which uses several

microarchitectural parameters (such as the pipeline depth, registry delay, and clock

skew of the simulated system). Memory and I/O stalls can affect the total energy con-

sumed by a single instruction. So, EPI has been assigned an average value obtained

from several executions, each having the system in a different workload condition. For

simplicity, a small group of instructions containing the one under evaluation is isolated

and executed them directly on the host platform. The information that is gathered from

such assessments is integrated into a cost function.

Equation 4.1 provides the overall offloading cost for a given task (CT). An empir-

ical tunable parameter called δT is introduced which combines the different (micro-)

architectural parameters that may affect the execution of the instructions (e.g., effec-

tive bandwidth for transferring data, the number of pipeline stages, number of cache

50 Chapter 4. Monitoring

levels). The another element of the cost function derives from the execution cost (Cth
exe)

of each thread on the selected node (K is the total number of threads of the task). This

cost is multiplied by τ, which counts the execution time for the given set of threads, to

obtain a similar value for the overall cost function. In fact, CT corresponds to the overall

energy spent to execute all the threads.

CT = {δT ·
K

∑
th=1

Cexe
th } · τ (4.1)

The execution cost is computed according to equation 4.2, where N is the total number of

instructions in the thread code, and EPIist measures the EPI. According to the equation

4.1, the summation of all the EPI values is multiplied by the clock frequency φ to obtain

the power consumed by each instruction.

Cexe = φ ·
N

∑
ist=1

EPIist (4.2)

It is interesting that energy consumption for a running application can be gathered

at runtime by measuring different parameters through performance counters, which are

commonly available in modern processing architectures. By measuring the cost function

for each task separately, it is possible to build a small in-memory database (QoS-DB)

containing the expected execution efficiency (best case).

4.4.2 Task scheduling

A task scheduler (TS) is responsible for distributing the workload among the other

nodes. TS may also be easily bound to a core of the host system, which is not used

to execute worker threads, to not limit performance. TS reads incoming tasks from a

central task queue, which is created at the application launch time. Each entry contains

the memory reference to a task. Every time TS makes an assignment, it moves the task

reference to a task queue associated with the specific node. To be effective, the nega-

tive feedback control loop needs to sample the execution of the task. The result of such

operation is a feedback value summarising the node state, which can be used to modify

the task allocation eventually. To this end, the cost function (best case) for the task is

compared with the cost function obtained at runtime. Every time the task efficiency

is lower than the expected one, the task is moved to a more powerful node. Runtime

information on the node state is collected through performance counters Si. Instead of

monitoring and adjusting the execution of a single task at a time, the system collects

and processes values from several nodes. To this end, a vector si is compared with the

expected vector yi obtained from the QoS-DB, as follows:

∀i : yi = qi − si (4.3)

Section 4.4. Dealing with heterogeneity 51

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

void fibonacci (void)
{

}

int n = …

int fib_thread_2 = ThreadCreate(…);
int fib_thread_1 = ThreadCreate(…);

ThreadMemWrite(…);

ThreadMemWrite(…);

// spawning new thread

// passing n-1 input value

// passing n-2 input value

int fib_thread_add = ThreadCreate(…);
// spawning new thread

ThreadMemWrite(fib_thread_add, …);
ThreadMemWrite(fib_thread_1, …);
ThreadMemWrite(fib_thread_2, …);

ThreadRemove(…);
// terminate current thread

Figure 4.4: A code snippet of the recursive Fibonacci kernel: the code highlight
the software interface exposed by RADA, which simplifies the amount of code
needed to synchronise threads’ activities.

All the yi values form a vector that is used by TS to trigger modifications in the

allocation of incoming tasks. On the other hand, the assignment of tasks to the nodes

is based on the values provided by a score function. These values are used by the TS

to rank the nodes depending on their affinity with the incoming tasks. For each node,

the TS calculates the value of the score function, which is described by equation 4.4.

α and β are tunable parameters, while Putil and I/Outil represent the percentage (i.e.,

values normalised on a scale of 0 to 1) of utilisation by the task of processing core and

I/O activities.

score =
(

1− Putil

0.8

)α

·
(

1− I/Outil

0.9

)β

(4.4)

Putil is mainly based on the CPU utilisation which is also a good estimator of the system

power consumption [FWB07, CHL+08]. In particular, a linear power model [KKH+09,

CHL+08, FWB07] associated with the CPU usage is considered. Such a model assumes

that power consumption of a system increases linearly as the workload increases. Al-

though not used in this work, the power consumption of DRAM memory can be easily

integrated into the model (e.g., using RAPL mechanism [DGH+10], it is possible to mea-

sure and set limits to the power consumption).

52 Chapter 4. Monitoring

Recursive Fibonacci Sequence (RFS) — Speedup

No. of cores
1 2 4 8 16 320

2

4

6

8

10

12

14

No
rm

al
ize

d
sp

ee
du

p

Sequential exec.
RADA

OpenMP

Figure 4.5: Recursive Fibonacci sequence: evaluation of the RADA and OpenMP
execution.

4.5 Evaluation

A set of experiments has been carried out to evaluate both the capability of RADA to

export useful information to drive the designer in tuning hardware resources, as well

as software applications. The benefit regarding scalability and performance of adopting

a dataflow execution model has also been demonstrated. For experiments, two popular

applications are used: the recursive Fibonacci sequence (RFS), and the block matrix

multiply (BMM). Figure 4.4 shows a small code snippet related to the RFS kernel: re-

cursion is simply expressed by dynamically scheduling new threads. Thread interaction

is mediated by the set of functions described in Section 4.3.1. The runtime library has

been integrated into both the applications, allowing the creation of a single node multi-

core execution system. The host platform was a server machine equipped with the Intel

CoreTM i7-6700K running at 4.00GHz. The host server was also equipped with 32GiB

of main memory and run the Ubuntu Linux distribution (version 14.04 LTS). Also, an

Intel Xeon Phi P5110 (clock speed at 1.053GHz) accelerator board connected to 8GiB

of local GDDR memory, was used to assess the capability of the proposed task sched-

uler. Figure 4.5 shows the performance of the RFS kernel with a fixed input size

(n = 35), varying the number of available PEs (i.e., according to the implementation

of the AMM described in Section 4.3, each PE is mapped to a worker process) in the

system from 1 to a maximum of 32. During the experiment, it has been observed that

further increasing the number of workers did not increase the performance. Thus, in

experiments, it has been fixed to 32 workers per node (in this case, it equals up to 4 pro-

cesses per physical core). The speedup to the behaviour of the sequential execution is

normalised and compared it by a standard OpenMP implementation. The results clearly

Section 4.5. Evaluation 53

Sequential-exec.
RADA

OpenMP

Block Matrix Multiply (BMM) — Speedup

No. of cores
1 2 4 8 16 320

5

10

15

20

25

No
rm

al
ize

d
sp

ee
du

p

Sequential-exec.
RADA

OpenMP

Figure 4.6: Block matrix: evaluation of the RADA and OpenMP execution.

1600

1500

1400

1300

1200

1100

1000

1700

10 15 20 25 30 35
Input size

N
o.

 re
qu

es
ts

 is
su

ed
 to

 th
e

SU

Recursive Fibonacci — Total traffic generated

Figure 4.7: Number of requests issued to the SU by the recursive Fibonacci
kernel (single node, 8 cores).

show that the dataflow version is more efficient than its OpenMP counterpart and that

the dataflow execution can scale better when the number of running threads increases,

this behaviour also in-line with the finding reported in the paper [SZG13]. Similarly,

executing the dataflow version of the BMM kernel provides more performance and bet-

ter scalability compared to the OpenMP version (see Figure 4.6). Figure 4.7 presents

the number of requests generated by the execution of the RFS kernel on a single node.

The number of requests issued to the SU remains low by increasing the input size of the

application kernel. So, the adoption of a dataflow execution model allows limiting the

synchronisation traffic. It also helps to explain the good performance of the RFS and

BMM kernels on their OpenMP versions.

In table 4.1 and table 4.2, runtime execution parameters are captured which are

respectively associated with the data structures held by the SU and by the PEs. The

54 Chapter 4. Monitoring

Table 4.1: The execution trace (first 10 entries) for the RFS kernel with the input
size set equals to n = 10.

Action Frame IP FP SC
RADA launched – – – –
Thread Scheduled 0 0x4039d7 0x1845780 1/1
Thread Scheduled 1 0x401820 0x18457e0 0/2
Thread Write 1 0x401820 0x18457e0 1/2
Thread Write 1 0x401820 0x18457e0 2/2
Thread Read 1 0x401820 0x18457e0 2/2
Thread Scheduled 2 0x401820 0x1845840 0/2
Thread Scheduled 3 0x401820 0x18458a0 0/2
Thread Write 2 0x401820 0x1845840 1/2
Thread Write 3 0x401820 0x18458a0 1/2

Table 4.2: The execution trace (first six entries) captured from one PE when
running RFS kernel with size n = 10.

FF WT RT
FP Status FP IP SC FP IP
0x1fc4010 Alloc. 0x1fc4010 0x402de8 1/1 0x1fc4010 0x402de8
0x1fc4070 Alloc. 0x1fc4070 0x4011f9 2/2 0x1fc4070 0x4011f9
0x1fc4070/0 Alloc. 0x1fc4070 0x4011f9 1/2 0x1fc4070/0 0x4011f9
0x1fc40a1 Free. – – – – –
0x1fc4070/1 Alloc. 0x1fc4070/1 0x4011f9 0/2 0x1fc4070/1 0x4011f9
0x1fc4070/1 Alloc. 0x1fc4070/1 0x4011f9 0/2 0x1fc4070/1 0x4011f9

tables show the main parameters related to the dataflow execution (such as the frame

memory block identifier (Frame), the instruction pointer to the thread code (IP), the

pointer to the frame block (FP), and SC). The column SC represents the number of

received inputs over the number of required ones. For instance, the fourth entry in

table 4.1 indicates that the thread requires two inputs and only one has been received.

The information provided by the captured traces is presented in a structured way (see

table 4.2) and it is very helpful for the designer to understand the interaction among

the threads, as well as the allocated resources. It is worth to mention that the set of the

parameter that can be captured is larger, and it can be selected by the user when the

RADA is launched. These two tables also show the flexibility of the proposed tool.

Finally, figure 4.8 shows the score function obtained from the execution in a het-

erogeneous environment. The internal performance counters are used to generate the

score function while running on Intel Xeon Phi accelerator. This feature has been used

effectively to schedule the execution of the BMM kernel on both the host server CPU

and the accelerator. Matrices have been partitioned into blocks, and parallel tasks per-

formed the multiplication of such blocks. Due to the dataflow execution and the larger

Section 4.6. Summary 55

 0 10 20 30 40 50 60 70 80
Processor Utilization

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

I/O Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

Score
 0

 0.2

 0.4

 0.6

 0.8

 1

S
c
o

re
 S

c
a

le

Figure 4.8: Score function obtained from the execution of the BMM kernel run-
ning on host CPU and Intel Xeon Phi accelerator.

parallelism offered by current accelerators, a significant speedup in the execution has

been obtained.

4.6 Summary

This chapter presents RADA, a tool for a fast and comprehensive analysis of dataflow-

based applications. RADA provides a simple software interface that dataflow applica-

tions can exploit to execute and gather information at runtime. Information captured

with RADA are helpful for the designer to tune correctly the application and the hard-

ware resources allocated to it. Initial results show the significant benefit of using the

dataflow execution model on two popular applications, as well as the capability of RADA

to manage heterogeneous execution platforms. However, the presented work is not com-

plete, and it still needs many further improvements.

As future work, the support of feedback unit of the model will be improved with

robust policy and also the software interface support will be increased from its initial

proposal. The proposed cost model will also be improved with more certain system

variables. The current traffic generation is not complete, thus in future, the traffic gen-

eration in memory hierarchy levels will also be considered. An accurate timing model

is needed to extend RADA for robust analysis of the applications. Finally, an area esti-

mation model needs to be integrated to assess critical design parameters related to new

thread schedulers. Finally, the mentioned list of modifications will be added into the

model before making the source code public to the users. In the next chapter, a platform

based on software defined NoC has been proposed for managing the dataflow threads.

56 Chapter 4. Monitoring

4.7 Acknowledgement

This chapter is an edited version of the accepted paper entitled Analysing Dataflow
Multi-Threaded Applications at Runtime by Somnath Mazumdar and Alberto Scionti

at the 7th IEEE Advance Computing Conference (IACC-2017).

5
Thread Management at Software

defined NoC

How to monitor the dataflow threads using a simple tool has been proposed in Chapter-4.

Now, this chapter presents the mechanism to manage data-driven threads at Software-

defined NoC (SDNoC) level efficiently. Moving from Petascale to Exascale computing,

there is an assorted effort in microarchitectural domain aiming at increasing the per-

formance/power ratio of multicores. Future manycore processors will contain thousands

of low-powered processing elements to support the execution of a large number of con-

current threads. Albeit data-driven program execution models (PMXs) are gaining pop-

ularity due to their effective support for thread communication, frequent data exchange

among many concurrent threads put stress on the underlying interconnect subsystem,

which results in hotspots and high latency for data packets.

In this chapter, this challenge has been addressed by proposing a scalable Software
defined Network-on-Chip (SDNoC) architecture for future manycore processors. The

proposed microarchitecture tries to merge the benefits of ring-based NoCs (i.e., perfor-

mance, energy efficiency) with those brought by dynamic reconfiguration (i.e., adapta-

tion, fault tolerance) while keeping the hard-wired topology (2D-mesh) fixed. To possi-

bly accommodate different application requirements and communication patterns, the

proposed interconnect maps different types of topologies (virtual topologies). Few cus-

tomised instructions are added to the core ISA to allow the software layer to control and

monitor the NoC subsystem. For supporting a data-driven PXM, a set of instructions

are also designed. In experiments, the lightweight reconfigurable architecture with a

conventional 2D-mesh interconnection subsystem has been compared.

The chapter is organised as follows: Section 5.1 provides the relevance of the prob-

lem and Section 5.2 discusses the problem and provide the proposition for the proposed

design. Section 5.3 briefly explain the proposed software interface for managing threads,

57

58 Chapter 5. Thread Management at Software defined NoC

while Section 5.4 describes extensions enabling the evaluation of application’s execution

on a NoC system. Finally, Section 5.5 presents experimental results, while Section 5.6

summarises the chapter with the findings and also with the future works.

5.1 Introduction

Modern silicon technology allows integrating billions of transistors into a single die,

making possible to wrap thousands of processing elements (PEs) on a chip (kilo-core

CMPs) [BC11]. Such massive number of PEs provide the substrate for effectively ex-

ecuting an enormous number of concurrent threads (up to hundreds per PE in future

Exascale machines). To alleviate limitations in the way power is dissipated [EBA+11],

current designs tend to favour the use of a large number of single-issue, in-order cores,

which consumes less energy than their multi-issue, out-of-order counterparts [CAB+13,

Jac]. Another source of improvement derives from the exploitation of hardware-software

resource usage monitors, which are very helpful when considering parallel applications

that can vary their size during the execution. Albeit these techniques contribute to

exploiting the parallelism of kilo-core CMPs fully, the use of classical von Neumann pro-

gram execution models (PXMs) makes multithreaded applications suffering from a large

synchronisation overhead, while it becomes difficult to guarantee their correct and race

condition free execution [DG08]. Conversely, data-driven PXMs (e.g. the Codelet model

[SZG13]) allow the implementation of self-scheduling and isolation of execution prop-

erties, which limit the synchronisation overhead and ease the application to grow and

shrink over time. However, the support from these new PXMs to concurrency imposes a

major challenge to the interconnect subsystem, compared to the cores. Software-defined

networking (SDN) is getting popular by its flexibility to separate the hardware packet

forwarding mechanism from the control logic [NMN+14]. SDN allows us to integrate

network control mechanisms with the application software, thus facilitating the appli-

cation execution with a better networking support.

Starting from these premises, this chapter focuses on the NoC-based interconnection

subsystem by proposing a scalable NoC architecture, which merges the advantages of

ring-based interconnects, with those carried by the reconfiguration. Instead of relying

on a fixed topology, an effective way for dynamically changing the topology of the net-

work itself is introduced. A reduced set of instructions is added to cores’ ISA to allow the

software to control the topology of the network during execution directly. The proposed

architecture can be referred as a Software defined Network-on-Chip (SDNoC), thanks to

the flexibility in managing the underlying interconnection subsystem at the application

level [SAPMVA+16]. Targeting applications where threads are hierarchically organised

and dynamically scheduled [SZG13], adaptation allows for a better exploitation of the

Section 5.2. System overview 59

Figure 5.1: Mapping between the physical network with a 2D-mesh topology,
and a multi-level virtual topology. Links to the physical network are organised
into local rings (blue lines) and a global 2D-mesh among rings (purple lines).

network resources and a greater power saving. This architecture allows the software

to control each single link with a fine granularity using ring-based interconnects as the

building block for implementing the physical 2D-mesh topology. As a result, physical

links can be switched off when not used. Link usage is monitored as well using internal

hardware counters and made accessible through dedicated instructions. This informa-

tion can be exploited by the programmer and the optimisation tools or compiler to better

adapt the virtual topology to the communication patterns of application.

5.2 System overview

The proposed system is encompassing a large number of computing tiles. Within a tile, a

PE directly communicates with a router (R), which is responsible for delivering data to-

wards the other tiles. Routers are interconnected through a physical 2D-mesh network,

which provides a scalable support for chip-level communications. The 2D mesh topol-

ogy has become very popular in complex many core designs (e.g., TILE [EWB+07]) be-

cause it offers advantages compared to other alternatives regarding wiring area, power

cost, and fault tolerance [BCGK04]. The left side of Figure 5.1 depicts the organisation

of the target system: white squares (PEs) communicate with routers (black squares)

which are connected each other through the 2D-mesh network (black lines). To exploit a

massive parallelism of such kind of architecture, an explicit data-driven PXM has been

considered. This execution model assumes that the application is divided into a set of

fine-grain threads, each composed of up to few hundreds of instructions. Threads are

60 Chapter 5. Thread Management at Software defined NoC

assumed to exchange data with others through an explicit producer-consumer scheme.

To preserve locality and allow a better latency hiding, threads can be grouped within

the same group (virtual node), and threads can also be scheduled for the execution on

PEs that are closed to each other.

5.2.1 Problems and its solutions

The adoption of a standard 2D-mesh physical interconnection presents three major chal-

lenges that can seriously limit scalability. First, with the increase in the number of con-

nected tiles, the NoC quickly consumes a large portion of the chip power budget. Sec-

ondly, with the increase in the number of concurrent threads, the network bandwidth

is rapidly consumed. Finally, fixed network topology does not support the principle of

locality exploited by a data-driven PXM, as well as it does not adapt to the changes

in the communication patterns. Overcoming these criticalities requires the capability

of the network to be dynamically configured. Being able to switch off not used links

selectively, allows the network to save power, while still supporting local communica-

tion among threads (belonging to the same virtual node). To provide a solution, several

works focused only on specific aspects. Kim et al. [KK09] propose the use of ring-based

routers for implementing a scalable 2D-mesh topology. Thanks to a simpler microarchi-

tecture, routers can scale better and consume less energy than conventional ones. How-

ever, the topology of the network is fixed, thus lightly used links cannot be excluded.

On the contrary, Panthre [PDB14] integrates reconfiguration features in the router mi-

croarchitecture. Although it allows a significant power saving, routers are based on the

conventional microarchitecture organisation which is power hungry (i.e., the majority of

the dissipated power is due to the crossbar switch and link drivers).

The presented work tries to merge the benefit of lightweight and scalable router mi-

croarchitecture [KK09, LNLK13] with those of dynamic reconfiguration. Four separate

rings allow the communication is flowing in the north, south, east and west directions,

while specific bits control the status of each link. During the configuration phase, the

links can be set in three different modes: normal, bypass (BP), or power-gated (PG).

Bypass and power-gated modes disable partially or fully the links, thus allowing the

network to save power and to implement different topologies at the same time. The

right side of Figure 5.1 shows, an example of virtual topology mapping, with groups of

adjacent PEs communicating through virtual rings (blue), which are in turns connected

through a virtual mesh (purple). For instance, routers of PEs 3 and five can disable

respectively south and north links, while the router of PE 6 can configure north link

in bypass mode so that its traffic is directly injected in the south link towards router

of PE 8. In this configuration, about 37.5% of the links can be switched off, while still

Section 5.3. NoC software interface 61

preserving communications at the chip level. Performance is ensured by the possibility

of using high-speed clocks, thanks to the simplified router microarchitecture. Further-

more, each of the links is equipped with a counter for tracking traffic statistics whose

value is exported to the software layer through a very small instruction set extension

(ISE).

5.3 NoC software interface

The ISA of PEs is extended with few instructions to manage the reconfiguration phases,

to monitor the links’ traffic, and to support thread operations. Since the proposed inter-

connection architecture is agnostic with regards to the PEs’ architecture, here, a generic

interface (for the ISE) is reported. Each instruction can be conveniently wrapped by a

function in standard high-level languages (e.g. C/C++) as follows:

• SetRouterCfg($RD,$RS,B): sends a configuration request to the routers, by

specifying the memory address where the configuration is stored. Parameter $RD

is the destination register of the destination router, $RS is the source register,

and flag B (unsigned immediate value) indicates if the request is actually sent in

broadcast to all routers (B>0), or not (B=0).

• ReadCounter($RD,$RS1,$RS2): reads the content of a link’s counter, by speci-

fying the link to read (one of the four bits starting from the LSB position in the

$RS1 register must be set), the destination router (source register $RS2), and the

register where the counter content will be stored ($RD).

• ResetCounter($RD,$RS,B): allows to reset traffic statistics, by specifying which

links’ counters to reset (four bits starting from the LSB position in the source reg-

ister $RS are set if the corresponding links’ counter must be reset), the destination

router (destination register $RD), and a flag (B) that indicates if the request is ac-

tually sent in broadcast to all routers (B>0), or not (B=0).

• CreateThread($RD,$RS1,$RS2): schedules a new thread, by specifying the

code pointer ($RS1), if it belongs to the current virtual node ($RS2>0) or not

($RS2=0), and where the unique thread identifier is stored ($RD).

• ReadData($RD,$RS1,$RS2): reads data ($RD) from a local memory block ($RS1)

associated to the thread $RS2.

• WriteData($RD,$RS1,$RS2): writes data ($RS1) to a local memory block ($RD)

associated to the thread $RS2.

62 Chapter 5. Thread Management at Software defined NoC

• DeleteThread($RD): marks the thread ($RD) as completed, allowing associated

resources to be released.

Routers are equipped with a simple hardware logic function that is in charge of

scheduling a new thread whenever the CreateThread instruction is executed, as well

as to forward data to other PEs when executing ReadData and WriteData instructions.

In addition, each router is equipped with a 16 × 1 SRAM containing the switch table
(ST). It describes how traffic entering a link can flow in other links. More precisely,

the memory content is logically arranged as a 4 × 4 matrix. Each row of the matrix

corresponds to an input link, while the four columns in a row represent output links.

An element si,j ∈ ST is set to 1 if the traffic travelling in the direction i (e.g., west) can

be forwarded on the direction j (e.g. north). The content of the ST, as well as the values

of BP and PG bits, are stored in memory in the form of a bitstream. Every time the

SetRouterCfg instruction is executed, it generates a corresponding message sent to a

specific router. The destination router directly accesses to the memory location (actually

the PE performs this operation) where the configuration is stored, by adding a fixed

offset to the basic address ($RS). The operation can be parallelized if multiple routers

need to configure.

5.4 Proposed Network-on-Chip architecture

The basis of the proposed system is a 2D-mesh NoC implemented with lightweight

routers. Figure 5.2 shows the complete router microarchitecture. The communication on

each of the four directions (i.e. north, south, east and west) is ensured by dedicated ring
stations (RSs), which are essentially responsible for forwarding the traffic coming from

the injection port (inj) to the output port, or to extract it through the ejection port (ejc).

RS manage traffic travelling on the same direction form a physical ring. The original

router design [LNLK13] uses a single inter-ring switch (IRS) to switch traffic travelling

horizontally (i.e. from east-to-west, or from west-to-east) to one of the vertical direc-

tions (i.e. from north-to-south, or from south-to-north), but prevent the opposite traffic

steering (i.e. from vertical to the horizontal direction). This choice was imposed by the

implementation of the X-Y routeing algorithm on top of the ring-based architecture. Al-

though this organisation ensure a chip-level communication within the physical mesh,

it does not support the mapping of virtual topologies. To compensate, we provide a more

flexible architecture: two symmetrical IRS, i.e., an X2Y switch and a Y2X switch allow

the traffic to spill from horizontal directions to vertical ones, and vice-versa. To this end,

the design uses the X-Y routeing protocol without constraints on how to steer traffic in

vertical or horizontal direction. Thus packets can be routed alternatively on the X and Y

Section 5.4. Proposed Network-on-Chip architecture 63

PG-W

BP-W

PG-E

BP-E

x

PG-W PG-E
x

PG-N PG-S

PG
-N

BP
-N

BP
-S

inj

ejc

RS-W

inj

ejc

RS-E

in
j

ej
c

R
S-

N

in
j

ej
c

R
S-

S

M
U
X

in
ou
t

M
U
X

M
U
X

in
ou
t

M
U
X

X2Y switch

Y2X switch

PG
-S

x

PG-N PG-S
x

PG-W PG-E

Figure 5.2: The lightweight router microarchitecture. Ring stations (RSs) have
injection and ejection ports, and bypass (blue squares) and power-gating (red
squares) bits. Inter-ring switches are power-gated depending on the state of the
RS (grey circles are OR/AND gates).

dimension. Each of the IRS is composed of two multiplexers. One is responsible for se-

lecting which of the inputs (e.g., traffic coming from the local PE, east-to-west direction,

or west-to-east direction) has to be transferred to the injection ports of the RS in the

opposite dimension (e.g. the traffic is injected in the north-to-south direction, or in the

south-to-north direction). The second one selects, which traffic to present to the output

port (i.e., this is the spill point, where traffic coming from the network is presented to

the PE). For instance, the X2Y switch can present to the output port of the traffic com-

ing from the ejection port of the RS-W and RS-E (see figure 5.2). Other two separated

ports in each IRS (highlighted in red) control their state, thus allowing for selectively

power-gating one of the two internal multiplexers or both. Considering the X2Y switch

(similar is the case for the Y2X switch), the multiplexer connected to the output port can

be disabled only when the RS-W and RS-E are in power-gated mode. The multiplexer re-

sponsible for forwarding the traffic in the opposite dimension is power-gated only when

RS-N and RS-S are in power-gated mode. In a similar manner to IRS, each RS is pro-

vided with two additional ports controlling the state of the station itself. Power-gated

port (highlighted in red) fully disables the RS, so that traffic arriving at the input port

is dropped. Bypass port (highlighted in blue) partially disables the RS, allowing the

traffic arriving at the port of entry to be directly injected on the output link. These two

ports are controlled by two corresponding configuration bits: respectively PG and BP

bits. While the configuration of the IRS depends on the state of the RS controlling them,

64 Chapter 5. Thread Management at Software defined NoC

M
U

X

D
EM

U
X

BP
-M

U
X

+

BP PG

+

+ +

Network Interface + Control Path

IN OUT

s-buf

r-buf

ejc

inj

Perf. Cnt.

Ring Station

Figure 5.3: The internal structure of a RS with BP/PG bits and the link counter
in the network interface (dashed lines represent selection signals for multiplex-
ers/demultiplexers).

the state of RS can set independently from the others. Furthermore, the power-gated

mode is dominant in the bypass mode, meaning that the configuration 〈BP, PG〉 = 〈1, 1〉
leads the RS to be set with the power-gated mode. The internal organisation of an RS

is depicted in Figure 5.3. Traffic arriving at the input port (IN) can continue to travel

in the same direction or can be extracted. This decision is implemented within the de-

multiplexer as part of the routeing logic and requires only to analyse the destination

field of incoming packets. Every time input traffic has to be ejected (i.e. extracted by the

local PE or deflected in the opposite dimension), it temporarily stored in a local buffer

(S-BUF). Similarly, the buffer R-BUF temporary stores packets that continue to flow in

the same direction. It is worthy to note that both the buffers can be tiny compared to

input buffers in conventional routers. The limited storage space required by the buffer

is mainly due to the adoption of a traffic prioritisation policy, which allows the RS to

privilege traffic that flows in the same direction, over the one coming from the injection

port. This policy is implemented as a part of the selection mechanism of the output

multiplexer (MUX). It is worthy to note that multiple R-BUF and S-BUF buffers can

be used to support virtual channels. Another multiplexer (BP-MUX) selects which traf-

fic to inject on the output link (OUT) when the RS is set in the bypass mode. In this

mode, both the internal buffers, the input demultiplexer, and the output multiplexer

are disconnected from the power source (power-gated), while traffic on the injection port

is directly injected on the output link. In this way, the RS can save energy and limit

the packet traversal delay. Interestingly, in this case, the drivers of the output link are

still fully active. On the contrary, whenever the RS is set in the power-gated mode, all

the internal components and the link drivers are switched-off. Four additional OR gates

Section 5.5. Evaluation 65

VIRTUAL RING - 1

R00 R01 R02 R03

R04 R05 R06 R07

R08 R09 R10 R11

R12 R13 R14 R15

VIRTUAL RING - 2

VIRTUAL RING - 3 VIRTUAL RING - 4

Figure 5.4: An example of virtual topology mapping: Grey structures represent
components (i.e., interconnections, RSs or inter-ring switches) of the router that
are power-gated. Red lines correspond to active links used to build local rings,
while green lines show links of the mesh. Furthermore, green boxes represented
components set in bypass mode and used to construct the mesh among the vir-
tual rings correctly.

ensure that BP or PG bits control power-gate and bypass functionality for the internal

components. As highlighted in the previous section, PG bit overrides the BP signal.

Finally, a 16-bit counter is available for each output link. Every time a packet (flit) tra-

verse the link, the counter automatically incremented. A single bit in the control router

logic allows selecting the granularity at which traffic is monitored (i.e., if counters are

updated when packets or single flits traverse the links). Figure 5.4 shows an example of

mapping a hierarchical topology (i.e., local rings and a global mesh) upon a 4× 4 physical

mesh.

5.5 Evaluation

The evaluation has been done for the proposed architecture based on an in-house simu-

lator to test scalability, considering synthetic random traffic and a matrix multiplication

kernel written to exploit the data-driven capabilities of the underlying hardware. The

simulated manycore design comprises up to 1024 cores implementing a simple 5-stage

66 Chapter 5. Thread Management at Software defined NoC

Figure 5.5: Distribution of random traffic over 1024-based CMP.

in-order execution pipeline (16 KiB I-cache + 16 KiB scratchpad memory). Each core

supports a subset of the RISC-V ISA, as well as the execution of special instructions

designed to manage threads and network configuration (see Section 5.3). Cores running

at 2.0 GHz are directly attached to a 2-stage lightweight router clocked with a higher

frequency (4.0 GHz). Power consumption and area are modelled by integrating Orion

3.0 [KLN15] and DSENT [SCK+12] models into our simulation tool. Uniform random

traffic represents the worst case scenario regarding scalability since it uses software

to take advantage of the network reconfiguration capability, and it maintains almost

all the links active. To simulate this scenario, a pool of thread requests that are con-

sumed by randomly selecting the cores needed to setup. Also, each core randomly selects

the number of requests to consume (e.g., scheduling a new thread on a different core).

The number of processed requests is directly proportional to the traffic generated by

the routers on the network. Figure 5.5 shows the traffic distribution for a 1024-core

CMP with a pool of 580K requests. Without loss of generality, a single virtual channel

has been used. With this configuration, the overall power consumption of the inter-

connection is 47.13 W, which is less than 58.80 W of the conventional counterpart (a

power saving of 19.9%). Traffic generated by data-driven applications are more deter-

ministic, thus offering greater opportunity for power saving. A matrix multiplication

algorithm following a data-driven paradigm by using dedicated instructions is imple-

mented, as presented in Section 5.3. The application has five dynamically scheduled

threads, organised as follows: threads in charge of computing the same output element

(Ci,j = Ai×Cj) exchange data on a local virtual ring, arranged as a 8× 2 matrix. A global

mesh enforces global communication. In this configuration (of 1024 cores), the overall

power consumption is reduced at 16.20 W, while the execution time is in line with the ex-

ecution on conventional 2D-mesh-based CMP. Also, by varying the number of available

cores, an almost scalar speedup has been experienced, while the reconfiguration of the

whole chip requires less than 3000 CPU cycles. When comparing the area occupation,

the proposed solution is 39.4% less expensive than conventional routers, offering more

opportunity for design scaling. These preliminary results show the benefits of using a

Section 5.5. Evaluation 67

dynamically configurable and lightweight interconnection for manycore CMPs.

5.5.1 Additional Discussion

In this sub-section, we will discuss on the used simulation tool and also about the com-

patibility with the previous work.

5.5.1.1 Simulation Environemnt

We use an in-house simulator for performing experiments. The tool has been imple-

mented in C/C++ for improving simulation speed. The simulator is based on a dis-

tributed approach where the simulation of each PE is bind to a specific core of the

host simulation machine. In this way, the speed of simulation is improved against a

single-core approach. The basic idea is to simulate the execution of a dataflow thread

recurring to the implementation of a subset of the RISC-V ISA. We have added a small

set of custom instructions to that ISA, to interact with our proposed SDNoC. In our im-

plementation, we started from a simple in-order architecture, with a 5-stage pipeline.

The in-house simulator is still under development state, and at the present state, it has

not full capability of performing cycle accurate simulations. The core for the in-order

PEs of the implementation has been inspired by other projects available online (such as

RISC-V Rocket core). We extended the implementation by adding the interface with our

NoC. So in each host core, a single tile is simulated. Since we are relying on dataflow

execution model, the synchronisation of the activities among simulated tiles is achieved

by setting a very restricted number of the mutex to protect shared resources (i.e., es-

sentially the frame memory belonging to a specific PE, more than one thread tries to

update it by writing a new value).

5.5.1.2 Compatibility

RADA (chapter 4) provides a software interface that dataflow applications can exploit

to execute and gather information at runtime. This chapter proposes a microarchitec-

ture that tries to merge the benefits of dynamic reconfiguration. Here both the work

assume that interconnect subsystem is 2D-mesh based. In both the works, few similar

customised instructions are added to the core ISA to allow the software layer to control

and monitor the system. Apart from that, they both support data-driven PXM. So in-

corporating of two models are possible while the monitoring tools will use the extended

data-driven APIs to monitor the thread execution, and SDNoC approach will help to

reduce the data traffic via its supports to virtual topology.

68 Chapter 5. Thread Management at Software defined NoC

5.6 Summary

The design of an Exascale machine requires improvements in all levels of the system,

from application to chip microarchitecture. In this context, the interconnection sub-

system plays a key role, since it is required to exchange demanded data among thou-

sands of PEs efficiently. In this chapter, an integrating reconfiguration features into a

lightweight router microarchitecture (in such a way that the software layer can directly

control the network topology) has been proposed. Preliminary simulations confirm the

advantages of such interconnection architecture. This work can be considered as the

first brick of the framework, in next chapter a complete hybrid (ring and 2D-mesh topol-

ogy based design) has been proposed and tested in FPGA which can be effectively used

by the dataflow PXMs for further performance improvements.

5.7 Acknowledgement

This chapter is an edited version of the published paper entitled Software defined
Network-on-Chip for scalable CMPs by Alberto Scionti, Somnath Mazumdar and

Antoni Portero in IEEE International Conference on High Performance Computing &

Simulation (HPCS), (pp. 112-115), 2016.

6
Customised NoC Architecture

Modern computer chips wrap a large number of homogeneous, small, low-power pro-

cessing elements in a single die. Packing many cores together offer an excellent paral-

lelism, but comes with multiple issues, mainly related to the overall energy efficiency of

the chip. Recent times, power-aware computing is becoming popular for the increasing

power demand for computation. Enhancing the performance per unit of energy has be-

come the primary goal of the current generation of hardware designs. Interconnects play

a fundamental role in information exchange of a large number of processing elements

integrated on the same die. From this perspective, it becomes clear that inefficient inter-

connect subsystems quickly become the limiting factor for achieving high-performance

in the chip. Efficient interconnects are required to support the information exchange

of such a vast number of processing elements (PEs), still providing low latency, high

network throughput and scalability with a better area and power costs. In this chapter,

a hybrid, scalable and efficient Network-on-Chip (NoC) architecture has been proposed,

which is designed to support future manycores chips. The proposed NoC design remains

agnostic on the architecture of the PEs. It fuses rings and 2D-mesh topology to provide

high-performance while processing local (rings) and global (mesh) traffic efficiently. Our

experimental results show that our NoC architecture is scalable up to 1024 PEs with

robust performance in multiple traffic scenarios compared to the well-known 2D-mesh

topology. The proposed design can improve the average throughput and also reduce the

average latency for a 1024 cores system. Similarly, the proposed design is also power

efficient compared to well-known 2D-mesh topology based NoC design.

The chapter is organised as follows: Section 6.1 provides an overview of the impor-

tance about an efficient NoC for large core counts. Section 6.2 provides the overview

of the target system, and Section 6.3 describes the actual implementation of the NoC

design with details of modified router architecture, ring switch and the proposed packet

for efficient processing, while Section 6.4 presents the details about the achieved latency,

69

70 Chapter 6. Customised NoC Architecture

throughput, area and power cost. The comparison with 2D-mesh topology has also been

performed. Finally, Section 6.5 presents the possible applicability of the proposed design

together with possible future works, while Section 6.6 summarised the chapter with the

findings.

6.1 Introduction

Traditionally, HPC applications are either compute or communication-centric. However,

there is no easy way to categorise the traffic generated by the applications in the inter-

connect subsystem of CMPs [BWFM09]. At runtime, threads communicate at different

levels, and the flow of data they generate depends on several architectural factors (e.g.,

type and topology of the interconnection, the presence of distributed memory banks, the

number of level in the cache hierarchy). With the growing adoption of massive multi-

threaded applications, the amount of data exchange among the PEs started to push the

limits of traditional interconnections. Furthermore, with the emerge of physical limi-

tations in the way heat is removed from the chip, to achieve higher performance, data

exchanged inside the interconnect needs to be optimised focusing on bandwidth, latency

and energy cost. In fact, inefficient interconnects may lead to reduce the overall sys-

tem performance and consume a significant portion of the area and power budget of the

chip [HVS+07].

Moving from multicore to manycore designs equipped with hundreds to thousands

of PEs [BSP+16a], the probability of resources contention greatly increases. Thus, the

amount of conflict-free resource sharing inside the chip should be maximised to reduce

power cost and also to improve the performance. In scalable interconnect architectures

(e.g., Networks-on-Chip – NoCs) all PEs share the communication resources, hence in-

creasing the possibility of contention and quickly defeating the advantage of substantial

parallelism provided by the higher core count. To unleash the full capability of today’s

and future CMPs, NoC based interconnect must offer high bandwidth, low latency, pos-

sibly memory coherency support, and better I/O integration. In the past, NoC demon-

strated to be a possible solution for implementing massively parallel CMPs, thanks to

the advantages offered compared to other alternatives regarding wiring area and power

cost [LCOM07, BCGK04]. For instance, bus topology was very popular but started to

suffer from high energy consumption, low scalability, and low bandwidth for larger core

counts. The main reason is ascribed to the physical capacitance of bus wires which

grows with the number of connected modules, thus resulting in a growing wire delay.

For a small number of PEs, ring topology [DT04b] demonstrated to be very effective, re-

quiring a low-radix router. Interestingly, a ring topology can outperform mesh topology

for moderate to high memory access locality based workloads [RS97]. Rings also have

Section 6.1. Introduction 71

been used in commercial systems (e.g., in the Intel Xeon Phi co-processors where a dual

ring topology is used). The main advantage of using ring is its deterministic latency

to reach the destination. However, similar to a bus, the ring interconnects also suffers

from low bandwidth for large core counts and becomes difficult to scale to hundreds of

cores due to its limited bisection bandwidth. Efforts, such as [AFY+16, HJ01, VBS+95],

have been made to make local and global rings connecting via “bridge routers” to im-

prove the scalability together with performance and better energy consumption. On the

other side, 2D-mesh topology has become very popular to connect a large number of

PEs (e.g., TILE [EWB+07], Polaris chip [HVS+07]) due to its scalability and the high-

est level of fault tolerance. However, 2D-mesh topology suffers from space and power

trade-offs [HVS+07, VHR+08a, BD06] for very large number of connected cores which

is also verified during our experiments. In fact, a 2D-mesh router using an internal

crossbar switch can consume the largest amount of the power budget [HVS+07]. So, to

overcome these issues, proposals combining 2D-mesh with rings have been presented.

Where, [BZ07, AFY+16] are such few examples of hierarchical topologies.

In particular, power efficiency becomes a major concern for NoC design while con-

necting several hundreds of cores inside the chip. In fact, the on-chip network can

consume a large fraction of the whole chip power budget. For instance, the NoC for

the MIT Raw processor [WPM03] can consume up to 36% of total system power; while

Vangal et al. [VHR+08a] showed that on the Intel TeraFLOPS chip, the NoC uses up

to 28% of tile power. Other experiments [HPD12] have shown that for large core count

(i.e., a 256-core based CMP) conventional 2D-mesh NoC consume up to 45% of the total

energy. However, NoC performance and power consumption are very much influenced

by routing mechanism and topology. Specifically, topology impacts network latency and

power consumption.

Thus, an efficient interconnection plays a vital role in providing a scalable, high-

performance communication medium for very large core counts. In this chapter, a

hybrid on-chip interconnect is proposed for kilocore CMPs, where rings and 2D-mesh

NoC are combined. This hybrid approach can exploit the applications traffic’s localisa-

tion [BAM10, KSG+09] to confine the traffic of various applications inside the rings for

a better traffic management. The proposed architecture provides a customised router

architecture which processes the traffic and can also bypass it (if necessary). The ring

topology has been chosen because of their simple design, which provides contention-

free traffic without consuming unnecessary power. A 2D-mesh topology has a large

bisection bandwidth but suffers from the large diameter. Hence, the proposed approach

aim to use 2D-mesh interconnect for high-speed data transfer between far away PEs,

while exploiting rings for local data exchange between PEs that are close to each other.

A tiled-CMP with a very high number of PEs (up to 1024 in our experiments) has

72 Chapter 6. Customised NoC Architecture

been envisioned here, (similar approaches based on NoC already been proposed such

as [ZGHC15, GHKM11]). The proposed architecture is completely agnostic with re-

gards to the specific architecture of the PEs, thus supporting the implementation of

customised accelerators on FPGA devices also. There is a growing attention to FPGA

devices mainly for their reconfigurable capabilities. Modern devices offer enough hard-

ware resources to implement computing systems equipped with hundreds of specialised

cores. In this context, saving hardware resources used by interconnecting logic greatly

contribute to reduce overall power and area cost. The high efficiency of the proposed

NoC architecture allows the use of a minimal amount of hardware resources, which

contribute to saving energy and also to reduce the area cost of the accelerator.

In this chapter, the contributions can be summarised as i) the modified hybrid NoC

design is detailed here and the hybrid ring-mesh based NoC topology is evaluated by

implementing it on an FPGA device. ii) It has been shown that the design can scale from

few cores up to 1024 cores, and also it outperform the standard 2D Mesh topology with

lower latency and higher throughput and providing a better power efficiency. iii) Finally,

to conclude the paper how this approach can benefit applications which can dynamically

vary the requirement of some allocated resources (mainly cores) (e.g., MapReduce and

applications adhering to an explicit dataflow execution model) has also been discussed.

6.2 System overview

On-chip packet-switched micro-network of interconnects (i.e., NoCs) provides the phys-

ical substrate used by PEs to communicate each other and also to the memory. Hybrid

topologies exploit the fact that most of the communication in a parallel application af-

fects a group of resources (i.e., PEs and routers) that are close each other [DEM+09].

Hence, the optimisation of the local communication may lead to a large improvement

regarding packet latency, throughput and energy efficiency. A two-level hierarchical

interconnect is designed by combining the capabilities of small rings to provide high-

performance and high-energy efficiency, along with a conventional 2D-mesh topology

for delivering packets between PEs that are located far away from each other. By com-

bining these two physical topologies, the scalable design can achieve high-throughput,

lower latency, and better energy efficiency, with regards to conventional 2D-mesh flat-

tened design.

At the basis of the proposed design, there is the observation of how the traffic moves

in motorways and takes exits. Once the traffic exits the main motorway, it is injected

into small roads where simple decisions need to be taken. Conversely, more complex

decisions and management policies are needed at the level of the global interconnect.

Proposed design provides two levels of communications: global traffic is managed by

Section 6.3. Proposed Network-on-Chip architecture 73

a more complex crossbar switch based, modified 2D-mesh routers, while local traffic is

injected or ejected by small rings. Traffic travelling in these two levels of the hierarchy

is decoupled and processed differently to improve the system throughput and reduce

the communication latency (similar to [AFY+16, UMB10, DEM+09]). Although mesh

routers are more complex than switching stations (i.e., switch modules responsible for

driving the traffic in the ring or injecting/ejecting it towards the attached PE or the

mesh) of the rings. The majority of the traffic remains restricted to the rings, thus

allowing the proposed architecture to achieve good levels of performance and efficiency

by exploiting the localisation of the application traffic.

The proposed architecture is aimed at connecting up to 1024 PEs and uses the de-

terministic and deadlock free X-Y routing algorithm. Figure 6.1 depicts the main archi-

tecture of the reference CMP. A group of four PEs are locally connected through a small

ring called ringlet. Within a ringlet, one of the PEs is designated as the master core.

It is responsible for injecting/ejecting traffic towards the global traffic channels. For

this, a link between the ring switch and a mesh router is enabled along with dedicated

buffers. The advantage of this architecture is the absence of a dedicated bridge compo-

nent to connect the mesh and the ringlets. The proposed NoC is divided into blocks, and

a group of four ringlets forms a block unit. These four ringlets are directly linked to the

mesh router, which is responsible for moving traffic outside the block. For instance, to

support 256 cores, 16 modified mesh router and 64 ringlets are needed. More complex

traffic management policies can be applied at the block unit level, and multiple blocks

are globally connected through a 2D-mesh topology. To support traffic (in and out) in the

mesh network, each router is equipped with a high performance 8× 8 internal crossbar

switch. The smart packet processing implemented in the mesh routers allow decoupling

global and local traffic. Every time the destination of a packet is outside the local block,

the packet is forwarded to another mesh router, thus bypassing PEs in the ringlets, and

minimising the overall latency.

6.3 Proposed Network-on-Chip architecture

In this section, the main components of the proposed NoC microarchitecture are de-

scribed. Specifically, the internal organisation of the mesh router and the ring switch

for the master core.

6.3.1 Modified 2D-mesh router

Figure 6.2 depicts the internal organization of the mesh router, while Table 6.1 provides

its main architectural characteristics. The router employs a 8 × 8 crossbar switch to

74 Chapter 6. Customised NoC Architecture

Figure 6.1: An instantiation of the proposed scalable NoC: 256 PEs organised
into 4× 4 block units, each connecting four ringlets.

support global traffic movement in both dimensions (i.e., north-south and east-west) and

traffic exchange with local ringlets. Four channels are used for driving traffic within the

2D-mesh network (global traffic). The other four input channels are used to steer traffic

to/from the ringlets (local traffic). Each ringlet is associated with a dedicated channel

so that the traffic exchange with the master ring switch happens through this dedicated

link. In general, routers can have a significant number of VCs to hold a large amount of

incoming traffic. For each input link, two virtual channels (VCs) are introduced which

allow for better support quality of service (QoS) and also prevent deadlocks. In Fig-

ure 6.2 the path taken by control information carried by the packet headers is high-

lighted in red, and with blue lines show the control signals activated by the internal

router stages. Conversely, output channels do not use VCs, thus contributing to saving

power. Large buffers requirements and QoS overheads reduce the ability to support a

high number of cores with an efficient area and energy usage [GHKM11]. Also, a large

number of VCs consume a huge chunk of energy, since more input buffers are needed to

keep traffic separated. It is worth to mention that buffers are one of the largest leakage

power sources in the router. Their power consumption can represent up to 64% of the

total router’s leakage power [CP03] (sometimes comprise up to 74% of the total NoC

power budget [SCK+12]), and also a significant amount of dynamic power [WPM03]).

Interestingly, single-flit packets represent the large segment of the network traffic

for real applications [MJW12]. Following this, the router is optimised for managing

single flit packet. In the design, a packet length of 42-bits is selected, where 32-bits

are used to transport data, and the remaining 10-bits are devoted to carrying header

information. The size of the packet has been chosen to take into account that increasing

the packet size, leads to a quadratic increment of the internal crossbar switch overhead.

Thus the packet size is maintained as small as possible [LNP+13]. The internal router

Section 6.3. Proposed Network-on-Chip architecture 75

Figure 6.2: Modified 2D-mesh router microarchitecture: two groups of local/-
global channels are used to manage traffic within the 2D-mesh and traffic ex-
change with local ringlets.

is organised into a four stages pipeline: routing stage, flow-control stage, VC allocation

stage, and switch allocation stage. However, with the aim of reducing the latency of

the packets to traverse the router, the proposed design has been optimised in such a

way the operations performed by the four stages can happen in parallel, thus reducing

the overall latency to 1 cycle. The entire packet transfer can be restricted to a single

cycle thanks to the following design choices: (i) the adoption of the store-and-forward

mode; (ii) the optimisation of the routing logic for processing the single-flit packet with

a reduced overall size. These design choices lead to a router architecture with a latency

of one cycle in most of the cases. It is worth to note that both wormhole and virtual-

cut-through do not offer any significant comparative advantage. Since that, the entire

packet can be processed in parallel by the routing logic. The employed routing mecha-

nism is based on the X-Y dimension order routing (XY-DoR) algorithm since it provides

a simple implementation with a deterministic routing latency. Decoupling the traffic

between local ringlets and mesh, the probability of congestion in the 2D-mesh becomes

negligible, so the need for an adaptive algorithm (e.g., hot potato routing [Bar64], also

known as “deflection routing”) disappears. In particular, the routing logic with the flow-

control module is fused together. A speculative allocation technique for both the VC

allocation stage (VCA) and the switch allocator stage (SA) has also been implemented.

76 Chapter 6. Customised NoC Architecture

Table 6.1: Mesh-router: main microarchitectural parameters.

Features Parameters
No. of input and output ports 8 each (4 ringlets, 4 mesh)
Width of each port 42-bits (32-bits payload, 10-bits header)
No. of Virtual Channel 2 per input port
Packet switching Store-and-Forward (SAF)
Switch allocator arbitration Round-robin
Packet Routing X-Y dimension order routing
Router pipeline stages 4 stages

RF
VCA
SA

time
1 cycle

pre-arbitration

(a)

RF

time
1 cycle

buffering
VCA

SA

2 cycle 3 cycle 4 cycle

(b)

Figure 6.3: Timing: a) best-case (success) and b) worst-case (failure) of pre-
arbitration.

In case the pre-arbitration fails, the packet is buffered while VCA and SA arbitration

are performed sequentially. In that case, the latency increases up to four cycles. The

timing of the proposed mesh router in the event of pre-arbitration success shown in Fig-

ure 6.3 (a), while the event of failure represented in Figure 6.3 (b). Every time there is

an incoming packet, the following operations are performed by the router’s modules:

• Routing/Flow control module (RF) extracts the packet header and processes the

information to determine the destination router. In case the packet destination is

within one of the four ringlets belonging to the block, the RF module selects the

corresponding output channel, reducing the latency of the VCA and SA module. A

control signal is thus used to drive the input multiplexer (MUX) at the input port.

In this phase, speculative operations are performed to pre-allocate channels.

• VC allocator module (VCA) is responsible for allocating buffer resources for incom-

ing packets by selecting one of the VCs. An allocation request signal (i.e., reqin) is

set, and if the selected VC has space to buffer the incoming packet, an acknowl-

edge signal (i.e., ackout) is set too. In that case, the selected VC is also signalled

both to the RF module and the SA module.

• Switch allocator module (SA) performs two steps of arbitration. First, multiple

VCs in each input port are arbitrated to select one the available VC. Then, each

one of the selected VCs is routed to the selected output port.

Section 6.3. Proposed Network-on-Chip architecture 77

Figure 6.4: The microarchitecture of the RS of the ringlet’s master: horizon-
tal dimension is used to create the bidirectional ring connection, while vertical
dimension connects the mesh router and local PE of the ringlet.

6.3.2 Ring switch

A bidirectional ring is implemented upon the structure of a ring switch (RS) to achieve

a high-performance while keeping power consumption low. The RS is responsible for

driving the traffic within the ring, and also to steer it towards the mesh router or the

local PE. Figure 6.4 depicts the microarchitecture of the RS. Compared to conventional

RSs, the microarchitecture is customised by incorporating buffers (similar to VCs) to

allow the ring to steer the traffic to/from the mesh router. The RS is composed by two

main multiplexers which manage the traffic within the ring.

To avoid a complex control logic, the RS uses prioritisation of the traffic travelling

in the same dimension (i.e., traffic that remains within the ring and moves in the same

direction). Prioritisation helps to reduce the size of internal buffers too (buffers Buf-1

and Buf-2, see Figure 6.4). In particular, one of the two directions is selected as with

high priority, thus moving first in the RS. Prioritisation mechanism is implemented

directly in the control logic of input-output multiplexers. The interface with the local

78 Chapter 6. Customised NoC Architecture

PE is implemented using a dedicated buffer (i.e., Buf-3) which is written by the PE and

the RS reads it (i.e., the PE injects traffic in the ring). The buffer is accessible by the

PE within its address space. Similarly, traffic that is ejected by the ring is collected

temporarily in a local output buffer, from where the PE can extract the payload. The

interface with the mesh router is implemented in a similar way: traffic injected in the

mesh is stored temporarily in a small buffer, from where it is transferred to the input

link of the mesh router. Traffic that is ejected from the mesh router is moved within a

VC buffer. When the mesh router tries to access the RS, two VCs are implemented to

support resource contention better. From this viewpoint, the RS implements a round-

robin selection strategy between the two VCs to keep control logic simple. When packets

move within the ring or between a ring and the mesh router, the following steps are

performed by the RSs:

• The multiplexer of each input port determines the destination based on the packet’s

header information and also based on the arbitration.

• Packets from the ring ports (see Figure 6.4, horizontal dimension) have higher

priority compared to packets coming from the processing core or the mesh router.

Thus, such packets are moved first from the input port to the output port, with a

minimal delay. This arbitration strategy also ensures that packets already in the

main ring traffic flow are quickly routed to prevent the saturation of the network.

Specifically, to enable the transfer, the RS sets the request signal of the next switch

in the ring (by following the travelling direction of the packets), waiting for the

acknowledge signal to be set by the peer switch.

• When the master RS receives a request from the mesh router to inject packets in

the ring, the available two VCs buffers are used to temporary store the packets.

If there is space in the selected VC buffer, the RS enables the corresponding ac-

knowledge signal of the mesh router. Each buffer will take turns to send out the

packets via round-robin arbiter to exhibit fairness.

It is worth to note that, to minimise the amount of resources used by routing struc-

tures, RS modules which are not connected to the mesh router have the same structure

depicted in Figure 6.4, except for the mesh router interface. In that case, this interface

has been removed to save area and power.

6.3.3 Packet header processing

One important aspect of designing a high-performance interconnect is represented by

the organisation of the packets. To maximise the performance of the proposed NoC ar-

chitecture, the mesh router and RS microarchitecture are optimised considering packets

Section 6.3. Proposed Network-on-Chip architecture 79

Figure 6.5: Packet header organisation.

composed of a single flit. The structure of such packets is represented in Figure 6.5.

Packets have a fixed length of 42-bits: 10-bits of header information and 32-bits of pay-

load. In particular, packet header information has been organised in such way its pro-

cessing time is minimised. The payload can be used mainly to transport application

data. The packet structure can be further augmented for fine grain control of the NoC

(see subsection 6.5.1).

The header carries information on the destination of each packet, and similarly to

standard TCP/IP network connections, each packet is treated independently from the

others. In the case of packets belonging to the same flow, they will be processed in the

same manner, so that a deterministic latency can be achieved. Specifically, the packet

header is organised into four sub-fields. Two sub-fields are used to uniquely identifying

the PE within the ringlet and the ringlet connected to the mesh router. This two sub-

fields are used to move traffic among the ringlets belonging to the same block. Since

there are four ringlets in a block, each containing four PEs, the length of these two

sub-fields is set to 2-bits each. On the other hand, the remaining two sub-fields are

used to identify the destination router within the 2D-mesh. To uniquely specify the

block identifier 6-bits is needed since the target system is composed of up to 1024 cores

that are further organised into a grid of 8× 8 blocks. Out of six bits, 3-bits are used to

identify packet destination on the X-axis and 3-bits for its position on the Y-axis. To fur-

ther improve scalability and efficiency of the proposed architecture, bypass logic is also

implemented to save energy. Bypassing the packets also reduce the latency [KPKJ07].

This feature is included in the mesh router. The proposed bypass logic uses left-to-right
parsing (see Figure 6.5) for implementing header processing. Specifically, the following

steps are executed to process the packet header information:

• Traffic confined in the ring: the block identifier sub-fields are reset, while ring and

PE identifiers are set.

• Traffic injected/ejected to/from the 2D-mesh: all sub-fields are set; while the by-

80 Chapter 6. Customised NoC Architecture

pass logic is disabled.

• Traffic confined in the 2D-mesh: the bypass logic is enabled.

6.4 Evaluation methodology

The proposed NoC architecture is evaluated taking into account the following parame-

ters: average network latency, average throughput, power consumption, and area cost.

Since the proposed interconnect design well fit with an implementation on FPGA de-

vices, the area cost has been evaluated regarding allocated hardware resources. The

RTL for the entire VHDL design description of mesh routers and ringlets is synthesised.

Next, corresponding FPGA bitstream is generated using Vivado Design Suite 2016.2.

All the components of the proposed NoC design have been implemented and validated

on a Xilinx Virtex-7 XC7VX690-3 FPGA device, which is the most potent variant of its

class. All the tests were done setting the clock speed to 400 MHz. In the following, the

results of four parameters are reported by comparing the proposed architecture with the

reference design (based on a traditional flattened 2D-mesh interconnect).

6.4.1 Cost metrics

Cost metrics are represented by the power consumption and the resource utilisation

when the proposed design is implemented on the FPGA device. In the following, the

obtained results are analysed separately.

6.4.1.1 Resource utilisation

Two designs on a relative scale are compared and the values are reported as the per-

centage of the total used resources (see Table 6.3). To this end, LUTs, FFs and Block

RAMs (each 36Kb in size) are counted. In the proposed design, for the implementation

of a single block unit (i.e., four ringlets connected to a mesh router), the total number of

used LUTs, FFs and BRAMs is 2434, 2768 and 48 respectively. Specifically, four ringlets

consume a total of 1076 LUTs, 1800 FFs and 40 BRAMs, while resource consumption of

the mesh router is reported in Table 6.2.

In Table 6.2, the resource utilisation and power consumption between a standard

2D-mesh router with the proposed design are compared. Unlike a standard router, the

modified one can support sixteen cores via four ringlets with around 2× increment in

the resource consumption compared to a traditional mesh router and with a less than

0.4W increment of power consumption. Regarding the power consumption, the values of

static power (due to leakage currents and which depends on the manufacturing process)

Section 6.4. Evaluation methodology 81

Table 6.2: Area and power comparison between a standard router architecture
and the proposed mesh router.

Resources Utilization
Power Consumption

(in Watts)
Router LUTs FFs BRAMs Static Dynamic

2D-mesh 699 572 5 0.323 0.047

Proposed 1358 968 8 0.324 0.075

Table 6.3: Relative resource utilisation in Vivado (values are in percentage).

System Configuration (No. PEs)
16 32 64 128 256 512 1024

Proposed router design

LUTs 0.31 0.63 1.25 2.51 5.02 10.03 20.06

FFs 0.11 0.22 0.45 0.89 1.79 3.58 7.15

BRAMs 0.54 1.09 2.18 4.35 8.71 17.41 34.83

Ring switch design

LUTs 0.25 0.50 0.99 1.99 3.97 7.95 15.90

FFs 0.21 0.42 0.83 1.66 3.32 6.65 13.30

BRAMs 2.72 5.44 10.88 21.77 43.54 87.07 174.15

Conventional 2D-Mesh router design

LUTs 2.58 2.11 4.23 20.65 41.31 82.61 165.23

FFs 1.06 2.11 4.23 8.45 16.90 33.80 67.60

BRAMs 5.44 10.88 21.77 43.54 87.07 174.15 348.30

and dynamic power are presented separately. Results show that the proposed design

consume 1.0 mW and 28.0 mW more respectively regarding static and dynamic power.

This result is strictly correlated to a large number of memory blocks (BRAMs) used by

the proposed design.

Resource utilisation of the block (unit topology of proposed design) with publicly

available FPGA friendly NoC generator CONNECT [PH12] is also compared. It is worth

to note that the CONNECT has been tested at 150 MHz due to its failure on higher

clock speeds, while for the proposed design the clock frequency was set to 400 MHz.

In this experiment, the design saves 74.65% of LUTs and 39.51% of FFs compared to

CONNECT (official source code was not changed) to connect sixteen cores via an on-chip

network. CONNECT also has used 1728 DRAM blocks (64-bits each) while the proposed

design has used 48 BRAM blocks (36-kbits each).

Scaling the system up to 1024 PEs, 64 modified mesh router and 256 ringlets are

needed. Such architectural blocks consume up to total 155776 LUTs, 177152 FFs and

3072 BRAM blocks. From the Table 6.3, it can be seen that the proposed model is very

82 Chapter 6. Customised NoC Architecture

resource efficient compared to the standard flattened 2D-mesh design. For connecting

sixteen cores (one block unit), it can save 2% LUTs, 0.7% FFs and 2.2% of BRAM com-

pared to the standard 2D-mesh topology. Although, it might seem small saving when

the design is scaled to 1024 cores the resource saving increases up to 129.3% for LUTs,

47.2% for FFs and 139.3% for BRAMs. It is interesting to note that overall, as the NoC

size increases by doubling the number of cores, the resources consumption of the pro-

posed model grows linearly as ≈ 2×, which may imply that the design is modular and

well scalable.

6.4.1.2 Power consumption

In Figure 6.6, the static and dynamic power distribution for all the NoC configurations

has been presented. It can be identified that, initially, the static part dominates the

power consumption while as the size of the network grows it started to diminish. In-

terestingly, it is also noticed that the static part does not increase as the network size

increases but stays almost constant. For example, the total static power consumption

for one topology block (16 cores) is 0.649 W while it grows up to 0.796 W for 1024 cores.

It can also be seen from the Figure 6.6, where the amount of static power, is more re-

lated to the implementation of the mesh routers (if compared to ringlets). However, it

is worth to note that ringlets in all cases consume more FFs and BRAMs, while router

consumes more LUTs (specifically, in the range of 0.06% to 4.2% (see Table 6.3)).

 0%

20%

40%

60%

80%

100%

R
in

g
le

t(
1
6
x
1
)

R
o
u
te

r(
1
6
x
2
)

R
in

g
le

t(
1
6
x
2
)

R
o
u
te

r(
1
6
x
4
)

R
in

g
le

t(
1
6
x
4
)

R
o
u
te

r(
1
6
x
8
)

R
in

g
le

t(
1
6
x
8
)

R
o
u
te

r(
1
6
x
1
6
)

R
in

g
le

t(
1
6
x
1
6
)

R
o
u
te

r(
1
6
x
3
2
)

R
in

g
le

t(
1
6
x
3
2
)

R
o
u
te

r(
1
6
x
6
4
)

R
in

g
le

t(
1
6
x
6
4
)

P
o
w

e
r

d
is

tr
ib

u
ti
o
n

Relative representation of power consumption with increasing network size

Dynamic Static

Figure 6.6: Static and dynamic power distribution

Section 6.4. Evaluation methodology 83

Next, the power consumption comparison between the proposed model and the stan-

dard 2D-mesh in Figure 6.7 is presented. Here, for the proposed architecture the energy

consumption of both the mesh router and the ringlet is distinguished. For one topol-

ogy block (16 cores), the power consumption is 0.399 W and 0.492 W respectively, for

the mesh router and the ringlet. However, as the size of the network grows, the total

power consumption of ringlets starts to dominate. For instance, for 16 topology blocks

(i.e., 256 cores), the power consumption of routers is 1.276 W while the 64 ringlets con-

sume 2.703 W, which is more than 2× of total routers energy consumption. Following

this trend, for 1024 core configuration, all the ringlets consume around 2.5× of the to-

tal routers power consumption. Apart from that, for network size of 16 cores, both

the proposed design and the flattened 2D-mesh consume almost the same amount of

power. However, as the network grows, the 2D-mesh starts to consume more power. For

instance, with a 16 × 8 cores configuration, the proposed model consume 2.4 W while

the conventional design consumes 4.5 W. The situation becomes worse when it touches

32.8 W for connecting 1024 cores, which represents 141.26% relatively more power com-

pared to the proposed design.

 0

 5

 10

 15

 20

 25

 30

 35

16x1 16x2 16x4 16x8 16x16 16x32 16x64

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

in
 W

a
tt

(s
))

Network Size

Proposed 2D-Mesh

Figure 6.7: Total power consumption with increasing network size.

6.4.2 Performance metrics

The proposed routers and ringlets are tested under well-known three statistical traffic

patterns, and the performance (throughput and average latency) of the hybrid topol-

84 Chapter 6. Customised NoC Architecture

ogy is evaluated. VHDL-based cycle-accurate models for the traffic pattern generation

was developed. In modern computing applications, communication requirements are

dynamic and unknown before the execution. Three well-known traffic patterns (such as

uniform random, bit-reversal and transpose [DT04b]) are considered to represent the

way the real-world applications generate their data traffic. Mainly the network latency

(i.e., the time for a packet to move from source to destination, including the time for a

packet to cross the channel) and the throughput is evaluated. Bit-reversal and trans-

pose do not support smooth traffic operations. For the experiment, a large number of

packets that needs to be independently routed to a dynamically determined destination

are synthetically generated. Four packet injection rates (Ir, measured in packets/cycle):

specifically Ir = {0.25, 0.50, 0.75, 1.00} are used. For Ir < 1.00, nodes generating traffic

are selected randomly, while with Ir = 1.00 (worst case) all the nodes inject packets at

the same time. The stress-test was to ensure the working capability of the proposed

NoC design under both bandwidth and worst/average latency scenarios.

6.4.2.1 Network latency

Figures 6.8, 6.9, 6.10 show the average packet latency as a function of the four injection

rates, when the three different traffic patterns are used. Bars show that the network

latency increases with the increased size of the injection rate, as well as the increase

of the network size. However, the proposed system shows very much consistency with

increasing network configuration. For low injection rates (i.e., Ir = {0.25, 0.50}), the la-

tency for each traffic pattern remains very consistent with the others. When increasing

the injection rate up to Ir = 0.75 packets/cycle and using the bit-reversal traffic pattern,

the latency is minimised. The worst case for the packet latency is represented by the

transpose traffic pattern with an injection rate of 1.00 packets/cycle.

When comparing the proposed architecture with conventional flattened 2D-mesh, it

is found that for all the three traffic patterns, the proposed design outperforms tradi-

tional NoC design, by keeping the latency lower. Specifically, analysing the behaviour

of the 2D-mesh NoC, it is found that 2D-mesh design is very consistent for latency in-

crements for all the cases, while it also has its largest latency for the transpose traffic

pattern with the injection rate of Ir = 1.00 packets/cycle (similar to the proposed). The

latency is improved by 10% for all three traffic patterns for smallest network configura-

tions (i.e., 16 cores). While, latency is improved by 120.13% for uniform-random traffic,

by 114.6% for transpose traffic, and finally by 123.6% for bit-reversal for the largest case

(i.e., 1024 cores).

Section 6.4. Evaluation methodology 85

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

0.25 0.5 0.75 1

A
v
e

ra
g

e
 L

a
te

n
c
y

 (
C

y
c
le

s
)

Packet Injection Rate (Packets/Cycle)

Prop 16x1
Mesh 16x1
Prop 16x2

Mesh 16x2
Prop 16x4

Mesh 16x4

Prop 16x8
Mesh 16x8
Prop 16x16

Mesh 16x16
Prop 16x32

Mesh 16x32

Prop 16x64
Mesh 16x64

Figure 6.8: Average packet latency in uniform random traffic pattern.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

0.25 0.5 0.75 1

A
v
e

ra
g

e
 L

a
te

n
c
y

 (
C

y
c
le

s
)

Packet Injection Rate (Packets/Cycle)

Prop 16x1
Mesh 16x1
Prop 16x2

Mesh 16x2
Prop 16x4

Mesh 16x4

Prop 16x8
Mesh 16x8
Prop 16x16

Mesh 16x16
Prop 16x32

Mesh 16x32

Prop 16x64
Mesh 16x64

Figure 6.9: Average packet latency in bit-reversal traffic pattern.

6.4.2.2 Network throughput

Figures 6.11, 6.12, 6.13 show the achieved network throughput for all three traffic pat-

terns. Similar to latency, the network throughput is also consistent with the offered

packet injection rate. In fact, in the proposed design the average throughput increases

as the number of PEs increases. From this viewpoint, by analysing the number of pack-

86 Chapter 6. Customised NoC Architecture

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.25 0.5 0.75 1

A
v
e

ra
g

e
 L

a
te

n
c
y

 (
C

y
c
le

s
)

Packet Injection Rate (Packets/Cycle)

Prop 16x1
Mesh 16x1
Prop 16x2

Mesh 16x2
Prop 16x4

Mesh 16x4

Prop 16x8
Mesh 16x8
Prop 16x16

Mesh 16x16
Prop 16x32

Mesh 16x32

Prop 16x64
Mesh 16x64

Figure 6.10: Average packet latency in transpose traffic pattern.

ets delivered per cycle, an increase of 2× factor with the increase of the number of PEs

in the network has been observed. For instance, with an injection rate equals to Ir = 1.00

packets/cycle and a uniform random traffic pattern, the average throughput increases

from 12 packets/cycle for a single block unit (i.e., 16 cores) to 22 packets/cycle for two

block units (i.e., 32 cores). Similarly, for a configuration with 512 cores, the average

throughput is 344.5 packets/cycle, while it increases up to 680 packets/cycle for a 1024

cores configuration. Again, it represents approximately an improvement of a 2× factor

with the network size doubling. This trend is also followed by the proposed design when

other traffic patterns are considered. It clearly shows that proposed NoC architecture

is capable enough to offer higher performance and scalability compared to traditional

flattened 2D-mesh. Interestingly, a similar trend in 2D-mesh throughput has also been

observed. Conversely, when the injection rate is low (i.e., Ir = {0.25, 0.50} packets/-

cycle), proposed design has performed better for the transpose traffic pattern. For an

injection rate equals to 0.75 packets/cycle, the proposed design performed well for all

the traffic patterns, while for largest network configuration (i.e., 1024 cores), again the

design shows the best throughput for transpose traffic pattern. However, considering

the worst injection rate case, it is worth to note that best throughput is achieved with

the uniform-random traffic, while traditional 2D-mesh topology did not demonstrate a

similar consistency among the patterns.

These results clearly show that the proposed design can improve the performance

of the NoC regarding higher throughput and lower average latency compared to the

traditional 2D-mesh topology. The capability of this design to sustain such performance

Section 6.4. Evaluation methodology 87

also with high injection rates and random traffic patterns (which represent a critical

pattern) can be mainly ascribed to the hierarchical organisation of the network. In fact,

most of the traffic is kept inside ringlets or is exchanged by ringlets connected to the

same mesh router. Such organisation (ringlet-oriented) is the main contributor to the

scalability of the proposed design.

 0

 100

 200

 300

 400

 500

 600

 700

0.25 0.5 0.75 1

T
h

ro
u

g
h

p
u

t
 (

P
a

c
k
e

t/
C

y
c
le

)

Packet Injection Rate (Packets/Cycle)

Prop 16x1
Mesh 16x1
Prop 16x2

Mesh 16x2

Prop 16x4
Mesh 16x4
Prop 16x8

Mesh 16x8

Prop 16x16
Mesh 16x16
Prop 16x32

Mesh 16x32

Prop 16x64
Mesh 16x64

Figure 6.11: Average network throughput in uniform-random traffic pattern.

 0

 100

 200

 300

 400

 500

 600

 700

0.25 0.5 0.75 1

T
h

ro
u

g
h

p
u

t
 (

P
a

c
k
e

t/
C

y
c
le

)

Packet Injection Rate (Packets/Cycle)

Prop 16x1
Mesh 16x1
Prop 16x2

Mesh 16x2

Prop 16x4
Mesh 16x4
Prop 16x8

Mesh 16x8

Prop 16x16
Mesh 16x16
Prop 16x32

Mesh 16x32

Prop 16x64
Mesh 16x64

Figure 6.12: Average network throughput in bit-reversal traffic pattern.

88 Chapter 6. Customised NoC Architecture

 0

 100

 200

 300

 400

 500

 600

 700

0.25 0.5 0.75 1

T
h

ro
u

g
h

p
u

t
 (

P
a

c
k
e

t/
C

y
c
le

)

Packet Injection Rate (Packets/Cycle)

Prop 16x1
Mesh 16x1
Prop 16x2

Mesh 16x2

Prop 16x4
Mesh 16x4
Prop 16x8

Mesh 16x8

Prop 16x16
Mesh 16x16
Prop 16x32

Mesh 16x32

Prop 16x64
Mesh 16x64

Figure 6.13: Average network throughput in transpose traffic pattern.

6.4.2.3 Network scalability

To better analyse the scalability of the proposed design, a set of experiments are further

performed specifically aimed at evaluating the average packet latency and throughput

with the increasing number of cores in the network. To this end, the four injection rates

are averaged (Ir = 0.625 packets/cycle) for all the three traffic patterns. The results are

shown in Figure 6.14. From the plot, it is evident that the proposed NoC architecture

shows a significant reduction of the average latency up to 128 cores, compared to the

2D-mesh. Specifically, moving from a configuration with 16 PEs to the one with 128

ones, the latency increases from 65 to 100 cycles. Conversely, for the same two configu-

rations, the 2D-mesh topology shows an increment of the latency from 72 to 156 cycles.

This behaviour has been observed irrespective of the traffic pattern. Then, for the next

two network configurations (i.e., 256 and 512 cores respectively) the latency increment

exhibited by the proposed design is not linear (e.g., the increment from 128 to 256 PEs

shows a lower slope of the curve), while in the 2D-mesh the latency increment still fol-

lows a linear trend. Finally, considering the largest configuration (i.e., 1024 cores) the

trend is still not linear for the proposed design and the latency drops to 170 cycles (this

trend is similar in all the three traffic patterns). The trend of average packet latency im-

provement is also analogous to the other traffic patterns. Conversely, 2D-mesh increases

the latency up to 377 cycles. It is worth to note that, although the two architectures have

similar behaviour when the number of the PEs increases, the average latency is always

significantly lower attained by the proposed design. If this observation is combined with

Section 6.4. Evaluation methodology 89

the lower power consumption and resource utilisation, it can clearly be said that the pro-

posed design scales more easily than conventional ones and it can be a good candidate

for supporting next generation high-performance manycore accelerators. To further con-

 50

 100

 150

 200

 250

 300

 350

 400

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

C
y
c
le

s
)

PE Count

Uniform Traffic
Bit Reversal Traffic

Transpose Traffic

2D-Mesh Uniform Traffic
2D-Mesh Bit Reversal Traffic

2D-Mesh Transpose Traffic

Figure 6.14: Average packet latency with increasing network size.

firm the scalability of the design, how the average network throughput improves with

the growing network size (using the same packet injection rate for the three traffic pat-

terns – Ir = 0.625 packets/cycle) is also analysed. The results of this experiment are

shown in Figure 6.15. From the trend, it is evident that the average throughput tends

to increase almost linearly by a factor ≈ 2× when the number of PEs is doubled (con-

sidering all the three traffic patterns). For instance, considering the transpose traffic

pattern, for a single block unit (i.e., 16 cores) the average throughput is 9.8 packets/-

cycle while it increases to 17.13 packets/cycle for 32 PEs. Similar behavior is observed

when moving from 128 cores (69.25 packets/cycle) to 256 cores (147.7 packets/cycle), as

well as when moving towards the largest configuration, i.e., from 512 cores (288 packet-

s/cycle) to 1024 cores (570 packets/cycle). Although the 2D-mesh topology shows similar

behaviour for lower core counts, it is important to highlight that the average throughput

is always lower than the proposed design, and quickly start to decrease when the core

count increases (i.e., for more than 128 cores proposed ring-mesh combination outper-

form the 2D-mesh topology). Finally, how the network performs with increasing number

of PEs is compared, by plotting the average throughput versus the number of processing

cores and also the average throughput versus the average latency together. The result

of this comparative analysis is reported in Figure 6.16. Here, all the reported values of

90 Chapter 6. Customised NoC Architecture

 0

 100

 200

 300

 400

 500

 600

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0

2
4

A
v
e

ra
g

e
 T

h
ro

u
g

h
p
u
t

(P
a

c
k
e
ts

/C
y
c
le

)

PE Count

Uniform Traffic
Bit Reversal Traffic

Transpose Traffic

2D-Mesh Uniform Traffic
2D-Mesh Bit Reversal Traffic

2D-Mesh Transpose Traffic

Figure 6.15: Average network throughput with increasing network size.

latency and throughput are the average of all the experiments. From the plot, it appears

that the average latency grows by a factor of 1.25× when moving from 256 cores to 512

cores while all the other cases a lower latency growth can be seen. The NoC design also

registers the average throughput growth of a factor of ≈ 2× for almost all cases. The

proposed design has shown its robust performance by improving its throughput higher

than latency, and even the latency growth is started to reduce with the increase of the

network size.

6.5 Applicability and future improvements

In this section, the possible extensions of the basic working mechanism of the proposed

network architecture are discussed which are aimed at better supporting multiple ap-

plications with dynamic resource requirements. For instance, application based on the

MapReduce [DG08] programming model can vary the number of required PEs during

their execution. In fact, in general, the number of PEs required by mapping functions is

higher than of the number required by reducing functions. Similarly, applications build

upon explicit dataflow programming models show the same behaviour: dataflow graphs

representing the execution flow and the threads’ dependencies can grow and shrink

during the application lifetime. With the aim of supporting such applications, a set of

features are provided which allow exploiting better the large number of PEs that the

NoC design can support, as well as to provide resiliency of the system against failures.

Section 6.5. Applicability and future improvements 91

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000

6
5

7
3

8
3

1
0
0

1
1
1

1
4
0

1
7
0

A
v
e
ra

g
e
 T

h
ro

u
g

h
p

u
t

(P
a
c
k
e

ts
/C

y
c
le

)

PE Count

Average Latency (Cycles)

Average Throughput Vs PE
Average Throughput Vs Average Latency

Figure 6.16: Comparing average network throughput and average packet la-
tency with increasing network size.

Specifically, the active elements of the network hierarchy (i.e., mesh routers and RSs) is

allowed to be selectively bypassed or completely switched off.

6.5.1 Morphing capability

Smart selection of specific topology to run applications can optimise cost and improve

performance. The operating system (OS) can work in conjunction with the NoC support

to exploit such feature to optimise the thread communication overheads. To this end,

the routers and RSs can process a special configuration packet called morph packet,

which specifies how to configure single links within the mesh router or the RSs. In

HPC environments, hypervisor/OS is responsible for generating such control packets

consulting the compiler (see for example [MDM04c]).

The morph packet is organised in such way the 32-bits of the payload are used

to carry configuration information. Specifically, the payload is composed of four sub-

fields: hierarchy level (HL=1-bit), execution region size (ERS=10-bits), link configura-

tion (LC=16-bits), and PE type selector (PTS=5-bits). Figure 6.17 (left) shows the inter-

nal organisation of the morph packets.

• Hierarchy level (HL): Single bit allows distinguishing if the configuration must be

applied to a RS (HL = 0) or to the mesh router (HL = 1).

• Execution region size (ERS): This field is formed by the next 10-bits in the payload.

92 Chapter 6. Customised NoC Architecture

Crossbar
Switch

Router Logic

Link Switch-Off

Link Routing Bypass

IN OUT

Bypass ctrl. signal Bypass path Switch-off ctrl. signal

Header Payload

MORPH PACKET

HL LCERS PTS

1bit 10bits 16bits 5bits

Figure 6.17: Internal organisation of the morph control packet (left), and the
corresponding control structures in the mesh router (right).

With this length, it is possible for an application demanding for its execution a

subset of the total core count, as well as the whole CMP computing resources.

• Link configuration (LC): This field can use up to 16-bits to specify how to configure

single links. Each group of 2-bits in this field allows specifying the state of the

corresponding link. In the case of the mesh router, links are eight in total (i.e.,

north, south, east and west for the 2D-mesh and four to connect to the ringlets).

Conversely, a RS has four links at most. Thus only a reduced number of bits in

this field are used. A group of 2-bits allows to set the link into three main states:

– Active: Link is fully active, and the traffic normally flows inside the router/switch

for routing decision.

– Bypass: Link is configured in such way the incoming traffic is directly pre-

sented to the corresponding output port, moving in the same direction. For

instance, bypassing the east channel of a mesh router allows to inject the

traffic directly in west output channel.

– Switch-off : Link is completely switched off, by disabling the logic governing

it. The router/switch logic governing the other links is reconfigured accord-

ingly.

• PE type selector (PTS): The remaining 5-bits can be used to target special resources

in the chip (such as dedicated accelerating cores when a heterogeneous environ-

ment is used).

Morph packets can be generated at the OS/hypervisor level in such way they can be

sent selectively to a subset of the routers or in a broadcast. However, the way control

Section 6.6. Summary 93

information is organised in the payload, allows the routers and RS not involved in the

configuration process to skip their processing, thus avoiding further throughput limita-

tions. Starting from the requests of the application, routers can create execution regions
for the each application (i.e., an execution region corresponds to the dynamic group of

PEs required by the application). For instance, it is possible for a mesh router to dy-

namically restrict the execution of an application to two ringlets, and using the other

two ringlets for the execution of another application (application awareness). The pro-

posed morphing solution is flexible enough so that it can be exploited to tailor the NoC

topology to the application requirements. Similarly to [SMP16], by selectively bypass-

ing or disabling links, it is possible to allow the NoC to assume a special (virtualized)

configuration that provides more performance for the specific application.

Figure 6.17 (right) shows the modification to the control signals to allow morphing

capabilities. Blue dashed lines represents signals set to bypass crossbar switch and

input/output channel buffers. Every time this signal is set, packets entering in the se-

lected input channels are directly driven by the output links (blue line). Conversely, the

switch off control signal (it is dominant over the bypass signal) completely disable input

and output channel logic. Traffic entering in switched off channels is dropped. Similarly

to mesh router, bypass and switch off logic directly operates on the multiplexers/demul-

tiplexers governing the RSs (see Figure 6.4, section 6.3.2).

Morphing capabilities can also be used to improve further power saving (such as

power gating technique based on a traffic activity threshold [PDB14]) and ensure system

resiliency. Whenever any running application does not use a portion of the chip, they

can be switched off. When an application requires more resources, switched off elements

(e.g., a ringlet) can be enabled by resetting switch off control signals. The proposed

extension can play an important role to ensure system resiliency to faults. By detecting

faulty PEs, or a failure in the router/switch logic, the component can be easily bypassed.

Finally, the morphing capability is mainly aimed at improving the energy-cost by

allowing multiple applications to share the spatial as well as computational resources

of the NoC. The primary idea of generating the execution-region is to achieve better

performance via traffic localisation by effectively controlling the routers or the ring-

switches using the morph packets.

6.6 Summary

Following the current trend, there will be general purpose chips with hundreds of PEs.

To efficiently use the massive built-in parallelism, the traffic inside the chip need to be

managed efficiently, both from the power (reducing hotspots) and performance (lower

latency and throughput) perspective. Thus, a simple yet scalable two-level hybrid hi-

94 Chapter 6. Customised NoC Architecture

erarchical interconnection is proposed where ring and a 2D-mesh topology are fused

together without using any bridge router. The proposed NoC design is implemented on

a high-end FPGA device. In experiments using multiple synthetic traffic patterns, it is

shown that the design is scalable while keeping high performance regarding throughput

and latency. This proposed topological design can also be customised using the special

configuration packets to exploit chip resources better, depending on the specific applica-

tion requirements. Finally, it is discussed that how the proposed design can be utilised

for the applications whose requirements are dynamically changing over their execution

lifetime. Experimental results also showed that the hierarchical organisation of the in-

terconnect could easily outperform the capabilities of traditional 2D-mesh NoCs. After

discussing the dataflow thread management and also the possible NoC platform, it is

kind of interesting to verify the thread to core mapping quality by proposing an analyt-

ical model (chapter-7).

6.7 Acknowledgement

This chapter is an edited version of the submitted paper entitled A High-Performance
Interconnect for Future Scalable Manycore CMPs by Somnath Mazumdar and

Alberto Scionti at the Journal of Parallel and Distributed Computing, Elsevier.

7
Analytical Model

Modern computing chips are composed of multiple, simple, low-power processing cores.

Increasing the number of processing cores in a single chip brings the opportunity to

exploit the inherent massive level of thread parallelism and further improved perfor-

mance. However, efficient allocation of applications (threads) to available cores is a

complicated process. Failing to do so, the mapping can be the limiting factor for achiev-

ing better performance on a tiled chip-multiprocessor (CMP). In this chapter, we pro-

pose a mathematical formulation based on mixed integer linear program (MILP) to map

application threads on cores at worst-case scenario by keeping into account the spa-

tial topology of a two-dimensional mesh (2D-mesh) Networks-on-Chip (NoC). Our model

allows evaluating in absolute term the performance of different mapping and routing

algorithms. The proposed analytical model is general enough to consider a different

optimising policy from energy to latency and a different number of memory controllers.

In the experiments, we have shown that the proposed approach achieves a 40% reduc-

tion over the traditional zig-zag heuristic, therefore showing that there is a range for

improving application threads mapping on cores.

The chapter is organised as follows: Section 7.2 formally introduces the core map-

ping problem while in the following section 7.3, we introduce the mathematical formu-

lation based on MILP. In Section 7.4, we present and discuss the results of our thorough

simulation campaign. Finally, Section 7.5 summarises the chapter.

7.1 Introduction

Recent computing platform paradigm has been shifted towards the communication-

centric design which is optimised both for performance and power. Over the past few

years, researchers from industry and academia started to develop chips containing 100+

95

96 Chapter 7. Analytical Model

cores. (e.g., PEZY-SC processor1) or 1000+ cores (e.g., Epiphany-V Chip2). Stacking

many low powered processing cores together offers a great level of parallelism, but re-

quires to solve multiple execution management issues. In fact for chips with large core

count, there could be higher chances of resource contention due to a significant amount

of data exchange between the applications.

On-chip packet-switched micro-network of interconnects (i.e., NoCs [DT04b]) pro-

vides the physical substrate used by processing cores to communicate each other (also

to the memory). In general, NoC’s architectural components (such as channel width,

buffer size, thread-to-core mapping, and routing algorithms) are very critical for better

support for data traffic [BM06b]. There is a need to optimise latency and energy cost

for the data exchange inside the NoC to achieve higher performance. An increasing

number of core count and communications between threads inside the NoC may yield to

hotspot issues. Hence, on-chip communication may become a barrier for higher perfor-

mance. The main design goals for NoC based interconnects are higher bandwidth, low

energy cost, and low latency. However, NoC designs with several hundreds of processing

cores inside the chip suffer from large energy consumption. In fact, the on-chip network

can consume a significant fraction of the whole chip power budget. For instance, ex-

periments [HPD12] have shown that for large core count (i.e., a 256-core based CMP)

conventional 2D-mesh NoC consume up to 45% of the total energy; while the NoC for the

MIT Raw processor [WPM03] can consume up to 36% of total system power. In another

work, Vangal et al. [VHR+08b] showed that on the Intel TeraFLOPS chip of 80 cores,

the NoC uses up to 28% of tile power.

Thread-to-core mapping problem (T2CMP) in NoC is a problem instance to assign

given applications’ threads on the available processing cores to optimise user-given per-

formance metrics (such as energy cost, latency, throughput). In general, NoC based

research works are mainly focused on the reduction of either overall energy consump-

tion [HM05, SK04] or communication cost [SBG+08, PBB+03] by placing applications

threads on cores using various complex methodologies. At execution time, application

threads require data exchange with other running in other cores or with primary mem-

ory (needing to fetch or to write the data). Clearly, threads with a large amount of data

packet exchange (or high memory requirements) should be placed as close as possible

to improve the performance and to reduce energy consumption [CLK07]. The presence

and positioning of multiple memory controllers (MCs) should be considered since they

can manage different memory modules/banks to serve the requests from cores.

In this chapter, we propose a mixed-integer linear program (MILP) based solution

1http://pezy.co.jp/en/products/pezy-sc.html
2https://www.parallella.org/wp-content/uploads/2017/01/

million_cores.pdf

Section 7.2. Problem description and assumptions 97

for thread-to-core (T2C) mapping so that the overall energy consumption can be reduced

(in worst case traffic scenario). Our analytical model can place the application threads

on the available core to optimise (i) energy consumption or (ii) overall average latency

of data packets. The main contributions of our work are:

• We propose an MILP model to map application threads on available cores for op-

timising the power cost and latency.

• Our model supports near data processing (NDP) which is unique to our model, and

we also show how changing the number of memory controllers affect the latency

and energy consumption inside the chip.

• We provide worst case QoS regarding energy cost, latency.

• Finally, we compare our proposed model with the existing approaches such as zig-

zag heuristic and show our model achieves 13% reduction in the average energy

consumption and 27% reduction in the average packet latency.

7.2 Problem description and assumptions

The main idea of increasing core count together with robust NoC architecture is mainly

to host multiple application on a single chip to increase the overall system utilisation.

Usually, threads communicate with other threads or other resource components (such

as local memory banks, last-level cache (LLC), DRAM controllers). A good criterion is

to place communicating threads close to each other to minimise latency and energy con-

sumption. However, after threads terminate their execution, the empty cores tends to be

scattered around the NoC floor (see Figure 7.1). This situation can force to assign the ap-

plication threads to a distant core which may cause a significant performance drop due

to long communication distances (both increasing the power consumption and the risk of

the traffic contentions [JP14, AAS13]). Hence, an efficient topological mapping of cores

onto the NoC can save communication energy [HM05] and also bandwidth [MDM04a].

Mapping of application threads on processing cores in NoC is one of the most important

issues in NoC design. In this section, we introduce the graph based models to represent

the network topology, the applications and the snapshot of the current status in the pro-

posed model. The 2D-mesh topology based NoC is composed of several processing cores

or tiles arranged on a X × Y grid. Here, X and Y denote the total number of tiles on

the x-axis and y-axis, respectively. Each tile contains a router, and it is connected to a

local core and also to the adjacent NoC tiles via network links. The NoC routers are in

charge of routing the data packets to their corresponding destination, while the round-

robin arbitration allows modelling the separate queues as a single incoming queue for

98 Chapter 7. Analytical Model

Figure 7.1: Representation of multiple application running on a NoC

data packets. As represented in Figure 7.2 (a) the router contains the input ports (IPort)

with input buffers. Each input ports connects to a crossbar switch and then connect to

any output port via the crossbar switch. The input buffers consist of multiple virtual

channels (VCs) (for simplicity we have shown two for each port).
IEEE TRANSACTIONS ON COMPUTERS 3

(a) NoC overview (b) Network flow representation

Fig. 2: NoC model representation: via architectural model (left) and also via theoretical model (right)

Fig. 3: Basic system graph representation including applica-
tion threads and associated single memory controller

the threads. In detail, GAi representing an application i that is
generated as follows: Let ai and ti be the number of threads
(nodes) and data exchanges (directed arcs) in the application
i, ti random arcs are added to GAi with weight (threads’
data exchange) p obtained from a given distribution DCPU .
Moreover, each node ai of the graph has an additional arc
from the MC M to ai with weight extracted from a given
distribution DRAM . An example of GA with a = 5 and t = 6
is shown in Figure 3. It is worth to note that in our model the
packet generation by a thread follows worst case situation,
that is all the traffic to be sent between two threads sent at
time zero.

We introduce an assignment graph GS to represent the
snapshot of the current state of the NoC. The assignment
graph GS is a bipartite graph GS = ({A ∪ C}, E) represent-
ing ready threads a to be assigned to available cores c. More
specifically, two disjoint sets of nodes A and C are ready
threads to be executed and the cores, respectively. Finally,
the edge set E = (a, c) represents all the possible threads to
core assignments. Assigning threads to cores correspond to
find a perfect matching GM = (a, c) on GS . In other words,
every node in GS has to be assigned to exactly one edge in
GM . However, over the time two events may happen due to
the dynamic nature of workload:

• a new application is allocated, and a set of arcs
representing the assignment is added to GM ;

• a thread n terminates its computation releasing its
core c and its corresponding edge (n, c) as well.

An instance of the thread-to-core mapping problem
(T2CMP) is therefore given by a (NoC) graph GN represent-
ing the NoC, a current system status at time τ GMτ and a new
incoming application GA (that needs to be allocated). Thus

solving the T2CMP corresponds to find a new matching
GMτ+1 in which GA has been added to GMτ minimising a given
objective function (energy or latency). Our proposed model
for solving this instance of T2CMP adopts the following
assumptions:

• Given the current snapshot GMτ of the NoC at time τ ,
we map an application GAi to it.

• Graph GN represents the 2D-mesh NoC topology
and 2D mesh with bi-directional links.

• Messages are composed of a variable number of
packets with equal size (granularity). We have con-
sidered single-flit packets since they represent a
large segment of the network traffic for real appli-
cations [14].

• We use store-and-forward flow control mechanism
that allows transferring a single data packet in a
single time unit (cycle), and the network link capacity
is not a resource constraint.

• Routers have infinite input queue per VC while
the sources (core) have infinite buffers, and sinks
(core) immediately consume packets arriving at their
respective destinations. Hence no packet can be lost
during the transmission and also no packets would
be blocked when some of the input buffers are full.

• We assume that (i) all the packets are gener-
ated/injected at time zero (to represent worst case
scenario), (ii) we do not capture the cost of having a
thread blocked and waiting for data to be transferred
from another thread. We also do not consider the
time explicitly.

3 MATHEMATICAL FORMULATION

In this section, we propose a mathematical formulation for
the T2CMP. The decision variables of the model are of two
types: A family of binary assignment variables and several
families of continuous flow variables. More specifically:

• xac ∈ {0, 1} ∀c ∈ C, a ∈ A, where xai is 1 if thread a
is assigned to core i.

• CQtc ∀c ∈ C, t ∈ T is the flow of traffic t from Core
to Queue of the tile i.

• MQtc ∀c ∈ C, t ∈ T is the flow of traffic t from MC
to Queue of the tile i.

• RCtc ∀c ∈ C, t ∈ T is the flow of traffic t from Router
to Core of the tile i.

Figure 7.2: NoC model representation: via architectural model (left) and also
via theoretical model (right)

Given a router i = (x, y), let N (i) be the set of adjacent (directly linked) routers.

In a 2D-mesh layout N (i) can be denoted as N ((x, y)) = {(x + 1, y, (x − 1, y), (x, y +

1), (x, y− 1)}. Further, the memory controllers (MCs) are connected to a subset of NoC

routers (N (M)). Now, we describe how these elements can be modelled using a graph

G(N). Let C, Q, S be the sets of nodes in a graph representing cores, queues (input

buffers) and crossbar switches, respectively. Figure 7.2 (b) is the resulting network flow

representation.

• We assume each core can execute at most a single thread. The traffic data gen-

erated by the core goes through the buffer. While the incoming traffic directed

Section 7.2. Problem description and assumptions 99

towards the core is injected from the crossbar switch. In G(N) the core c = (x, y)

is represented by a node C(x, y) ∈ C.

• The input buffer is essentially a queue to hold the traffic coming from all direc-

tions for further transmission. The queue is modelled as a node Q(x, y) ∈ Q. It

temporarily stores local traffic coming from the core C(x, y) and from the adjacent

routers N ((x, y)). All the outward traffic traverses through the switch S(x, y).

• Next, the switch is modelled as a node S(x, y) ∈ S and it is connected to the

corresponding (local) core C(x, y) and also to the buffers of the adjacent routers

N ((x, y)) via the links.

• The MC is represented by a single node M in G(N) which is connected to the queue

of the routers in N (M). In the case of multiple MCs, the node M is connected to

all the routers in N (M).

The graph representation GN of the overall NoC topology is obtained by the opportune

replication of the above described graph. In particular, the nodes of graph GN are {C ∪
Q ∪ S ∪ {M}}.

We represent an application as a weighted directed acyclic graph (DAG) GA = (A, T).
Where each node a ∈ A is an application thread, and each weighted and directed arc

t ∈ T is associated to a triple (st, dt, pt), representing the source thread st, the destina-

tion thread dt and the weight of the arc pt. In particular, the weight p represents the

number of data packets that would be exchanged between the threads. In detail, GA
i

representing an application i that is generated as follows: Let ai and ti be the number of

threads (nodes) and data exchanges (directed arcs) in the application i, ti random arcs

are added to GA
i with weight (threads’ data exchange) p obtained from a given distribu-

tion DCPU. Moreover, each node ai of the graph has an additional arc from the MC M to

ai with weight extracted from a given distribution DRAM. An example of GA with a = 5

and t = 6 is shown in Figure 7.3. It is worth to note that in our model the packet gen-

eration by a thread follows worst case situation, that is all the traffic to be sent between

two threads sent at time zero.

We introduce an assignment graph GS to represent the snapshot of the current state

of the NoC. The assignment graph GS is a bipartite graph GS = ({A∪C}, E) representing

ready threads a to be assigned to available cores c. More specifically, two disjoint sets of

nodes A and C are ready threads to be executed and the cores, respectively. Finally, the

edge set E = (a, c) represents all the possible threads to core assignments. Assigning

threads to cores correspond to find a perfect matching GM = (a, c) on GS. In other words,

every node in GS has to be assigned to exactly one edge in GM. However, over the time

two events may happen due to the dynamic nature of workload:

100 Chapter 7. Analytical Model

Figure 7.3: Basic system graph representation including application threads
and associated single memory controller

• A new application is allocated, and a set of arcs representing the assignment is

added to GM.

• A thread n terminates its computation releasing its core c and its corresponding

edge (n, c) as well.

An instance of the T2CMP is therefore given by a (NoC) graph GN representing the

NoC, a current system status at time τ GM
τ and a new incoming application GA (that

needs to be allocated). Thus solving the T2CMP corresponds to find a new matching

GM
τ+1 in which GA has been added to GM

τ minimising a given objective function (energy

or latency). Our proposed model for solving this instance of T2CMP adopts the following

assumptions:

• Given the current snapshot GM
τ of the NoC at time τ, we map an application GA

i to

it.

• Graph GN represents the 2D-mesh NoC topology and 2D-mesh with bi-directional
links.

• Messages are composed of a variable number of packets with equal size (granular-

ity). We have considered single-flit packets since they represent a large segment

of the network traffic for real applications [MJW12].

• We use store-and-forward flow control mechanism that allows transferring a sin-

gle data packet in a single time unit (cycle), and the network link capacity is not

a resource constraint.

• Routers have infinite input queue per VC while the sources (core) have infinite

buffers, and sinks (core) immediately consume packets arriving at their respective

destinations. Hence no packet can be lost during the transmission and also no

packets would be blocked when some of the input buffers are full.

Section 7.3. Mathematical formulation 101

• We assume that (i) all the packets are generated/injected at time zero (to represent

worst case scenario), (ii) we do not capture the cost of having a thread blocked and

waiting for data to be transferred from another thread. We also do not consider

the time explicitly.

7.3 Mathematical formulation

In this section, we propose a mathematical formulation for the T2CMP. The decision

variables of the model are of two types: A family of binary assignment variables and

several families of continuous flow variables. More specifically:

• xa
c ∈ {0, 1} ∀c ∈ C, a ∈ A, where xa

i is 1 if thread a is assigned to core i.

• CQt
c ∀c ∈ C, t ∈ T is the flow of traffic t from Core to Queue of the tile i.

• MQt
c ∀c ∈ C, t ∈ T is the flow of traffic t from MC to Queue of the tile i.

• RCt
c ∀c ∈ C, t ∈ T is the flow of traffic t from Router to Core of the tile i.

• QRt
c ∀c ∈ C, t ∈ T is the flow of traffic t from Queue to Router of the tile i.

• RQt
sd ∀s ∈ C, d ∈ N (s), t ∈ T is the flow of traffic t from Router of the tile s to

Queue of adjacent tile d.

Given these decision variables the resulting mathematical formulation is:

min
∑t∈T ∑q∈Q(ER ·QRt

q + EL · RQt
q)

∑t pt (7.1)

∑
i∈C

xa
c = 1 ∀a ∈ A (7.2)

∑
a∈A

xa
c ≤ 1 ∀c ∈ C (7.3)

CQt
c = ptxst

c ∀c ∈ C, t ∈ T (7.4)

RCt
c = ptxdt

c ∀c ∈ C, t ∈ T (7.5)

∑
c∈N (M)

MQt
c = pt t ∈ M (7.6)

∑
s∈N (d)

RQt
sd + CQt

s = QRt
s s ∈ C \ N (M), t ∈ T (7.7)

∑
s∈N (d)

RQt
sd + CQt

s + MQt
s = QRt

s s ∈ N (M), t ∈ T (7.8)

∑
d∈N (s)

RQt
d + RCt

s = QRt
s s ∈ C, t ∈ T (7.9)

xa
c ∈ {0, 1} ∀a ∈ A, c ∈ C (7.10)

CQt
c, QRt

c, RCt
c, MQt

c ≥ 0 ∀t ∈ T , c ∈ C (7.11)

RQt
sd ≥ 0 ∀t ∈ T , s, d ∈ C (7.12)

102 Chapter 7. Analytical Model

The objective function (Equation 7.1) aims at minimising the average energy con-

sumption of the packets. The energy consumption is computed by summing the con-

tribution of the amount of energy required to pass through a router ER and a link EL,

respectively. In our evaluation, ER = 0.9776 pJ/bit and the amount of energy required

for a single bit to cross a 1mm link is EL = 0.51 pJ/bit (as reported in [WSK+05]).

Constraints (7.2) states that all threads have to be assigned exactly to a single core.

Whereas constraint (7.3) ensures that each core hosts at most one single application

thread. Constraints (7.4–7.5) enforce the flow entering and exiting from the NoC graph’s

source and sink nodes. More specifically, flow is allowed to enter the network from core

c only if thread a is a source of traffic (with a = st) and it is assigned to core c. The

resulting amount of flow circulating is pt. Similarly, flow is allowed to exit from the NoC

graph, if thread a is a sink of traffic (a = dt) and it is assigned to core i.

The flow balance on Queue and Router of each core i is regulated by constraints (7.7–

7.8) and (7.9), respectively. Note that, the flow balance for the Queue nodes has to

be formulated separately for nodes directly connected with MC and for nodes without

direct communication. The flow balance for the MC is given by constraint (7.6) in which

the amount of flow of traffic t ∈ M (pt) has to exit from node M and flow only to the

nodes connected with a MC. Finally, constraints (7.10–7.12) define the variables of the

problem.

The same model can be easily adapted to consider the case in which some threads

are preassigned to cores, and such decisions cannot be undone. Let introduce the set P ,

containing the information on the preassigned cores, i.e., (a, c) ∈ P if thread a is pre-

assigned to core c. Such forcing constraints are easily modelled by adding the following

constraint which ensures that the thread to core assignment is not changed:

xa
c = 1 ∀(a, c) ∈ P (7.13)

7.3.1 Alternative objective function

An alternative objective function aiming at minimising the average latency of each

packet has also been developed and tested.

min
∑q∈Q(Dq(∑t∈T QRt

q))

∑t pt (7.14)

The latency objective function (Equation 7.14) substitutes Equation 7.1 and repre-

sents the average waiting time for each packet. Where Dq is a stepwise linear mono-
tonically increasing function with breakpoints at each unit used to represent the total

waiting time (number of cycles needed to route all the packets) of the queue q. We as-

sume that (i) all the data packets are available to be sent at time τ0, and (ii) a switch

is able to route a packet every cycle (recall Section 7.2). Thus the nth packet in a queue

Section 7.4. Simulation results 103

Figure 7.4: T2C mapping process in zig-zag heuristic algorithm for NoC size
4× 4

has to wait n cycles, therefore the total waiting time for all the b packets in the queue is

Dq(b) =
b(b−1)

2 . Observe that, due to the presence of the stepwise objective function, this

alternative formulation results in a structurally more complex problem to solve.

7.3.2 Heuristic algorithms

In our comparison, we have used zig-zag (ZZ) (see figure 7.4) way of T2C mapping.

A zig-zag is a symmetrical pattern and also provides regularity during the mapping

process. We also have used random assignment (RND) of T2C mapping for experimental

comparison. RND simply assign a thread to a randomly selected empty core. Both ZZ

and RND use XY routing algorithm. The XY routing algorithm selects the links that

a packet must follow to reach its destination from the source. For routing the packets,

we have used the deterministic XY dimension order routing (XY-DoR) algorithm. Here,

the same set of paths is always selected for the same set of source and destination core.

In XY-DoR routing scheme, all the packets always traverse first in the X direction (i.e.,

east or west) and then turns towards Y direction (i.e., north or south).

7.4 Simulation results

In this section, we first describe the test instance generation procedure, and we also

describe the proposed algorithms. A detailed report on our results and a discussion on

the practical applicability of the proposed approach follow in the next subsections.

7.4.1 Simulation environment

Recall that, a T2CMP instance is defined by a graph GN representing the NoC, a current

system status at time τ GM
τ and an application GA be allocated. The computational re-

sults reported in this chapter are based on different sets of carefully generated instances

104 Chapter 7. Analytical Model

Table 7.1: Experiment configuration

Parameters Values
Number of rows 4,8

Number of columns 4,8,16

Max queue length Unbounded

Memory controller 1,2 sides

Packet inter-arrival time Worst-case

considering various system related factors. We consider four network sizes, each NoC in-

stance having number S ∈ {4× 4, 4× 8, 8× 8, 8× 16} of processing cores. For each size,

we considered both the cases of a single MC placed on a side and two MCs placed on

two opposite sides (see Figure 7.1). Packet injection process has been considered as the

worst case scenario (bursty traffic, e.g., (100 packets/1 cycle) while stable flow is (100

packets/100 cycles) similar to [MBDM05]). In Table 7.1, we report the configurations

used during the simulation.

We resorted to a complex application generation strategy to generate a NoC snap-

shot GM
τ able to replicate time varying characteristics of T2CMP. First, starting from an

empty NoC, we generate new applications to map up to a given threshold α1. Next, these

applications are allocated using the ZZ algorithm. Finally, to simulate the changes over

time, each running thread has a given probability (α2) to terminate its computation (i.e.,

to be removed) and thus emptying the corresponding core. Once the NoC snapshot GM
τ

has been generated, additional applications are generated up to a given threshold (α3).

These new applications are the one that is to be assigned to solve the T2CMP.

We consider application i having ai threads (nodes in the graph), with ai randomly

extracted from [2, 8] (for the 4× 4 NoC instances) up to [24, 144] (for the 8× 16 instances).

While the number of arcs ranges from [1.5 · ai, 3.0 · ai]. The flow between threads ranges

in [40, 100] packets, whereas the flow from RAM is in [10, 40].

We used four different algorithms during the simulation. They are:

• MILP0: We use the proposed formulation to simultaneously map all the threads

in the snapshot and the new incoming application. The optimal solution of this

model gives the theoretical best map value that could be achieved. However, since

thread migration is not allowed these results may be unattainable in practice.

• MILP: The snapshot is assigned with the ZZ heuristic, whereas the new incoming

applications are mapped using the MILP formulation. The optimal solutions pro-

vided by this algorithm represents the best possible mapping for the new incoming

application when thread migrations and consolidations are not allowed.

• ZZ: First the snapshot is assigned with the ZZ heuristic and next the new incom-

Section 7.4. Simulation results 105

ing application is mapped using the ZZ again. This algorithm provides a quite

standard mapping solution.

• RND: The snapshot is assigned with the ZZ heuristic, whereas the new incoming

threads are randomly mapped to empty cores. This algorithm is included for the

experimental comparison only.

To evaluate our proposed model, we generated ten instances for each of four NoC

sizes and each of two MC types for a total of 80 instances. The four proposed algorithms

have solved each instance for the two considered objective functions (minimisation of

energy cost and minimization of latency). In total, we carried out 640 runs. All tests

have been conducted on a Linux machine with Intel Xeon E5-2440 (@1.90GHz clock

speed), eight cores and 16 GB of RAM. For executing our MILP models, we have used

Gurobi (version 7.0.0) [Gur16] with standard settings and with a three-hour time limit.

All the models and algorithms are implemented in Python (version 2.7). All the results

reported in each row of the following tables are averaged over ten runs.

7.4.2 Results

We now report the results of the computational campaign. We first discuss the results

of the more theoretical model (MILP0), next we compare the behaviour of the proposed

algorithms, and then we discuss the influence of the different parameters used in the

generation of the instances (network size, memory controllers and objective functions).

Finally, we discuss with some additional tests the effects of the NoC layout.

In Table 7.2, we report the dimensions of the MILP models used to formulate the

instances. In the first column, we report the NoC size, and then we report the size of

the model regarding constraints and number of variables. Each row of the table shows

the average results over ten instances with the same NoC size. Note that the problem

size it is only minimally affected by changes in the objective functions and MCs. The

resulting formulations are very large, especially for the 8 × 16 cores, with more than

200000 variables and 100000 constraints.

Table 7.2: Problem size for the MILP0 model

Network
Size

Constraints Variables

4x4 1515.6 2718.6

4x8 8170 15029

8x8 30738.2 58461

8x16 106859 206633

106 Chapter 7. Analytical Model

7.4.2.1 MILP solution quality

In this sub-subsection, we present the results of the proposed MILP. Here, in Tables 7.3

and 7.4, we first show the absolute performance of MILP0. Next, we report the results

of the MILP algorithm and a comparison between the two formulations. The first col-

umn shows the NoC size and results of the algorithm are reported in the remaining

three columns. First, we report the percentage Gap from optimality, then the number

of failures and finally the total execution time for the runs (expressed in seconds, the

execution time was fixed to three hours). From Table 7.3, we can see that MILP0 can

solve at optimality all the smallest scenarios (4× 4). When switching from one to two

MCs, we do not observe great changes either regarding solution quality or regarding

execution times. However, for bigger sizes, it appears that the presence of an additional

MC causes slightly wider gaps. In all cases, the solver is always able to produce a fea-

sible solution (no Fails are reported) although the distance from the lower bound can be

as high as 80%.

Table 7.3: Performance of MILP0 model while the objective function is minimi-
sation of energy cost

Network Size Gap(%) #Fails
Exe. Time
(in secs.)

Memory Controller=1

4x4 0.00 0 122.04

4x8 14.82 0 9913.32

8x8 61.26 0 10800.00

8x16 76.53 0 10800.00

Memory Controller=2

4x4 0.00 0 91.75

4x8 16.65 0 10026.73

8x8 64.47 0 10800.00

8x16 79.15 0 10800.00

While considering the latency objective function (Table 7.4), we observe a similar

behaviour, and it is evident that these models are comparatively harder to solve. In

fact, we both observe an increase in running times for small instances (from one minute

to about ten minutes), and for the bigger instances, we observe increased optimality

gaps (and even some failures). In particular, for the 8× 16 CPU instances in some cases,

the solver does not manage to produce a feasible solution within the three-hour time

limit.

Section 7.4. Simulation results 107

Table 7.4: Performance of MILP0 model while the objective function is minimi-
sation of latency

Network Size Gap(%) #Fails
Exe. Time
(in secs.)

Memory Controller=1

4x4 0.00 0 640.64

4x8 74.10 0 10800.00

8x8 90.55 0 10800.00

8x16 96.55 7/10 10800.00

Memory Controller=2

4x4 0.00 0 626.11

4x8 72.19 0 10800.00

8x8 94.73 0 10800.00

8x16 97.51 2 10800.00

We now discuss the results of the MILP algorithm. Recall that the pure MILP0

model is a relaxation of the T2CMP since it is allowed to assign even previously assigned

threads freely. In other words, it solves a larger and less constrained problem in which

no thread is preassigned, and they all can be freely moved around. Hence, the results

produced by the MILP0 may not be allowed in practice. On the other hand, the MILP

model assigns only the new incoming threads without changes on the running threads

preassigned using the ZZ heuristic.

Table 7.5: Performance of MILP model while the objective function is minimisa-
tion of energy

Network
Size

Gap (%)
Absolute
Gap (%)

#Fails
Exe. Time
(in secs.)

Memory Controller=1

4x4 0 0 0 3.21

4x8 0 0 0 3453.32

8x8 24.61 65.47 0 10800

8x16 42.16 142.11 0 10800

Memory Controller=2

4x4 0 0 0 3.78

4x8 0.24 0.71 0 3532.46

8x8 26.67 73.17 0 10800

8x16 46.71 170.2 0 10800

In Table 7.5 and 7.6, we presents the results of the MILP. Observe that, the addi-

tional column “Absolute Gap” computes the gap between the lower bound (LB) provided

108 Chapter 7. Analytical Model

Table 7.6: Performance of MILP model while the objective function is minimisa-
tion of latency

Network
Size

Gap (%)
Absolute
Gap (%)

#Fails
Exe. Time
(in secs.)

Memory Controller=1

4x4 0.00 0.00 0 43.85

4x8 25.63 54.74 0 8899.07

8x8 59.44 208.18 0 10800.00

8x16 72.78 189.35 03(10) 10800.00

Memory Controller=2

4x4 0.00 0.00 0 44.68

4x8 28.72 65.12 0 8966.85

8x8 66.46 277.03 0 10800.00

8x16 79.43 355.60 1(10) 10800.00

by the MILP0 and the UB found by the MILP. In Table 7.5 we show the performance of

the MILP algorithm. It can be seen that instances up to 4× 8 can be solved at optimal-

ity. We found that the presence of two MCs consistently results in harder instances to

solve. When considering the absolute gap, we see how, for larger instances, the distance

from the LB computed by the MILP0 can be far. When comparing MILP against MILP0

(Tables 7.3-7.4), we observe how the MILP results in a problem easier to solve (both the

Gap values and the computation times are smaller). When considering the minimisa-

tion of the latency (Table 7.6) we again observe how such models are harder to solve

than their energy counterparts.

7.4.2.2 Comparisons of the proposed algorithms

We now discuss the performance of the MILP algorithm when compared to the other

heuristic algorithms (ZZ and RND) as reported in Tables 7.7 and 7.8. Since the MILP0

solver provides absolute LB values on the objective function, we can assess the compar-

ison in absolute terms. As expected, the heuristic algorithms (ZZ and RND) provides

worse solutions when compared to the MILP. However, the computation time for these

algorithms is negligible. Note that, the gap between the algorithms reduces as the

instance sizes increases. This behaviour highlights that larger instances are indeed

harder to solve for the MILP.

Section 7.4. Simulation results 109

Table 7.8: Gap from the LB(MILP) which is the best attainable for the three
algorithms (MILP, ZZ, RND) while minimising the latency

Network
Size

MILP ZZ RND

Memory Controller = 1

4x4 0.00 77.37 86.36

4x8 46.13 237.14 229.54

8x8 198.08 384.85 331.57

8x16 342.52 385.07 376.32

Memory Controller = 2

4x4 0.00 57.02 66.94

4x8 54.11 222.84 205.56

8x8 275.96 474.57 421.75

8x16 474.85 486.27 411.07

Table 7.7: Gap from the LB(MILP) which is the best attainable for the three
algorithms (MILP, ZZ, RND) while minimising the energy cost

Network
Size

MILP ZZ RND

Memory Controller = 1

4x4 0.00 22.39 34.75

4x8 0.00 45.08 58.45

8x8 39.16 76.09 83.23

8x16 87.06 104.97 141.88

Memory Controller = 2

4x4 0.00 21.44 34.18

4x8 0.25 42.95 46.15

8x8 46.15 85.52 90.95

8x16 106.60 117.79 152.87

From the results in Tables 7.7 and 7.8 it can be observed that overall the MILP

approach can attain a reduction of 40% over the gap of provided by the ZZ heuristic.

7.4.2.3 Influence of network sizes, memory controllers, objective functions

We now highlight the influences of the different factors used in the instance generation

procedures. In Figure 7.5, we report the energy consumption and packet latency for

different network sizes, respectively. We can observe how, for small sizes (4× 4 and 4× 8)

the and for both energy and latency, the performance of the exact algorithms (MILP0

and MILP) exhibits a smaller growth compared to the heuristics. This behaviour shows

110 Chapter 7. Analytical Model
IEEE TRANSACTIONS ON COMPUTERS 8

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

4x4 4x8 8x8 8x16

A
v
e

ra
g

e
 E

n
e

rg
y
 o

f
a

 p
a

c
k
e

t

Network Size

MILP0 MILP ZZ RND

(a) Average packet energy cost

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4x4 4x8 8x8 8x16

A
v
e

ra
g

e
 L

a
te

n
c
y
 o

f
a

 p
a

c
k
e

t

Network Size

MILP0 MILP ZZ RND

(b) Average packet latency

Fig. 5: Relative average traffic performance

 0%

 5%

10%

15%

20%

25%

MILP0 MILP ZZ RND

R
e

la
ti
v
e

 A
v
e

ra
g

e
 I

m
p

ro
v
e

m
e

n
t

Algorithms

Energy(obj:Energy Min)

Fig. 6: MC influence on four algorithms while objective
function is energy cost and latency

reduced. This shows how already for 4× 8 sizes the latency
formulation is much harder to solve. When considering
Figure 7 (c) (i.e., the 8×8 instances) we observe as MILP0(L)
and MILP(L) are producing comparable solutions. While,
their energy minimisation counterparts, are still behaving
as for the smaller problems. While ZZ and RND are still
almost comparable (RND produces better latency results
while obtaining a comparable energy consumption). Finally,
in Figure 7 (d), when the largest instances are considered
(8 × 16) we notice that the latency formulations (MILP0(L)
and MILP(L)) produce results that are comparable to the
ZZ performance, while the RND results in poor energy
performance. Whereas, the two energy based formulations
produce similar results showing how, the gap that was
present on the smaller instances, is lost because of the size of
the problems. These plots show clearly (i) how the latency
MILP models are harder to solve than the models based on
the energy minimization objective function, (ii) that the two
heuristics (ZZ and RND) are not dominated each other even

if ZZ on average produces better results and (iii) how their
quantitative performance are dominated by the two MILP
based algorithms.

4.2.4 Layout Effect

Here, we show how the proposed mathematical formula-
tions can also be used to evaluate the impact of layout, and
also how the performance are influenced by the shape of
the NoC. More precisely, we consider an additional NoC
configuration (5× 6), and we compare it with a 4× 8 NoC.
To make a fair comparison, the same applications used in the
4×8 test cases are given as input to the 5×6 layout. Observe
that, since the 5 × 6 has only 30 cores it may happen that
an instance to be unfeasible since it contains more than 30
cores. However, in our test cases, this never happen. Results
are reported in Figure 8, where the energy consumption and
the latency are shown for the two layouts under comparison
and the, considered four algorithms. It can be observed
that in almost all the cases, due to its more regular shape,
the 5 × 6 layout allows accommodating the same threads
requiring more energy and latency. Comparing between
5 × 6 and 4 × 8 network size, it is interesting to note that
4 × 8 size consumes up to 3.4% more for MILP0 and 4.2%
more for MILP the energy cost. The higher cost can also be
seen for latency, and it is 18.9% more for MILP0 and only
0.6% more for MILP. Similar changes can also be observed
for other two algorithms.

In Figure 9 we show the queue length obtained on a
sample instance for the two layouts. In details, in Figure 9
(a) we report on the left the queue lengths for a NoC with
a single MC whereas on the right the same threads are
allocated on a NoC with two MCs. We can clearly observe
that the presence of the second MC can alleviate hot spots
(which should be) and also the congestions since threads can
access the RAM from both up and down sides. The hot spot
reduction can be observed since in the left case the longest
queue contains over 1000 packets when MC count is two it
reduced to less than 850 packets. Similar reductions can also
be observed when considering the 5× 6 layout.

Figure 7.5: Relative average traffic performance

the benefits of using advanced optimisation and also that there is a substantial margin

for improvement over the simple heuristics. However, given the NP-hardness of the

problem, as the size of the instances grow more (8× 8 and 8× 16) the gap between the

formulations and the heuristics gets smaller showing that the exact approaches require

even higher computing times to be able to deliver good results. This behaviour is even

more evident for the latency formulation which is harder to solve.

In Figure 7.6 we show the influence of the MCs representing the percentage of ob-

jective function reductions for the different algorithms. As expected the use of two MC

contributes to reducing both the energy and latency. More specifically, the energy im-

provements range from less than 4% to more than 10%, with smaller improvements for

the MILP formulations. Whereas, for the latency objective the reduction is over 20%

for all four algorithms. It is expected since MILP algorithms produce optimised thread

assignments and this means that the best possible solution can improve up to a 5%. On

the other hand, ZZ and RND since they produce less optimised solutions have greater

benefits from the presence of a second MC. In Figure 7.7, we show how these algorithms

compare to each other when considering both the objective functions at the same time.

On the two axes of the plots, we report the attained objective function for both values,

and the performance of each algorithm are reported as a point on the plane. Observe

that an algorithm is dominated regarding performance if there exists another algorithm

with lower energy consumption and latency (i.e., placed down left in the plot). For each

algorithm, we report two data points, one obtained when minimising the average energy

consumption objective function and the second obtained when minimising the average

latency. We expect these two data points not to dominate each other. In other words,

given an algorithm, we expect the latency attained while minimising the latency to be

smaller than the latency attained while minimising the energy consumption. Similarly,

we expect a greater energy consumption when minimising latency than when minimis-

Section 7.4. Simulation results 111

 0%

 5%

10%

15%

20%

25%

MILP0 MILP ZZ RND

R
e

la
ti
v
e

 A
v
e

ra
g

e
 I
m

p
ro

v
e

m
e

n
t

Algorithms

Energy(obj:Energy Min)

Figure 7.6: MC influence on four algorithms while objective function is energy
cost and latency

ing energy consumption itself.

IEEE TRANSACTIONS ON COMPUTERS 9

3500 4000 4500 5000 5500 6000 6500

4e
+

05
5e

+
05

6e
+

05
7e

+
05

Energy

La
te

nc
y

MILP0(E) MILP0(L) MILP(E) MILP(L) ZZ(E) ZZ(L) RND(E) RND(L)

Energy

(a) Latency Vs Energy Network Size 4x4

12000 14000 16000 18000 20000 22000 24000

2e
+

06
3e

+
06

4e
+

06
5e

+
06

Energy

La
te

nc
y

MILP0(E) MILP0(L) MILP(E) MILP(L) ZZ(E) ZZ(L) RND(E) RND(L)

Energy

(b) Latency Vs Energy Network Size 4x8

40000 45000 50000 55000 60000

1.
0e

+
07

1.
4e

+
07

1.
8e

+
07

Energy

La
te

nc
y

MILP0(E) MILP0(L) MILP(E) MILP(L) ZZ(E) ZZ(L) RND(E) RND(L)

Energy

(c) Latency Vs Energy Network Size 8x8

100000 110000 120000 130000 140000

4.
0e

+
07

4.
4e

+
07

4.
8e

+
07

5.
2e

+
07

Energy

La
te

nc
y

MILP0(E) MILP0(L) MILP(E) MILP(L) ZZ(E) ZZ(L) RND(E) RND(L)

Energy

(d) Latency Vs Energy Network Size 8x16

Fig. 7: Comparing latency with energy cost with different network sizes

 0

 5000

 10000

 15000

 20000

 25000

MILP0 MILP ZZ RND

E
n

e
rg

y
 C

o
s
t

Algorithms

5x6 4x8

(a) Average energy cost

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

MILP0 MILP ZZ RND

A
v
e

ra
g

e
 L

a
te

n
c
y

Algorithms

5x6 4x8

(b) Average packet latency

Fig. 8: Performance comparison between 5× 6 and 4× 8

Figure 7.7: Comparing latency with energy cost with different network sizes

For small size problems (i.e., 4 × 4 NoCs) this is what actually happens (see Fig-

ure 7.7 (a)). The two data points of each algorithm are not dominated each other. More-

over, when considering the different algorithms we observe (as expected) the MILP0 to

dominate MILP which in turn dominates both the ZZ and the RND. Only in RND, which

is the worst performing algorithm, the RND(E) dominates RND(L). The same behaviour

112 Chapter 7. Analytical Model

is also observed for Figure 7.7 (b) but we observe as the MILP0 when minimising the

latency is dominated by MILP0(E), and as the distance between MILP0(L) and MILP(L)

is much reduced. This shows how already for 4× 8 sizes the latency formulation is much

harder to solve. When considering Figure 7.7 (c) (i.e., the 8× 8 instances) we observe as

MILP0(L) and MILP(L) are producing comparable solutions. While, their energy min-

imisation counterparts, are still behaving as for the smaller problems. While ZZ and

RND are still almost comparable (RND produces better latency results while obtaining

a comparable energy consumption). Finally, in Figure 7.7 (d), when the largest instances

are considered (8× 16) we notice that the latency formulations (MILP0(L) and MILP(L))

produce results that are comparable to the ZZ performance, while the RND results in

poor energy performance. Whereas, the two energy based formulations produce similar

results showing how, the gap that was present on the smaller instances, is lost because

of the size of the problems. These plots show clearly (i) how the latency MILP models

are harder to solve than the models based on the energy minimization objective func-

tion, (ii) that the two heuristics (ZZ and RND) are not dominated each other even if

ZZ on average produces better results and (iii) how their quantitative performance are

dominated by the two MILP based algorithms.

7.4.2.4 Layout effect

Here, we show how the proposed mathematical formulations can also be used to evalu-

ate the impact of layout, and also how the performance are influenced by the shape of

the NoC. More precisely, we consider an additional NoC configuration (5× 6), and we

compare it with a 4× 8 NoC. To make a fair comparison, the same applications used in

the 4× 8 test cases are given as input to the 5× 6 layout. Observe that, since the 5× 6

has only 30 cores it may happen that an instance to be unfeasible since 4× 8 contains

more than 30 cores. However, in our test cases, this never happen. Results are reported

in Figure 7.8, where the energy consumption and the latency are shown for the two

layouts under comparison and four considered algorithms. It can be observed that in

almost all the cases, due to its more regular shape, the 5× 6 layout allows accommodat-

ing the same threads requiring more energy and latency. Comparing between 5× 6 and

4× 8 network size, it is interesting to note that 4× 8 size consumes up to 3.4% more for

MILP0 and 4.2% more for MILP the energy cost. The higher cost can also be seen for

latency, and it is 18.9% more for MILP0 and only 0.6% more for MILP. Similar changes

can also be observed for other two algorithms.

In Figure 7.9 and 7.10, we show the queue length obtained on a sample instance for

the two layouts. In details in Figure 7.9, we report on the left the queue lengths for a

NoC with a single MC whereas on the right the same threads are allocated on a NoC

with two MCs. We can clearly observe that the presence of the second MC can alleviate

Section 7.4. Simulation results 113

IEEE TRANSACTIONS ON COMPUTERS 9

3500 4000 4500 5000 5500 6000 6500

4e
+

05
5e

+
05

6e
+

05
7e

+
05

Energy

La
te

nc
y

MILP0(E) MILP0(L) MILP(E) MILP(L) ZZ(E) ZZ(L) RND(E) RND(L)

Energy

(a) Latency Vs Energy Network Size 4x4

12000 14000 16000 18000 20000 22000 24000

2e
+

06
3e

+
06

4e
+

06
5e

+
06

Energy

La
te

nc
y

MILP0(E) MILP0(L) MILP(E) MILP(L) ZZ(E) ZZ(L) RND(E) RND(L)

Energy

(b) Latency Vs Energy Network Size 4x8

40000 45000 50000 55000 60000

1.
0e

+
07

1.
4e

+
07

1.
8e

+
07

Energy

La
te

nc
y

MILP0(E) MILP0(L) MILP(E) MILP(L) ZZ(E) ZZ(L) RND(E) RND(L)

Energy

(c) Latency Vs Energy Network Size 8x8

100000 110000 120000 130000 140000

4.
0e

+
07

4.
4e

+
07

4.
8e

+
07

5.
2e

+
07

Energy

La
te

nc
y

MILP0(E) MILP0(L) MILP(E) MILP(L) ZZ(E) ZZ(L) RND(E) RND(L)

Energy

(d) Latency Vs Energy Network Size 8x16

Fig. 7: Comparing latency with energy cost with different network sizes

 0

 5000

 10000

 15000

 20000

 25000

MILP0 MILP ZZ RND

E
n
e
rg

y
 C

o
s
t

Algorithms

5x6 4x8

(a) Average energy cost

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

MILP0 MILP ZZ RND

A
v
e
ra

g
e
 L

a
te

n
c
y

Algorithms

5x6 4x8

(b) Average packet latency

Fig. 8: Performance comparison between 5× 6 and 4× 8

Figure 7.8: Performance comparison between 5× 6 and 4× 8
IEEE TRANSACTIONS ON COMPUTERS 10

(a) 4× 8: (left) MC=1, (right) MC=2 (b) 5× 6: (left) MC=1, (right) MC=2

Fig. 9: Comparing the queue length for network size 5x6 and 4x8

4.3 Applicability of the model and practical findings
Mapping application threads on free cores while optimising
the energy cost or optimising the average latency is a
complex task and it gets even more challenging as the NoC
size increases. We are aware that the approach proposed
in this paper may not be used in real-time, but the aim of
the work is to introduce a technique to evaluate the best
performance that could be attainable in practice. In fact,
it is also shown that non-minimal routing policy allows,
better hot spot reduction and higher fault tolerance [18], but
adaptive routing needs complex control logic for routing
which in turn may increase data packet delay. Our find-
ing confirms these results since they show that there is a
margin for up to 40% improvement over simple rules (ZZ,
RND) moreover, that allowing thread migrations also may
allow improving the results further. We also have shown
the increased support (from one MC to two MC) for NDP
improves both objective functions (energy by a 5%, latency
more than 20%). Overall, we believe this model can be used
as a yardstick for validating various T2C mapping policies
and layouts.

5 RELATED WORK

In past years, NoC based research has gained popularity.
Broadly, the research topics discussed in [19], [20], [21]
could be classified into multiple research streams: (i) micro-
architectural domain (mainly deals with network topology,
architecture, capacity management); (ii) the communica-
tion infrastructure (mainly proposing the models, switching
techniques, congestion control, power management, fault
tolerance); (iii) analytical methods for evaluating proposed
NoC’s performance; and (iv) mapping applications on the
processing core. Our work falls into the fourth group. In
general, the problem of mapping application onto a NoC
is a graph embedding problem [22] and also the mapping
problem is an instance of NP-hard problems [23]. Further
mapping a graph onto another graph is an example of
quadratic assignment problem (QAP) [23]. Several different
approaches are mentioned in the literature to map the
application threads to free processing cores, and they can
roughly be classified into exact and heuristic approaches.

Exact approaches: In [24], MCF based integer linear
programming (ILP) has been proposed to derive optimal
static schedule tables for calculating upper bounds of the
worst-case execution time. The model was employed on
a time-division-multiplexed (TDM) NoC meant for hard

real-time systems, and the model also considers different
topologies. In [25] author proposes a cluster-based ILP
formulation for application mapping problem for 2D-mesh
NoC. Both the application and the mesh are represented
as graphs and further partitioned into smaller sub-graphs.
The proposed ILP is used to map each sub-graph onto
the corresponding sub-mesh. In [26] the authors, suggest
an MCF based ILP formulation provide optimal routeing
and wavelength assignment for all-optical networks. The
cost function is based on a piecewise linear, monotonically
increasing, link cost function with a penalty term for the
constraints violations. Among the exact approaches, authors
in [6] proposed a branch-and-bound based algorithm for
both application mapping and path allocation problem for
2D mesh NoC. It maps the cores to tiles and generates
a suitable deadlock-free routeing function to optimise the
total communication energy cost by bandwidth reservation.

Heuristic approaches: Among the heuristic approaches
for the T2CMP, Sorensen et al. [27] propose a metaheuristic
scheduler for inter-processor communication in multi-core
platforms using TDM NoCs. The scheduling problem has
been modelled as a fixed-flow, minimum-time integer MCF
problem. In [28], authors, propose a polynomial time ap-
proximation algorithm for MCF based formulation to min-
imise the power consumption of a NoC. Its constraints are to
satisfy the global communication latency while optimising
network topologies and wire styles. [29] also presents
a polynomial time heuristic for application mapping on
mesh-based NoC to minimise the communication energy. In
this proposed solution, bandwidth, as well as latency con-
straints, are also satisfied. Authors in [16] proposed a unified
design approach for building application specific NoCs to
automate application mapping operations onto cores. It uses
a tabu search algorithm for mapping and MILP for physical
planning. The author claims that the model guarantees QoS
by satisfying constraints (such as the delay/jitter, real-time
constraints) of the traffic streams. Multi-objective genetic
algorithm based heuristics are also used for application-
core mapping mainly to optimise performance and power
consumption [30], [31], [32].

In [33], a fractional MCF based algorithm has been pro-
posed to design NoCs with guaranteed QoS. It determines
the widths of the interconnections as well as the routes of the
flits by giving topology, mapping of tasks, and traffic pat-
tern. [13] propose a mapping algorithm for 2D mesh-based
NoC architecture to minimise the average communication
delay by satisfying the bandwidth constraints. The proposed

Figure 7.9: Comparing the queue length for network size 4 × 8: (left) MC=1,
(right) MC=2

hot spots (which should be) and also the congestions since threads can access the RAM

from both up and down sides. The hot spot reduction can be observed since in the left

case the longest queue contains over 1000 packets when MC count is two it reduced to

less than 850 packets. Similar reductions can also be observed when considering the

5× 6 layout (see Figure 7.10).

7.4.3 Applicability of the model and practical findings

Mapping application threads on free cores while optimising the energy cost or optimis-

ing the average data packet latency is a complex task and it gets even more challenging

as the NoC size increases. We are aware that the approach proposed in this chapter may

not be used in real-time, but the aim of the work is to introduce a technique to evalu-

114 Chapter 7. Analytical Model
IEEE TRANSACTIONS ON COMPUTERS 10

(a) 4× 8: (left) MC=1, (right) MC=2 (b) 5× 6: (left) MC=1, (right) MC=2

Fig. 9: Comparing the queue length for network size 5x6 and 4x8

4.3 Applicability of the model and practical findings
Mapping application threads on free cores while optimising
the energy cost or optimising the average latency is a
complex task and it gets even more challenging as the NoC
size increases. We are aware that the approach proposed
in this paper may not be used in real-time, but the aim of
the work is to introduce a technique to evaluate the best
performance that could be attainable in practice. In fact,
it is also shown that non-minimal routing policy allows,
better hot spot reduction and higher fault tolerance [18], but
adaptive routing needs complex control logic for routing
which in turn may increase data packet delay. Our find-
ing confirms these results since they show that there is a
margin for up to 40% improvement over simple rules (ZZ,
RND) moreover, that allowing thread migrations also may
allow improving the results further. We also have shown
the increased support (from one MC to two MC) for NDP
improves both objective functions (energy by a 5%, latency
more than 20%). Overall, we believe this model can be used
as a yardstick for validating various T2C mapping policies
and layouts.

5 RELATED WORK

In past years, NoC based research has gained popularity.
Broadly, the research topics discussed in [19], [20], [21]
could be classified into multiple research streams: (i) micro-
architectural domain (mainly deals with network topology,
architecture, capacity management); (ii) the communica-
tion infrastructure (mainly proposing the models, switching
techniques, congestion control, power management, fault
tolerance); (iii) analytical methods for evaluating proposed
NoC’s performance; and (iv) mapping applications on the
processing core. Our work falls into the fourth group. In
general, the problem of mapping application onto a NoC
is a graph embedding problem [22] and also the mapping
problem is an instance of NP-hard problems [23]. Further
mapping a graph onto another graph is an example of
quadratic assignment problem (QAP) [23]. Several different
approaches are mentioned in the literature to map the
application threads to free processing cores, and they can
roughly be classified into exact and heuristic approaches.

Exact approaches: In [24], MCF based integer linear
programming (ILP) has been proposed to derive optimal
static schedule tables for calculating upper bounds of the
worst-case execution time. The model was employed on
a time-division-multiplexed (TDM) NoC meant for hard

real-time systems, and the model also considers different
topologies. In [25] author proposes a cluster-based ILP
formulation for application mapping problem for 2D-mesh
NoC. Both the application and the mesh are represented
as graphs and further partitioned into smaller sub-graphs.
The proposed ILP is used to map each sub-graph onto
the corresponding sub-mesh. In [26] the authors, suggest
an MCF based ILP formulation provide optimal routeing
and wavelength assignment for all-optical networks. The
cost function is based on a piecewise linear, monotonically
increasing, link cost function with a penalty term for the
constraints violations. Among the exact approaches, authors
in [6] proposed a branch-and-bound based algorithm for
both application mapping and path allocation problem for
2D mesh NoC. It maps the cores to tiles and generates
a suitable deadlock-free routeing function to optimise the
total communication energy cost by bandwidth reservation.

Heuristic approaches: Among the heuristic approaches
for the T2CMP, Sorensen et al. [27] propose a metaheuristic
scheduler for inter-processor communication in multi-core
platforms using TDM NoCs. The scheduling problem has
been modelled as a fixed-flow, minimum-time integer MCF
problem. In [28], authors, propose a polynomial time ap-
proximation algorithm for MCF based formulation to min-
imise the power consumption of a NoC. Its constraints are to
satisfy the global communication latency while optimising
network topologies and wire styles. [29] also presents
a polynomial time heuristic for application mapping on
mesh-based NoC to minimise the communication energy. In
this proposed solution, bandwidth, as well as latency con-
straints, are also satisfied. Authors in [16] proposed a unified
design approach for building application specific NoCs to
automate application mapping operations onto cores. It uses
a tabu search algorithm for mapping and MILP for physical
planning. The author claims that the model guarantees QoS
by satisfying constraints (such as the delay/jitter, real-time
constraints) of the traffic streams. Multi-objective genetic
algorithm based heuristics are also used for application-
core mapping mainly to optimise performance and power
consumption [30], [31], [32].

In [33], a fractional MCF based algorithm has been pro-
posed to design NoCs with guaranteed QoS. It determines
the widths of the interconnections as well as the routes of the
flits by giving topology, mapping of tasks, and traffic pat-
tern. [13] propose a mapping algorithm for 2D mesh-based
NoC architecture to minimise the average communication
delay by satisfying the bandwidth constraints. The proposed

Figure 7.10: Comparing the queue length for network size 5× 6: (left) MC=1,
(right) MC=2

ate the best performance that could be attainable in practice. In fact, it is also shown

that non-minimal routing policy allows, better hot spot reduction and higher fault tol-

erance [GN92], but adaptive routing needs complex control logic for routing which in

turn may increase data packet delay. Our finding confirms that there is a margin for

up to 40% improvement over simple rules (ZZ, RND). Moreover, if thread migration is

allowed it may improve the results further. We also have shown the increased support

(from one MC to two MC) for NDP improves both objective functions (energy by a 5%,

latency more than 20%). Overall, we believe this model can be used as a yardstick for

validating various T2C mapping policies and layouts.

7.5 Summary

Recently, power-aware computing is becoming popular for the increasing power demand

for computation. There are chips with large low-power cores offering a huge potential

for higher potentials. Efficient interconnects are required to support the information

exchange of such a vast number of processing cores, but still need to provide low latency,

high network throughput and scalability with a better area and power costs. In this

chapter, we have proposed an MILP based formulation to optimise the power cost and

latency also. The alternative objective function provides a needed flexibility because

user’s optimisation requirement can change over time. Our model achieves optimality

in some cases and also provides the opportunity to increase the solution quality based on

the growing solution time. It also supports NDP by changing the total number of MCs to

optimise the energy as well as latency further. Future research directions include both

the application of the developed model to different NoC topologies (such as folded-torus,

Section 7.6. Acknowledgement 115

flattened tree and with the hybrid topologies such as mesh with ring) and the extension

of the formulation to include the application migration support to make the model more

robust.

7.6 Acknowledgement

This chapter is an edited version of the submitted paper entitled An Analytical Model
for Thread-Core Mapping for Tiled CMPs by Marco Pranzo and Somnath Mazum-

dar at IEEE Transactions on Computers. Status: Under review

116 Chapter 7. Analytical Model

8
Conclusion and Future Work

This chapter describes the conclusions in brief obtained during this doctoral work and

also lay out the contexts for future research works.

8.1 Contribution

In this doctoral thesis, a framework (mainly the essential components of the framework)

has been proposed to improve the runtime adaptability of dataflow program execution

models (PXMs) that are built around a data-driven approach. The framework for the

efficient dataflow thread execution is based upon multiple components. They are: Dis-
tribution, Monitoring, Execution, and Analysis. It is also worth to note that to bind the

features of these components, multiple (similar) software interfaces are also provided.

The thesis mainly aims to connect the services provided by the components logically at

runtime. It mainly provides a mechanism for management and monitoring the huge

number of concurrent dataflow threads at NoC level at runtime enabling the high per-

formance with low overheads. Improvements of this work can be made to make all

the steps in an automatic way, but providing an effective autonomic approach is a very

complex task.

In general, applications are composed of multiple threads and the threads may in-

teract with each other during execution. To reach the ultimate goal, there are multiple

run time execution related goals which must be satisfied. This hypothesis acknowledges

the difficulty of achieving those goals with low overheads. The proposed framework sub-

divided the main goal into multiple smaller goals at various components.

• By efficiently distributing the dataflow threads at the hardware level, the perfor-

mance would be improved. In Chapter 3 a hash based thread distribution mecha-

nism for a data-driven PXM (Codelet) with very low overheads has been proposed.

The proposed hash mechanism also shows that it can efficiently support larger

117

118 Chapter 8. Conclusion and Future Work

core counts with stable performance. Even though a more complex thread distri-

bution policy could be employed but there is a no guarantee that the performance

would be better, but certainly, the area and power cost would be increased.

• While distributing the threads, it is always recommended to monitor the activity of

the threads. The proposed monitoring tool (RADA) can be used not only to provide

its hardware abstraction but also allow the user to embed their thread scheduling

mechanism so that the increased overhead of the proposed scheduling mechanism

can be identified before hand. Apart from that in this tool, appropriate metrics

could also be added but computing the metrics depends on the features available

by the supporting AMM.

• By moving the thread control from a high level to low level, the underlying in-

frastructure must be capable of supporting the threads. In Chapter 5, a software

defined NoC model has been shown which can reconfigure itself to provide better

support to data-driven PXMs. This step is an important phase of the hypothe-

sis, as it proposes a link between the dataflow threads and its physical substrate.

The embedded logic in the SDNoC not only provides an efficient data-driven PXM

support but also at a lower cost.

• To further extend the framework, Chapter 6 provides a hybrid NoC design to sup-

port both the control-driven and data-driven PXMs. The blocks in the design are

used to exploit the data traffic localisation feature for better traffic management.

The blocks are also ideal to implement the main components (TPs, VNs) of the

employed Codelet PXM in this doctoral work.

• Verifying if the mapping of application threads on free cores is leading to an op-

timal or non-optimal solution, to achieve this, Chapter 7 has shown an analytical

(MILP) model to verify the thread-to-core mapping quality. In this problem, the

threads are represented via DAG. The main aim of the model is to reduce the en-

ergy cost and latency. The model also supports multiple applications to be mapped

on the NoC with variable memory controllers.

The implementation of the framework has been in multiple steps using different

simulation tools to show its feasibility. The reconfiguration capability of the SD-NoC

design is also crucial to improve the run time thread performance. At the same time,

multiple components based framework development approach also provides an easier

way to improve the features of each steps independently. The main aim of this doctoral

thesis is to show the utility of having a NoC based framework to improve the run time

adaptability of data-driven threads. The framework improvements can be considered as

the future work.

Section 8.2. Future work 119

8.2 Future work

Multithreaded applications do not scale easily due to many issues (such as complex

thread management, synchronisation, load imbalance, memory hierarchy). As it is al-

ready mentioned that this hypothesis must be considered as the first skeleton of NoC

level autonomic dataflow thread management based framework. By this proposed frame-

work the possibility of collaborating multiple phases (following the top-down approach)

has also been shown (in previous chapters). In this section, the promising future re-

search directions are briefly highlighted.

• The hash-based distribution mechanism is not new and has been successfully used

in the network domain. However, the shown results in the concerned chapter

is based on the synthetic applications so the future work would be to port real

application benchmarks and perform the stress testing of the hash mechanism. It

is always important to see is there any performance bottleneck or not and also to

find out any hotspot in the system.

• The monitoring tool is now capable of embedding the thread scheduling unit and

also shows the generated traffic due to the scheduler, but the fine-grain traffic

overhead must be explored. For better thread support the feedback unit can

be improved with other robust neural network model (such as recurrent neural

networks (RNNs)). The current functional model should be replaced by a timing

model for monitoring better thread performance.

• The SDNoC is also an interesting area to be explored. We need more accurate

simulation (may be FPGA-based) to find the limitation of the model. In general,

the more hardware resources can be added to support very intensive traffic, but

it will cost power and area. It is also worth to detect the contention and also

the reliability (or failure). These critical features are worth to explore, but the

modification will certainly increase the router complexity with increased area and

power cost.

• The features of proposed hybrid NoC can also be further enhanced by adding mor-

phing capabilities to have more subtle power management (see section 6.5 for more

detail).

• The presented analytical model can be used to check the thread-to-core mapping

is optimal or not. If the mapping is not optimal, it is also very useful to know how

much the optimality gap is. Although the proposed model has not been developed

to be implemented in real-time but proposing new algorithm might improve the

solution time. Finally, the performance of the analytical model can be tested on

120 Chapter 8. Conclusion and Future Work

other topologies such as folded torus, flattened butterfly or other hybrid topology

(such as ring-2D mesh based).

Future chips will be shared among multiple applications which have different resource

requirements. Hence multiple performances related metrics, and also the service level

objectives or the QoS must be maintained. It is worth to mention that used test cases are

designed keeping in mind their applicability of their concurrent execution at real time,

without moving the system in an unstable state. The possibility of having a frame-

work that supports autonomous concurrent, multiple data-driven thread execution over

a non-empty set of computing resources, can bring the issues of non-deterministic be-

haviour which is another research domain worth to be further investigated.

Bibliography

[AAS13] Michael Opoku Agyeman, Ali Ahmadinia, and Alireza Shahrabi. Effi-

cient routing techniques in heterogeneous 3d networks-on-chip. Parallel
Computing, 39(9):389–407, 2013.

[ACP04] Giuseppe Ascia, Vincenzo Catania, and Maurizio Palesi. Multi-objective

mapping for mesh-based noc architectures. In Proceedings of the 2nd
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, pages 182–187. ACM, 2004.

[Ada13] Inc. Adapteva. Epiphany architecture reference, 2013.

[AFF+09] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero,

and Daniel Ortega. Cotson: infrastructure for full system simulation.

ACM SIGOPS Operating Systems Review, 43(1):52–61, 2009.

[AFY+16] Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Kai-Wei

Chang, Greg Nazario, Reetuparna Das, Gabriel H Loh, and Onur Mutlu.

A case for hierarchical rings with deflection routing: An energy-efficient

on-chip communication substrate. Parallel Computing, 54:29–45, 2016.

[AN90] Arvind and Rishiyur S Nikhil. Executing a program on the mit tagged-

token dataflow architecture. Computers, IEEE Transactions on, 39:300–

318, 1990.

[AR82] Romas Aleliunas and Arnold L Rosenberg. On embedding rectangular

grids in square grids. Computers, IEEE Transactions on, 100(9):907–

913, 1982.

[ARM13] ARM. big.little technology: The future of mobile, 2013.

[AW77] Edward A. Ashcroft and William W. Wadge. Lucid, a nonprocedural lan-

guage with iteration. Communications of the ACM, 20:519–526, 1977.

[BAM10] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic

characteristics of data centers in the wild. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement, pages 267–280.

ACM, 2010.

[Bar64] Paul Baran. On distributed communications networks. IEEE transac-
tions on Communications Systems, 12(1):1–9, 1964.

121

122 BIBLIOGRAPHY

[BC11] Shekhar Borkar and Andrew A Chien. The future of microprocessors.

Communications of the ACM, 54(5):67–77, 2011.

[BCGK04] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. Cost

considerations in network on chip. INTEGRATION, the VLSI journal,
38(1):19–42, 2004.

[BD06] James Balfour and William J Dally. Design tradeoffs for tiled cmp on-

chip networks. In Proceedings of the 20th annual international confer-
ence on Supercomputing, pages 187–198. ACM, 2006.

[BM06a] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and

practices of network-on-chip. ACM Computing Surveys (CSUR), 38(1):1,

2006.

[BM06b] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and

practices of network-on-chip. ACM Computing Surveys (CSUR), 38:1,

2006.

[BSP+16a] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, Bin Liu,

A. Tran, E. Adeagbo, and B. Baas. A 5.8 pj/op 115 billion ops/sec, to

1.78 trillion ops/sec 32nm 1000-processor array. In 2016 IEEE Sympo-
sium on VLSI Circuits (VLSI-Circuits), pages 1–2. IEEE, June 2016.

[BSP+16b] Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas,

Bin Liu, Anh Tran, Emmanuel Adeagbo, and Bevan Baas. A 5.8 pj/op

115 billion ops/sec, to 1.78 trillion ops/sec 32nm 1000-processor array.

In VLSI Circuits (VLSI-Circuits), 2016 IEEE Symposium on, pages 1–2.

IEEE, 2016.

[BWFM09] Nick Barrow-Williams, Christian Fensch, and Simon Moore. A commu-

nication characterisation of splash-2 and parsec. In Workload Charac-
terization, 2009. IISWC 2009. IEEE International Symposium on, pages

86–97. IEEE, 2009.

[BZ07] Stephan Bourduas and Zeljko Zilic. A hybrid ring/mesh interconnect

for network-on-chip using hierarchical rings for global routing. In First
International Symposium on Networks-on-Chip (NOCS’07), pages 195–

204. IEEE, 2007.

[CAB+13] Nicholas P Carter, Aditya Agrawal, Shekhar Borkar, Romain Cledat,

Howard David, Dave Dunning, Joshua Fryman, Ivan Ganev, Roger A

BIBLIOGRAPHY 123

Golliver, Rob Knauerhase, et al. Runnemede: An architecture for ubiq-

uitous high-performance computing. In High Performance Computer Ar-
chitecture (HPCA2013), 2013 IEEE 19th International Symposium on,

pages 198–209. IEEE, 2013.

[CCLL08] Ye-In Chang, Hue-Ling Chen, Sih-Ning Li, and Hung-Ze Liu. A dy-

namic hashing approach to supporting load balance in p2p systems. In

Distributed Computing Systems Workshops, 2008. ICDCS’08. 28th Inter-
national Conference on, pages 429–434. IEEE, 2008.

[CGMP10] M. Conti, S. Giordano, M. May, and A. Passarella. From opportunistic

networks to opportunistic computing. IEEE Communications Magazine,

48(9):126–139, 2010.

[CGSVE95] David E Culler, Seth Copen Goldstein, Klaus Erik Schauser, and

Thorsten Von Eicken. Empirical study of a dataflow language on the cm-

5. Advanced Topics in Dataflow Computing and Multithreading, pages

187–210, 1995.

[CHL+08] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao,

and Feng Zhao. Energy-aware server provisioning and load dispatching

for connection-intensive internet services. In NSDI, volume 8, pages

337–350, 2008.

[CLK07] Guangyu Chen, Feihui Li, and Mahmut Kandemir. Compiler-directed

application mapping for noc based chip multiprocessors. In ACM SIG-
PLAN Notices, volume 42, pages 155–157. ACM, 2007.

[Cor94] Henk Corporaal. Design of transport triggered architectures. In VLSI,
1994. Design Automation of High Performance VLSI Systems. GLSV’94,
Proceedings., Fourth Great Lakes Symposium on, pages 130–135. IEEE,

1994.

[Cor97] Henk Corporaal. Microprocessor architectures: from vliw to tta. 1997.

[CP03] Xuning Chen and Li-Shiuan Peh. Leakage power modeling and opti-

mization in interconnection networks. In Proceedings of the 2003 inter-
national symposium on Low power electronics and design, pages 90–95.

ACM, 2003.

[D+11] Jack Dongarra et al. The international exascale software project

roadmap. International Journal of High Performance Computing Ap-
plications, page 1094342010391989, 2011.

124 BIBLIOGRAPHY

[DAM+13] Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh Ku-

mar, and Mani Azimi. Application-to-core mapping policies to reduce

memory system interference in multi-core systems. In High Perfor-
mance Computer Architecture (HPCA2013), 2013 IEEE 19th Interna-
tional Symposium on, pages 107–118. IEEE, 2013.

[dDdML+13] Benoît Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume

Lager, Clément Léger, Benjamin Orgogozo, Jérôme Reybert, and

Thierry Strudel. A distributed run-time environment for the kalray

mppa R©-256 integrated manycore processor. Procedia Computer Science,

18:1654–1663, 2013.

[DEM+09] Reetuparna Das, Soumya Eachempati, Asit K Mishra, Vijaykrishnan

Narayanan, and Chita R Das. Design and evaluation of a hierarchi-

cal on-chip interconnect for next-generation cmps. In 2009 IEEE 15th
International Symposium on High Performance Computer Architecture,

pages 175–186. IEEE, 2009.

[Den74] Jack B Dennis. First version of a data flow procedure language. In

Programming Symposium, pages 362–376. Springer, 1974.

[Den80] Jack Bonnell Dennis. Data flow supercomputers. Computer, (11):48–56,

1980.

[Den86] Jack B Dennis. Data flow computation. In Control Flow and Data Flow:
concepts of distributed programming, pages 345–398. Springer, 1986.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-

cessing on large clusters. Communications of the ACM, 51(1):107–113,

2008.

[DGH+10] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. Rapl:

Memory power estimation and capping. In Low-Power Electronics and
Design (ISLPED), 2010 ACM/IEEE International Symposium on, pages

189–194, Aug 2010.

[DM75] Jack B Dennis and David P Misunas. A preliminary architecture for

a basic data-flow processor. In ACM SIGARCH Computer Architecture
News, volume 3, pages 126–132. ACM, 1975.

[DT01] William J Dally and Brian Towles. Route packets, not wires: on-chip

interconnection networks. In Design Automation Conference, 2001. Pro-
ceedings, pages 684–689. IEEE, 2001.

BIBLIOGRAPHY 125

[DT04a] William James Dally and Brian Patrick Towles. Principles and practices
of interconnection networks. Elsevier, 2004.

[DT04b] William James Dally and Brian Patrick Towles. Principles and practices
of interconnection networks. Elsevier, 2004.

[EBA+11] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan

Sankaralingam, and Doug Burger. Dark silicon and the end of multi-

core scaling. In Computer Architecture (ISCA), 2011 38th Annual Inter-
national Symposium on, pages 365–376. IEEE, 2011.

[EF15] Guy Even and Yaniv Fais. Algorithms for network-on-chip design with

guaranteed qos. arXiv preprint arXiv:1509.00249, 2015.

[EG90] Paraskevas Evripidou and Jean-Luc Gaudiot. A decoupled graph/com-

putation data-driven architecture with variable-resolution actors. Tech-

nical report, University of Southern California, Los Angeles, CA (United

States). Dept. of Electrical Engineering, 1990.

[EJ03] Johan Eker and Jorn Janneck. Cal language report. Technical report,

Tech. Rep. ERL Technical Memo UCB/ERL, 2003.

[EWB+07] Bruce Edwards, David Wentzlaff, Liewei Bao, Henry Hoffmann, Chyi-

Chang Miao, Carl Ramey, Matthew Mattina, Patrick Griffin, Anant

Agarwal, and John F. Brown III. On-chip interconnection architecture

of the tile processor. IEEE Micro, 27:15–31, 2007.

[FWB07] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provi-

sioning for a warehouse-sized computer. In ACM SIGARCH Computer
Architecture News, volume 35, pages 13–23. ACM, 2007.

[GAD+13] Puneet Gupta, Yuvraj Agarwal, Lara Dolecek, Nikil Dutt, Rajesh K

Gupta, Rakesh Kumar, Subhasish Mitra, Alexandru Nicolau, Ta-

jana Simunic Rosing, Mani B Srivastava, et al. Underdesigned and op-

portunistic computing in presence of hardware variability. IEEE Trans-
actions on Computer-Aided Design of integrated circuits and systems,

32(1):8–23, 2013.

[GBB+14] Roberto Giorgi, Rosa M Badia, François Bodin, Albert Cohen,

Paraskevas Evripidou, Paolo Faraboschi, Bernhard Fechner, Guang R

Gao, Arne Garbade, Rahul Gayatri, et al. Teraflux: Harnessing dataflow

in next generation teradevices. Microprocessors and Microsystems,

38(8):976–990, 2014.

126 BIBLIOGRAPHY

[GF14] Roberto Giorgi and Paolo Faraboschi. An introduction to df-threads

and their execution model. In Computer Architecture and High Perfor-
mance Computing Workshop (SBAC-PADW), 2014 International Sympo-
sium on, pages 60–65. IEEE, 2014.

[GHKM11] Boris Grot, Joel Hestness, Stephen W Keckler, and Onur Mutlu. Kilo-

noc: a heterogeneous network-on-chip architecture for scalability and

service guarantees. In ACM SIGARCH Computer Architecture News,

volume 39, pages 401–412. ACM, 2011.

[Gio12] Roberto Giorgi. Teraflux: exploiting dataflow parallelism in teradevices.

In Proceedings of the 9th conference on Computing Frontiers, pages 303–

304. ACM, 2012.

[Gio15] Roberto Giorgi. Scalable embedded systems: Towards the convergence

of high-performance and embedded computing. In Embedded and Ubiq-
uitous Computing (EUC), 2015 IEEE 13th International Conference on,

pages 148–153. IEEE, 2015.

[GJ79] Michael R Gary and David S Johnson. Computers and intractability: A

guide to the theory of np-completeness, 1979.

[GKW85] John R. Gurd, Chris C. Kirkham, and Ian Watson. The manchester

prototype dataflow computer. Communications of the ACM, 28:34–52,

1985.

[GN92] Christopher J. Glass and Lionel M. Ni. The turn model for adaptive

routing. In Proceedings of the 19th Annual International Symposium on
Computer Architecture, ISCA ’92, pages 278–287. ACM, 1992.

[GP+77] Kim P Gostelow, Wil Plouffe, et al. Indeterminacy, monitors, and

dataflow. In ACM SIGOPS Operating Systems Review, volume 11, pages

159–169. ACM, 1977.

[GS15] Roberto Giorgi and Alberto Scionti. A scalable thread scheduling co-

processor based on data-flow principles. Future Generation Computer
Systems, 53:100–108, 2015.

[Gur16] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2016.

[GZM+17] Tongsheng Geng, Stéphane Zuckerman, José Monsalve, Alfredo Gold-

man, Sami Habib, Jean-Luc Gaudiot, and Guang R. Gao. The Impor-
tance of Efficient Fine-Grain Synchronization for Many-Core Systems,

pages 203–217. Springer International Publishing, 2017.

BIBLIOGRAPHY 127

[HAQT+04] Wei Hung, Charles Addo-Quaye, Theo Theocharides, Yuan Xie, N Vi-

jakrishnan, and Mary Jane Irwin. Thermal-aware ip virtualization

and placement for networks-on-chip architecture. In Computer De-
sign: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings.
IEEE International Conference on, pages 430–437. IEEE, 2004.

[HCRP91] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.

The synchronous data flow programming language lustre. Proceedings
of the IEEE, 79:1305–1320, 1991.

[HJ01] V Carl Hamacher and Hong Jiang. Hierarchical ring network config-

uration and performance modeling. IEEE Transactions on Computers,

50(1):1–12, 2001.

[HM05] Jingcao Hu and Radu Marculescu. Energy-and performance-aware

mapping for regular noc architectures. Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, 24(4):551–562,

2005.

[HP86] Wen-reel Hwu and Yale N Patt. Hpsm, a high performance restricted

data flow architecture having minimal functionality. In ACM SIGARCH
Computer Architecture News, volume 14, pages 297–306. IEEE Com-

puter Society Press, 1986.

[HPD12] R Curtis Harting, Vishal Parikh, and William J Dally. Energy and per-

formance benefits of active messages. Concurrent VLSI Architectures
Group, Stanford University, Tech. Rep, 131, 2012.

[HVS+07] Yatin Hoskote, Sriram Vangal, Arvind Singh, Nitin Borkar, and

Shekhar Borkar. A 5-ghz mesh interconnect for a teraflops processor.

IEEE Micro, 27(5):51–61, 2007.

[HZC+06] Yuanfang Hu, Yi Zhu, Hongyu Chen, Ronald Graham, and Chung-Kuan

Cheng. Communication latency aware low power noc synthesis. In Pro-
ceedings of the 43rd annual Design Automation Conference, pages 574–

579. ACM, 2006.

[I+88] Robert A Iannucci et al. Two fundamental issues in multiprocessing.

Springer, 1988.

[Jac] Bruce Jacob. The case for vliw-cmp as a building block for exascale.

128 BIBLIOGRAPHY

[JP14] Yuho Jin and Timothy Mark Pinkston. Pais: Parallelism-aware in-

terconnect scheduling in multicores. ACM Transactions on Embedded
Computing Systems (TECS), 13(3s):108, 2014.

[KAH11] Somayyeh Koohi, Meisam Abdollahi, and Shaahin Hessabi. All-optical

wavelength-routed noc based on a novel hierarchical topology. In Pro-
ceedings of the Fifth ACM/IEEE International Symposium on Networks-
on-Chip, pages 97–104. ACM, 2011.

[KBD07] John Kim, James Balfour, and William Dally. Flattened butterfly topol-

ogy for on-chip networks. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 172–182. IEEE

Computer Society, 2007.

[KDSA08] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. Technology-

driven, highly-scalable dragonfly topology. In ACM SIGARCH Computer
Architecture News, volume 36, pages 77–88. IEEE Computer Society,

2008.

[KET06] Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. Data-

driven multithreading using conventional microprocessors. Parallel and
Distributed Systems, IEEE Transactions on, 17(10):1176–1188, 2006.

[KFJ+03] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ran-

ganathan, and Dean M Tullsen. Single-isa heterogeneous multi-core

architectures: The potential for processor power reduction. In Microar-
chitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM In-
ternational Symposium on, pages 81–92. IEEE, 2003.

[KGA01] Krishna M Kavi, Roberto Giorgi, and Joseph Arul. Scheduled dataflow:

Execution paradigm, architecture, and performance evaluation. Com-
puters, IEEE Transactions on, 50:834–846, 2001.

[KK09] John Kim and Hanjoon Kim. Router microarchitecture and scalability

of ring topology in on-chip networks. In Proceedings of the 2nd inter-
national workshop on network on chip architectures, pages 5–10. ACM,

2009.

[KKH+09] Dara Kusic, Jeffrey O Kephart, James E Hanson, Nagarajan Kan-

dasamy, and Guofei Jiang. Power and performance management of vir-

tualized computing environments via lookahead control. Cluster com-
puting, 12(1):1–15, 2009.

BIBLIOGRAPHY 129

[KKM+14] Hanjoon Kim, Gwangsun Kim, Seungryoul Maeng, Hwasoo Yeo, and

John Kim. Transportation-network-inspired network-on-chip. In 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pages 332–343. IEEE, 2014.

[KLN15] Andrew B Kahng, Bill Lin, and Siddhartha Nath. Orion3. 0: a compre-

hensive noc router estimation tool. IEEE Embedded Systems Letters,

7(2):41–45, 2015.

[KPKJ07] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K Jha. Ex-

press virtual channels: towards the ideal interconnection fabric. ACM
SIGARCH Computer Architecture News, 35(2):150–161, 2007.

[KSG+09] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel,

and Ronnie Chaiken. The nature of data center traffic: measurements

& analysis. In Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement conference, pages 202–208. ACM, 2009.

[KTJR05] Rakesh Kumar, Dean M Tullsen, Norman P Jouppi, and Parthasarathy

Ranganathan. Heterogeneous chip multiprocessors. Computer, (11):32–

38, 2005.

[LCOM07] Hyung Gyu Lee, Naehyuck Chang, Umit Y Ogras, and Radu Mar-

culescu. On-chip communication architecture exploration: A quantita-

tive evaluation of point-to-point, bus, and network-on-chip approaches.

ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 12(3):23, 2007.

[Lee06] Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[LK03] Tang Lei and Shashi Kumar. A two-step genetic algorithm for map-

ping task graphs to a network on chip architecture. In Digital System
Design, 2003. Proceedings. Euromicro Symposium on, pages 180–187.

IEEE, 2003.

[LKGF+12] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos,

Onur Kocberber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin

Idgunji, Emre Ozer, et al. Scale-out processors. In ACM SIGARCH Com-
puter Architecture News, volume 40, pages 500–511. IEEE Computer

Society, 2012.

[LNLK13] Junghee Lee, Chrysostomos Nicopoulos, Hyung Gyu Lee, and Jongman

Kim. Tornadonoc: A lightweight and scalable on-chip network architec-

130 BIBLIOGRAPHY

ture for the many-core era. ACM Transactions on Architecture and Code
Optimization (TACO), 10(4):56, 2013.

[LNP+13] Junghee Lee, Chrysostomos Nicopoulos, Sung Joo Park, Madhavan

Swaminathan, and Jongman Kim. Do we need wide flits in networks-

on-chip? In 2013 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 2–7. IEEE, 2013.

[MBDM05] Srinivasan Murali, Luca Benini, and Giovanni De Micheli. Mapping

and physical planning of networks-on-chip architectures with quality-

of-service guarantees. In Proceedings of the ASP-DAC 2005. Asia and
South Pacific Design Automation Conference, 2005., volume 1, pages 27–

32. IEEE, 2005.

[MCM+04] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and

Luciano Ost. Hermes: an infrastructure for low area overhead

packet-switching networks on chip. INTEGRATION, the VLSI journal,
38(1):69–93, 2004.

[MDM04a] Srinivasan Murali and Giovanni De Micheli. Bandwidth-constrained

mapping of cores onto noc architectures. In Proceedings of the conference
on Design, automation and test in Europe-Volume 2, page 20896. IEEE

Computer Society, 2004.

[MDM04b] Srinivasan Murali and Giovanni De Micheli. Sunmap: a tool for auto-

matic topology selection and generation for nocs. In Proceedings of the
41st annual Design Automation Conference, pages 914–919. ACM, 2004.

[MDM04c] Srinivasan Murali and Giovanni De Micheli. Sunmap: a tool for auto-

matic topology selection and generation for nocs. In Proceedings of the
41st annual Design Automation Conference, pages 914–919. ACM, 2004.

[MHH+15] Abderrahmen Mtibaa, Khaled A Harras, Karim Habak, Mostafa Am-

mar, and Ellen W Zegura. Towards mobile opportunistic computing. In

Cloud Computing (CLOUD), 2015 IEEE 8th International Conference
on, pages 1111–1114. IEEE, 2015.

[MJW12] Sheng Ma, Natalie Enright Jerger, and Zhiying Wang. Whole packet

forwarding: Efficient design of fully adaptive routing algorithms

for networks-on-chip. In IEEE International Symposium on High-
Performance Comp Architecture, pages 1–12. IEEE, 2012.

BIBLIOGRAPHY 131

[MOP+09] Radu Marculescu, Umit Y Ogras, Li-Shiuan Peh, Natalie Enright

Jerger, and Yatin Hoskote. Outstanding research problems in noc de-

sign: system, microarchitecture, and circuit perspectives. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 28(1):3–21, 2009.

[MV15] Sparsh Mittal and Jeffrey S Vetter. A survey of cpu-gpu heterogeneous

computing techniques. ACM Computing Surveys (CSUR), 47(4):69,

2015.

[N+90] RS Nikhil et al. Executing a program on the mit tagged-token dataflow

architecture. IEEE Transactions on Computers, 39(3):300–318, 1990.

[NGS15] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam.

Exploring the potential of heterogeneous von neumann/dataflow execu-

tion models. In Proceedings of the 42nd Annual International Sympo-
sium on Computer Architecture, pages 298–310. ACM, 2015.

[NMN+14] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia

Obraczka, and Thierry Turletti. A survey of software-defined network-

ing: Past, present, and future of programmable networks. IEEE Com-
munications Surveys & Tutorials, 16(3):1617–1634, 2014.

[OB04] Asuman E Ozdaglar and Dimitri P Bertsekas. Optimal solution of inte-

ger multicommodity flow problems with application in optical networks.

In Frontiers in global optimization, pages 411–435. Springer, 2004.

[ODH+07] John D Owens, William J Dally, Ron Ho, DN Jayasimha, Stephen W

Keckler, Li-Shiuan Peh, et al. Research challenges for on-chip intercon-

nection networks. IEEE micro, 27(5):96, 2007.

[OHM05] Umit Y Ogras, Jingcao Hu, and Radu Marculescu. Key research prob-

lems in noc design: a holistic perspective. In Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, pages 69–74. ACM, 2005.

[PBB+03] Peter Poplavko, Twan Basten, Marco Bekooij, Jef van Meerbergen, and

Bart Mesman. Task-level timing models for guaranteed performance in

multiprocessor networks-on-chip. In Proceedings of the 2003 interna-
tional conference on Compilers, architecture and synthesis for embedded
systems, pages 63–72. ACM, 2003.

132 BIBLIOGRAPHY

[PC90] Gregory M Papadopoulos and David E Culler. Monsoon: an explicit

token-store architecture. In ACM SIGARCH Computer Architecture
News, volume 18, pages 82–91. ACM, 1990.

[PDB14] Ritesh Parikh, Reetuparna Das, and Valeria Bertacco. Power-aware

nocs through routing and topology reconfiguration. In 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6.

IEEE, 2014.

[PH12] Michael K Papamichael and James C Hoe. Connect: re-examining con-

ventional wisdom for designing nocs in the context of fpgas. In Pro-
ceedings of the ACM/SIGDA international symposium on Field Pro-
grammable Gate Arrays, pages 37–46. ACM, 2012.

[PL13] Mencer Oskar Tsoi Kuen Hung Pell, Oliver and Wayne Luk. High-
Performance Computing Using FPGAs, chapter Maximum Performance

Computing with Dataflow Engines, pages 747–774. Springer New York,

New York, NY, 2013.

[RRB69] JE Rodrigues and Jorge E Rodriguez Bezos. A graph model for parallel

computations. Technical report, Massachusetts Institute of Technology,

1969.

[RS97] Govindan Ravindran and Michael Stumm. A performance compari-

son of hierarchical ring-and mesh-connected multiprocessor networks.

In High-Performance Computer Architecture, 1997., Third International
Symposium on, pages 58–69. IEEE, 1997.

[SAPMVA+16] R Sandoval-Arechiga, R Parra-Michel, JL Vazquez-Avila, J Flores-

Troncoso, and S Ibarra-Delgado. Software defined networks-on-chip for

multi/many-core systems: A performance evaluation. In Proceedings of
the 2016 Symposium on Architectures for Networking and Communica-
tions Systems, pages 129–130. ACM, 2016.

[SBG+08] Sander Stuijk, Twan Basten, Marc Geilen, Amir Hossein Ghamarian,

and Bart Theelen. Resource-efficient routing and scheduling of time-

constrained streaming communication on networks-on-chip. Journal of
Systems Architecture, 54:411–426, 2008.

[SBSK12] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kas-

apaki. A statically scheduled time-division-multiplexed network-on-

chip for real-time systems. In Networks on Chip (NoCS), 2012 Sixth
IEEE/ACM International Symposium on, pages 152–160. IEEE, 2012.

BIBLIOGRAPHY 133

[SC05] Krishnan Srinivasan and Karam S Chatha. A technique for low energy

mapping and routing in network-on-chip architectures. In Proceedings
of the 2005 international symposium on Low power electronics and de-
sign, pages 387–392. ACM, 2005.

[SC13] Pradip Kumar Sahu and Santanu Chattopadhyay. A survey on applica-

tion mapping strategies for network-on-chip design. Journal of Systems
Architecture, 59(1):60–76, 2013.

[SCK+12] Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei, Jason

Miller, Anant Agarwal, Li-Shiuan Peh, and Vladimir Stojanovic. Dsent-

a tool connecting emerging photonics with electronics for opto-electronic

networks-on-chip modeling. In Networks on Chip (NoCS), 2012 Sixth
IEEE/ACM International Symposium on, pages 201–210. IEEE, 2012.

[SIL+15] Michael J Schulte, Mike Ignatowski, Gabriel H Loh, Bradford M Beck-

mann, William C Brantley, Sudhanva Gurumurthi, Nuwan Jayasena,

Indrani Paul, Steven K Reinhardt, and Gregory Rodgers. Achieving

exascale capabilities through heterogeneous computing. IEEE Micro,

35(4):26–36, 2015.

[SK04] Dongkun Shin and Jihong Kim. Power-aware communication optimiza-

tion for networks-on-chips with voltage scalable links. In Proceedings of
the 2nd IEEE/ACM/IFIP international conference on Hardware/soft-
ware codesign and system synthesis, pages 170–175. ACM, 2004.

[SMP16] A. Scionti, S. Mazumdar, and A. Portero. Software defined network-on-

chip for scalable cmps. In 2016 International Conference on High Perfor-
mance Computing Simulation (HPCS), pages 112–115. IEEE, 2016.

[SMSO03] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin.

Wavescalar. In Proceedings of the 36th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, page 291. IEEE Computer So-

ciety, 2003.

[SPS+07] M Aater Suleman, Yale N Patt, Eric Sprangle, Anwar Rohillah, An-

war Ghuloum, and Doug Carmean. Asymmetric chip multiprocessors:

Balancing hardware efficiency and programmer efficiency. Univ. Texas,
Austin, TR-HPS-2007-001, 2007.

[SSPH14] Rasmus Bo Sørensen, Jens Sparsø, Mark Ruvald Pedersen, and Jaspur

Højgaard. A metaheuristic scheduler for time division multiplexed

134 BIBLIOGRAPHY

networks-on-chip. In 2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Comput-
ing, pages 309–316. IEEE, 2014.

[STE06] Kyriakos Stavrou, Pedro Trancoso, and Paraskevas Evripidou. Hard-
ware Budget and Runtime System for Data-Driven Multithreaded Chip
Multiprocessor, pages 244–259. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2006.

[SZG13] Joshua Suettlerlein, Stéphane Zuckerman, and Guang R Gao. An imple-

mentation of the codelet model. In Euro-Par 2013 Parallel Processing,

pages 633–644. Springer, 2013.

[The99] Kevin Bryan Theobald. EARTH: AN EFFICIENT ARCHITECTURE:
FOR RUNNING THREADS. PhD thesis, McGill University, Montréal

Québec, Canada, 1999.

[Tos11] Suleyman Tosun. Cluster-based application mapping method for

network-on-chip. Advances in Engineering Software, 42(10):868–874,

2011.

[TT11] Hung-Wei Tseng and Dean M Tullsen. Data-triggered threads: Elimi-

nating redundant computation. In High Performance Computer Archi-
tecture (HPCA), 2011 IEEE 17th International Symposium on, pages

181–192. IEEE, 2011.

[TT12] Hung-Wei Tseng and Dean Michael Tullsen. Software data-triggered

threads. ACM SIGPLAN Notices, 47(10):703–716, 2012.

[TT14] Hung-Wei Tseng and Dean M Tullsen. Cdtt: Compiler-generated data-

triggered threads. In High Performance Computer Architecture (HPCA),
2014 IEEE 20th International Symposium on, pages 650–661. IEEE,

2014.

[UM97] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simula-

tion: A survey. ACM Computing Surveys (CSUR), 29(2):128–170, 1997.

[UMB10] Aniruddha N Udipi, Naveen Muralimanohar, and Rajeev Balasubramo-

nian. Towards scalable, energy-efficient, bus-based on-chip networks.

In HPCA-16 2010 The Sixteenth International Symposium on High-
Performance Computer Architecture, pages 1–12. IEEE, 2010.

BIBLIOGRAPHY 135

[VBS+95] Zvonko G Vranesic, Stephen Brown, Michael Stumm, Steven Caranci,

Alex Grbic, Robin Grindley, Mitch Gusat, Orran Krieger, Guy Lemieux,

Kevin Loveless, et al. The NUMAchine multiprocessor. Citeseer, 1995.

[VDBN98] Uzi Vishkin, Shlomit Dascal, Efraim Berkovich, and Joseph Nuzman.

Explicit multi-threading (xmt) bridging models for instruction paral-

lelism. In Proceedings of the tenth annual ACM symposium on Parallel
algorithms and architectures, pages 140–151. ACM, 1998.

[VHR+08a] Sriram R Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe,

Howard Wilson, James Tschanz, David Finan, Arvind Singh, Tiju Ja-

cob, Shailendra Jain, et al. An 80-tile sub-100-w teraflops processor in

65-nm cmos. IEEE Journal of Solid-State Circuits, 43(1):29–41, 2008.

[VHR+08b] Sriram R Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe,

Howard Wilson, James Tschanz, David Finan, Arvind Singh, Tiju Ja-

cob, Shailendra Jain, et al. An 80-tile sub-100-w teraflops processor in

65-nm cmos. IEEE Journal of Solid-State Circuits, 43(1):29–41, 2008.

[WPM03] Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. Power-driven de-

sign of router microarchitectures in on-chip networks. In Proceedings of
the 36th annual IEEE/ACM International Symposium on Microarchi-
tecture, page 105. IEEE Computer Society, 2003.

[WSK+05] Pascal T Wolkotte, Gerard JM Smit, Nikolay Kavaldjiev, Jens E Becker,

and Jürgen Becker. Energy model of networks-on-chip and a bus. In

System-on-Chip, 2005. Proceedings. 2005 International Symposium on,

pages 82–85. IEEE, 2005.

[YAMJGE14] Fahimeh Yazdanpanah, Carlos Alvarez-Martinez, Daniel Jimenez-

Gonzalez, and Yoav Etsion. Hybrid dataflow/von-neumann archi-

tectures. Parallel and Distributed Systems, IEEE Transactions on,

25(6):1489–1509, 2014.

[ZGHC15] Naijun Zheng, Huaxi Gu, Xin Huang, and Xiaokang Chen. Csquare:

A new kilo-core-oriented topology. Microprocessors and Microsystems,

39(4):313–320, 2015.

	List of Figures
	List of Tables
	Introduction
	Thread management issues
	Research problem and associated solutions
	Thesis structure

	Background
	Dataflow threads
	Hardware overview
	Interconnection subsystem
	Summary

	Thread Distribution
	Introduction
	DF-Threads and its scalability
	Program Execution Model (PXM)
	Proposed Architecture
	Hash Scheduling Function
	Evaluation
	Summary
	Acknowledgement

	Monitoring
	Introduction
	System model
	RADA's implementation
	Dealing with heterogeneity
	Evaluation
	Summary
	Acknowledgement

	Thread Management at Software defined NoC
	Introduction
	System overview
	NoC software interface
	Proposed Network-on-Chip architecture
	Evaluation
	Summary
	Acknowledgement

	Customised NoC Architecture
	Introduction
	System overview
	Proposed Network-on-Chip architecture
	Evaluation methodology
	Applicability and future improvements
	Summary
	Acknowledgement

	Analytical Model
	Introduction
	Problem description and assumptions
	Mathematical formulation
	Simulation results
	Summary
	Acknowledgement

	Conclusion and Future Work
	Contribution
	Future work

	Bibliography

