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Abstract
CD4+ T follicular helper cells (TFH) have been identified as the T-cell subset specialized in pro-

viding help to B cells for optimal activation and production of high affinity antibody.We recently

demonstrated that the expansion of peripheral blood influenza-specific CD4+IL-21+ICOS1+ T

helper (TH) cells, three weeks after vaccination, associated with and predicted the rise of protec-

tive neutralizing antibodies to avian H5N1. In this study, healthy adults were vaccinated with

plain seasonal trivalent inactivated influenza vaccine (TIIV), MF591-adjuvanted TIIV (ATIIV), or

saline placebo. Frequencies of circulating CD4+ TFH1 ICOS+ TFH cells and H1N1-specific CD4+-

IL-21+ICOS+ CXCR5+ TFH and CXCR5- TH cell subsets were determined at various time points

after vaccination and were then correlated with hemagglutination inhibition (HI) titers. All three

CD4+ T cell subsets expanded in response to TIIV and ATIIV, and peaked 7 days after vaccina-

tion. To demonstrate that these TFH cell subsets correlated with functional antibody titers, we

defined an alternative endpoint metric, decorrelated HI (DHI), which removed any correlation

between day 28/day 168 and day 0 HI titers, to control for the effect of preexisting immunity to

influenza vaccine strains. The numbers of total circulating CD4+ TFH1 ICOS+ cells and of H1N1-

specific CD4+IL-21+ICOS+ CXCR5+, measured at day 7, were significantly associated with day

28, and day 28 and 168 DHI titers, respectively. Altogether, our results show that CD4+ TFH sub-

sets may represent valuable biomarkers of vaccine-induced long-term functional immunity.
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Introduction
Protein-based vaccines confer protection against pathogens mainly through the induction of T
cell-dependent high affinity functional antibody responses. In this context a specialized subset
of T helper cells (TH), identified as T follicular helper cells (TFH), differentiate and provide help
to B cells in the germinal centers (GC) of secondary lymphoid organs, leading to B-cell prolifer-
ation and differentiation, and reshaping of the B-cell repertoire and Ig affinity maturation [1–
5]. Thus, TFH cells play a critical role in the generation of long-lived humoral responses to anti-
gens [3].

TFH cells were first isolated and identified in human tonsils, and were characterized by the
expression of B cell follicle homing chemokine receptor CXCR5 and the inducible costimula-
tory molecule ICOS [6, 7]. TFH cells efficiently provide help to B cells and promote IgM to IgG
immunoglobulin class switching through the production of interleukin-21 (IL-21) [8]. Studies
in animal models have shown that, once differentiated and activated, TFH cells can exit GC,
developing into memory TFH cells [9–12]. However, the origin of human blood circulating TFH

cells remains to be established.
CD4+ TH cells expressing the chemokine receptor CXCR5 are currently termed blood mem-

ory or peripheral TFH cells and are long-lived memory cells [7, 13–15]. Recently, some human
studies have contributed to a deeper characterization of blood TFH cells on the basis of the
expression of additional chemokine receptors such as CXCR3, CCR6, and CCR7, the costimu-
latory molecule ICOS, and the immunomodulatory molecule PD-1 [13, 16, 17]. TFH cells
defined as CXCR3+CCR6- share properties with TH1 cells (hereafter called TFH1 cells), while
CXCR3-CCR6- and CXCR3-CCR6+ cells share properties of TH2 cells (TFH2) and of TH17 cells
(TFH17), respectively [13]. TFH2 and TFH17 have a more efficient T helper activity on naive B
cells, while TFH1 ICOS

+ cells have a higher propensity to provide help to memory B cells [17].
In addition, we previously demonstrated that antigen-specific TFH can be identified by flow
cytometry by intracelluar staining of IL-21 upon in vitro antigen stimulation [18].

The identification of early biomarkers predicting vaccine efficacy may contribute to acceler-
ate the development of novel vaccine candidates. These biomarkers should be easy to test in
large clinical trials and have a clear mechanistic relationship with the correlates or surrogates
of protection taken as study’s endpoints. Recent studies showed that immunization with influ-
enza A/California/2009 (H1N1) vaccine led to an expansion of peripheral TFH subsets in
humans [13, 17, 19–21]. Moreover, ex vivo frequencies of peripheral TFH1 cells at day 7 corre-
lated with the frequency of circulating plasmablasts and with increased levels of neutralizing
antibodies to H1N1 at day 21 [13, 17]. In a previous study, we showed that a single dose of an
avian H5N1 influenza vaccine induced the expansion of H5N1-specific CD4+ICOS+IL-21+ TH

cells in the blood three weeks after vaccination, and that the increased frequency of these cells
predicted the protective antibody titers found after the second dose of the vaccine [18].

The goal of the present study was to identify, in human peripheral blood, early TFH cells
subset(s) predicting not only the rise but also the long term persistence of functional antibody
titers after seasonal influenza vaccination. For this purpose, we had access to human PBMCs
collected in the framework of the European Innovative Medicine Initiative funded public-pri-
vate project BIOVACSAFE [22]. PBMCs from healthy subjects immunized with one dose of
seasonal adjuvanted or non-adjuvanted trivalent inactivated influenza vaccine (ATIIV and
TIIV, respectively) were analyzed both directly ex vivo or after in vitro antigen stimulation. Fre-
quencies of TFH cells were determined and then correlated with HI antibody titers measured at
days 28 and 168 post-vaccination. Both antigen-specific CD4+IL-21+ICOS+CXCR5+ TFH cells
and ex vivo TFH1 ICOS

+ cells expanded seven days after vaccination and returned to baseline
levels by day 28. After accounting for the effect of baseline HI titers, we showed that the
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magnitude of the response of these TFH cell subsets correlated with functional antibody
responses measured up to 6 months after vaccination.

Materials and Methods

Clinical samples and vaccines
The study received ethical approval from London—Surrey Borders Research Ethics Committee
(REC Ref: 13/LO/0044), and was registered on ClinicalTrials.gov prior to enrolment
(NCT01771367). Forty-nine healthy adults (18–43 years old) were enrolled at the Surrey Clini-
cal Research Centre, University of Surrey, Guildford, UK, as part of the BIOVACSAFE Consor-
tium-funded clinical trial protocol CRC305C sponsored by the University of Surrey. The study
was a partial-blind (participant and laboratory), randomised, placebo controlled exploratory
study. The full study protocol is described in supplementary document S1 Text. All participants
provided written informed consent. In the 2012-2013 winter season, 49 participants were ran-
domized to allow 48 to complete with the full required reportable data in three arms and
received one dose of A/California/7/2009 (H1N1), A/Victoria/361/2011 (H3N2), B/Wisconsin/
1/2010-like TIIV (Agrippal1; n=21), ATIIV (Fluad1, n=20), or saline placebo (n=8). Recruit-
ment for the study began on February 7th 2013 and ended with the last follow-up visit on
November 25th 2013. See CONSORT diagram and checklist (Fig 1 and S2 Text, respectively).
PBMCs were collected from each group at baseline, day 7 and day 28 after immunization, and
analyzed for plasmablasts and CD4+ T cell responses. Sera were collected at day 0, day 7, day
28 and day 168 after immunization for the analyses of antibody responses.

Hemagglutination Inhibition Assay (HI)
HI titers were measured for A/California/7/2009 (H1N1), A/Victoria/361/2011 (H3N2), and
B/Wisconsin/1/2010-like vaccine strains (Novartis Vaccines & Diagnostics) as described else-
where [23, 24].

Polychromatic flow cytometry analyses
Frozen PBMCs from vaccinated participants were thawed and then analyzed by flow cytometry
both ex vivo and after 18 h of stimulation at 37°C with anti-CD28 and anti-CD49d (1 μg/ml
each, BD Biosciences), A/California/7/2009 (H1N1) subunit vaccine antigen (1 μg/ml, Novartis
Vaccines & Diagnostics), or Staphylococcus enterotoxin B (SEB) (1 μg/ml, Sigma), in the pres-
ence of Brefeldin A (5 μg/ml, Sigma) as previously described [18, 25]. Cells were stained ex vivo
with Live/Dead Yellow (Invitrogen), fluorochrome-conjugated antibodies: CD3-PE-Texas Red
(SK7), CD4-APC-Horizon 7 (SK3), ICOS-PE (ISA-3), CXCR5-FITC (RF8B2), CXCR3-PE-Cy5
(1C6), CCR6-Brillant Violet 421 (11A9), PD1-Brilliant Violet 785 (EH12.2H7), CD19-APC
(SJ25C1), CD20-PerCP-Cy5.5 (L27), CD27-PE (L128), CD38-Alexa fluor 700 (HIT2) (BD Bio-
sciences), CD8-Horizon V500 (RPA-T8) (Biolegend), CD45RA-PE-Cy7 (HI100)
(eBioscience). H1N1-specific CD4+ T cells were analyzed for intracellular production of IL-21
with anti-IL-21-APC (3A3-N2.1) (BD Biosciences) [18, 25]. Stained cells were acquired on a
BD LSR Fortessa special order flow cytometer (BD Biosciences).

Analysis of H1N1-specific CD4+IL-21+ ICOS+ TH cells
Frequency, phenotype, and cytokine profile of H1N1-specific CD4+IL-21+ICOS+ TH cells were
determined by polychromatic flow cytometry following the gating strategy described in S1C
Fig. The response to medium was subtracted for each subject at each time point. Data are
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expressed as number of antigen-specific CD4+ T cells per million of total CD4+ T cells. Data
were analyzed using FlowJo (version 9.6, Tree Star) [18].

Statistical analyses
Median HI titers and frequencies of CD4+ T cells measured across different time points were
compared using Wilcoxon’s signed rank test. Analyses were performed with SAS JMP 8.0.1
software. Associations between day 7 cellular responses and day 28 and 168 functional anti-
body responses were evaluated using the Pearson product-moment correlation metric. Data
from TIIV and ATIIV vaccine cohorts were merged and analyzed as a single dataset. The
potential effect of vaccine formulation as well as the negative correlation between HI responses
to vaccination and baseline titers were removed, for each antigen, by fitting a mixed model and
obtaining the residuals, based on a method adapted from Bucasas et al. [26]. The R package
lme4 was used to perform a linear mixed effects analysis of the relationship between day 28, or
day 168, HI titers fold-increase and baseline HI titers [27]. The baseline HI titer was used as
only fixed effect, while random slopes and intercepts for the two vaccine cohorts were included
as random effects. The model was formulated as follows: HIDayX/Day0 ~ HIDay0 + (1 + HIDay0|
Cohort) + ε. Where HIDayX/Day0 represents the HI fold-increase measured either at day 28 or
168 post-vaccination, HIDay0 corresponds to the baseline HI titer, Cohort is a 2-level factor
indicating which vaccine was used and ε is the residual error. Given the lack of antigen specific-
ity, cell responses derived from the ex vivo staining were correlated to the maximun response
observed across the three strains represented in the vaccine, while H1N1-specific TFH cells
were correlated to H1N1-specific HI responses.

Fig 1. CONSORT Flow diagram.

doi:10.1371/journal.pone.0157066.g001
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Results
Of the participants who were randomised, PBMCs of sufficient quantity and quality were
obtained for 18 participants who received TIIV, 17 participants who received ATIIV and 7
who received placebo. Therefore the results reported below are only for 42 participants.

Influenza vaccination induces fast and long-lasting functional antibody
responses
In this study, 42 healthy adults received a single intramuscular immunization with 2012-2013
TIIV, ATIIV, or saline placebo. B-cell responses were characterized as (i) frequencies of blood
CD19+CD20-CD38+ plasmablasts measured by flow cytometry at day 0, 7 and 28, and (ii) as
vaccine-specific HI antibody titers at day 0, 7, 28, and 168.

Consistent with previous studies [28–30], TIIV and ATIIV increased the frequencies of
plasmablasts at day 7 compared to placebo (Fig 2A and S1A Fig for subset identification). HI
geometric mean antibody titers (GMT) against the three influenza virus strains significantly
increased 7 days after immunization compared to placebo. HI antibody titers peaked at day 28,
and peristed up to six months later at titers which were significantly higher than placebo for
the H3N2 and B strains following ATIIV (Fig 2B and 2C). These higher titers at 6 months
post-ATIIV administration paralleled seroprotection rates which were higher after ATIIV than
TIIV (S1 Table).

Circulating TFH1 cells expressing ICOS expand after both TIIV and ATIIV
influenza vaccination
The number of CD4+ICOS+ TH cells expressing CXCR5 (CXCR5+ICOS+) increased at day 7
after vaccination with TIIV and ATIIV and returned to baseline levels by day 28 (Fig 3A). Vac-
cination did not affect the number of CXCR5+ICOS- nor of CXCR5-ICOS+ CD4+ TH cells (S2
Fig), in agreement with previous observations. [17]. We then determined the expression of
ICOS in different TFH subsets in PBMC at day 0, 7, and 28 after administration of TIIV or
ATIIV (S1B Fig for subset identification) [17]. The number of CD4+ TFH1 ICOS

+ and PD-1+

cells peaked at day 7 after vaccination with TIIV and ATIIV compared to day 0, returned to
baseline levels by day 28, and were also significantly higher compared to saline placebo controls
(Fig 3B and 3C). Vaccination did not modify the frequencies of ICOS+ cells in the TFH17 and
TFH2 cell subsets (S1B and S3 Figs). No changes in numbers of CD4+ TFH cells were observed
in the placebo controls at any time point. Thus, these data show that peripheral blood TFH1
cells, expressing ICOS and PD-1, transiently expand at day 7 after TIIV, as shown previously
[17], and also after ATIIV.

Antigen-specific CD4+IL-21+ICOS+ TH cells expand at day 7 after
vaccination and show a mixed CXCR5+/CXCR5- phenotype
We previously showed that antigen-specific blood CD4+IL-21+ICOS+ TH cells expand three
weeks after influenza vaccination [17]. In the present study, we extended these observations by
measuring the frequency of circulating H1N1-specific CD4+IL-21+ICOS+ TH cells as early as 7
days after vaccination. PBMCs were stimulated overnight with A/California/7/2009 (H1N1)
subunit antigen, and IL-21-producing cells were identified by flow cytometry (S1C Fig for sub-
sets identification).

H1N1-specific CD4+IL-21+ICOS+ TH cells were already detectable on day 0 (mean values of
51 ± 25, 37 ± 7, and 53 ± 14 cells/106 CD4+ T cells in the placebo, TIIV, and ATIIV groups,
respectively) suggesting that most of the participants had memory T cells due to prior
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vaccination or to natural exposure to circulating influenza viruses (Fig 4). Following vaccina-
tion with TIIV and ATIIV, the number of H1N1-specific CD4+IL-21+ICOS+ TH cells signifi-
cantly increased at day 7 compared to day 0, and decreased by day 28 in both groups, although
remaining significantly higher than baseline in the ATIIV group (Fig 4). Finally, the increased
frequency of CD4+IL-21+ICOS+ TH cells at day 7 in response to ATIIV was significantly higher
than in placebo controls, and persisted up to four weeks after vaccination.

We further characterized H1N1-specific CD4+IL-21+ICOS+ TH cells at day 7 based on the
level of CXCR5 expression. Due to the intrinsic variability of the single participants and due to
the limited number of participants tested, we investigated this parameter by pooling together
the results from the TIIV and ATIIV groups. At baseline, H1N1-specific CD4+IL-21+ICOS+

CXCR5- TH cells were more abundant than CXCR5+ TFH cells with 40 ± 7 cells/ 106 CD4+ T
cells and 6 ± 1 cells/ 106 CD4+ T cells, respectively (Fig 5), in agreement with our previous
results (18). Both subsets expanded at day 7, to 180 ± 44 CD4+IL-21+ICOS+CXCR5- TH cells/

Fig 2. B-cell and functional antibody responses after seasonal influenza vaccination. (A) Absolute number of plasmablasts (CD19+CD20- CD38+)
in 106 live PBMCs acquired. (B) HI Geometric mean titers (GMT) for A H1N1 and H3N2, and B influenza strains at baseline (D0), 7 days (D7), 28 days
(D28), and 168 days (D168) after a single dose of influenza vaccine. Data show three cohorts: saline placebo (n=7), TIIV (n=18), and ATIIV (n=17). (C)
Geometric mean ratio (GMR) for all vaccine strains. Non-parametric Wilcoxon’s signed rank test was used for statistical analyses: *p < 0.05, **p < 0.01,
and ***p < 0.001 compared to day 0; §p < 0.05, §§p < 0.01 and §§§p < 0.001 compared to saline placebo.

doi:10.1371/journal.pone.0157066.g002
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106 CD4+ T cells and 21 ± 5 CD4+IL-21+ICOS+CXCR5+ TFH cells/ 106 CD4+ T cells, respec-
tively. At day 28, the frequency of H1N1-specific CD4+IL-21+ICOS+CXCR5+ TFH cells had
returned to baseline levels, while CD4+IL-21+ICOS+CXCR5- TH cells were still high (80 ± 16
cells/ 106 CD4+ T cells). In the placebo group, the frequency of H1N1-specific CD4+IL-21+

ICOS+ TH cells CXCR5- or CXCR5+ did not change over time, suggesting that the expansion of
these subsets in TIIV and ATIIV groups was specifically driven by the vaccines.

Frequencies of TFH cells at day 7 correlate with functional antibody
responses after influenza vaccination
We further asked whether the expansion, at day 7, of total CD4+ TFH1 ICOS

+ cells or
H1N1-specific CD4+IL-21+ICOS+CXCR5+ TFH cells correlated with the rise of HI titers mea-
sured at day 28 and 168 post-immunization. In contrast to our previous study in which the vac-
cinees had no appreciable preexposure to avian A/Vietnam/1194/2004 (H5N1) influenza strain
[18], most participants in this study had detectable levels of preexsisitng antibodies specific to

Fig 3. Expansion of ICOS+ and PD-1+ TFH1 cells after TIIV and ATIIV vaccination. (A) Number of CD4+ T cells expressing CXCR5 and ICOS in
human PBMCs after seasonal influenza vaccination. (B andC) Number of TFH1 cells expressing ICOS and PD-1. Data show three cohorts: saline
placebo (n=7), TIIV (n=18) and ATIIV (n=17) at baseline (D0), day 7 (D7) and day 28 (D28) after a single dose of influenza vaccine. Data are
shown for each participant and expressed as number of cells in 106 live PBMCs acquired. Non-parametric Wilcoxon’s signed rank test was used
for statistical analyses: *p < 0.05, **p < 0.01, and ***p < 0.001 compared to day 0; §p < 0.05, §§p < 0.01 and §§§p < 0.001 compared to saline
placebo.

doi:10.1371/journal.pone.0157066.g003
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one or more strains present in the 2012-2013 seasonal influenza vaccine. Baseline HI titers
were inversely associated with HI titers measured at day 28 and 168 after vaccination and
reached statistical significance for A/California/7/2009 (H1N1) and A/Victoria/361/2011
(H3N2) strains (S4 Fig). Therefore, in order to determine correlates of vaccine immunogenicity
that were independent from vaccinees’ baseline preexisting immunity, we defined an alterna-
tive endpoint metric: decorrelated hemagglutination inhibition (DHI), which removed any lin-
ear correlation between the antibody expansion after vaccination and day 0 HI titers (S5 Fig).
Total CD4+ TFH1 ICOS

+ cells were correlated to the maximun HI response observed across the
three strains represented in the vaccine, while H1N1-specific CD4+IL-21+ICOS+CXCR5+ TFH

cells were correlated to H1N1-specific HI titers.
The number of CD4+ TFH1 ICOS

+ cells measured at day 7 after immunization was weakly
correlated with DHI responses at day 28 (R = 0.35; n = 35; p = 0.04), but not at day 168
(R = 0.35; n = 28; p = 0.07) after vaccination (Table 1 and Fig 6). In contrast, the number of

Fig 4. H1N1-specific CD4+IL-21+ICOS+ TH cells expand 7 days after seasonal influenza vaccination. Numbers of CD4+IL-21+ICOS+ TH cells in PBMCs
stimulated overnight with A/California/7/2009 (H1N1) antigen. Data show three cohorts: saline placebo (n=7), TIIV (n=18) and ATIIV (n=17) at baseline (D0),
day 7 (D7) and day 28 (D28) after a single dose of influenza vaccine. Data are shown for each subject and expressed as number of cells in 106 live CD4+ T
cells acquired; mean ± SEM is shown. Non-parametric Wilcoxon’s signed rank test was used for statistical analyses: *p < 0.05, **p < 0.01, and ***p < 0.001
compared to day 0; §p < 0.05, §§p < 0.01 and §§§p < 0.001 compared to saline placebo.

doi:10.1371/journal.pone.0157066.g004
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H1N1-specific CD4+IL-21+ICOS+CXCR5+ TFH cells, measured at day 7, was significanly
correlated with both day 28 (R = 0.41; n = 35; p = 0.01) and day 168 (R = 0.43; n = 28; p = 0.02)
DHI responses (Table 1 and Fig 7). H1N1-specific CD4+IL-21+ICOS+ and CD4+IL-21+ICOS+

CXCR5- TH cells were not significantly associated with DHI responses at any time point. Inter-
estingly, plasmablasts did not show any significant association with DHI responses at any time
point (Table 1), while the frequency of plasmablasts observed at day 7 post-vaccination was
negatively correlated with day 0 HI titers (R = -0.46; n = 31; p = 0.01) (S6 Fig), suggesting that
plasmablast responses to vaccination were also affected by the preexisting immunity status of
the vaccinees.

In conclusion, our data suggest that the frequencies of both ex vivo TFH1 ICOS
+ cells and

H1N1-specific CD4+IL-21+ICOS+CXCR5+ TFH cells is associated with vaccine-induced func-
tional antibody responses, independently of the vaccinees’ pre-immune status.

Fig 5. H1N1-specific CD4+IL-21+ICOS+ TH cells subsets expressing or not CXCR5 expand after
influenza vaccination. Number of CD4+IL-21+ICOS+ TH cells, showing a CXCR5+ (black) or CXCR5- (gray)
phenotype, in vaccinated participants after overnight stimulation with A/California/7/2009 (H1N1) antigen or
SEB. Data show saline placebo (n=7), and merged TIIV (n=18) and ATIIV (n=17) cohorts at baseline (D0),
day 7 (D7) and day 28 (D28) after a single dose of influenza vaccine. Data are expressed as number of cells
in 106 live CD4+ T cells; mean ± SEM is shown. Non-parametric Wilcoxon’s signed rank test was used for
statistical analyses: *p < 0.05, **p < 0.01, and ***p < 0.001 compared to day 0.

doi:10.1371/journal.pone.0157066.g005
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Discussion
In the present study, we have shown that various subpopulations of T cells sharing phenotypic
and functional properties with TFH cells are present in the peripheral blood after vaccination
with adjuvanted or non-adjuvanted influenza vaccines. The frequency of these blood T cell
subpopulations peaks 7 days post-vaccination, then declines to baseline levels, although some
(i.e. H1N1-specific CD4+IL-21+ICOS+CXCR5- TH cells) persist for at least four weeks. Fre-
quencies of some TFH cell subsets, either total or antigen-specific, predicted HI titers, not only
four weeks after vaccination, but also six months later.

TFH cells are acquiring an increasing interest because of their ability to provide help to B cells
in the GC of secondary lymphoid organs, leading to B-cell differentiation, reshaping of the B-cell
repertoire, and Ig affinity maturation [1–5]. The role of TFH cells in the generation of long-lived
humoral responses to antigens gives them an ideal profile as potential early biomarkers of effec-
tive take of vaccines and possibly of long-lasting protective antibody responses. Peripheral TFH

subsets in whole blood or fresh human PBMCs of healthy participants have been identified by ex
vivo staining following vaccination against influenza, describing memory CD4+CXCR5+ TH cells
as the most abundant population [13, 17, 31, 32]. In this study performed on frozen PBMCs, a
peak expansion of CD4+CXCR5+ TFH1 cells expressing ICOS and PD-1 was detected 7 days after
TIIV vaccination, while TFH2 and TFH17 cell subsets were not modulated, confirming previous
observations by Bentebibel et al. [17]. Similar responses were also observed after ATIIV vaccina-
tion, suggesting that the presence of the adjuvant did not alter the profile of these TFH subsets.

We recently reported that H5N1-specific CD4+IL-21+ICOS+ TH cells expanded 21 days
after vaccination, showed a CXCR5- phenotype, and positively correlated with the H5N1-speci-
fic antibody response after the second vaccine dose [18]. Here, we extended these observations
by showing that the frequency of CD4+IL-21+ICOS+ TH cells, specific for the seasonal influenza
A/California/7/2009 (H1N1) antigen, increased seven days after influenza vaccination and
decreased by day 28. Both CXCR5- and CXCR5+ subsets expanded seven days after influenza
vaccination, while at day 28, most CD4+IL-21+ICOS+ TH cells were CXCR5-, suggesting that
antigen-specific memory TFH cells might be in a resting state in the periphery and transiently
express CXCR5 homing receptor upon antigen encounter.

Table 1. Correlation between cell subsets and DHI titers.
aPredictor Pearson R

Day7 DHI Day28/Day0 DHI Day168/Day0

Plasmablasts b0.20 b0.23

CD4+TFH1 ICOS+ cells b0.35* b0.35

H1N1-specific CD4+IL-21+ICOS+

TH cells

c0.23 c0.30

H1N1-specific CD4+IL-
21+ICOS+CXCR5+ TFH cells

c0.41* c0.43*

H1N1-specific CD4+IL-
21+ICOS+CXCR5- TH cells

c0.20 c0.25

Levels of correlation between cell frequencies, measured at day 7, and DHI responses measured 28 and

168 days after vaccination.

* p � 0.05.
a All predictors are expressed as number of cells / 106 PBMCs
b Maximum DHI response observed across A/California/7/2009 (H1N1), A/Victoria/361/2011 (H3N2) and B/

Wisconsin/1/2010-like vaccine strains.
c A/California/7/2009 (H1N1)-specific DHI responses

doi:10.1371/journal.pone.0157066.t001
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A number of independent studies have reported that preexisting antigen-specific antibodies
affect responsiveness to influenza vaccination, with higher baseline levels associated with lower
HI responses [33]. Therefore, we defined a new endpoint metric, DHI, that decorralated anti-
body expansion after vaccination from day 0 HI titers. This new endpoint enabled us to deter-
mine cellular correlates of vaccine immunogenicity that were independent from the vaccinees’
preexisting immunity to influenza vaccine strains. With this approach, we showed that

Fig 6. TFH1 ICOS+ cells predict functional antibody responses.Correlations between the number of total circulating
CD4+ TFH1 ICOS+ cells and the maximumDHI responses observed across the three influenza strains represented in the
vaccine, measured at (A) day 28 and (B) day 168 after immunizzation. Dashed lines represent the least squares
regressions fit to the data. R: Pearson product-moment correlation coefficient. p: correlation-associated p value.

doi:10.1371/journal.pone.0157066.g006

Fig 7. H1N1-specific CD4+IL-21+ICOS+CXCR5+ TFH cells predict functional antibody responses. Correlations
between the number of H1N1-specific CD4+IL-21+ICOS+CXCR5+ TFH cells and H1N1-specific DHI responses measured
at (A) day 28 and (B) day 168 after immunizzation. Dashed lines represent the least squares regressions fit to the data. R:
Pearson product-moment correlation coefficient. p: correlation-associated p value.

doi:10.1371/journal.pone.0157066.g007
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frequencies of plasmablasts at day 7 did not correlate with later DHI responses, suggesting that
previously described associations between plasmablasts and antibody responses [17] might not
be based on a causal effect but rather linked to preexisting immunity and, as such, appear cor-
related when directly compared. In contrast, TFH1 ICOS

+ cells were shown to have some pre-
dictive power for day 28 DHI responses, confirming previous observations [17], but not for
day 168 DHI responses. In addition, we also showed that day 7 H1N1-specific CD4+IL-21+-

ICOS+CXCR5+ TFH cell responses were significantly correlated with both early and late
H1N1-specific antibody responses, with higher cell frequencies being associated with higher
DHI responses. These results highlight the complex interplay between different factors, both
subject- and vaccine-related, occurring during an immunological response to vaccination, lead-
ing to the production and persistence of functional antibodies.

In the present study, we identified two discrete H1N1-specific TH populations, one being
CD4+IL-21+ICOS+CXCR5+ and the other lacking the CXCR5 marker. Interestingly, CD4+IL-
21+ICOS+CXCR5+ TFH cells expanded transiently after vaccination. These cells may represent
a transitional state of a subset of cells belonging to the larger CD4+IL-21+ICOS+CXCR5- TH

cell population that persisted at higher frequency in the blood for at least 4 weeks, maintained
their antigen-specificity as demonstrated by the ability to produce IL-21 and, as shown previ-
ously, by their capacity to provide help to B cells. Nonetheless, the possibility that the antigen-
specific CD4+IL-21+ICOS+CXCR5+ TFH cells identified in our study represent a small subset of
TFH1 ICOS

+ cells cannot be excluded. In any case, these findings provide evidence that both
TFH1 ICOS

+ and antigen-specific CD4+IL-21+ICOS+CXCR5+ TFH cell subsets are associated
with functional antibody responses to influenza vaccination. Further experimentation is
needed to test whether the early response of these TFH subsets can be used as biomarkers of
later functional immune responses for vaccines other than influenza or for vaccines for which
participants have no immunological memory.

Taken together, our data give new insights on TFH cell subset responses after influenza vac-
cination and on their potential involvement in the persistence of protective antibody levels. We
envision that applying similar approaches in future clinical trials will provide new insights into
the mechanisms underlying the immunological response to vaccination and advance our abil-
ity to prospectively evaluate vaccine responsiveness based on early cellular and molecular sig-
natures. This will represent an important advance in the development of novel or improved
vaccines.
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S1 Fig. Gating strategy applied to PBMCs. (A) Plasmablasts (B) Ex-vivo TFH subsets. (C)
H1N1-specific CD4+IL-21+ICOS+ TH cells.
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S2 Fig. TIIV and ATIIV vaccination did not change the frequencies of blood CD4+ICOS+-

CXCR5- TH and ICOS-CXCR5+ TFH cells. Data show three cohorts: saline placebo (n=7),
TIIV (n=18) and ATIIV (n=17) at day 0, day 7 and day 28 after a single dose of influenza vac-
cine. Data are shown for each participant and expressed as number of cells in 106 live PBMCs
acquired. Non-parametric Wilcoxon’s signed rank test was used for statistical analyses.
p> 0.05 compared to day 0 and to saline placebo.
(TIF)

S3 Fig. TIIV and ATIIV vaccination did not change ICOS expression in blood TFH2 and
TFH17 subsets. TIIV and ATIIV vaccination did not change ICOS expression in blood TFH2
and TFH17 subsets. Data show three cohorts: saline placebo (n=7), TIIV (n=18) and ATIIV
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(n=17) at day 0, day 7 and day 28 after a single dose of influenza vaccine. Data are shown for
each participant and expressed as number of cells in 106 live PBMCs acquired. Non-parametric
Wilcoxon’s signed rank test was used for statistical analyses. p> 0.05 compared to day 0 and to
saline placebo.
(TIF)

S4 Fig. Correlation between HI titers fold-increase and baseline HI titers.HI titers were
determined for A/California/7/2009 (H1N1), A/Victoria/361/2011 (H3N2) and B/Wisconsin/
1/2010-like vaccine strains.
(TIF)

S5 Fig. Correlation between DHI responses and baseline HI titers.HI titers were determined
for A/California/7/2009 (H1N1), A/Victoria/361/2011 (H3N2) and B/Wisconsin/1/2010-like
vaccine strains.
(TIF)

S6 Fig. Correlation between day 7 plasmablasts frequency and baseline HI titers. Baseline
HI titers refer to the maximun value observed across A/California/7/2009 (H1N1), A/Victoria/
361/2011 (H3N2) and B/Wisconsin/1/2010-like vaccine strains. Dashed lines represent the
least squares regressions fit to the data. R: Pearson product-moment correlation coefficient. p:
correlation associated p value.
(TIF)
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