
26 December 2024

Tiezzi, S., Verde, S. (2017). The signaling effect of gasoline taxes and its distributional implications. In EUI
Working Papers RSCAS (pp. 1-27). Firenze : RSCAS 2017/06 Robert Schuman Centre for Advanced Studies
Florence School of Regulation Climate.

The signaling effect of gasoline taxes and its distributional implications

Publisher:

Terms of use:

Open Access

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. Works made available under a Creative Commons license can be used according to the terms and
conditions of said license.
For all terms of use and more information see the publisher's website.

Availability:

RSCAS 2017/06 Robert Schuman Centre for Advanced Studies Florence School of Regulation Climate

This version is availablehttp://hdl.handle.net/11365/1005673 since 2017-07-20T13:46:49Z

Original:

This is the peer reviewed version of the following article:



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

RSCAS 2017/06 
Robert Schuman Centre for Advanced Studies 
Florence School of Regulation Climate 

The signaling effect of gasoline taxes and its 
distributional implications 
 

Silvia Tiezzi and Stefano F. Verde



 
 

 
 
 

 
 
 

 
 



 

 

  

 

 

 
  

European University Institute 
Robert Schuman Centre for Advanced Studies 
Florence School of Regulation Climate 

The signaling effect of gasoline taxes and its distributional 
implications 
 

Silvia Tiezzi and Stefano F. Verde 
 

EUI Working Paper RSCAS 2017/06 
 



 
  

This text may be downloaded only for personal research purposes. Additional reproduction for other 
purposes, whether in hard copies or electronically, requires the consent of the author(s), editor(s).  
If cited or quoted, reference should be made to the full name of the author(s), editor(s), the title, the 
working paper, or other series, the year and the publisher. 
 
 
 
ISSN 1028-3625 

© Silvia Tiezzi and Stefano F. Verde, 2017 

Printed in Italy, February 2017 
European University Institute 
Badia Fiesolana 
I – 50014 San Domenico di Fiesole (FI) 
Italy 
www.eui.eu/RSCAS/Publications/ 
www.eui.eu 
cadmus.eui.eu 



 

 

Robert Schuman Centre for Advanced Studies 

The Robert Schuman Centre for Advanced Studies (RSCAS), created in 1992 and directed by Professor 
Brigid Laffan, aims to develop inter-disciplinary and comparative research and to promote work on the
major issues facing the process of integration and European society. 

The Centre is home to a large post-doctoral programme and hosts major research programmes and 
projects, and a range of working groups and ad hoc initiatives. The research agenda is organised around 
a set of core themes and is continuously evolving, reflecting the changing agenda of European
integration and the expanding membership of the European Union.  

Details of the research of the Centre can be found on:  
http://www.eui.eu/RSCAS/Research/ 

Research publications take the form of Working Papers, Policy Papers, Policy Briefs, Distinguished
Lectures, Research Project Reports and Books.  

Most of these are also available on the RSCAS website:  
http://www.eui.eu/RSCAS/Publications/ 

The EUI and the RSCAS are not responsible for the opinion expressed by the author(s).  

Florence School of Regulation Climate 

Florence School of Regulation Climate (FSR Climate) is a research group within the Robert Schuman 
Centre for Advanced Studies. Its goal is to provide a reliable source for information and analysis of EU
climate policy and a forum for discussion of research carried out in this area among government 
officials, academics and industry. 

FSR Climate is directed by Xavier Labandeira, Professor of Economics at the University of Vigo and it
works in collaboration with the energy and regulatory policy research groups of the Florence School of 
Regulation.  

The opinions expressed in this paper are those of the author(s) and do not represent the views of the
European University Institute or any of its subsidiary components. 

For more information:  

http://fsr.eui.eu/climate/ 

 

 

 





 

 

Abstract 

This paper proposes and tests a better defined interpretation of the different responses of gasoline 
demand to tax changes and to market-related price changes. Namely, the signaling effect of gasoline 
taxes is one that impacts on long-run consumer decisions in addition to the incentives provided by tax-
inclusive gasoline prices. Our hypothesis is tested using a complete demand system augmented with 
information on gasoline taxes and fitted to household-level data from the 2006 to 2013 rounds of the US 
Consumer Expenditure survey. Information on gasoline taxes is found to be a significant determinant of 
household demand additional to tax-inclusive gasoline prices. The equity implications are examined by 
contrasting the incidence across income distribution of a simulated $0.22/gallon tax increase to that of 
a market-related price increase equal in size. The tax increase is clearly regressive, slightly more than 
the market-related price increase. However, regressivity is by no means a reason to give up gasoline 
taxes as an instrument for reducing gasoline consumption externalities. Their high effectiveness in 
reducing gasoline demand implies that small tax increases can substantially improve the environment 
while minimizing the related distributional effects. Also, gasoline taxes generate revenue that can be 
used to offset their regressivity. 
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1. Introduction 

In the US, carbon dioxide (CO2) emissions from the use of private vehicles make up over one fifth of 
total greenhouse gas emissions (EPA, 2016). Gasoline taxes can be an effective instrument for curbing 
CO2 emissions from road transportation (Sterner, 2007), but this potential is far from being fully 
exploited in the US (Parry and Small, 2005). While generating more revenue than any other commodity 
tax, both at the federal and State levels, gasoline taxes are very low as compared with those levied in 
many other countries, notably in Europe (OECD, 2015). In recent years, however, given the need to 
raise extra fiscal revenues and growing concerns about climate change, the option of raising gasoline 
taxes has received greater consideration in the American public policy debate. In addition, the current 
phase of low gasoline prices has created favorable conditions for implementing gasoline tax hikes. 

Gasoline tax increases remain nevertheless highly unpopular. Public resistance to them is at least 
partly explained by their adverse distributional effects. In developed economies1, gasoline is generally 
a necessity good in household consumption. Therefore, gasoline price increases tend to affect the poor 
more than the wealthy in relative terms. That is, they tend to be regressive. Yet, as much as the 
distributional incidence of gasoline price increases is a critical parameter for the policymaker, its 
estimation is to some significant extent dependent on the approach used (Sterner, 2012a, 2012b). At 
least three dimensions of the models used are relevant in this sense: a) the time horizon, which can 
determine the measure of consumers’ ability to pay, typically income or total expenditure as a proxy for 
lifetime income; b) the price elasticities of gasoline demand, which may or may not vary across 
households; and c) the tax elasticities of gasoline demand, which may or may not differ from the price 
elasticities. In this paper, we control for these elements within a single empirical framework. 

In an application to US household data, our analysis allows for distinct price and tax elasticities of 
gasoline demand varying across income distribution, and considers two alternative measures of ability 
to pay, namely annual income and annual total expenditure. Central is the distinction between the 
responses of gasoline demand to tax changes and to market-related price changes (i.e., related to market 
forces). There is indeed growing evidence that the first have much bigger impacts on gasoline demand 
than the second (Davis and Kilian, 2011; Scott, 2012; Baranzini and Weber, 2013; Brockwell, 2013; Li 
et al., 2014; Rivers and Schaufele, 2015; Tiezzi and Verde, 2016; Antweiler and Gulati, 2016; 
Andersson, 2016). In the literature, two main explanations are provided which hinge on the greater 
persistence and the greater visibility through media coverage of tax changes relative to market-related 
price changes. A tax-aversion explanation is also plausible, whereby consumers may react more if they 
know that the price increase they face is due to a tax increase (McCaffery and Baron, 2006; Kallbekken 
et al., 2010; Kallbekken et al., 2011; Blaufus and Möhlmann, 2014). These explanations are not 
mutually exclusive and all imply that gasoline taxes are more effective in reducing gasoline demand 
than standard price elasticities (i.e., estimated without distinguishing between price changes induced by 
taxation or by the market) indicate. This means that a given reduction in emissions can be achieved 
through a smaller tax increase, thus one with a less important distributional impact too. 

Using microdata from the 2006 to 2013 rounds of the US Consumer Expenditure Survey, we estimate 
a complete system of demand augmented with information on gasoline taxes. As in Tiezzi and Verde 
(2016), gasoline taxes are assumed to have a dual nature and, accordingly, changes in their level affect 
gasoline demand in two different ways. Considering gasoline taxes as a simple component of the 
gasoline price, gasoline tax changes alter relative prices. At the same time, considering gasoline taxes 
as a fiscal policy instrument, changes in their level constitute policy signals. These signals affect long-
run consumer decisions, such as buying a more fuel-efficient car, changing transportation mode or 
moving closer to work, which have an impact on gasoline demand. Thus, in the long run, the 

                                                      
1 In developed economies, the income elasticity of gasoline demand is typically smaller than 1. The same does not apply to 

developing economies. 
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effectiveness of gasoline taxes in reducing gasoline demand is the result of the two effects: the price 
effect and the signaling effect, respectively. Just as the price effect, the signaling effect may well vary 
across households, as different households may respond differently to tax policy signals. The signaling 
effect would then contribute to determining the distributional impact of the tax change. As concerns the 
modeling of the tax signal, information on gasoline taxes enters our model as a conditioning variable 
(Pollak, 1969, 1971). 

After model estimation, two counterfactual scenarios are simulated for the years 2006 to 2011. In the 
Tax Scenario, the federal gasoline tax ($0.184/gallon) is raised by $0.22/gallon, which corresponds to a 
$25/tCO2 carbon tax. In the Market Scenario, a market-related price increase of the same size 
($0.22/gallon) is considered. In the Tax Scenario, the impact of the price increase on gasoline demand 
is given by the sum of the price effect and the signaling effect. In the Market Scenario, only the price 
effect is in play. We then assess the distributional impacts of the two price increases, which are equal in 
magnitude but different in nature (policy vs market). Two approaches are used. The welfare effects of 
the market-related price increase are first derived, as measured by the Compensating Variation. The 
same approach cannot be used to evaluate the impact of the tax increase due to gasoline taxes entering 
the model as a conditioning variable. Welfare comparisons across levels of the conditioning variables 
are indeed not viable (Pollak and Wales, 1979; Pollak, 1989). We thus conduct tax incidence analysis 
contrasting the tax payments before and after the tax increase across income distribution. 

This paper contributes to the literature in two main ways. First, within a structural model, it proposes 
and statistically tests a better defined interpretation of the different responses of gasoline demand to tax 
changes and to market-related price changes. Namely, the signaling effect specific to gasoline tax 
changes is one that impact on long-run consumer choices in addition to the incentives provided by retail 
tax-inclusive gasoline prices. Second, it analyzes the distributional incidence of gasoline price increases 
in relation to their nature as tax increases or market-related increases. The findings bear policy 
implications concerning the environmental effectiveness and the regressivity of gasoline taxes. 

The rest of the paper is organized as follows. Section 2 illustrates the model, the simulation scenarios, 
and the approaches used to assessing the distributional effects. Section 3 presents the data. Section 4 
discusses the results. Section 5 concludes. 

2. Methodology 

2.1 The QAIDS model with gasoline taxes as a conditioning variable 

The functional form chosen for our model is the Quadratic Almost Ideal Demand System (QAIDS) of 
Banks et al. (1997), which generalizes the popular AIDS introduced by Deaton and Muellbauer (1980a). 
Compared to the AIDS, the QAIDS adds a quadratic term in (the log of) income, which allows for non 
linear changes in the budget shares following a price or income change. Moreover, the QAIDS easily 
allows for consumer heterogeneity and conditional demand functions (Pollak, 1969). 

In a demand model, conditioning variables usually represent preallocated goods affecting 
consumption choices over the goods of interest (i.e., those whose demand is modeled). Such goods can 
be as diverse as durable goods (Deaton, 1981), public goods (Pollak, 1989) or the time available for 
leisure (Browning and Meghir, 1991). The first to stress the importance of conditional demand functions 
was Pollak (1969), who noted that if some goods are preallocated in given quantities, they may affect 
consumer behavior by preventing instant adjustment to the long-run equilibrium. If so, the goods of 
interest are not statistically separable from the conditioning goods, which then should be controlled for 
in a regression. 

Though they are not goods, gasoline taxes enter our model as a conditioning variable, in addition to 
being embedded in the gasoline price index. The idea is that the level of gasoline taxes carries 
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information which, as the above examples of conditioning variables, both is exogenous to the consumers 
and affects their consumption choices2. The same approach is used in other demand system studies 
analysing the effects of different types of information (e.g., Jensen et al., 1992; Chern et al., 1995; 
Duffy, 1995; Moro et al., 1996; Brown and Lee, 1997). We expect the level of gasoline taxes to influence 
long-run consumer choices such as purchasing a more fuel-efficient car, changing transportation mode 
or moving closer to work, which have an impact on gasoline demand. We check for the validity of our 
approach by testing whether the goods in the demand system are separable from gasoline taxes as a 
conditioning variable. If gasoline taxes do determine gasoline demand in addition to their capacity as a 
price component, then they are a conditioning variable and, therefore, are not separable from the goods 
in the system. 

In formal terms, a cost function conditional on the quantities of the goods of interest,	, a set of 
conditioning variables, ࢠ, and a set of the consumer’s demographic characteristics, ࢊ, is defined as: 
 

ܿሺ, ,ࢠ ,ࢊ ሻݑ ൌ min

	ሺ|ܷሺ, ,ࢠ ሻࢊ ൌ  ሻݑ

(1) 

where  is the price vector of the goods of interest, U is the utility function and u is the utility level. The 
properties of such function are discussed in Pollak (1969), Browning (1983) and Browning and Meghir 
(1991). The conditional compensated demand functions, ݍሺ, ,ࢠ ,ࢊ  ሻ, are the derivatives of c withݑ
respect to pi, with ݅ ൌ 1, 2, … , ݊. Defining y as total expenditure on the n goods	ሺݍଵ,… ,  ሻ, the identityݍ
ܿሺ, ,ࢠ ,ࢊ ሻݑ ൌ ,ܸሺ	is inverted to derive the indirect utility function ݕ ,ࢠ ,ࢊ  ሻ. We can then substituteݕ
this indirect utility function into the compensated demand functions to obtain the system of 
uncompensated demands. The QAIDS allows demographic and conditioning variables to affect 
demands in a theoretically consistent way.  

The QAI conditional cost function has the form: 
 

ln൫ܿሺ, ,ࢠ ,ࢊ ሻ൯ݑ ൌ ln൫ܽሺ, ,ࢠ ሻ൯ࢊ  ܾሺ, ,ࢠ ሻቌࢊ
1

1
ݑ െ ,ሺߣ ,ࢠ ሻࢊ

ቍ 

(2) 

where ܽሺ, ,ࢠ ,ሻ is a homogenous-of-degree-one price function, and ܾሺࢊ ,ࢠ ,ሺߣ ሻ andࢊ ,ࢠ  ሻ areࢊ
homogenous-of-degree-zero price functions. Indicating with the vector ࢜ ൌ ሾݒଵ, … ,  ሿ் both z and dݒ
for notational convenience, demographics, a time trend and gasoline taxes as a conditioning variable 
enter as taste-shifters,	ݒ, in the share equations. To maintain integrability, these shifters are part of the 
,terms in ln൫ܽሺ	ߙ ,࢜ ሻ൯, which is specified as a Translog price aggregator function: 
 

ln൫ܽሺ, ሻ൯࢜ ൌ ߙ ൝ߙ ߙݒ



ୀଵ

ൡ



ୀଵ

lnሺሻ 
1
2
ߛ lnሺሻ ln൫൯



 

(3) 

While ܾ and	ߣ are specified as a Cobb-Douglas price aggregator and as a linear function, respectively: 

                                                      
2 The conditional demand approach does not require an explicit modeling of the conditioning variables, which are given for 

the consumers. We can thus ignore how gasoline taxes are determined.  
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ܾሺ, ሻ࢜ ൌ ∏ 
ఉሺ࢜ሻ

ୀଵ  where ߚሺ࢜ሻ ൌ ∑ ∑ ߚൣ  ൧ݒߚ

ୀଵ


ୀଵ  

(4) 

ln ,ሺߣ ሻ࢜ ൌሾߣ  ሿݒߣ


ୀଵ



ୀଵ

lnሺሻ 

(5) 

Inverting the cost function (2) to obtain the indirect utility function and, then, applying Roy’s identity, 
we obtain the following uncompensated budget share equation for good i: 
 

ݓ ൌ ߙ ߙݒ



ୀଵ

	ߛ ln൫൯



ୀଵ

ሾߚ  ሿݒߚ


ୀଵ

ln ൬
ݕ

ܽሺ, ሻ࢜
൰

ሾߣ  ሿݒߣ


ୀଵ

1
ܾሺ, ሻ࢜

൬ln ൬
ݕ

ܽሺ, ሻ࢜
൰൰

ଶ
 

 

(6) 

The demand share equation (6) satisfies integrability (i.e., demand is consistent with utility 
maximization) under the following parametric restrictions: 
 

∑ ߙ ൌ 1, ∑ ߙ ൌ 0, ∑ ߚ ൌ 0, ∑ ߛ ൌ 0	∀	݆, ∑ ߣ ൌ 0
ୀଵ


ୀଵ


ୀଵ


ୀଵ


ୀଵ  (Adding-up) 

∑ ߛ

ୀଵ ൌ 0	∀	݆ (Homogeneity) 

ߛ ൌ   (Symmetry)ߛ

(7) 

A simple way to check for the presence of nonlinear income effects is to test the null hypothesis that the 
 parameters are zero3. Furthermore, Section 3.3 shows the model specification that is actually	ߣ
estimated to deal with censoring (large proportions of zeros in the dataset) for some of the budget shares. 

2.2 The signaling effect of gasoline taxes 

Part of the literature dealing with the different responses of gasoline demand to tax changes and to 
market-related price changes uses models that do not rest on a specific theory of how the first affect 
demand differently from the second (e.g., Davis and Kilian, 2011; Li et al., 2014; Rivers and Schaufele, 
2015; Andersson, 2016). The rest of the literature uses structural demand systems (e.g., Ghalwash, 2007; 
Scott, 2012; Brockwell, 2013; Tiezzi and Verde, 2016). To interpret the greater responsiveness of 
gasoline demand to tax changes, this set of studies makes explicit reference to the signaling effect of tax 
policy (Barigozzi and Villeneuve, 2006). Still, how the signaling effect exactly operates is not 

                                                      
3 We ran a likelihood ratio test to test the hypothesis that the λi parameters are zero. The test rejected the null hypothesis, 

thus we chose the QAIDS rather than the AIDS specification. 



The signaling effect of gasoline taxes and its distributional implications 

European University Institute 5 

explained4. Thus, with the demand systems just as with the non-structural models, gasoline prices are 
usually broken down into the tax component and its complement, which is the tax-exclusive price. The 
demand responses to equivalent changes in the two price components are then computed and contrasted. 

In this respect, we follow Tiezzi and Verde (2016) who estimate a demand system but deviate from 
the literature in specifying that the signaling effect of a tax change is additional to the effects of tax-
inclusive price changes, whether these are caused by market forces or indeed reflect a tax change. 
Accordingly, gasoline taxes enter the model in two fashions: implicitly as a component of the gasoline 
price index and explicitly as a conditioning variable. The economic meaning of this modeling choice is 
that the signaling effect of gasoline tax changes is one that impacts on long-run consumer decisions, 
such as purchasing a more fuel-efficient car, changing transportation mode or moving closer to work, 
over and above the incentives provided by the variation of tax-inclusive gasoline prices. The literature 
related to the signaling effect of tax policy, which is thinner than one would expect, gives no definite 
indications as to whether the signaling effect influences agents’ short- or long-run decisions, or both. Li 
et al. (2014), however, provide empirical evidence supporting the long-run interpretation of the 
signaling effect. Using US data on newly purchased vehicles and miles travelled, the authors find that 
the fuel efficiency of the vehicles purchased responds more strongly to gasoline tax changes than to 
gasoline price changes. By contrast, no differential effect is observed with respect to miles travelled. 

2.3 Simulating the price increases and assessing the distributional incidence 

The first part of this section illustrates the simulation scenarios of an increase in the federal gasoline tax 
and of an equivalent market-related gasoline price increase. The second part illustrates how the 
distributional incidence of the two price increases is assessed.  

2.3.1 Scenarios: tax increase vs market-related price increase 

After estimating the model, two counterfactual scenarios are simulated for each quarter of the years 
2006 to 20115. In the Tax Scenario, the federal gasoline tax, which is $0.184/gallon and has not changed 
since 2006, is raised by $0.22/gallon. This increase corresponds to a $25/tCO2 carbon tax, which is 
representative of the carbon tax rates indicated in recent US legislative proposals to reduce national CO2 
emissions6. In the Market Scenario, a market-related price increase of the same size ($0.22/gallon) is 
simulated. In the Tax Scenario, the impact of the price increase on gasoline demand is given by the sum 
of the price effect and the signaling effect. In the Market Scenario, only the price effect is in play. 

Let us define the tax-inclusive gasoline price at time	ݐ, ௧ܲ
ீ , as the sum of the tax-exclusive price, ߎ௧

ீ , 
and taxes, ߒ௧

ீ , i.e., ௧ܲ
ீ ൌ ௧ߎ

ீ  ௧ߒ
ீ . The first step to simulate the Tax Scenario is deriving the 

counterfactual level of the gasoline price index, ௧,
ீ , which incorporates the tax change ߂ ௧ܶ

ீ . At time	ݐ, 
omitting the State subscript for notational convenience, 

 

                                                      
4 In the literature, the signaling effect tends to be vaguely defined. For example, “[…] rational habits sway consumers to 

reduce gasoline consumption more in response to price increases perceived as permanent than to price increases perceived 
as temporary. Credible permanence gives any price increase an extra kick, and this expands the power of standard economic 
instruments to reduce gasoline consumption.” (Scott, 2012); “[…] this article will investigate whether the effects of a 
change in consumer prices differs depending on whether the price change is due to a tax change or a change in producer 
price. If there is a statistically significant difference in the sense that a tax increase leads to a larger change in consumption 
than a producer price change, this is referred to as the signaling effect from taxation.” (Brockwell, 2013). 

5 The simulation period ends in 2011 due to a lack of data on gasoline prices (in levels) for more recent years. 
6 For example, the 2009 Congress bill Raise Wages, Cut Carbon Act (H.R. 2380, 111th Congress) set an initial rate of 

$15/tCO2, in 2010. The 2013 Climate Protection Act (S. 332, 113th Congress) set an initial rate of $20/tCO2. 
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௧,
ீ ൌ ௧,

ீ ቆ1 
∆ ௧ܶ

ீ

௧ܲ,
ீ ቇ 

(8) 

where ௧,
ீ  (small letter) is the baseline (historical) price index and ௧ܲ,

ீ  (capital letter) is the baseline 
price. Similarly, the counterfactual level of the gasoline taxes,	 ௧ܶ,

ீ , is computed by adding Δ ௧ܶ
ீ to the 

baseline level, 
 

௧ܶ,
ீ ൌ ௧ܶ,

ீ  Δ ௧ܶ
ீ 

(9) 

Feeding both the counterfactual levels of the gasoline price index and of gasoline taxes to the estimated 
model, the counterfactual predicted budget shares are obtained. Holding total expenditure fixed, i.e., 
௧,ݕ ൌ   :௧,, the predicted percentage change in gasoline demand is computed as followsݕ
 

ො௧,ݍ
ீ െ ො௧,ݍ

ீ

ො௧,ݍ
ீ ൌ ቆݓෝ௧,

ீ ௧,ݕ
௧,
ீ െ ෝ௧,ݓ

ீ ௧,ݕ
௧,
ீ ቇ ෝ௧,ݓ

ீ ௧,ݕ
௧,
ீ൘  

(10) 

where ݓෝ௧,
ீ  and ݓෝ௧,

ீ  are respectively the predicted baseline and counterfactual gasoline budget shares. 
The same procedure applies for the simulation of the Market Scenario, with the following two 
differences: a) ߂ ௧ܶ

ீ  is replaced by	ߎ߂௧
ீ in (8) (although ௧,

ீ  is unchanged since	߂ ௧ܶ
ீ  and ߎ߂௧

ீ  are equal 
in size), and b) ߂ ௧ܶ

ீ ൌ 0 in (9), as no policy signal is active. 

2.3.2 Distributional incidence: welfare changes vs changes in tax payments 

In the literature, the distributional incidence of price increases – their degree of progressivity or 
regressivity – is measured in different ways. In principle, measures of progressivity (or regressivity) 
based on welfare changes are the most appropriate as welfare changes account for both the higher cost 
of consumption and the lower level of consumption after a price increase. In practice, this approach is 
seldom used because it requires the estimation of a complete demand system, which is data demanding 
and technically nontrivial. For the specific case of tax increases, as opposed to generic price increases, 
the conventional approach to measuring tax progressivity uses the changes in households’ (or 
individuals’) tax payments after the tax increase. With this approach, estimating demand changes is all 
that is needed. The downside of this approach is that potential substitution of other consumption goods 
for the taxed one is ignored (Remler, 2004). In this sense, a measure of tax progressivity based on 
changes in tax payments approximates one that is based on welfare changes.  

With reference to our Tax Scenario, a measure of tax progressivity based on welfare changes cannot 
be derived because gasoline taxes enter the model not only as a price variable but also as a conditioning 
variable. This feature of the model is decisive as welfare comparisons across different levels of the 
conditioning variables are not viable (Pollak and Wales, 1979; Pollak, 1989)7. We thus assess the 
distributional incidence of the simulated tax increase based on the changes in households’ tax payments.  

By contrast, the distributional incidence of the market-related price increase is assessed based on the 
Compensating Variations (CVs). The CV is a precise measure of welfare change following a price 

                                                      
7 The conditional approach assumes that the choices over the commodity space depend on the conditioning variables – 

gasoline taxes in our case. The conditional preference ordering does not allow welfare comparisons between alternative 
situations (combinations) of prices and conditioning variables, but only of alternative price situations given the same values 
of the conditioning variables. 
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change, defined as the minimum monetary amount by which a consumer would have to be compensated 
to be as well off as before the price change. Formally, indicating with ݑ the base welfare level at 
time	ݐ ൌ 0, that is, the welfare level in the base period before any price change, the CV is 
 

ܥ ௧ܸ ൌ ܿሺݑ, ௧ሻ െ ܿሺݑ,  ሻ

(11) 

where ܿሺݑ, ,ݑ, and ܿሺ at prices	ݑ is the minimum cost of reaching	ሻ  ௧ሻ is the minimum cost of
reaching utility ݑ at the price vector	௧. 

To calculate the CVs, we use the True Cost of Living index numbers (TCOLs) (Deaton and 
Muellbauer, 1980b). A TCOL index number is the ratio between the cost of achieving a given level of 
economic welfare after a price change and the cost of achieving the same level of economic welfare 
before the price change8. That is, using the same notation as for the CV above, the TCOL index is 
 

௧ܮܱܥܶ ൌ
ܿሺݑ, ௧ሻ

ܿሺݑ, ሻ
 

(12) 

The CV and the TCOL index are clearly related to one another9. If the cost function in the base period 
is equal to 1, i.e., ܿሺݑ, ሻ ൌ 1, the relationship between the CV and the TCOL simply is 
 

ܥ ௧ܸ ൌ ௧ܮܱܥܶ െ 1 

(13) 

It follows that	lnሺܶܮܱܥ௧ሻ ൌ lnሺܥ ௧ܸ  1ሻ. We exploit this result to compute the CVs. Using the QAIDS 
conditional cost function in (2), the QAIDS expression for	lnሺܶܮܱܥ௧ሻ is first derived. Then, setting the 
cost function in the base period equal to 1 by normalizing all prices to unity, the CVs are retrieved. In 
formal terms (Martini, 2009)10,  
 

ln ௧ܮܱܥܶ ൌ ln ܽሺ௧ሻ  ܾሺ௧ሻ൮
1

1
ݑ

െ ௧ሻሺߣ
൲ െ ln ܽሺሻ  ܾሺሻ൮

1
1
ݑ

െ ሻሺߣ
൲ 

(14) 

For	ܿሺݑ, ሻ ൌ 1, (14) becomes11  
 

                                                      
8 TCOLs are a more accurate measure of the welfare change following a price change than Laspeyres index numbers. TCOLs 

allow for substitution possibilities in the bundle of goods consumed holding utility constant, while Laspeyres index numbers 
assume that the same bundle of goods is purchased before and after the price change.  

9 From the definitions of CV and TCOL, ݐܸܥ ൌ ܿ൫0ݑ, 0൯ ൈ ሺܶݐܮܱܥ െ 1ሻ. 
10 The vectors ࢠ and ࢊ are dropped from the equations for presentational convenience. 
11 When all relative prices are set to unity, the price functions ܾሺሻ and ߣሺሻ	are equal to one and	ln൫ܽሺሻ൯ ൌ  . Thisߙ

parameter, however, is usually set to zero (Banks et al., 1997). 
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ln ௧ܮܱܥܶ ൌ ln ܽሺ௧ሻ  ܾሺ௧ሻ൮
1

1
ݑ

െ ௧ሻሺߣ
൲ െ  ݑ

(14b) 

Setting ݑ ൌ  : is total expenditure in the base period, the CVs are obtainedݕ , whereݕ݈݊
 

ܥ ௧ܸ ൌ ݁୪୬்ை െ 1 

(15) 

Finally, the CVs that correctly measure the welfare effects of the simulated gasoline price increase 
($0.22/gallon) over time are the differences between the counterfactual CVs and the baseline CVs. The 
former are the CVs obtained by increasing the historical gasoline prices by $0.22/gallon. The latter are 
the CVs resulting from historical price variations (i.e., observed inflation). Thus, first both the 
counterfactual CVs and baseline CVs are calculated as per above, then the difference between the two 
is taken. 

2.3.3 Distributional incidence: income vs total expenditure as a measure of ability to pay 

When assessing the regressivity of a price increase, annual income is not the only variable that can be 
used to rank agents (here, households) by economic welfare level and to quantify the impacts in relative 
terms. For these two purposes, an important part of the literature estimating the regressivity of gasoline 
price increases uses annual total expenditure as a measure of ability to pay. The stated rationale for 
preferring total expenditure to income is that the former is less volatile from one year to another and 
that, drawing on Friedman’s permanent income theory of consumption (Friedman, 1957), annual total 
expenditure can be taken as a proxy for lifetime income12. However, inasmuch as the distribution of 
total expenditure in a given year is more uniform than that of income, as is generally the case, the price 
increase necessarily results less regressive if the first is used instead of the second. The difference can 
be substantial (Sterner, 2012a, 2012b). To control for this aspect, we assess the distributional impact of 
each type of simulated price increase (the tax increase and the market-related price increase) twice, using 
the two alternative measures of ability to pay. 

3. Data and model estimation 

3.1 Households’ economic variables and demographics 

The US Consumer Expenditure Survey (CE) produced by the Bureau of Labour Statistics (BLS) is the 
main data source for our application. We use microdata of the quarterly Interview Survey (IS) from 
eight rounds of the CE: from 2006 to 201313. Each CE round has five IS cross-sections: one per calendar 
quarter, including the first of the following year14. We thus draw on 40 cross-sections, though not all the 
observations available (each cross-section has approximately 6,000 observations) are used for 
estimating the model. This is fitted to a subset of over 83,000 observations: those for which information 

                                                      
12 Chernick and Reschovsky (1992, 1997, 2000) and Teixidó and Verde (2016) provide arguments and evidence that question 

this approach. 
13 See Chapter 16 of the BLS Handbook of Methods for a description of the CE.  
14 The IS is a panel rotation survey. Each panel is interviewed for five consecutive quarters and then dropped from the survey 

and replaced with a new one.  
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on the Primary Sampling Unit (PSU) is available in the public-use microdata files15. We use this subset 
because the correspondence between the PSUs and the Metropolitan Statistical Areas (MSAs) of the 
CPI statistics allows us to exploit the variation of MSA-specific price indices16. The resulting sample 
spans 93 months, from April 2006 to December 2013, and 20 PSUs/MSAs (see Tables A1 and A2, in 
the Appendix).  

In the IS datasets, each household’s expenditures, which refer to the three months before the 
interview, are classified into 60 consumption categories. Our system of demand only considers current 
expenditures (durables and occasional purchases are ignored), corresponding to 40 of the 60 categories. 
Specifically, the model is estimated for the following shares of total current expenditure: 

1. Food at home 

2. Electricity 

3. Natural gas 

4. Other home fuels 

5. Gasoline 

6. Public transportation 

7. Other expenditures 

where: Food at home is the total expenditures for food at grocery stores (or other food stores) and food 
prepared by the consumer unit on trips; Other home fuels is the sum of expenditures on fuel oil, non-
piped gas and other fuels (heating fuels); Gasoline comprises expenditures on gasoline, auto diesel and 
motor oil, but it virtually coincides with gasoline expenditure17; Public transportation is the sum of the 
fares paid for all forms of public transportation, including buses, taxis, coaches, trains, ferries and 
airlines. 

Table 1 shows summary statistics of these expenditure shares as they appear in the sample. On 
average, Food at home accounts for 23.1% of total current expenditure, followed by Gasoline and 
Electricity, which represent 9.5% and 5.6%, respectively. The residual expenditure aggregate, namely 
Other expenditures, represents 56.7% of total current expenditure. The coefficients of variation indicate 
that variability is greatest for Other home fuels, Public transportation and Natural gas, in this order. 
Large proportions of households reported zero expenditure for these categories (see the shares in the last 
column of Table 1). Consumption of the respective goods or services is indeed conditional on certain 
prerequisites, such as the possession of specific appliances or high substitutability between private and 
public means of transportation, which may not be there for many households. 
  

                                                      
15 Only “A”-size PSUs are identified in the public-use microdata files. “A” PSUs are Metropolitan Statistical Areas with a 

population greater than 1.5 million.  
16 State-specific price indices are not available at the required disaggregation level. 
17 Diesel-fuelled cars are very few in the US. In 2014, diesel-fuelled cars made up 0.5% of the total fleet (EIA, 2015). 
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Table 1 – Summary statistics of the budget shares. 

Variable Obs.(#) Mean 
Standard 
deviation 

Coeff. of 
variation 

Min Max Zeros 

Food at home 83,485 23.1% 13.8% 0.6 0.0% 100.0% 0.8% 
Electricity 83,485 5.6% 5.1% 0.9 0.0% 100.0% 8.5% 
Natural gas 83,485 2.5% 3.9% 1.6 0.0% 63.4% 37.6% 
Other home fuels 83,485 0.5% 2.5% 5.0 0.0% 72.8% 92.9% 
Gasoline 83,485 9.5% 7.9% 0.8 0.0% 100.0% 13.4% 
Public transportation 83,485 2.1% 5.5% 2.6 0.0% 81.4% 72.3% 
Other expenditures 83,485 56.7% 17.6% 0.3 0.0% 100.0% 0.1% 

Different types of demographic characteristics are extracted from the IS dataset. Descriptive statistics 
of demographic variables included in the model, as well as of both total expenditure and income, are 
reported in Table 2. Households are classified by a set of six dummy variables which identify the 
following types: a) Single; b) Husband and wife; c) Husband and wife, with the oldest child under 6 
(years old); d) Husband and wife, with the oldest child between 6 and 17; e) Husband and wife, with the 
oldest child over 17; f) All other households. Households’ location is captured through four dummy 
variables, one for each of the Census-defined regions, i.e. Northeast, Midwest, South and West. A 
dummy variable brings in information on the composition of earners in the household: it takes the value 
1 if both the reference person and the spouse are income earners; 0, otherwise. A categorical variable 
classifies the education level of the household’s reference person in nine levels. The model also controls 
for the number of vehicles (cars, trucks and vans) owned by the household as well as for the age of the 
reference person. 

Table 2 – Summary statistics of socio-demographics, total expenditure, income. 

Variable Obs.(#) Mean 
Standard 
deviation 

Min Max 

Single 83,485 0.28 0.45 0 1 
H&W 83,485 0.19 0.39 0 1 
H&W, oldest child <6 83,485 0.05 0.22 0 1 
H&W, oldest child 6-17 83,485 0.13 0.33 0 1 
H&W, oldest child >17 83,485 0.08 0.27 0 1 
All other households 83,485 0.27 0.44 0 1 
Age of reference person 83,485 49.3 16.8 16 87 
Northeast 83,485 0.27 0.44 0 1 
Midwest 83,485 0.21 0.41 0 1 
South 83,485 0.24 0.42 0 1 
West 83,485 0.29 0.45 0 1 
Composition income earners 83,485 0.22 0.42 0 1 
Education of reference person* 83,485 5.4 1.82 1 9 
Number of vehicles 83,485 1.51 1.12 0 10 
Total current expenditure, $ 83,485 7,142 6,974 9 324,561 
Total expenditure, $ 83,485 13,553 11,795 17 350,481 
Disposable income, $ 83,485 71,958 68,867 0 802,242 

* 1 “Never attended school”, 2 “1st through 8th grade”, 3 “9th through 12th grade”, 4 “High school graduate”, 5 
“Some college, less than college graduate”, 6 “Associate’s degree”, 7 “Bachelor’s degree”, 8 “Master’s degree”, 
9 “Professional/Doctorate degree". 

3.2 Price indices and gasoline taxes 

Insufficient price variation is a common problem when estimating demand models with cross-sectional 
data and price indices. We avoid this issue by using monthly indices varying by MSA, which taken 
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together exhibit sufficient time and spatial variation18. Another potential problem is some degree of 
inaccuracy in the correspondence between demand and price data. This issue does not arise in our 
application because the price indices, also produced by the BLS, follow the same classification as that 
of household expenditure. The BLS uses the CE to periodically revise the expenditure weights of the 
Consumer Price Index (CPI). There is, thus, perfect correspondence between the expenditure aggregates 
of the IS and the respective CPI statistics. Table A3, in the Appendix, shows summary statistics of the 
price indices and of gasoline taxes. Focusing on gasoline prices, Figure 1 pictures the swings of the 
MSA-specific gasoline price indices over the sample period. 

Figure 1 – MSA-specific gasoline CPIs over the sample period. 

 
Note: For the legend of the MSA codes, see Table A2, in the Appendix. 

  

                                                      
18 As price indices by MSA are not available for Other home fuels nor for Public transportation, the corresponding US indices 

are used in these two cases. 
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Figure 2 – Most variable rates of State gasoline taxes over the sample period. 

 
 

In the US, three layers of taxes apply to consumption of gasoline and auto diesel, namely, federal taxes, 
State taxes and local taxes. The federal tax on gasoline is $0.184/gallon and has not changed since 2006. 
By contrast, State taxes can differ significantly from one State to another and they are occasionally 
subject to revisions. The data used on State gasoline taxes are published by the Federal Highway 
Administration. Local taxes are not considered due to a lack of information, but they are a minor 
component of the final price. Moreover, to estimate the model, gasoline taxes are adjusted for inflation 
using the national CPI. Importantly, Figure 2 shows how infrequent changes in gasoline tax rates are19 
and that these changes are virtually always increases rather than decreases. This fundamental difference 
between the dynamics of gasoline taxes and that of gasoline prices provides a compelling explanation 
for the greater responsiveness of gasoline demand to tax changes relative to price changes. 

3.3 Model estimation 

To deal with censoring of the dependent variable (the budget shares), we use the two-step estimator 
introduced by Shonkwiler and Yen (1999)20. The procedure involves probit estimation in the first step 
and a selectivity-augmented equation system in the second step. The augmented system of equations, 
which is estimated with Maximum Likelihood, has the following form21: 
 

                                                      
19 Those in the graph are the rates of State gasoline taxes exhibiting the greatest variation over the sample period. 
20 Shonkwiler and Yen (1999), Yen, Lin and Smallwood (2003), and Yen and Lin (2006) provide useful literature reviews on 

estimation procedures for censored demand systems. 
21 A different two-step procedure, developed by Heien and Wessells (1990), has often been used in applied demand analysis 

to address the problem of estimating systems of equations with limited dependent variables. West and Williams (2004, 
2007) are two studies adopting this procedure. However, as stated by Shonkweiler and Yen (1999), “the Heien and Wessells 
procedure is built upon a set of equations which deviate from the unconditional mean expression for the conventional 
censored dependent variable specification”. Instead, Shonkweiler and Yen’s procedure (1999) adopted in this study 
provides a consistent two-step estimator. 
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ݏ ൌ Φሺݔ
ᇱ߬ሻ	ݓሺ, ,ݕ ݄ሻ  ݔ߶ሺߜ

ᇱ߬ሻ   ߦ
(16) 

where ݏ is the observed expenditure share for good i; ݔ is a vector of exogenous variables; ߬ is the 
parameter vector; ݄ is the vector containing all parameters in the original demand system (6); ߦ ൌ ݏ െ
 ሻ is the heteroscedastic error term; ߶ and Φ are the standard normal probability density functionݏሺܧ
(pdf) and its cumulative distribution function (cdf), respectively; and ߜ	is the unknown coefficient of 
the correction factor of the i-th equation in the second step. 

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in 
each good. The predicted pdf and cdf from the probit equations are included in the second step of the 
procedure (Yen, Lin and Smallwood, 2003). The exogenous variables used in the first-step probits are 
total expenditure, a linear time trend and the set of demographic and geographic variables in the original 
demand system (6), which are defined in the previous section. As for the second-step estimates, 
Homogeneity and Symmetry are imposed through parametric restrictions, while Adding-up is 
accomodated by dropping the equation for the Other expenditures aggregate22. 

Economic theory also requires the matrix of Slutzky substitution effects to be negative semi-definite. 
This property is satisfied by the data. Second-step estimated coefficients are shown in Table A4, in the 
Appendix. Moreover, since the estimated elements of the second-step conventional covariance matrix 
are inefficient, we empirically calculate the standard errors of the elasticities using nonparametric 
bootstrapping (with 500 replications). 

4. Results 

This section illustrates the results of our analysis in the following order. We first check for the non- 
separability of gasoline taxes from the goods in the demand system, which is the key feature of the 
model’s specification. Estimation results concerning the predicted budget shares and the demand 
elasticities are subsequently presented, with a special focus on the patterns of the price elasticities and 
the tax elasticities of gasoline demand across income levels. Finally, the distributional impacts of the 
two types of simulated gasoline price increases are examined.  

4.1 Test of gasoline taxes’ separability 

If gasoline taxes affect consumer preferences over the goods in the demand system, ignoring this 
dependence would result in biased estimates. Browning and Meghir (1991) demonstrate that the 
conditional cost function approach is most convenient for modeling such dependence. The authors point 
to several of its advantages. One such advantage is that we can test for weak separability without 
specifying the structure of the preferences for the goods that are separable under the null hypothesis. A 
second one is that the conditional cost function approach does not require an explicit structural model 
for the conditioning variable. Thirdly, testing for weak separability of the goods of interest from the 
conditioning variables is simple. It boils down to testing whether the conditioning variables should be 
jointly excluded from the set of explanatory variables. 

Following Browning and Meghir (1991), our test of separability of gasoline taxes from the goods of 
interest consists of a Likelihood Ratio (LR) test in which we compare a restricted model where the 
budget share equations (6) depend on gasoline taxes (after controlling for prices, total expenditure and 

                                                      
22 Though the Adding-up restriction holds for the latent expenditure shares, it does not hold for the observed shares. To 

address this problem we adopt the approach suggested by Pudney (1989). It consists of estimating n – 1 equations using 
the two-step procedure together with an Adding-up identity ݏ ൌ 1 െ ∑ ݏ

ିଵ
ୀଵ  defining the residual expenditure category 

as the difference between total expenditure and expenditure on the first n - 1 goods and treating the nth good as a residual 
one with no demand of its own. Elasticities for this residual good, if necessary, can be computed using this Adding-up 
identity. 
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demographic variables) with an unrestricted model where all tax coefficients are equal to zero. Under 
the null hypothesis that the unrestricted model holds, the test statistic follows a Chi-squared distribution 
with 18 degrees of freedom23. Table 3 reports all the estimated coefficients relevant to gasoline taxes as 
well as the result of the LR separability test. The intercept coefficients are statistically significant in all 
equations. And the coefficients of the interactions both with total expenditure and squared total 
expenditure are significant in most equations. As to the LR test, the Chi-squared test statistic allows us 
to reject the null hypothesis of gasoline taxes’ separability. 

Table 3 – Separability test of gasoline taxes: selected QAIDS parameter estimates. 

Intercept of the budget shares 
Parameter Food Electricity Nat. Gas Oth. Fuels Gasoline Pub. Transp.
αi 0.248 0.044 0.043 0.255 0.136 0.231 
 (0.002) (0.002) (0.004) (0.029) (0.002) (0.022) 
αi,TAX  -0.007 0.013 -0.008 0.132 -0.034 0.014 
 (0.003) (0.001) (0.001) (0.006) (0.002) (0.004) 

Total expenditure coefficients 
Parameter Food Electricity Nat. Gas Oth. Fuels Gasoline Pub. Transp.
βi -0.089 -0.032 -0.023 -0.047 -0.044 -0.016 
 (0.001) (0.001) (0.001) (0.004) (0.001) (0.004) 

(β * αTAX)i 
0.007 

(0.003) 
0.024 

(0.001) 
0.019 

(0.002) 
-0.007 
(0.007) 

0.004 
(0.002) 

-0.019 
(0.004) 

Squared total expenditure coefficients 
Parameter Food Electricity Nat. Gas Oth. Fuels Gasoline Pub. Transp
λi -0.009 -0.001 -0.006 -0.04 -0.012 -0.006 
 (0.001) (0.000) (0.000) (0.002) (0.000) (0.001) 

(λ* αTAX)i 
0.006 

(0.002) 
-0.005 
(0.001) 

0.002 
(0.001) 

-0.036 
(0.005) 

0.008 
(0.002) 

0.006 
(0.003) 

       

Separability test of αTAX 
LR Chi-squared (18 d.f.) p-value  

1393.240 0.000  

Note: Robust standard errors in brackets. 

4.2 Estimation results 

Table 4 presents the predicted budget shares calculated at sample mean values together with the income 
elasticities and the compensated (Hicksian) price elasticities (also at sample mean values). 
  

                                                      
23 The LR test involves 18 restrictions: 6 on the intercepts; 6 on the interactions of taxes and total expenditure; 6 on the 

interactions taxes squared and total expenditure. 
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Table 4 - Predicted budget shares, income elasticities and compensated price elasticities at 
sample mean values. 

 Food at 
home 

Electricity Nat. Gas Oth. Fuels Gasoline 
Pub. 

Transp. 
Oth. 

Expend. 
Budget 
shares  

0.232 0.057 0.025 0.005 0.095 0.022 0.565 

Income 
elasticities 

0.636 
(0.014) 

0.490 
(0.019) 

0.487 
(0.022) 

0.586 
(0.060) 

0.656 
(0.010) 

0.841 
(0.069) 

1.291 
(0.007) 

Own price 
elasticities 

-0.676 
(0.033) 

-0.782 
(0.015) 

-0.218 
(0.026) 

-1.219 
(0.162) 

-0.713 
(0.018) 

-0.084 
(0.162) 

0.234 
(0.167) 

On average, gasoline expenditure accounts for almost 10% of households’ budgets, the second highest 
share among the goods considered in our demand system. In general, the predicted budget shares 
calculated at sample mean values are very close – as one would expect – to the respective sample mean 
values (Table 1). The second row in the same table indicates that none of the goods in the model (except 
for the aggregate Other expenditures) is a luxury good. Demand for public transportation exhibits the 
largest income elasticity (0.84), a result most likely explained by the heterogeneity of the relative 
aggregate24. Among the energy goods, gasoline is the one with the largest response to income changes 
(0.65). As regards the demand responses to price changes, the (long-run) price elasticity of gasoline 
demand is also high (-0.71), but not too dissimilar from the estimates in other studies fitting demand 
systems to pooled cross-sectional US data25. 

We now focus on the patterns of the mean price elasticity and of the mean tax elasticity of gasoline 
demand across income distribution26. These patterns are of special interest because they are relevant to 
the comparative distributional analysis of tax increases versus market-related price increases carried out 
in the next Section. The left graph in Figure 3 shows the price elasticities of gasoline demand at sample 
mean values within the (year-specific) income quintiles. For all years, price elasticities decrease (in 
absolute value) with income level. This result is in line with those of several studies finding that gasoline 
demand of lower income households is on average more price responsive than that of better-off ones 
(West, 2004, 2005; West and Williams, 2004; Small and Van Dender, 2007; Wadud et al., 2010a; Liu, 
2014). Other studies, however, identify different and even opposite relationships between the price 
elasticity of gasoline demand and income27. 
  

                                                      
24 As specified in Section 3.1, Public transportation includes the fares paid for buses, taxis, coaches, trains, ferries and 

airlines.  
25 For example, in Oladosu (2003), the mean compensated price elasticity of gasoline demand is -0.70 for the third-oldest 

owned vehicle and -0.36 for the oldest; in West and Williams (2004), the mean elasticity is -0.73 for the first total 
expenditure quintile and -0.18 for the fifth; in West and Williams (2007), the range is -0.75 to -0.27 for single-adult and 
two-adult households, respectively. 

26 For each year, households are sorted by disposable income per adult equivalent. The new OECD equivalence scale is used, 
according to which the head of household weighs 1, all other household members aged over 13 weigh 0.5 each, and those 
under 14 weight 0.3 each.  

27 Kayser (2000), Hughes et al. (2008), Spiller and Stephens (2012) and Gillingham (2014) find the gasoline demand of 
wealthier households to be more price elastic. Wadud et al. (2008, 2009, 2010b) find the price elasticities to be highest at 
the bottom and at the top of the income distribution, while Hausman and Newey (1995), Brännlund and Nordström (2004) 
and Frondel et al. (2012) do not find statistically significant differences in price elasticities across income levels. 
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Figure 3 – Price and tax elasticities of gasoline demand at sample mean values, by year and 
income quintile. 

 

This heterogeneity of outcomes may be due to multiple factors affecting gasoline demand. On the one 
hand, lower income households are likely to be more responsive to a gasoline price increase as their 
lower budgets imply that the income effect is stronger. On the other, gasoline demands of wealthier 
households may be more responsive to gasoline tax increases, which can be regarded as persistent price 
increases. The above literature may find conflicting evidence because it makes no distinctions in this 
respect. The right graph in Figure 3 shows our estimated elasticities of gasoline demand to information 
on gasoline taxes28 by income level. In contrast to the price elasticities, which get smaller with income, 
the tax elasticities increase with income. This result is consistent with the hypothesis that tax increases 
affect long-run consumer decisions, including notably investment in more fuel-efficient cars29. The 
reasoning is that (while wealthier people are less responsive to market-related price changes because 
they are less affected) tax changes, which are persistent price changes, must be determinants of decisions 
that both impact on gasoline demand and that wealthier people are more likely to make. Buying a new 
car – a more fuel-efficient one in the case of a tax increase – is the most obvious decision fitting these 
two conditions.  

4.3 Simulation results: distributional analysis 

In this section, we assess the distributional incidence – the degree of regressivity – of the two types of 
simulated gasoline price increases. First, however, let us recall the relevant specificities of the two 
simulation scenarios. In the Tax Scenario, the federal gasoline tax is raised by $0.22/gallon. In the 
Market Scenario, a market-related price increase of the same size is simulated. In the Tax Scenario, the 
impact of the price increase on households’ gasoline demands is given by the sum of the price effect 
and the signaling effect. In the Market Scenario, only the price effect is in play. For the Tax Scenario, 
welfare changes caused by the tax increase cannot be derived, but approximations of the welfare impacts 
are provided by the changes in households’ tax payments. The distributional incidence of the tax increase 
is thus based on economic impacts calculated in this way. By contrast, the distributional incidence of 
the market-related price increase is more accurately quantified by the CVs.  

Beginning with the Market Scenario, the left graph in Figure 4 shows, for each of the years 
considered, the mean CV as a proportion of income, by income quintile. For all years, the emerging 
patterns indicate that the simulated price increase is clearly regressive. On average, the welfare loss for 

                                                      
28 The elasticity to information on gasoline taxes only includes the signaling effect of a tax change, not the price effect as 

previously defined. 
29 There is ample evidence that gasoline price changes affect the fuel economy of newly purchased cars. For example, Busse 

et al. (2013) find that a $1 increase in the gasoline price leads to a 21.1% increase in the market share of the highest fuel 
economy quartile of cars and a 27.1% decrease in the market share of the lowest fuel economy quartile of cars. 
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the households in the first income quintile is in relative terms around four times as big as that suffered 
by the households in the top quintile30. Though differences in welfare impacts over time are generally 
modest, slightly smaller effects and slightly bigger effects are observed for the years 2008 and 2009, 
respectively. These years correspond to the maximum and the minimum levels of the gasoline price path 
over the simulation period. Hence, the simulated price increase represents respectively smaller and 
greater percentage increases of the baseline (historical) prices.  

Figure 4 – CV as a % of income (tot. expend.) at sample mean values, by year and income (tot. 
expend.) quintile. 

 

Taking the lifetime approach, by using total expenditure, instead of disposable income, as a measure of 
ability to pay (both for ranking the households and for expressing the welfare effects in relative terms), 
results in a partially different picture. The right graph in Figure 4 shows the results obtained. Compared 
to those in the left graph, the effects are smaller in magnitude for the first quintiles (across years), similar 
for the second quintiles, and bigger for the others. This is because on average total expenditure is smaller 
than income, but the converse is true for the poorest. More interestingly, while overall the distributional 
impact remains regressive, the degree of regressivity is significantly lessened, with the central quintiles 
bearing the largest burdens31. This difference is due to the fact that the distribution of total expenditure 
is more uniform than that of income. 

The above results are largely comparable to those in West and Williams (2004), which to our 
knowledge is the only US study estimating the distributional incidence of a gasoline price increase based 
on welfare effects. Using a demand system approach and CE data from 1996 to 1998, West and Williams 
(2004) find that the Equivalent Variation (EV) following a gasoline price increase of about $1.00/gallon 
(an increase five times as big as that considered here) would have ranged -3.01% to -1.60% of total 
expenditure. Above all, the distributional incidence of the price increase is very similar to that emerging 
from our application when using total expenditure as a measure of ability to pay. 

Turning to the Tax Scenario, the left graph in Figure 5 depicts the distributional incidence of the tax 
increase based on the changes in tax payments as a proportion of income32. The magnitude of the effects 
is similar to that of the CVs in the Market Scenario. Because of the signaling effect, gasoline demand 
decreases by greater amounts in the Tax Scenario than in the Market Scenario33. However, in the Market 
Scenario, the greater welfare losses related to the higher cost of gasoline consumption are partly offset 

                                                      
30 Table A5, in the Appendix, shows the values of the CVs in absolute terms. Tables A7 and A8 show the corresponding 

values of disposable income and of total expenditure, respectively. 
31 This type of result is very common in the literature, since Poterba’s (1991) seminal paper showing the difference in terms 

of distributional incidence between using income or total expenditure as measures of ability to pay. 
32 Table A6, in the Appendix, shows the values of the changes in tax payments in absolute terms. 
33 Table A9, in the Appendix, shows the average percentage variations in gasoline demand under the two scenarios. 
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by the welfare gains related to the consumption of gasoline substitutes. In the Tax Scenario, the changes 
in tax payments do not take this substitution effect into account. 

Figure 5 – Left graph: Change in tax payments as a % of income, by year and income quintile;  
Right graph: Impact ratio 1st-to-5th income quintiles, by scenario. 

 

Finally, though a direct comparison is not perfect given the use of different measures of economic 
impact, the right graph in Figure 5 shows that the tax increase is slightly more regressive than the market-
related price increase (by simply comparing the mean impacts for the bottom and top income quintiles). 
The fact that on average price elasticities decrease (in absolute value) with income while the tax 
elasticities increase, as previously shown, underlies this result.  

5. Conclusions 

A growing empirical literature finds that gasoline tax changes have much greater impacts on gasoline 
demand than equal-in-size market-related price changes. The persistence of tax changes and their 
salience (through media coverage) are the explanations most frequently provided for this observed 
outcome. Some studies make explicit reference to the signaling effect of tax policy (Barigozzi and 
Villeneuve, 2006), but do not go as far as specifying how the signaling effect of gasoline taxes may 
operate. We take things a step further in positing and testing, within a structural demand system fitted 
to US data, that the signaling effect of a tax change is additional to the effects of tax-inclusive price 
changes. The idea is that the signaling effect of gasoline tax changes is one that impacts on long-run 
consumer decisions, such as purchasing a more fuel-efficient car, changing transportation mode or 
moving closer to work, over and above the incentives provided by the variations in tax-inclusive gasoline 
prices. We find evidence corroborating this hypothesis. Firstly, gasoline taxes turn out to be a 
statistically significant determinant of household demand additional to gasoline prices. Secondly, while 
the estimated mean price elasticity of gasoline demand decreases (in absolute value) with income, the 
tax elasticity increases. This result is consistent with our hypothesis on the signaling effect inasmuch as 
wealthier households more effectively reduce gasoline demand through long-run decisions, notably by 
buying more fuel-efficient vehicles. 

In the US, gasoline price increases are clearly regressive according to our simulations. While much 
more effective in reducing gasoline demand, tax increases appear to be slightly more regressive than 
market-related price increases, owing to the said difference in demand responses. Secondary is the role 
of demand response in determining regressivity, which in the first place depends on the pattern of 
gasoline consumption across income distribution. By contrast, much more substantial is the difference 
in outcomes if total expenditure, instead of income, is used as a measure of ability to pay, demonstrating 
the relevance of this methodological choice (criticized by some authors). If total expenditure is used, the 
households in the middle of the income distribution – and not the poorest – bear the largest burdens. 
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Gasoline taxes are an indispensable instrument for cost-effectively reducing gasoline consumption 
and, hence, the series of negative externalities (global and local) associated with it. Gasoline tax 
increases are regressive, but this is by no means a reason to give them up – we could not overemphasize 
this point. The high effectiveness of gasoline taxes in reducing gasoline demand implies that even small 
tax increases can significantly improve the environment while minimizing the importance of the related 
distributional effects. Secondly, gasoline taxes generate revenue that can be used to offset their 
regressivity. Notably, the revenue could be used to finance policies that facilitate investment of lower-
income households in more fuel-efficient vehicles or their access to alternative means of transportation. 
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Appendix 

Table A1 – Distribution of observations across time (year and month of the interview). 

  Year
Month  2006 2007 2008 2009 2010 2011 2012 2013 Total 

 January  0 914 869 887 950 929 908 890 6,347 
 February  0 861 888 884 934 917 937 890 6,311 
 March  0 929 893 889 957 897 885 894 6344 
 April  937 896 887 903 950 926 921 877 7,297 
 May  909 871 886 887 930 913 916 877 7,189 
 June  930 905 895 928 971 898 852 897 7,276 
 July  885 894 874 906 912 889 875 841 7,076 
 August  900 853 863 909 952 907 907 826 7,117 
 
September 

 937 886 876 947 971 879 870 877 7,243 

 October  890 910 840 968 923 921 897 712 7,061 
 
November 

 881 894 874 903 966 898 894 837 7,147 

 
December 

 920 866 867 943 891 920 833 837 7,077 

 Total  8,189 10,679 10,512 10,954 11,307 10,894 10,695 10,255 83,485 

Table A2 – Distribution of observations across PSUs (MSAs) and States. 

Primary Sampling Unit (MSA) State(s) Frequency Percent 
 Philadelphia – Wilmington – Atlantic City PA – NJ – DE – MD 4,112 4.93% 
 Boston – Brockton – Nashua  MA – NH – ME – CT 4,987 5.97% 
 New York NY 6,152 7.37% 
 New York, Connecticut suburbs NY – CT 2,666 3.19% 
 New Jersey suburbs NJ 5,167 6.19% 
 Chicago – Gary – Kenosha IL – IN – WI 8,024 9.61% 
 Detroit – Ann Arbor – Flint MI 4,342 5.20% 
 Cleveland – Akron OH 2,226 2.67% 
 Minneapolis – St. Paul MN – WI 2,700 3.23% 
 Washington DC – MD – VA – WV 2,603 3.12% 
 Baltimore MD 2,140 2.56% 
 Dallas – Ft. Worth TX 4,289 5.14% 
 Houston – Galveston – Brazoria TX 3,498 4.19% 
 Atlanta GA 3,732 4.47% 
 Miami – Ft. Lauderdale FL 2,862 3.43% 
 Los Angeles – Orange CA 9,220 11.04% 
 Los Angeles suburbs CA 3,173 3.80% 
 San Francisco – Oakland – San Jose CA 5,658 6.78% 
 Seattle – Tacoma – Bremerton WA 3,305 3.96% 
 San Diego CA 2,629 3.15% 
 Total  83,485 100.00% 
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Table A3 – Price indices (1982-84 = 100) and gasoline excise taxes (sum of federal and State 
taxes). 

Price indicesa/taxes Obs.(#) 
Unit 

Mean 
St. 

deviation 
Min Max 

Food at home 83,485 index 215.38 25.45 122.86 251.77 
Electricity 83,485 index 202.38 49.65 102.03 327.80 
Natural gas 83,485 index 198.65 38.80 112.18 371.55 
Other home fuels 83,485 index 291.56 46.41 228.03 384.30 
Gasoline 83,485 index 262.86 52.20 143.60 453.11 
Public transportation 83,485 index 251.35 19.04 219.86 285.36 
Other expenditures 83,485 index 187.30 18.98 123.82 228.57 
Gasoline taxes, nominal 83,485 cents/gallon 42.43 8.69 32.90 67.40 
Gasoline taxes, real (1982-84 
prices)b 

83,485 cents/gallon 19.44 3.57 14.06 29.57 

a: All indices are Laspeyres price indices, for all urban consumers, not seasonally adjusted. b: Nominal taxes 
deflated by the US CPI (1982-84 = 100). 

Table A4 – Estimated QAIDS coefficients. 

 i=1 i=2 i=3 i=4 i=5 i=6
Coefficient Food Electricity Natural gas Other fuels Gasoline Pub. transp. 

αi
 0.248 0.044 0.043 0.255 0.136 0.231 

 0.002 0.002 0.004 0.029 0.002 0.022 

βi
 -0.089 -0.032 -0.023 -0.047 -0.044 -0.016 

 0.001 0.001 0.001 0.004 0.001 0.004 

gi
 -0.009 -0.001 -0.006 -0.04 -0.012 -0.006 

 0.001 0.000 0.000 0.002 0.000 0.001 

αi,NE
 

0.030 0.011 0.007 -0.050 0.003 -0.256 
 0.001 0.001 0.002 0.010 0.001 0.004 

αi,SO
 

0.020 0.035 -0.006 -0.007 0.009 0.008 
 0.001 0.001 0.003 0.005 0.001 0.003 

αi,WE
 

0.034 -0.011 -0.030 -0.014 0.018 -0.013 
 0.002 0.001 0.001 0.006 0.001 0.003 

αi,NCAR
 

-0.010 0.002 0.000 0.016 0.025 -0.019 
 0.000 0.000 0.000 0.001 0.000 0.001 

αi,TWOE
 

-0.008 -0.000 0.001 0.000 0.003 -0.008 
 0.001 0.001 0.001 0.002 0.001 0.002 

αi,AGE_REF
 

-0.009 0.018 0.023 0.101 -0.046 -0.041 
 0.001 0.001 0.001 0.003 0.001 0.002 

αi,N1
 

-0.084 -0.004 0.009 0.115 0.004 -0.041 
 0.001 0.001 0.001 0.006 0.001 0.004 

αi,N3
 

0.026 0.006 0.009 0.076 -0.009 -0.025 
 0.002 0.001 0.001 0.005 0.001 0.004 

αi,N4
 

0.051 0.010 0.006 0.044 0.003 -0.104 
 0.001 0.001 0.001 0.003 0.001 0.003 

αi,N5 0.049 0.007 0.001 0.009 0.007 -0.004 
 0.002 0.001 0.001 0.004 0.001 0.003 

αi,N6 0.021 0.009 0.010 0.073 0.004 -0.035 
 0.001 0.001 0.001 0.005 0.001 0.003 

αi,EDUC -0.005 -0.002 -0.001 -0.000 -0.005 -0.000 
 0.000 0.000 0.000 0.001 0.000 0.001 

αi, TAX -0.007 0.013 -0.008 0.132 -0.034 0.014 
 0.003 0.001 0.001 0.006 0.002 0.004 

R2 0.327 0.199 0.128 0.067 0.217 0.048 
N obs   83,140   83,140 83,140 83,140   83,140 83,140 

Note: Asymptotic standard errors robust to heteroskedasticity below the coefficients. 
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Table A5 – Market Scenario: mean CVs ($/quarter), by income quintile and year. 

Income 
quintile 

2006 2007 2008 2009 2010 2011 

1st 13,6 14,0 12,9 16,4 14,7 14,5 
2nd 23,2 23,5 21,0 27,0 24,3 23,7 
3rd 29,0 28,7 26,8 33,6 30,9 30,4 
4th 34,1 34,5 31,7 39,3 36,3 36,0 
5th 37,3 37,2 34,6 39,3 38,4 39,8 

Table A6 – Tax Scenario: mean change in tax payments ($/quarter), by income quintile and 
year. 

Income 
quintile 

2006 2007 2008 2009 2010 2011 

1st 17,1 15,8 17,0 17,1 14,9 16,3 
2nd 24,2 21,0 22,1 21,2 19,0 18,9 
3rd 30,6 28,6 28,0 26,2 25,3 24,7 
4th 34,0 32,7 30,9 28,4 26,4 28,6 
5th 38,0 34,2 31,7 30,9 28,0 27,3 

Table A7 – Mean household disposable income ($/quarter), by income quintile and year. 

Income 
quintile 

2006 2007 2008 2009 2010 2011 

1st 3835,0 3804,9 3716,1 3823,9 4011,0 3901,2 
2nd 9732,0 8918,1 9089,8 8968,5 9112,4 9281,6 
3rd 14362,2 14319,6 14543,2 14293,7 14552,6 14554,1 
4th 20754,6 20908,6 21046,8 20942,2 20663 20866,2 
5th 39598,0 41801,9 40517,2 40261,5 41017,2 39716,9 

Table A8 – Mean household total expenditure ($/quarter), by income quintile and year. 

Income 
quintile 

2006 2007 2008 2009 2010 2011 

1st 6384,3 6614,7 7073,4 6987,3 6813,8 7140,2 
2nd 9609,4 9316,5 9475,4 9302,4 9210,3 9310,0 
3rd 12229,3 12240,9 12658,3 11926,0 12194,4 12393,1 
4th 15660,2 15838,9 16114,9 15520,2 15128,3 15548,3 
5th 24059,5 23579,5 23152,4 22978,3 23003,3 23026,6 

Table A9 – Market Scenario vs Tax Scenario: average percentage variations in gasoline demand. 

 2006 2007 2008 2009 2010 2011
Market 
Scenario 

-1,9% -1,8% -1,5% -2,0% -2,1% -1,7% 

Tax Scenario -13,5% -14,4% -14,4% -14,7% -14,2% -13,6% 
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