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Abstract

The simple pure exchange model with two individuals and two goods by Day and
Pianigiani (1991), extensively analyzed by Day (1994, Ch. 10) and taken up again by
Mukherjy (1999), is discussed and extended with the purpose of showing that chaos
in a discrete tâtonnement process of this kind can be controlled if the auctioneer uses
a smooth, nonlinear formulation of the price evolution process such that the price
adjustment is a sigmoid-shaped function of the excess demand, with given upper and
lower limits. This formulation offers some advantages over previous specifications. In
particular, given the speed of adjustment and the excess demand function, we show
that, acting on the lower and/or upper limits that constrain price dynamics, the
auctioneer can (i) stabilize the dynamics, (ii) reduce the complexity of the attractor
and (iii) increase the economic significance of the adjustment process.
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1 Introduction

The issue of the dynamics of the tâtonnement process has recently been subject
to a renewed burst of interest. In the last thirty years or so, attention has been
concentrated especially on discrete-time formulations of the process, which
are capable of producing different types of complicated price adjustments to
disequilibrium between supply and demand of a good. As a result, there exists
by now an extensive literature on the so-called ‘chaotic tâtonnement’where it
is possible, broadly speaking, to distinguish three strands of research.

In most of the early contributions (e.g., Saari 1985, 1991; Day and Pianigiani
1991; Bala and Majumdar 1992; Day 1994 and Kaizoji 1994; see also Mukherji
1999), 1 the main purpose was to show that the use by an auctioneer of a
tâtonnement mechanism that takes place in discrete steps makes it possible
for the model to exhibit persistent chaotic behavior such that the relative
price can jump erratically, and with no limits, depending on the size of the
excess demand. 2 When this happens, given that the price does not converge
to its equilibrium level, transactions do not take place and we can conclude
that the iterative mechanism for price adjustment chosen by the auctioneer is
not effective. In the wake of recent developments in the theory of nonlinear
dynamic systems and in particular of the idea “that it is not complexity of
structure that gives rise to complex behavior but non-linearity” (Day and
Pianigiani 1991, p. 38), this has been shown to hold even for the simplest
possible tâtonnement process, with only two goods and two individuals.

The dissatisfaction regarding the various implications of this result explains
the emergence of two other strands of research.

On the one side, there are contributions (the most influential of which is Bala,
Majumdar and Mitra 1998, but see also Saari 1991) which study the possibility
of ‘targeting’or ‘controlling’a chaotic tâtonnement and derive conditions for
the convergence of the price to an arbitrarily small neighborhood of the equi-
librium price. Bala et. al. (ibid., pp. 415-416), for example, consider a model
with a specification of the utility functions of the two individuals such that
the discrete-time tâtonnement can be reduced to a logistic equation generating

1 Earlier formulations of the tâtonnement process in discrete time were proposed
by Goodwin (1951b), Morishima (1958/1996), Uzawa (1960) and Morishima (1977).
From a footnote in Day (1994), moreover, we learn that the idea that the discrete
time Walrasian tâtonnement could produce chaotic price sequences was first put
forward in June 1981 by Day himself, in a lecture he gave at the Institute Henri
Poincaré in Paris.
2 As discussed at length by Bala and Majumdar (1992), a well-known result by
Arrow and Hurwicz (1958, Theorem 6, p. 541) rules out the possibility that this
could happen in the equivalent tâtonnement process formalized in continuous time.
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chaotic dynamics of the price. The main result they obtain and illustrate using
numerical simulation is that the auctioneer, by a suitable perturbation of this
law of motion, can control any chaotic trajectory of the price and attain a
price arbitrarily close to the competitive equilibrium price. On the other side,
there exists a number of other contributions (see, e.g., Weddepohl 1994, 1995
for the simple two goods-two individuals case leading to a one-dimensional
process and Goeree et al. 1998 for a multi-dimension process) in which the
control of chaotic behavior is obtained by assuming that prices are adjusted
cautiously by the auctioneer, namely only within given bounds. This is for-
malized by writing the price dynamics equation as a piecewise equation such
that the price trajectories it generates stay at least within some neighborhood
of the equilibrium price. 3

In the current paper we do something which is, in a sense, at the intersection
of these research strands. We start from the Day and Pianigiani (1991) sim-
ple pure exchange model in terms of the example studied by Anjan Mukherji
(1999). Following his suggestion that what we need is “... to recast our intu-
itions about how price adjustment takes place; price being raised when there
is excess demand may seem alright but the important question is by how much
should price be raised when there is excess demand and this has to be faced
and answered”(p. 749; our emphasis), we assume that the price adjustment
mechanism used by the auctioneer is a smooth sigmoid function of excess de-
mand. The main implication of this ‘perturbation of the law of motion’of the
price is that, while preserving the sorting of the signals that come from the
excess demand, it poses an upper and a lower bound to price changes. Our pur-
pose is to give both analytical and numerical evidence that the choice by the
auctioneer of a tâtonnement mechanism of this type has crucial consequences
for the dynamics of the relative price. First of all, we will be able to give a
positive answer to Mukherji’s query who, referring to the chaotic dynamics of
price generated by the model, concludes his article by writing that “it may
be desirable to control processes such as these and enquire whether one can
attain prices which are at least close to the equilibrium price”. And what is
more, we will also be able to show that the auctioneer, by acting on the up-
per bound to price changes and/or on the lower one, may even fully stabilize
the price dynamics. It will soon become clear that this result is possible in
our model because, in contrast with other price adjustment mechanisms with
bounds used in previous contributions (e.g., in Weddepohl 1995), the smooth
mechanism we have chosen is such that the maximum price variation which
is allowed in each period by the asymptotes of the smooth sigmoid function
determines not only the range of possible values of the attractor, but also its
stability properties.

3 For a survey of the literature on the tâtonnement process in the light of the theory
of nonlinear dynamics, see Tuinstra (2002).
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Our formalization of the price adjustment mechanism finds strong support
in the recent literature on price limiters (see, e.g., He and Westerhoff 2005),
where the impact of the latter as a potential stabilizing mechanism to reduce
price fluctuations is investigated. Given that commodity prices are extremely
volatile, He and Westerhoff argue, it may be important to investigate the
capability that an auctioneer, or a central authority, has to reduce their fluc-
tuations by imposing an upper price limit (e.g., with the purpose of protecting
consumers from excessive prices) or a minimum one (e.g., in order to support
producers). They show that, in both cases, the result is a reduction of price
volatility in that market. What is very interesting is that the reduction of
price volatility obtained in this simple way, by only acting on one and/or the
other of the two price limits, provides evidence which is of the same type as
that given in the physics literature by Corron et al. (2000), namely, that chaos
control can be accomplished by using simple limiters. The present article gives
further strong evidence in the same direction.

In summary, contrary to what is usually done in the traditional tâtonnement
literature, we concentrate on the aspects of adaptive nature and bounded ra-
tionality that are implicit in the tâtonnement process with a price adjustment
based on current excess demand for the good. If, on the contrary, the auction-
eer were fully rational, he would be able to find and fix the equilibrium price
in one shot. What we do in particular is to take the model economy as given
(defined by Cobb-Douglas preferences and crucially characterized by the value
of a synthetic parameter) and concentrate on the properties of a nonlinear tâ-
tonnement mechanism, in particular, on the chaotic dynamics it may generate
and on the capacity the auctioneer has to control them. In this way, by re-
fining the ‘psychology’of the auctioneer (Lesourne, Orléan and Wallise 2006,
pp. 47-48), we expand and deepen the dynamic and evolutionary elements of
the general equilibrium model.

The paper is organized as follows. In section 2 we introduce and briefly discuss
the pure exchange model with two individuals and two goods and discuss
the example extensively studied by Mukherji. In section 3 we present our
modified version of the model where the relative price dynamics are governed
by a sigmoid-shaped excess demand function and derive some basic analytical
results. In section 4 the resulting dynamics are deeply investigated by means
of numerical simulation. Section 5 concludes by summarizing the main results
of the paper.

2 The pure exchange model

The pure exchange model we take as our starting point is the one with only two
consumers (let us say, Alpha and Beta) and two goods (x and y) proposed by
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Day and Pianigiani (1991, pp. 59-63) and then extensively analyzed by other
authors, among which Mukherji (1999). The main and primary purpose of
these contributions is to show that the emergence of chaotic price trajectories
for tâtonnement processes formalized in discrete steps does not require special
assumptions such as a downward-bending supply function, but can emerge
even in perfectly normal markets.

The two consumers are assumed to have the same Cobb-Douglas utility func-
tion with different parameters, such that Alpha’s preferences are given by
xαy1−α and those of Beta by xβy1−β, where 0 < α, β < 1. In addition, they
are assumed to possess different initial endowment allocations, the one of Al-
pha being the pair (x0, 0) and the one of Beta the pair (0, y0), where x0 and y0
are both positive quantities. It is a straightforward matter to show (Mukherji
1999, p. 743) that, under these assumptions, the solution of the canonical
optimization problem leads to an excess demand function for good x of the
type:

Z (p) =
βy0
p
− (1− α)x0 (1)

where p is the price of good x relative to the price of good y (which is taken
as numeraire).

The unique equilibrium price p∗, obtained from the condition Z (p∗) = 0, is
determined in terms of the preferences and initial endowments of the two
consumers by the following expressions:

p∗ =
βy0

(1− α)x0
(2)

Let us consider next the following general class of the discrete time tâton-
nement process:

pt+1 = pt + ϕ (Z (pt)) = f (pt) (3)

where ϕ (Z (p)) is a sign-preserving continuous function, i.e., a function such
that signϕ (Z (p)) = signZ (p).

The ‘Samuelson specification’ (1941, 1947) adopted by Day and Pianigiani
(1991, p. 56), and Mukherji (1999, p. 744) is obtained when for the function
ϕ (Z (p)) in Eq. (3) we choose the linear function:

ϕ (Z (p)) = γZ (p) (4)

where γ > 0 is the constant speed of adjustment in the tâtonnement process.

With this specification, the function f (p) in the right-hand side of Eq. (3) has
a minimum at p

min
=
√
γβy0 and both a vertical and an oblique asymptote,

of equations pt = 0 and pt+1 = pt − γ (1− a)x0, respectively (see Fig. 1).
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Fig. 1. The graph of the function f(p) and determination of the equilibrium price

To ensure that the adjustment process in Eq. (3) is well defined for all values
of the price, it must be the case that f(p) is positive for all p, a requirement
which is guaranteed if f (pmin) is positive, which requires

4 >
γ [(1− α)x0]

2

βy0
=

(
pmin
p∗

)2
= K (5)

The constant K plays a crucial role in the analysis of the dynamics of the
relative price generated by the present simple pure exchange model. Mukherji,
in order to concentrate attention on this parameter, carries out most of his
analysis for fixed values of all parameters but γ. The values he chooses are
such that (1− α)x0 = 6 and βy0 = 1, and therefore K = 36γ. For this special
case, which we will also assume to hold in all analysis and simulations which
follow, he shows (1999, p. 745, Claims 2-3; cfr. also Day 1994, p. 200) that
(i) the equilibrium is locally stable for 0 < K < 2; 4 (ii) there exists a stable
2-cycle for 2 < K < 2.5; and (iii) as K crosses the value of 2.5 a stable 4-cycle
may exist, etc. in a route to chaos. 5 These features of the dynamics of the
relative price are shown in the bifurcation diagram of Fig. 2, where K is used
as the bifurcation parameter. As it is possible to grasp from this figure, for

4 Actually, we can say something more about this. From (5) it follows that K can
be taken as a measure of the distance between pmin and p∗. When K = 1, pmin = p∗

and f ′ (pmin) = f ′ (p∗) = 1 − K = 0. In this case the equilibrium is superstable,
i.e., such that perturbations from it decay really fast. For other values of K in
the stability interval, the convergence is slower, either monotonic, for values of K
between 0 and 1 such that p∗ > pmin, or cyclical, for values of K between 1 and 2
such that p∗ < pmin.
5 Mukherji (ibid., Claims 4-5, pp. 745-748) also shows that the map exhibits topo-
logical chaos for K ∈ (3.0, 3.6) and ergodic chaos for K = 25/9 and K ' 3.23 (the
latter being a value in the interval (3.0, 3.6)).
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Fig. 2. Bifurcation diagram of the pure exchange model map
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Fig. 3. A trajectory for K = 4, with arbitrarily large values of the price, although
not diverging

K = 4 the chaotic attractor becomes unbounded from above, although not
diverging. This is due to a so-called contact bifurcation which finds its origin
in the fact that, as shown in Fig. 3, for K = 4 there is a contact between the
critical point f (pmin) and the point pt = 0 at which the map (3) is not defined
(see Bischi et al. 2000). Apart from this special case, it is in general true that
discrete-time tâtonnement mechanisms allow big irregular jumps of the price,
which persist in time and are such that the equilibrium relative price is never
reached. Two examples of dynamics of this type for values of K in the chaotic
interval are illustrated in Fig. 4.
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Fig. 4. Two examples of chaotic dynamics of the price when (i) K = 3.24 and (ii)
K = 3.9

In all cases like this, in which the relative price adjustment mechanism chosen
by the auctioneer is not effective in determining the equilibrium price of the
good, transactions do not take place. Thus, the interesting question arises as
to whether the auctioneer may use an alternative adjustment mechanism such
as to guarantee convergence to the equilibrium price or, at least, to a price
close to it. The rest of the paper is devoted to an attempt to answer this
question.

3 A modified pure exchange model with bounded price variations

In the literature on discrete-time tâtonnement with cautious price adjustment
we have briefly referred to in the Introduction, the pure exchange model has
been modified by assuming a piecewise price adjustment mechanism such that
the iterative process described by Eq. (3) of the original model holds over some
middle range, but is restricted by a fixed maximal rate of increase or decrease
of the price. The main result that is reached on the basis of this assumption is
that any type of price dynamics, be it periodic or chaotic, is constrained in a
neighborhood of the equilibrium price as time goes to infinity (see, for exam-
ple, Weddepohl 1995, p. 298). The stability properties of the latter, however,
remain unchanged and therefore the price path does not actually converge to
it.

In this section we follow a different strategy which consists in assuming that
the auctioneer uses a smooth, rather than piecewise, nonlinear adjustment
mechanism of the price, with an upper and a lower bound determined by two
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parameters (let us say a and b) which — in contrast to what is assumed in
previous literature —are not fixed, but are under her/his control. Our purpose
is to show that, acting on one or the other (or on both) of these two parameters,
s/he can not only restrict the dynamics of the price to a neighborhood of the
equilibrium price, as was the case in the contributions we have mentioned
above, but can even further control and stabilize it in a sense that will soon
become clear.

The idea we have in mind can be explored at its best by choosing in the
discrete-time tâtonnement process (3), the following functional form for the
function ϕ (Z (p)) (see Fig. 5): 6

ϕ (Z (p)) = γψ (Z (p)) = γ

(
a+ b

a exp (−Z (p)) + b
− 1

)
b (6)

where a and b are strictly positive. 7

A brief exploration of the properties of the function ψ (Z (p)) will clarify what
kind of consequences for the price dynamics we can expect:

i) it is equal to zero at the origin of the axes:

ψ (0) = 0

ii) it is an increasing function for all values of the excess demand:

dψ

dZ
= ψ′ (Z) > 0 ∀Z

6 Any reader interested in nonlinear economic dynamics will recognize this speci-
fication of a sigmoid-shaped function as the one used by Allen (1967, pp. 380-381)
in his textbook on macroeconomic theory to represent Goodwin’s (1951a) nonlinear
accelerator. We should also stress that a similar specification for the reaction of
price to excess demand is assumed to hold in the tâtonnement process formalized in
Goeree et al (1998, p. 400). In their example, however, the two asymptotic values of
price changes for excess demand going to ±∞ are numerically fixed and therefore
the effects of their control by the auctioneer cannot be discussed. On the contrary,
as we will see, this type of analysis will be a basic ingredient of our study of the
dynamics generated by the modified model of this Section.
7 The reason for this requirement is that when a and/or b are equal to zero, equation
(3) with the specification of ϕ (Z) given in (6) no longer describes a dynamic process:
the price would remain for ever at its initial value, whether this is or is not the
equilibrium price. We thank an anonymous referee who, thanks to her/his comment
regarding the upper and lower limits to price dynamics, has led us to deepen and
clarify this issue.
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b1 = 1
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b3 = 0.5
b4 = 0.25

Fig. 5. A few examples of graphs of the function ψ(Z) for different values of the
parameter b

iii) it has both a lower and an upper asymptotic bound such that:

lim
Z→−∞

ψ (Z) = −b < 0

lim
Z→+∞

ψ (Z) = a > 0

iv) it has a positive slope at the origin of the axis that increases (decreases)
as one or both of the two bounds becomes less (more) stringent:

ψ′ (0) =
ab

a+ b
> 0

such that:

dψ′ (0)

da
=

(
b

a+ b

)2
> 0,

dψ′ (0)

db
=
(

a

a+ b

)2
> 0

In short, our smooth adjustment mechanism is such as to preserve the sorting
coming from excess demand and, at the same time, to impose bounds to
price changes. As highlighted by property iv), the existence of these bounds
influences the auctioneer’s behavior also at, and in the neighborhood of, the
equilibrium and this appears very reasonable. It simply means that, even when
the bounds are not binding, the more stringent they are, or just one of them
is, the more cautiously the auctioneer adjusts the price in response to excess
demand.

Inserting Eq. (6) in Eq. (3), the map describing the time evolution of the price
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Fig. 6. A few examples of graphs of the function g(p) for different values of the
parameter b

becomes (see Fig. 6): 8

pt+1 = pt + γ

(
a+ b

a exp (− (βy0/pt) + (1− α)x0) + b
− 1

)
b = g (pt) (7)

In order to make easier the comparison with Mukherji’s results presented in
Sect. 2, in Fig. 6 and in all the numerical analysis which follows we use the
same fixed values for all parameters except γ = K/36 and study what happens
to the dynamics generated by the model when K is varied. For our modified
model, it will be in addition particularly relevant to concentrate on the effects
on the price dynamics of variations of the two parameters a and b, which are
also under the control of the auctioneer.

4 Dynamic analysis of the modified model

Our purpose in this Section is to show that the use by the auctioneer in
the tâtonnement process of the sigmoid-shaped function described in Eq. (6)
implies important qualitative changes for the relative price dynamics, both

8 To appreciate fully the difference between our formulation and Mukherji’s one, it
is crucial to note that the vertical asymptote of the function f (p) of Fig. 1 is now
replaced by a local maximum of the function g (p). The consequences of this will
become clear in the discussion which follows. In a few words, we have now a ‘ceiling’
to the dynamics of price, which is endogenously generated by the formulation we
have chosen for the function ψ (Z (p)).
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at a local and a global level. For reasons of clarity, in what follows we will
consider the two levels separately.

4.1 Local analytical results

Given the properties of the function ψ (·), it is an easy task to show that
the map of the modified model we are now considering has the same equilib-
rium p∗ of the original model, but with different stability properties. This is
summarized in the following two propositions.

Proposition 1 The dynamic map (7) has the same unique fixed point given
by the equilibrium price p∗ defined in (2).

Proof. A fixed point of (7) is defined by:

p̄ = p̄+ γ

(
a+ b

a exp (− (βy0/p̄) + (1− α)x0) + b
− 1

)
b = g (p̄)

which requires:

a+ b

a exp (− (βy0/p̄) + (1− α)x0) + b
− 1 = 0

or

a+ b = a exp

(
−βy0

p̄
+ (1− α)x0

)
+ b

i.e.:

exp

(
−βy0

p̄
+ (1− α)x0

)
= 1

i.e.:

−βy0
p̄

+ (1− α)x0 = 0

from which:

p̄ = p∗ =
βy0

(1− α)x0

This result, which shows the consistency of the two models in that they have
the same unique equilibrium price, gives more meaning to their comparison.
The following second proposition contains results about its local stability.

Proposition 2 The stability condition for the unique fixed point of the dy-
namic map (7) is given by

K ∈
(

0, 2
(

1

a
+

1

b

))
= (0, K1) (8)
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A 2-period bifurcation occurs at K = K1; hence, a 2-period locally stable cycle
exists if K ∈ (K1, K1 + δ), for all δ suffi ciently small.

Proof. To derive condition (8), we first notice that at p∗, we have:

g′ (p∗) = 1− γab (a+ b) βy0

(p∗)2
× exp (− (by0/p

∗) + (1− α)x0)

[a exp (− (by0/p∗) + (1− α)x0) + b]2

= 1− γab (a+ b) [(1− α)x0]
2

βy0
× 1

(a+ b)2

= 1− abK

a+ b

Thus, the local stability condition,

|g′ (p∗)| < 1

becomes: ∣∣∣∣∣1− abK

a+ b

∣∣∣∣∣ < 1

which reduces to:

0 <
abK

a+ b
< 2

from which:

0 < K < 2

(
a+ b

ab

)
= 2

(
1

a
+

1

b

)
= K1

The dynamic map (7) satisfies all canonical conditions required for a period
doubling bifurcation at K = K1 (see, e.g., Hale and Koçak, 1991). Indeed,
when K = K1, p∗ is a non-hyperbolic point, whereas when 0 < K < K1 it
is an attracting fixed point. Finally, p∗ becomes repelling when K > K1 and
such that a locally attracting 2-period cycle emerges for K ∈ (K1, K1 + δ),
with δ suffi ciently small.

Proposition 2 implies that the choice by the auctioneer of the functional form
for the tâtonnement process given in Eq. (7) stabilizes the dynamics of the
model. This can be fully appreciated by having a look at the bifurcation di-
agram in Fig. 7, where we have chosen values for the parameters a and b
such that the first period-doubling bifurcation occurs for K = K1 = 2 as in
Mukherji’s example. Fixing the value of a at 2, we know from (8) that this
happens when the parameter b is also equal to 2. The figure clearly shows that
after this first period-doubling bifurcation, the emerging 2-cycle remains sta-
ble for a much larger interval of values of the parameter K than in Mukherji’s
model. Moreover, the bifurcation diagrams of Fig. 8(i), where b = 1, and Fig.
8(ii), where b = 0.5, give evidence that this is the more true, the lower the
value the auctioneer chooses for b: with regard to the first period-doubling
bifurcation, for example, we see that it occurs for higher values of K, namely,
K = 3 in Fig. 8(i), where b = 1, and K = 5 in Fig. 8(ii), where b = 0.5. In
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Fig. 7. Bifurcation diagram of the model map with a = b = 2 such that K1 = 2 as
in Mukherji’s example

Fig. 8. Two examples of bifurcation diagram of the model map with (i) a = 2, b = 1
and (ii) a = 2, b = 0.5

short, although the period-doubling route to chaos is preserved, the sequence
of bifurcations turns out to be moved forward.

4.2 Global numerical results

In this subsection, we perform further numerical simulations of the modified
model which extend and notably enhance our understanding of the dynamics
it generates. The global dynamics features they are able to illustrate are of
three different types.

First of all, they clearly show (see Fig. 9) that there is a contraction of the
absorbing interval as the parameter b is decreased by the auctioneer. 9 This

9 For the concept of absorbing interval, or absorbing area in 2D, see Abraham et al.
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Fig. 9. Contraction of the absorbing interval as b is decreased from (i) b = 1 to (ii)
b = 0.5

feature is clear evidence in favor of a positive answer to Mukherji’s query about
whether it is possible to control the tâtonnement process in such a way that
the price, even if it does not converge to its equilibrium level, stays forever at
least close to it. In our simple example, with fixed values for a, K, (1− α)x0
and βy0, the auctioneer can easily attain this target if, during the tâtonnement
process, s/he makes more bounding the upper constraint to price variation.

Second, using the price adjustment mechanism formalized in (7), the auction-
eer is also able to reduce the complexity of the price dynamics. This point can
be easily understood by having a look at the value the derivative of the map
(7) takes at the fixed point, namely:

g′ (p∗) = 1−
(

ab

a+ b

)
K

where the second term in the right-hand side is increasing in both a and b.
Thus, given a suffi ciently high value of K (implying a high degree of dynamic
complexity), it is always possible to find values of a or b such that the derivative
is in the stability interval, i.e., such that g′ (p∗) ∈ (−1, 1). An example of the
reduction in the complexity of the attractor that follows from a reduction of b
is shown in Fig. 10. We start, in Fig. 10(i), from a combination of parameters
such that the dynamics of the process is chaotic and check what happens when,
all the other parameters remaining unchanged, the value of b is decreased. As
shown in Fig. 10(ii), in this case, the reduction of b from 1 to 0.75 drastically
reduces the complexity of the attractor, which becomes a 2-cycle. Then, as

(1997). In short, we can define it as that interval to which the dynamics generated
by our equation will always belong: starting from any initial condition, the dynamics
will enter this interval in a finite number of iterations and will never escape it.
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Fig. 10. An example of reduction of the complexity of the attractor when K = 4.5
from (i) a chaotic attractor to (ii) a 2-cycle and (iii) a fixed point
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Fig. 11. The price dynamics for the same three cases as in Fig. 10

shown in Fig. 10(iii), it is particularly worth noting that a further reduction
to b = 0.5 transforms the latter into a fixed point (see also Fig. 11, where the
same three cases are shown as versus time trajectories of the price).

Finally, whether in Mukherji’s example, in order to have economically mean-
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Fig. 12. The graph of the function g(p) for different values of b and K

ingful dynamics, it is required that K < 4 or, equivalently, γ < 0.111, in our
example the intervals of admissible values of K and γ become larger as b is
decreased. This property is shown in Fig. 12 where we start, in Fig. 12(i)),
with the case in which the maximum admissible value of K is approximately
equal to 4 as in Mukherji’s paper. Fixing a = 2 as in all other numerical sim-
ulations in the paper, this turns out to be the case when b = 3.1. Then, Figs.
12(ii) and 12(iii) clearly show that, leaving the parameter a unchanged, this
value increases to K ' 11.1 (γ ' 0.308) when b = 1 and becomes as high as
K = 21.5 (γ ' 0.597) when b = 0.5.

5 Conclusions

In this paper we have carried out a simple exercise with the purpose of showing
that it is possible to give a positive answer to Mukherji’s query about the
effectiveness of the tâtonnement process in discrete time. We have indeed
been able to show that the auctioneer, by using a nonlinear price adjustment
mechanism like (7) — such that the intensity of price variations during the
tâtonnement process is positive and almost constant over some middle range
of (absolute) values of excess demand but goes to zero at either extreme —is
able not only to constrain the dynamics of the relative price in a neighborhood
of its equilibrium level as small as s/he wishes, but even to fully stabilize it.
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We believe that the theoretical relevance of this result, at length pursued
in the literature, is beyond question. In addition, we believe that the price
adjustment mechanism we have suggested could find interesting application
in those real-world markets in which auction mechanisms play a role. Most
obvious candidates for this are the large number of financial markets in which
the price formation mechanism is of the tâtonnement type. For all these cases,
the results we have obtained may shed light on potential mechanisms for price
restraint. We leave this question open for future research.
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