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1 INTRODUCTION

SUMMARY

The presence of calcite in and near faults, as the dominant material, cement, or vein fill,
indicates that the mechanical behaviour of carbonate-dominated material likely plays an im-
portant role in shallow- and mid-crustal faulting. To better understand the behaviour of calcite,
under loading conditions relevant to earthquake nucleation, we sheared powdered gouge of
Carrara Marble, >98 per cent CaCOs3, at constant normal stresses between 1 and 100 MPa
under water-saturated conditions at room temperature. We performed slide-hold-slide tests,
1-3000 s, to measure the amount of static frictional strengthening and creep relaxation, and
velocity-stepping tests, 0.1-1000 um s™', to evaluate frictional stability. We observe that the
rates of frictional strengthening and creep relaxation decrease with increasing normal stress
and diverge as shear velocity is increased from 1 to 3000 um s~ during slide-hold-slide exper-
iments. We also observe complex frictional stability behaviour that depends on both normal
stress and shearing velocity. At normal stresses less than 20 MPa, we observe predominantly
velocity-neutral friction behaviour. Above 20 MPa, we observe strong velocity-strengthening
frictional behaviour at low velocities, which then evolves towards velocity-weakening friction
behaviour at high velocities. Microstructural analyses of recovered samples highlight a variety
of deformation mechanisms including grain size reduction and localization, folding of cal-
cite grains and fluid-assisted diffusion mass transfer processes promoting the development of
calcite nanograins in the highly deformed portions of the experimental fault. Our combined
analyses indicate that calcite fault gouge transitions from brittle to semi-brittle behaviour at
high normal stress and slow sliding velocities. This transition has important implications for
earthquake nucleation and propagation on faults in carbonate-dominated lithologies.

Key words: Geomechanics; Microstructures; Creep and deformation; Friction; Fault zone
rheology; Dynamics and mechanics of faulting.

Miller et al. 2004; Mirabella et al. 2008; Govoni et al. 2014) have
nucleated within or propagated through thick carbonate sequences.

Understanding the physical and chemical processes that control the
style of slip on faults in the lithosphere are fundamental problems
in earthquake physics and fault mechanics. The slip behaviour of
faults, ranging from stable, aseismic creep, to unstable, earthquake
rupture exhibits a fundamental control on the types of hazards as-
sociated with tectonic plate motion. Significant earthquakes, such
as the 1995 Aigion event (Bernard et al. 1997), the 2008 Wenchuan
earthquake (Burchfiel ez al. 2008), and events throughout Italy (e.g.

*Now at: School of Geology and Geophysics, University of Oklahoma,
Norman, OK, USA.

These events have shown that carbonate-dominated lithologies can
play an important role in mid- to shallow-crustal faulting. Con-
sequently, experimental work focusing on the frictional properties
of carbonate-dominated lithologies, under conditions relevant to
the shallow crust, has gained prevalence recently (e.g. Verberne
et al. 2010; Collettini et al. 2011; De Paola et al. 2011, 2015;
Fondriest ez al. 2013; Scuderi et al. 2013; Violay et al. 2013; Car-
penter et al. 2014; Chen et al. 2015; Smith et al. 2015). These
studies, performed over a range of conditions and slip velocities,
have highlighted the important role that calcite plays in earthquake
nucleation and propagation.
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Deformation experiments on calcite-rich rocks, at velocities con-
sistent with earthquake nucleation, have shown that these materials
exhibit frictionally unstable behaviour at conditions pertinent to the
shallow crust (e.g. Verberne et al. 2010, 2014a,b; Carpenter et al.
2014; Tesei et al. 2014; Chen et al. 2015). Furthermore, some of
these studies have highlighted the relatively rapid (Carpenter et al.
2014) and sometimes complicated (Chen ef al. 2015) strengthening
behaviour of these materials during laboratory ‘interseismic’ peri-
ods. Most of these studies have been performed at single normal
stresses while varying temperature (e.g. Verberne et al. 2014b), slip
zone complexity (e.g. Carpenter et al. 2014) and loading history
(e.g. Chen et al. 2015). Additionally, some of these studies have
identified physico-chemical processes acting in the gouge as pri-
mary reasons for the observed behaviour. Such processes include
the formation of calcite nanograins leading to crystal plastic be-
haviour (Verberne et al. 2013, 2014a) and active solution/transfer
processes that lead to increased strength after hold periods (Chen
et al. 2015). Furthermore, previous work has confirmed the role of
fluids and fluid composition on the mechanical behaviour of calcite
at room temperature (Rutter 1974; Zhang & Spiers 2005). Zhang
& Spiers (2005) showed that compaction of water-saturated cal-
cite at room temperature was accomplished via pressure solution.
They found that fluids meant to restrict (silicone oil) and enhance
(0.1 M NaCl) the pressure solution process significantly affected the
amount and rate of observed compaction. Room temperature obser-
vations of pressure solution in calcite, combined with the decreasing
solubility of calcite with increasing temperature (see Plummer et al.
1979 for a review) and the fact that the rate of pressure solution in
calcite-rich lithologies would be expected to increase gradually to
depths of 5-7 km (e.g. Rutter 1983; Gratier et al. 2013) indicate
that room temperature experiments can provide useful information
by capturing this process. Furthermore, increased pore pressure is
likely to cause lateral variations in normal stress, not temperature,
and will exhibit some control on the mechanical behaviour of the
fault. Finally, calcite has been shown to transition between brittle
and ductile behaviour at relatively low normal stresses and velocities
(e.g. Edmond & Paterson 1972; Fredrich et al. 1989; De Bresser
et al. 2002; Schubnel et al. 2006; Brantut et al. 2014; Verberne
et al. 2015). The transition between brittle and ductile behaviour is
critical in controlling earthquake source mechanics and the overall
strength of the lithosphere (e.g. Byerlee 1968; Scholz 1988; Evans
et al. 1990). In terms of shear deformation, the end members are
well-described by friction and flow laws, respectively. Combined
friction/flow laws have been developed (e.g. Shimamoto 1986; Bos
& Spiers 2002; Noda & Shimamoto 2010, 2012; Takahashi et al.
2011; Verberne et al. 2015) to study the transition between these
behaviours, that is the semi-brittle field. Relevant studies, that have
considered this transition via direct shear experiments, were per-
formed on halite (Shimamoto 1986; Noda & Shimamoto 2010) and
calcite (Verberne et al. 2015) gouge. Shimamoto (1986) showed a
normal stress and velocity dependent roll over in the failure en-
velope (their fig. 1). This study observed that the normal stress
dependent transition towards pressure insensitive strength, that is
ductile flow, occurred at lower normal stresses for the slowest ve-
locities. In rate-stepping experiments, Noda & Shimamoto (2010)
showed a transition in friction, upon an increasing velocity step,
from peak decay to a monotonic increase as the sample transitioned
between brittle and ductile deformation. They interpret a mono-
tonic increase in frictional strength upon a velocity step as ductile
behaviour and successfully show the ability of a ductile flow law
to fit their data. Strain rate dependent transitions between brittle
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and ductile behaviour in calcite rocks are well known from triaxial
experiments (e.g. Rutter 1974).

In order to better understand the mechanical behaviour of calcite
at shallow crustal conditions and to expand on current data, we per-
formed experiments over a range of normal stresses, 1-100 MPa,
and over 4 magnitudes of slip velocity, tenths of um s™! to thou-
sands of pm s~'. Furthermore, we collected post experimental sam-
ples for microstructural characterization in order to understand the
deformation mechanisms controlling the observed behaviour. Un-
derstanding the behaviour of calcite gouge in the semi-brittle field
and its implications for earthquake nucleation and propagation are
critical to understanding the hazards posed by shallow faults where
calcite is the dominant lithology.

2 METHODS

We performed experiments on powdered (grain size <150 wm) Car-
rara marble (>98 per cent CaCOs3) under saturated conditions and
at room temperature. We saturated our samples with a solution of
deionized (DI) water, which had been combined with Carrara marble
rubble and gouge and allowed to equilibrate at room temperature
for ~4 d. This process produced a solution that was in equilib-
rium with CaCOj, at room temperature, prior to our experiments.
Chemical equilibrium conditions for a CaCO;—H,0-CO, system is
reached within 48 hr under conditions of room temperature (Sjoberg
& Rickard 1984). We choose to saturate our experimental samples
with the CaCO; solution as previous work has shown that pore
fluid chemistry has a significant impact on the rates of calcite solu-
tion/precipitation (Zhang & Spiers 2005) and the rate of frictional
strengthening in general (Renard et al. 2012). Our choice of satu-
rating fluid was used to minimize changes in pore fluid chemistry
during our experiments and to better reflect the composition of pore
fluid surrounding carbonate-hosted faults at depth.

‘We performed our experiments (Table 1) in the BRAVA apparatus
hosted in the HPHT Laboratory at INGV, Rome, Italy (Fig. la;
Collettini et al. 2014). Calcite gouge was sheared in a double-
direct shear configuration (Fig. 1b) at normal stresses from 1 to
100 MPa. In our experiments, two initially 5-mm-thick gouge layers
are sandwiched between three steel forcing blocks (Fig. 1b). The two
side blocks are held stationary, and the centre forcing block is driven
downward causing shear to occur within the gouge layers. Normal
stress is applied by the horizontal piston in load-feedback control
mode and shear displacement accomplished by the vertical piston in
displacement-feedback control. Forces are measured with stainless
steel load cells (£0.03 kN) and displacements are measured with
LVDT’s (£0.1 um) attached to each piston. All experimental data
were recorded at 10 kHz and then down sampled to 1-1000 Hz
based on the shearing velocity

After construction and placement of the sample assembly into
BRAVA (Fig. 1), a normal stress of 1 MPa was applied and
the CaCO; solution was added to a flexible, plastic membrane
surrounding the sample. As sample preparation occurred under
room humidity conditions, all samples were allowed to saturate for
30 min at low normal stress (~1 MPa). Following saturation and
the equilibration of layer thickness, normal stress was increased to
the target value, and layer thickness was again monitored until a
quasi-steady-state of mechanical compaction was obtained.

‘We then performed two distinct types of experiments, slide-hold-
slide (SHS) experiments designed to investigate static frictional
strengthening, and velocity-stepping experiments to investigate the
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Table 1. Experimental data.

Normal stress (MPa) Exp #(SHS, VS) ss SHS velocity (um s') B (s7hH Be(s™hH (a—b) range
1.0 i143 0.62 1.0 0.041 0.059 -
1.0 i096, 1138 0.62 10 0.038 0.063 ~0.002 to 0.003
1.0 i144 0.64 100 0.038 0.086 -
1.0 i146 0.65 1000 0.030 0.082 -
25 1042, 1147 0.68 10 0.038 0.063 —0.001 to 0.006
i095 0.63 03 0.033 0.042 -
i151 0.61 0.5 0.035 0.047 -
i045 0.63 1.0 0.041 0.042 -
086 0.65 3.0 0.039 0.043 -
5.0 i040, i258 0.67 10 0.036 0.056 ~0.001 to 0.003
i329, — 0.66 10 0.037 0.054
i088 0.65 30 0.032 0.058 -
046 0.68 100 0.033 0.066 -
087 0.65 300 0.031 0.069 -
i085 0.66 1000 0.029 0.068 -
089 0.64 1300 0.029 0.072 -
098 0.63 3000 0031 0.073 -
10 i043, 1141 0.67 10 0.018 0.048 0.001 to 0.005
047, — 0.66 0.020 0.044
20 i093, 1148 0.66 10 0.012 0.035 —0.001 t0 0.011
50 i131 0.55 1.0 0.004 0.026 -
50 097,139 0.63 10 0.011 0.031 0.001 to 0.016
50 i142 0.63 100 0.014 0.037 -
50 i145 0.62 1000 0.017 0.045 -
100 i116, 1140 0.62 10 0.008 0.026 —0.005 t0 0.013

velocity dependence of friction. Each experiment began with a
7.5 mm shear run to develop a steady-state fabric within the gouge
(Fig. 1c). In SHS experiments, the shear run-in was performed at
the desired SHS shearing velocity, 0.3-3000 pum s~!, whereas for
the velocity step experiments, the shear run-in was performed at
10 um s7'. This was done to ensure that samples collected for mi-
crostructural analysis, exclusively from SHS tests, experienced only
one shear velocity. The steady-state coefficient of friction (us) was
measured during the run-in phase and calculated as the ratio of shear
stress to normal stress assuming no cohesion. In SHS experiments,
load point velocity is changed from the chosen shearing velocity
to 0 um s~! for a given hold time, and then back to same shearing
velocity (Figs 2a and b). We performed holds of 1, 3, 10, 30, 100,
300, 1000 and 3000 s with 0.65 mm displacement after each hold.
The amounts of frictional strengthening (Au) and creep relaxation
(Ap.) are determined for each hold (Fig. 2b). We then determine
the rates of frictional strengthening (8) and creep relaxation (8.):

B = Ap/logts, (1)

Be = Apc/logy th, 2

where #, is the hold time (Fig. 2¢). The parameter 8 provides an esti-
mate of the rate of increase in static frictional strength. The recovery
of frictional strength is one requirement for repeated earthquakes
on the same fault (Brace & Byerlee 1966; Dieterich 1978). Creep
relaxation during a hold is thought be related to earthquake after-
slip (Marone et al. 1991) and constitutive friction properties (Beeler
et al. 1994; Marone 1998a). Creep relaxation of the sample occurs
due to elastic relaxation of the experimental load frame and the
creeping of the experimental fault (Fig. 2c) during the hold pe-
riod. Some research has shown that a SHS test can induce transient
and/or semi-permanent changes in sliding friction (e.g. Karner ez al.
1997; Muhuri ef al. 2003; Chen et al. 2015). It is suggested that this
occurs when the processes that occur during frictional aging dis-
rupt shear localization (e.g. Sleep et al. 2000). We did not observe

such transient or permanent increases in sliding friction during our
experiments and thus do not explore this further.

In velocity stepping experiments, following the shear run-in
(Figs 2d—1), the load point velocity is increased in the following se-
quence, 0.1-0.3—1-3-10-30-100-300-1000 um s ™!, with 0.70 mm
displacement at each step. The velocity dependence of friction is de-
termined in the rate- and state-friction framework (Dieterich 1979;
Ruina 1983) by modelling (e.g. Reinen & Weeks 1993; Blanpied
et al. 1998) the data to determine the friction rate parameter (a—b):

(a—b)=Aug/AlnV, 3)

where u, is the steady state friction coefficient and V is sliding
velocity (Fig. 2e; e.g. Marone 1998a). We determined values of a—b
and other constitutive parameters by fitting our data using an inverse
modelling technique (e.g. Blanpied et al. 1998) with Dieterich’s
(1979) time-dependent friction law with two state variables:

w=po+aln(V/Vo)+ b In(Vo0:/De1) + by In(Vo6:/Dey)  (4)

do;/dt =1—-(V6;/Dy), (i =1, 2), (5)

where a, b, and b, are empirically derived constants (dimension-
less), 0, and 0, are state variables with units of time, and D,; and
D, are critical slip distances (e.g. Marone 1998a). Most of our data
are fit well with a one state variable friction law (b, = 6, = 0),
making the last term of eq. (4) unnecessary. However, some of our
data required two state variables. A two state variable friction law
was used when fitting the raw data with a one state variable friction
law could not be done adequately. This is generally evident from the
existence of friction evolution over both short- and long-distances.
In these cases the inversion did not converge within a specified over-
all error/misfit or if it converged, produced a poor fit to the raw data
on the basis of visual examination. We report values of (a—b), a,
and b, and define b = b, + b, to compare one and two state variable
cases. Positive values of (a—b), termed velocity strengthening, are
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Figure 1. (a) Schematic of the BRAVA experimental apparatus in a double-direct shear configuration. (b) Details of the grooved steel forcing blocks used in

this study. (c) Representative raw data for a slide-hold-side (SHS) experiment.

associated with stable sliding and inhibit rupture nucleation. Nega-
tive values, termed velocity weakening are a prerequisite for unsta-
ble slip and earthquake nucleation (e.g. Gu et al. 1984).

3 RESULTS
3.1 Mechanical behaviour

3.1.1 Frictional strength

We find that the steady-state frictional strength of saturated cal-
cite fault gouge ranges between 0.55 and 0.68 over a range of
normal stresses and velocities (Fig. 3; Table 1). At a shearing
rate of 10 um s!, we find a coefficient of friction of, u =
0.63 (Fig. 3a), consistent with previous research on pure cal-
cite gouge (Verberne et al. 2014b, 2015; Chen et al. 2015;
Giorgetti et al. 2015) and other calcite-rich gouges (e.g. Weeks
& Tullis 1985; Verberne et al. 2010; Scuderi et al. 2013; Car-
penter et al. 2014; Chen et al 2015) under similar experimen-
tal conditions of normal stress, temperature and saturation. At a

normal stress of 5 MPa and velocities ranging from 0.3 to
3000 um s~', we observe what appears to be an increase in steady-
state frictional strength until a velocity of 30~100 pm s~ followed
by a decrease (Fig. 3b). The observed changes in frictional strength
with sliding velocity are small, but consistent over our velocity
range and consistent with the idea of an intermediate velocity fric-
tion barrier (e.g. Di Toro et al. 2011, and references therein).

3.1.2 Friction strengthening and creep relaxation

The rates of frictional strengthening and creep relaxation for sat-
urated calcite depend on both normal stress and sliding velocity
(Fig. 4; Table 1). We observe that these rates are highest at our
lowest normal stress. At a shearing rate of 10 um s~!, we observe a
significant decrease in the rates of frictional strengthening and creep
relaxation between normal stresses of 1 and 20 MPa (Fig. 4a). The
rates then exhibit a more gradual decrease with further increases
in normal stress to 100 MPa. At 10 um s™! velocity, we observe
a consistent difference between the rates of frictional strength-
ening and creep relaxation that does not change with changes in
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Figure 2. (a) Details of the SHS procedure used in this study. (b) The measured healing parameters. Inset: Example determination of frictional strengthening
rate. (c) Data for a 10 s hold showing that the load point maintains a constant position while the sample creeps forward. (d) Details of the velocity-stepping
procedure used in this study. (¢) Schematic illustration showing the friction constitutive parameters a, b and a—b for a velocity strengthening rate step. (f)
Friction and displacement shown against time for a 300~1000 pum s~ velocity step.

normal stress (Fig. 4a). Our measured rates of frictional healing are
consistent with experiments performed under similar conditions on
calcite-rich gouge (Carpenter et al. 2014; Tesei et al. 2014; Chen
et al. 2015; Giorgetti et al. 2015), which in some cases have shown
decreases in the amount of frictional strengthening with increasing
normal stress (Tesei et al. 2014). Coefficient of determination (R?)

values for our determined strengthening and creep relaxation rates
are reported in Table S1.

We observe a complex dependence of the rates of frictional
strengthening and creep relaxation on sliding velocity. At a nor-
mal stress of 5 MPa and a velocity of 1 um s, the rates are nearly
equal, and then diverge as velocity is increased to ~1000 pm s,
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Figure 3. (a) Coulomb—Mohr failure envelope for the calcite gouge used
in our study. (b) Steady-state friction coefficient plotted against loading
velocity at a normal stress of 5 MPa.

after which they appear to remain constant (Fig. 4b). With decreas-
ing velocity, below 1 pm s!, we observe that the rate of creep
relaxation remains relatively constant, while the rate of frictional
strengthening decreases. Our observations are consistent with obser-
vations of decreased frictional strengthening rates in calcite gouge
when the shearing rate is decreased from 10to 1 um s™' (Chen et al.
2015). However, our work is not consistent with previous experi-
ments, on quartz gouge, which have shown the rates of frictional
strengthening and creep relaxation to be independent of shearing
rate (e.g. Marone 1998b).

3.1.3 Velocity dependence of friction

We also observe complex relationships between the velocity de-
pendence of friction and normal stress and sliding velocity (Fig. 5;
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Figure 4. Frictional strengthening and creep relaxation rates shown against
normal stress (a) and velocity (b). Note the rapid decrease in both the rates of
frictional strengthening and creep relaxation between 1 and 20 MPa normal
stress. Also note the complex dependence of each rate on velocity.

Table 1). At low normal stresses, <20 MPa, we observe velocity
neutral to slight velocity strengthening friction behaviour, with a
relatively narrow range for our friction rate parameter (¢—b) data
(Fig. 5a). As normal stress is increased to 100 MPa, we observe
an increasing range in (a—b) and mostly velocity strengthening be-
haviour (Fig. 5a). When shown against velocity, we observe two dis-
tinct types of behaviour for frictional stability. At normal stresses
<20 MPa, we observe velocity neutral to velocity strengthening
behaviour over the entire velocity range (Fig. 5b). However, once
normal stress exceeds 20 MPa, We observe an increasing, strongly
velocity strengthening behaviour to velocities of 3-10 um s™'. Sub-
sequently, we observe a decrease in the value of (a—b) that frequently
results in velocity weakening friction behaviour at a velocity of
1000 um s~! (Fig. 5b). Overall, our data for the velocity dependence
of friction, (a—b), are consistent with previous data for calcite-rich
gouges under similar experimental conditions (Verberne et al. 2010,
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Figure 5. Friction rate parameter, a—b, shown as functions of normal stress
(a) and velocity (b). At low normal stresses and velocities, calcite shows
primarily velocity-neutral friction behaviour. At higher normal stress, the
behaviour evolves from strong velocity strengthening behaviour at low ve-
locities to velocity-neutral behaviour at high velocities.

Scuderi et al. 2013; 2014b; Carpenter et al. 2014; Tesei et al. 2014,
2015; Chen et al. 2015; Giorgetti et al. 2015).

We further consider the roles of normal stress and velocity on
frictional stability by examining the evolution of the friction rate
parameters @ and b independently (Fig. 6). We observe decreases
in both a and b with increasing normal stress. We observe the
largest changes, with respect to increasing normal stress, at the
lowest velocities studied. At 100 MPa, a approaches 0 at velocities
<3 um s, whereas b becomes negative over a similar velocity
range (Figs 6a and b). The range of values is the smallest at low
normal stresses and increases with increasing normal stress. If we
specifically compare data at 1 and 50 MPa, low and high normal
stress, we observe that at 1 MPa, a and b are larger in magnitude,
than at 50 MPa, and in general remain relatively constant with

increasing velocity (Figs 6¢ and d). At 50 MPa, a shows a small
but consistent trend of increasing with velocity. b begins negative
at slow velocities, and then increases at a faster rate than a after a
velocity of 10 um s™'. The transition of @ towards 0 and b to negative
values, at low velocities, with increasing normal stress is consistent
with a transition in deformation from brittle to ductile that has been
previously observed in direct shear experiments (Shimamoto 1986;
Noda & Shimamoto 2010). We explore this further in the discussion
section.

3.2 Microstructural analysis

The starting material (Fig. S1), pulverized Carrara marble sieved
to <150 um, is characterized by an heterogeneous grain size dis-
tribution with a high concentration of fine material: 50 per cent of
the volume is characterized by a grain size <16 pm. At low normal
stresses (<10 MPa) microstructural observations confirm the het-
erogeneous grain size, with angular grains isotropically distributed
in a finer matrix (Figs 7a and b). The finer matrix is made of grains
with irregular boundaries where nanograins concentrate (Fig. 7c).
Comparison with the microstructure of the starting material indi-
cates that these nanograins formed during the experiments and are
not the result of the milling process. Furthermore, the poorly ce-
mented fine-ultrafine matrix seems to link different portions of the
matrix (Fig. 7c). Discontinuous geometrical features characterized
by irregular boundaries, and not affected by localized grain size
reduction, are parallel or at low angles with respect to the fault
boundaries (Figs 7a and b). At high normal stresses (>50 MPa)
the angular grains distributed in the finer matrix are affected by
pervasive intragranular fractures. In some portions of the fault, we
observe grain size reduction along R1 shear planes (e.g. Logan et al.
1979; Logan & Rauenzahn 1987) that are oriented with en-echelon
geometry and characterized by straight boundaries (Figs 7d and
e). In other portions we observe features with zig-zag boundaries,
subhorizontal or antithetic to R1 shear planes and not characterized
by grain size reduction (Fig. 7d). Additionally at higher stresses,
nanograins, 10-100 nm in size, are present and form a continu-
ous and interconnected network all around relatively larger calcite
crystals (Fig. 7f). This observation is similar to that made by Chen
et al. (2015) at the same normal stress, but higher temperature
(their fig. 7g). Microstructural investigations on experimental faults
at 5 MPa and at different sliding velocities (i.e. 0.3 um s~ in 1095
versus 3000 um s~! in i098) indicate that the difference in sliding
velocity does not influence the microstructure evolution (Fig. S2),
at least to the same extent as normal stress.

Further analysis of the experimental sample from the experiment
performed at 50 MPa normal stress was performed on via an optical
microscope (Fig. 8). At this normal stress, in addition to the R1
shears visible under the SEM, we also observe deformation along
B, and Y shear planes (e.g. Logan et al. 1979) where there is signif-
icant grain size reduction. Some portions of the experimental fault
are not affected by grain size reduction: here the calcite crystals are
up to 150 um in dimension and show an intense twinning typical of
the starting Carrara marble. The most striking feature is that along
B, Y and R1 shear planes, we do not observe the typical grain size
reduction associated with localization, but rather an anastomosing
network of low-birefringence material pervading all the zones af-
fected by grain size reduction and shearing (Fig. 8b). Within this
anastomosing network, surviving calcite crystals show fading grain
boundaries and in some cases, their border abruptly terminates in
the low-birefringence material (Figs 8c and d).
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Figure 6. Friction rate parameters a and b shown as a function of normal stress (a, b) and velocity (c, d). Note that in (c, d) we only show data for normal

stresses of 1 and 50 MPa.

4 DISCUSSION

4.1 Microphysical behaviour

Previous studies have shown that the deformation of calcite at shal-
low crustal conditions and velocities, comparable to those expe-
rienced during the nucleation of earthquakes, occurs by a variety
of deformation mechanisms (e.g. Fredrich et al. 1989; Schubnel
et al. 2006; Verberne et al. 2013, 2014b, 2015; Chen et al. 2015).
These studies have shown that at relatively low temperatures and
normal stresses (7 < 100 °C and o," < 100 MPa), processes such
as pressure solution, interacrystalline plasticity, superplastic flow
of nanogranular calcite, and frictional sliding are all active. Under-
standing the interplay and competition between these mechanisms
and how they influence fault behaviour and earthquake nucleation
is a critical goal of these studies.

Our mechanical results indicate that we observed the brittle/semi-
brittle (Shimamoto 1986; Evans ef al. 1990; Noda & Shimamoto
2010) transition for calcite gouge in our experiments. Furthermore,
our data show how the transition from brittle to semi-brittle be-
haviour, and the presence of related deformation mechanisms, influ-

ences the frictional behaviour of calcite fault gouge. This transition
in deformation, from brittle to semi-brittle is first indicated by the
evolution of the friction rate parameter, b (Fig. 6d). This param-
eter, often termed the evolution effect, is thought to represent the
evolution of contact area upon a velocity perturbation (e.g. Marone
1998a). At low normal stress, we observe relatively constant and
positive values of b, which suggests a dominantly brittle mode of
behaviour over the entire velocity range (0.1-1000 pum s'). At
higher normal stress, we observe a transition from negative values
of b, to positive values of b with increasing velocity (Fig. 7d). Our
observations of negative b in calcite gouge at room temperature
are consistent with other studies that have shown similar behaviour
under comparable conditions of temperature and velocity (Verberne
et al. 2014b; Chen et al. 2015). Additionally, both the negative val-
ues for b and the near zero value for B are also consistent with
the saturation of contact area, which would be expected to occur
under conditions of ductile deformation. To better characterize and
illustrate this behaviour and how it evolves with normal stress and
velocity, we present additional data and interpretation (Fig. 9). The
transition from brittle to semi-brittle deformation is controlled by
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Figure 7. Microstructures of experimentally deformed gouges from experiments at 1 (a—c) and 50 (d—f) MPa normal stress. See text for description.

both normal stress and velocity. At velocities >1 um s, we observe
a linear failure envelope over our entire velocity range, with © =
~0.64 (Fig. 9a). Pressure dependent strength is consistent with fric-
tional (i.e. brittle) processes. At velocities <1 um s™!, we observe a
linear failure envelope to a normal stress of 20 MPa, that then begins

to deviate at higher stresses, consistent with an eventual transition
to pressure independent strength (Fig. 9a). This is consistent with
the evolution of halite gouge to ductile behaviour under similar
experimental conditions (Shimamoto 1986). The transition to semi-
brittle behaviour is also observed in slide-hold-slide (Fig. 9b) and
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Figure 8. Optical micrographs of the experimental gouge from an experiment at 50 MPa normal stress. See text for description.

velocity step experiments (Fig. 9¢c). In SHS tests performed at nor-
mal stresses of 1 and 50 MPa and a background-loading rate of
1 um s™!, we observe typical brittle behaviour at 1 MPa and semi-
brittle behaviour at 50 MPa. This is evidenced by the relatively stiffer
reload and sharp, large peak in friction at 1 MPa compared to the rel-
atively less stiff reload and broader, small peak at 50 MPa (Fig. 9b).
In velocity step experiments, we observe brittle behaviour at low
normal stress, over the entire velocity range and a transition from
semi-brittle to brittle behaviour, with increasing sliding velocity, at
high normal stress (Fig. 9c). This is consistent with the transition
in frictional response upon a velocity step observed by Noda and
Shimamoto (2010) where under ductile conditions they observed
a monotonic increase, values of the friction rate parameter b < 0,
that transitioned to peak decay and frequent velocity-weakening
behaviour under brittle conditions.

4.2 Microstructure interpretation and the transition from
brittle to semi-brittle deformation

Our microstructural analysis shows the presence of both brittle de-
formation, characterized by granular fracture, grain size reduction
and localization (Figs 7d,e, 8 and 9d), and semi-brittle deformation
with dissolution and precipitation (Figs 7e, 8, and 9d), granular
fracture and folding. In particular, calcite crystals with fading grain
boundaries that terminate into the low-birefringence anastomosing
material suggest dissolution of calcite crystals favoured along the
twinning planes that represent planes of structural weakness. Micro-
scopic analyses shows that the low-birefringence material consists
of newly formed (unstrained crystals) nanograins (100 nm) that
for their small thickness develop a low-birefringence. Therefore in
the areas of shearing, that is B, Y and R planes, we propose that
grain-size reduction promoted fluid-assisted solution transfer pro-
cesses with the precipitation of nanogranular material forming an
anastomosing network. Similar nanogranular material has been ob-
served by Verberne et al. (2013, 2015) in samples from experiments
performed under the same boundary conditions, 50 MPa normal
stress and room temperature: here the microstructure results from
diffusion mass transfer processes and crystal plastic deformation
(Verberne et al. 2013, 2015).

Our mechanical and microstructural analysis, combined with pre-
vious work, supports our interpretation of a change from semi-brittle
behaviour at low velocities to brittle behaviour at higher velocities.
Our work is consistent with previous studies that have mapped this
transition in Carrara Marble under similar conditions of temperature
normal stress, and strain rate in different experimental configura-
tions, that is triaxial experiments on cylindrical cores (e.g. Fredrich
et al. 1989; Brantut et al. 2014). Fredrich ef al. (1989) observed
this transition at room temperature and between confining pres-
sures of 25 and 75 MPa, depending on grain size. Furthermore,
they observed a transition from shear localization at low confining
pressures to distributed deformation at higher confining pressures
(Fredrich et al. 1989). We note that this work was not preformed
under saturated conditions. Brantut ez al. (2014) also observed this
transition in water-saturated limestone samples at strain rates of
1073 s~!. We note that our determined shear strain rates at our low-
est velocities are on the order of 1075-107* s~!, entirely consistent
with previous work that has shown ductile behaviour in calcite-rich
rocks at room temperature.

At low velocities and high stresses, both plastic deformation of
calcite grains (Fig. 9d; e.g. Schubnel et al. 2006) and sliding defor-
mation accommodated by solution transfer processes (Figs 8b—d;
e.g. Rutter & Manprice 1979) could result in the observed semi-
brittle behaviour (Shimamoto 1986; Noda & Shimamoto 2010). The
observed behaviour in b, as well the rapid static strengthening and
the numerous microstructural observations support the interpreted
presence of solution transfer processes. The decrease in frictional
strengthening with increased normal stress (Fig. 4a) is consistent
with a diffusion controlled solution transfer process, as low poros-
ity would result in the reduction of the available paths for fluid
transport. The semi-brittle behaviour of calcite at conditions repre-
sentative of the shallow crust would be expected to exert influence
over the mechanical behaviour of the fault. While not the explicit
goal of this study, we recognize that our work can inform past and
ongoing work performed to better understand the microphysical
foundations of rate- and state-friction law and develop mechanism
based inputs (e.g. Chester & Higgs 1992; Sleep et al. 2000; Nakatani
2001; Niemeijer & Spiers 2007; Putelat et al. 2011; Verberne
et al 2015).

9T0Z ‘€ Yo\ uo 1s9nb Aq /Blo'sjeulnolp.ojxo’1lB//:dny woly pspeojumoq


http://gji.oxfordjournals.org/

558  B.M. Carpenter et al.

70 1 T T T 0-7 T T T T
(b) 300s Hold
60 |- 0.65| V=1um/s |
©

T 50

g/ 0.6

A

o) 40 |-

N o 0.55} -

5 30f

()

(.,C) 0.5} .
201 o, (MPa)
10l 0.45| 1

1000 —50
0 L L I L L 0_4 L L L |
0 20 40 60 80 100 0 200 400 600 800
Normal Stress (MPa) Time (s)
064 (C) {1 ()
0.56 |
1MPa
0.64
3 0.6
0.56 i
50MPa

9 0 1. 12 13, 14 15
S1hear blsplacement (mm)

Figure 9. Data and analysis showing the transition from brittle to semi-brittle behaviour. (a) Coulomb-Mohr failure envelope for different shearing velocities.
Dashed line indicates linear fit to data at ¥’ = 1000 pum s~'. Solid line is a fiducial line through data at ¥ = 0.1 pum s™'. Actual values of shear stress at high
stress (=50 MPa) and low velocity (<1 pm s71) are likely slightly lower than reported values as steady-state was not achieved in all cases. (b) Raw data for
SHS experiments at 1 and 50 MPa normal stress performed at a velocity of 1 um s™'. Note nearly 0 strengthening and more compliant reload. (c) Raw data for
velocity steps at 1, top and 50, bottom, MPa normal stress. At low normal stress, brittle behaviour is observed over the entire velocity range. At high normal
stress, a transition is observed from semi-brittle behaviour at low velocity, to brittle behaviour at high velocity. Velocity sequence is the same as shown in
Fig. 2(d). (d) SEM images showing evidence of brittle, left, and semi-brittle, right, behaviour.

4.3 Implications for fault behaviour

Several well-documented, carbonate-hosted, seismic sequences, e.g.
Umbria-Marche 1997-1998 (Mirabella ef al. 2008) and L’ Aquila
2009 (Valoroso et al. 2014) show that a significant number of af-
tershocks nucleate at very shallow crustal levels, up to 500 m of
depth. In addition, the Varoni borehole, located in the northern por-
tion of the L Aquila seismic sequence shows temperatures of 46 and
67 °C at crustal depths of 3.70 and 5.70 km, respectively (ViDEPI
project; http://unmig.sviluppoeconomico.gov.it/videpi/videpi.asp).
Together, these data indicate that our laboratory measurements,
conducted at room temperature, can be used to further our under-
standing of the seismicity occurring in carbonates at shallow crustal
levels. For the seismicity occurring at greater depths, the transi-
tion from velocity-strengthening to velocity-weakening frictional

behaviour at temperatures greater than 100 °C, observed in some
experiments on calcite, can provide additional understanding (e.g.
Verberne et al. 2015). In general our data show a velocity neutral to
strengthening behaviour, which would favor stable sliding and fault
creep (Fig. 5). However, at low normal stresses we document dom-
inantly velocity-neutral behaviour and at higher normal stresses,
we observe a transition to velocity-weakening behaviour with in-
creasing sliding velocity (Fig. 5). In addition, it is worth noting that
accelerated post-seismic slip can drive aftershock activity in fault
portions that are velocity neutral or slightly velocity strengthening
(Boatwright & Cocco 1996).

In areas of lower normal stress, either at shallow depths or due
to high pore fluid pressure, we would expect enhanced post-seismic
creep, due to high rates of creep relaxation (Fig. 4), which would be
expected to drive aftershock activity. Such behaviour was observed
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for the 2009 L’ Aquila earthquake where the rupture is thought to
have nucleated in an area of high-fluid pressure, and thus low nor-
mal stress (Lucente ef al. 2010; Di Stefano et al. 2011; Malagnini
et al. 2012). The rupture then propagated to the surface where sig-
nificant aftershocks were observed to depths as shallow as 1 km
(D’Agostino et al. 2012; Valoroso et al. 2014). At high normal
stresses, strong velocity-strengthening friction behaviour, at low
velocities, would initially resist rupture nucleation and propagation
(Fig. 5b). This data could in part explain why rupture initially nu-
cleated in an area of low normal stress propagated quickly to the
surface, in the direction of decreasing normal stress (Cirella et al.
2009). The observation of delayed rupture along strike, at depth in
an area of higher normal stress, is consistent with our data that shows
rupture would be resisted initially, and then favoured as the velocity
increased. We recognize that our results are not the only possible
explanation. Other explanations for the observed behaviour could
result from differences in fault structure (Di Stefano er al. 2011;
Trippetta et al. 2013; Carpenter et al. 2014) and/or temperature ef-
fects on frictional properties (e.g. Verberne et al. 2015). The depth
dependence and heterogeneity of frictional properties along faults
have been widely cited to explain locations of rupture nucleation,
directivity in rupture propagation, post-seismic slip, and aftershock
activity (e.g. Tse & Rice 1986; Boatwright & Cocco 1996; Collettini
et al. 2011; Carpenter et al. 2014; Niemeijer & Vissers 2014).

5 CONCLUSIONS

We have presented a comprehensive data set on the frictional be-
haviour of calcite at shallow crustal conditions. Our mechanical
data, frictional strength, stability, and strengthening behaviour, are
derived from room temperature experiments performed between 1
and 100 MPa normal stress and at velocities that range from tenths
of um s™' to thousands of pum s™'. We have shown that the frictional
strengthening and stability behaviour of calcite is strongly depen-
dent on normal stress and shear velocity. We observed a strong
dependence of the rates of frictional strengthening and creep relax-
ation on normal stress, with the rate of creep relaxation also showing
a dependence on sliding velocity. Furthermore, we observe velocity
neutral frictional behaviour at low normal stresses and all veloc-
ities where microstructural investigations show that deformation
is accommodated via comminution and grain rotation/translation.
At higher normal stress, we observe strong velocity strengthen-
ing behaviour at low sliding velocity, consistent with semi-brittle
behaviour, followed by a transition to velocity weakening friction
behaviour at the highest sliding velocity. This change in behaviour
is accompanied with localized deformation along B, Y and R1 shear
planes where grain-size reduction and fluid-assisted diffusion mass
transfer play an important during deformation. All of our post-
experimental samples indicate the presence of both frictional and
solution transfer processes in our gouge layers.

The high rates of frictional strengthening and velocity neutral
frictional behaviour of calcite gouge at low normal stresses, indicate
that fault gouges where calcite plays a dominant mechanical role
are likely to propagate ruptures that have started elsewhere and
experience aftershock activity. Deeper in the crust, where normal
stress exceeds 50 MPa, fault gouges dominated by calcite are likely
to resist initial rupture nucleation at velocities below 30 um s'.
As the velocity continues to increase, rupture nucleation would
accelerate due to the transition to velocity weakening frictional
behaviour and possible dynamic weakening processes that would
be expected to occur.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this paper:

Table S1. Calculated rates and their coefficient of determination
(R?) values for a logarithmic fit to all data points.

Figure S1. SEM images of the starting material used in this study.
Material was loaded to 5 MPa normal stress under 5% RH condi-
tions, and then sampled for thin section.

Figure S2. SEM images for experiments performed at 0.3 um s
(top panel) and 3000 pum s~'. Images show no major differences
between the shown velocities.
(http://gji.oxfordjournals.org/lookup/suppl/doi: 10.1093/gji/
ggw038/-/DC1).
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