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Abstract

We report on a technique for modelling biological systems based on the ntcc calculus, a model of concurrency
where systems are specified by means of constraints (i.e., formulae in logic). We show that the ability of
ntcc to express partial information, concurrency, non-determinism and timed behaviour makes it well-
suited model and simulate biochemical reactions networks. Based on this technique, we introduce BioWayS
(BIOchemical pathWAY Simulator), a software tool for the quantitative modelling and analysis of biological
systems. We show the applicability of BioWayS in the context of two well-studied biological systems: the
glycogen breakdown pathway and the life cycle of the human immunodeficiency virus.
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1 Introduction

Computational biology aims at using methods and techniques from computer sci-

ence to integrate the existing knowledge concerning individual genes, proteins and
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molecules and to investigate the behaviour and relationships among the various el-

ements composing a biological system. A technique widely used in computational

biology consists in the construction of executable models (EMs) [15] describing the

studied systems as computer programs. EMs are typically specified through formal

languages based either on process algebras (e.g. [10,12,11,25,3]) or other formalisms

such as logic [9] or rewriting logic [14], constraint programming [21,13] or Petri nets

[6]. These models can be used for analyzing either static, qualitative properties

of biological systems [7] or their quantitative, dynamical behaviour. In the latter

case, for taking into account dynamical aspects, the evolution of the model is driven

by algorithms that, given the state of the system at one initial time t0, allows to

compute the state of the system at a subsequent time t. Depending on the chosen

algorithm the model results to be stochastic or deterministic.

Recently there has been a significant interest in (executable) discrete stochastic

(DS) models of biological systems, mainly because experimental data are provid-

ing evidences that stochasticity arising at the molecular level plays an important

role in determining the overall behaviour of living organisms [30]. In DS models

the evolution of the system is driven by a stochastic algorithm which computes

the probability of state transitions according to given probability density functions

(PDFs). Biochemical reactions are often modelled through DS approaches, typi-

cally by describing the reaction system in hand as a discrete-state continuous-time

Markov process (DCMP) (see e.g. [4]). Gillespie’s Stochastic Simulation Algorithm

(SSA) [17], based on previous proposals (e.g. [4]), is the most widespread algo-

rithm used for implementing DS simulations of biological systems. Gillespie’s SSA

requires that some hypotheses are satisfied, namely solutions are well stirred and in

thermal equilibrium and, more importantly, it holds only for elementary chemical

reactions i.e., those reactions occurring in one reactive event. Even though it has

been shown that the SSA can work besides the prescribed scope of applicability

as proved by the success of various stochastic models against experimental data, it

is difficult to describe biochemical systems in terms of elementary reactions: often

there is an incomplete knowledge of the full set of elementary reactions and meso-

scopic or macroscopic transformations are the only observable ones. Most commonly

this problem is circumvented abstracting away the unobservable elementary steps,

lumping them in a single reaction event modelled as a single “Markov jump” with

the waiting time τ sampled from a negative exponential distribution depending on

an overall rate constant. However, abstractions usually introduce approximations

in the behaviour of the models. The impact of these approximations is not easy

to evaluate or estimate, as noticed by Gillespie in [31] for enzymatically catalyzed

reactions. One crucial point in this abstraction approach concerns the modelling

of the waiting time, i.e. the time needed for a reaction to occur: even though the

elementary reactions underlying a given biochemical process can be modelled as a

DCMP (and, thus, with waiting times distributed according to a negative exponen-

tial PDF) on a mesoscopic or macroscopic scale the process may exhibit different

dynamics such as non-Markovian behaviours, as pointed out also in [26] and [10]

and shown by various experimental evidence, e.g. [24]. These arguments suggest the
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need of proposing modelling approaches embedding a more general notion of tran-

sition time allowing to describe the observed time courses of biological phenomena

without assuming a memoryless process. Various approaches have been proposed

for addressing this issue. In [6] an extension for Petri Nets is proposed, while in [26]

the Beta Workbench toolkit is enhanced allowing the sampling of transition times

from non-exponential PDFs. BioPEPAd [10] allows to add deterministic delays to

the duration of a reaction. The work mentioned above propose different approaches

in modelling reaction’s waiting times t. In [26] and [6], similarly to the Gillespie’s

SSA, t represents the time needed for the event reaction to be enabled, i.e. the time

needed for the reactants to collide effectively and react. In these cases, the effects

of the reactions (i.e. the formation of the products) are considered instantaneous.

Conversely, in [10] the enabling and the completion of the reactions are rendered as

two separated events and products formation is not instantaneous. As it will be de-

tailed in Sections 2 and 3 we consider t as the interval between two reactive events,

i.e. the time separating two subsequent events of product formation. In this way we

abstract the difference between the enabling and the effects of a reaction without

subsuming whether product formation is instantaneous or not. This choice allow us

to model more faithfully experimental evidences. Indeed in (bio)chemistry and biol-

ogy the kinetics of reactions are measured observing product formation during time,

i.e. ”counting” the amount of molecules produced in given time intervals. Usually

these experiments do not provide information about which part of the time needed

for a reaction to occur is spent for the enabling or completion phase. Thus, focusing

on a more abstract notion of waiting time, we aim at preventing the insertion of

artifacts in modelling reaction dynamics.

In this paper we propose an approach based on the ntcc calculus [28], a tem-

poral extension of Concurrent Constraint Programming (CCP) [32], designed for

specifying and verifying timed and reactive systems. In particular we report on

BioWayS (BIOchemical pathWAY Simulator), a PHP based application designed

for specifying and executing ntcc models of biological systems. Other authors (see

e.g. [8]) used (extensions of) CCP for modelling biological systems. Anyway, up

to our knowledge, only a few of them (see e.g., [2,20]) focus on timed extensions of

CCP such as the ntcc calculus. In [2] the methods for describing living systems

through ntcc are presented at the theoretical level. In [20] the ntcc approach is

applied for specifying biological phenomena. This work integrates these propos-

als in three directions: (1) providing a systematic discussion of the features of the

ntcc-based modelling approach for biology; (2) presenting a ntcc-based working

software; (3) modelling and analyzing two complex biological scenarios, namely, the

glucagon-induced glycogen breakdown and the life cycle of the human immunodefi-

ciency virus (HIV).

As we shall show, ntcc offers several advantages in the modelling of biochemical

reaction systems: (1) the timed nature of the calculus allow us to faithfully model

temporal information about interactions, information about the temporal occurrence

of an event (e.g., when a binding occurs), and information about the relative ve-

locities of reactions (e.g., the duration of an interaction) thus allowing to take into

D. Chiarugi et al. / Electronic Notes in Theoretical Computer Science 293 (2013) 17–34 19



account non-markovian dynamics. (2) Constraints in ntcc provide a compact rep-

resentation of the state of the system, (e.g., the concentration of the components

along the time). (3) ntcc models can be seen as executable: ntcc processes can

be straightforwardly executed and the evolution of the system can be observed.

Finally, (4) the ntcc calculus is equipped with an underlying temporal logic that

allows to formally specify and verify properties of the model. Notice that, with

respect to the process algebra-based approaches, CCP allows an explicit notion of

states based on constraints as well as an explicit notion of time. Summing up, the

contribution of this paper is twofold: on the one hand we present both a systematic

discussion of the main features that makes ntcc suitable for modelling biological

systems and; the software tool designed for simulating biological phenomena en-

joying the features of the ntcc based approach. On the other hand we apply our

technique for modelling and analyzing two complex biological systems.

The rest of the paper is structured as follows: In Section 2 we describe the ntcc

calculus. In Section 3 we present our software tool (BioWayS) on two examples

(the glycogen breakdown pathway and the HIV life cycle). Section 4 concludes the

paper.

2 Timed Concurrent Constraint Programming

Process calculi such as CCS and the π-calculus among several others have arisen

as mathematical formalisms to model and reason about concurrent systems. They

treat concurrent processes much like the λ-calculus treats computable functions.

They then provide a language in which the structure of terms represents the struc-

ture of processes together with an operational semantics to represent computational

steps.

In this paper we shall use as modelling language Concurrent Constraint Pro-

gramming (CCP) [32], a model for concurrency that combines the traditional oper-

ational view of process calculi with a declarative view based on logic. This allows

CCP to benefit from the large set of reasoning techniques of both process calculi

and logic [32,28].

Agents in CCP interact with each other by telling and asking information rep-

resented as constraints to a global store. Constraints (e.g., x > 42) can be thought

of as formulae in a first-order language and they represent (partial) information

about the variables of the system. Partial must be understood here as the fact that

constraints do not necessarily determine completely the values of the variables.

The basic constructs in CCP are the tell agent tell(c) that adds the constraint

c (via logical conjunction) to the store, thus making it available to the other pro-

cesses; and the ask process when c do P that queries if the current store d can

entail (deduce) the guard c, written d |= c; if so, it behaves like P . Otherwise it

remains blocked until more information is added. Hence, ask processes define a

synchronisation mechanism based on entailment of constraints. CCP features also

constructs for declaring local variables as in (localx)P and for executing processes

in parallel as in P ‖ Q.
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The ntcc calculus [28] extends CCP with the notion of discrete time-units to

model timed and reactive systems. Roughly speaking, a CCP-like process is exe-

cuted in a time-unit. When the resting point is reached, i.e., no further evolution

is possible, the store is output and a new time-unit is created to later execute the

continuation of the process. In order to specify this kind of behaviour, ntcc extends

CCP with operators such as nextP that delays the execution of P one time-unit;

the replication !P that executes P in all the time-units; and unless c nextP that

executes P in the next time-unit if c cannot be deduced from the store. Further-

more, ntcc introduces non-deterministic choices of the form
∑

i∈I when ci do Pi

where one Pi is chosen for execution if the guard ci can be entailed from the store.

When this happens, the other alternatives are precluded from execution. Asyn-

chronous behaviour is introduced by adding to the syntax a finite delay operator:

the process �P represents a finite but unbounded delay for the activation of P .

The notion of constraint and the language of processes in ntcc are expressive

enough to specify the biological behaviour we are interested in modelling:

• Quantitative information can be naturally expressed by means of constraints. For

instance x > y states that the concentration of x is greater than that of y.

• Constraints provide also an elegant mechanism to represent partial information.

For instance, x > 42 gives some information regarding the concentration of x but

it does not give a specific value for it. This can be helpful when some compo-

nents of the system are not well known or we do not have enough quantitative

information about them.

• Synchronisation of ask processes via constraint entailment allow us to trigger

actions when some information can be derived from the system. For instance,

it is natural to express in the language that a given reaction occurs only when

certain component is present in the system.

• The ability of CCP to compose models (i.e., components) by parallel composition

leads to a robust modelling strategy: we can study separately components of a

system and then, observe the behaviour of the whole system.

• Timed operators as nextP allow us to describe reaction (or interactions) that

can take several time-units to be completed.

• Furthermore, since ntcc is a model of concurrency, we can use several techniques

to reason about the models we build. For instance, operational and denotational

semantics, model checking techniques and logical interpretation of processes (see

e.g., [32,28] ).

2.1 BioWayS: a ntcc model of biochemical reactions

The tool we propose here models biological systems by means of a set of reaction

rules of the form

a1X1 + ...anXn ��� b1Y1...+ bmYm (1)

The constants a1, ..., an and b1, ..., bm are the stoichiometric coefficients. There-

fore, a1X1, a2X2, ..., anXn are reactants that interact (and then consumed) yielding
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to the products b1Y1, b2Y2, ..., bmYm.

In order to represent the reaction above, we model in ntcc each type of molecule

as a variable (e.g., Xi) and Equation (1) as the process

eq-proc = when X1 ≥ a1 ∧ ... ∧Xn ≥ an do

next (t) (tell(Y1 = Y ′
1 + b1 ∧ ... ∧ Ym = Y ′

m + bm)) ‖
next tell(X1 = X ′

1 − a1 ∧ ... ∧Xn = X ′
n − an)

(2)

We use primed variables to represent the value of the variables in the previous time

unit as in X1 = X ′
1. The process above can be read as “when the reactants are

available, they are consumed and the right-hand components are produced t time

units later”. Hence, the kinetic parameter t allow us to represent the speed of

reactions.

Assume now a set of n stoichiometric equations. We need a process that chooses

one of the reaction to occur at a given time-unit. This can be done by composing

each process eq-proci in a non-deterministic choice of the form:

∑

i∈1..n
eq-proci

Furthermore, if the propensity of each reaction to occur is available, it is possible

to consider probabilistic extensions of CCP as the one studied in [19]. Then, instead

of performing a non-deterministic choice, we can consider a probabilistic process of

the form:

new(p, F ) in
∑

i∈1..n
when p = i do eq-proci

where the value of p is chosen according to the probability mass function F for

{1, . . . , n}. For instance, for a system of two reactions, the process

new(p, F : F (1) = 0.2, F (2) = 0.8) in
∑

i∈1..2
when p = i do eq-proci

will choose with a probability of 0.2 the first reaction and with a probability of 0.8

the second reaction.

Summing up, in BioWayS it is possible to express two important features of

biochemical reactions: the propensity (i.e. the probability of occurring) and the

duration, i.e. the time steps needed for the products to appear in the system. This

is an abstraction to represent the speed of a chemical reaction (i.e. the reaction rate

constant).

The model as a runnable specification

Processes in ntcc can be seen as runnable specifications of a system: the model

can be directly simulated by using the operational semantics (SOS) of the calculus.
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The SOS dictates how processes evolve along time units. For instance, a process

tell(c) evolves into skip (the inactive process) by adding c to the current store d:

RTELL 〈tell(c), d〉 −→ 〈skip, d ∧ c〉

Similarly, for the rest of the processes. The reader may refer [28] for a complete

description of SOS rules of ntcc.

Following the operational rules of the calculus, we built an interpreter of ntcc on

top of the Mozart programming language (http://www.mozart-oz.org/). Central

to this implementation is the Mozart abstraction of a computation space (CS). A

CS is a constraint store where multiple threads can access (concurrently) the shared

variables and impose constraints on them. In Mozart, different constraint systems

are available. Here we used the Finite Domain Constraint System (FD). In FD

variables are assumed to range over finite domains and, in addition to equality, we

may have predicates that restrict the possible values of a variable to some finite

set as in x > y. We thus model ntcc processes as threads that post and query

constraint in the CS until a resting point is reached. When this happens, we output

the final store that contains the information about the variables of the model. This

gives a simple way to “execute” the ntcc model and observe the behaviour of the

modelled system in each time-unit.

In order to make the tool available on Internet, we embedded the ntcc interpreter

into BioWayS, a PHP based application freely available at http://avispa.puj.

edu.co. Users can build models of biological systems in BioWayS through a wizard

that comprises the following steps:

(i) Variables: Define the reacting species and their initial concentration.

(ii) System’s reactions: Define the type of reaction that describes how molecules

interact.

(iii) Propensity of reactions: Define the probability of each reaction to occur.

(iv) Duration of reactions: Define the duration of each type of interaction.

(v) Number of time-units: Time-window for the simulation.

3 Modelling

In this section we outline the use of our toolkit through the specification and sim-

ulation of two well-studied biological scenarios: (i) the signalling pathway leading

to the glycogen breakdown into glucose 1-phosphate, and (ii) the life cycle of the

HIV. During the discussion we also highlight the features of our approach in these

specific cases.

3.1 The glycogen breakdown pathway: A model of intracellular processes

In higher organisms such as mammals glycogen is stored in the liver as a reservoir

of glucose. When the concentration of glucose in the blood is low the α cells of the
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pancreas secrete glucagon, a polypeptidic hormone which triggers the process of

glycogen breakdown (glycogenolysis). This process is started by the interaction of

glucagon with its receptor expressed by liver cells [1]. Once the glucagon receptor

embedded in the cell membrane binds its ligand, it activates a signal transduc-

tion pathway inside the cell leading to a glycogenolysis. More precisely, the signal

transduction system for the glycogen degradation pathway is modular and is made

of three type of proteins: (i) a receptor, (ii) a transducer, and (iii) an effector.

Glucagon recognises and binds to its receptor causing an allosteric change [16].

Responding to this structural modification, the transducer (a G-protein –guanine

nucleotide-binding protein– located in the inner side of the cell membrane) inter-

acts with the hormone-receptor complex stimulating a reaction in which a GDP

(guanosine diphosphate) molecule bound to the G-protein is replaced by GTP

(guanosine-5′-triphosphate). This reaction activates the G-protein, which then

interacts with the effector, the enzyme adenylyl cyclase. This protein catalyses

the conversion of ATP (adenosine-5′-triphosphate) to cAMP (cyclic adenosine

monophosphate), an intracellular second messenger. Thus, the binding of glucagon

at the cell-surface stimulates the synthesis of a second messenger inside the cell,

which in turn stimulates a metabolic response (see Figure 1). The first interaction

triggers a cascade of biochemical reactions in a signal transduction pathway through

the activation of G-proteins [1].

In order to model the system described above we apply a compositional approach

by adding iteratively biochemical interactions. This is particularly straightforward

in our framework: new information can be added to the system by posting con-

straints and the subsystems can be easily composed by sharing variables. Compo-

sitionality allows to build complex biological models combining partial information

coming from different sources. This result is certainly more difficult to achieve,

for example, in models based on ordinary differential equations (ODE) because the

large number of parameters needed and, in general, ODE are not compositional.

Moreover, the idea of partial information represented as constraints makes CCP

appropriate for this aim.

Note that our technique allows the description of the biological scenario at differ-

ent levels of abstraction. For instance, in [21] we considered the interactions between

the transmembrane receptor and G-proteins in three different environments (extra-

cellular, transmembrane, and intracellular). Now, we expand this perspective by

zooming into the intracellular domain with the aim to analyse the system’s be-

haviour at this level. This should allow us to gain a better understanding of the

system dynamics in response to the presence or absence of signalling molecules.

We describe the glycogen breakdown pathway through a set of reaction rules

resembling [13,21] and we considered the actions of binding, dissociation, complex

formation, and transfer of molecule groups. The full specification of the model is

reported in Appendix A. For each reaction we specified the initial concentration c

of reactants , the probability p to occur and the time t (see parameter t in Equation

(2)) between two subsequent events of product formation. These parameters were

estimated accordingly to literature data [5,22,23,27,34]. In particular t is estimated
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Fig. 1. A reaction pathway for the glycogen breakdown (taken from [5] and
https://files.nyu.edu/gcl1/public/).

from reaction rates: the highest the reaction rate, the shortest t. We used c to set

the experimental conditions. Indeed we simulated different scenarios (called modes

in the Appendix) in which c can be low, medium or high. For the simulations

performed here, we assumed that all reactions have the same propensity to occur.

Thanks to the timed nature of our modelling language, we are able to emphasise

the interactions between different species during time.

Our in silico experiments show that the behaviour of our model is consistent

with that of the real counterpart. In particular, in liver cells, in response to the

hormone glucagon, the transmembrane protein adenylyl cyclase is stimulated and

catalyses the conversion of ATP into cAMP , an intracellular second messenger

(see Tables A.1 and A.2). This step of the signal transduction pathway is called

amplification of the signal, since in response to a small amount of glucagon, a large

quantity of cAMP is produced (see Figure 2). The amplification process is mediated

by subsequent molecular interactions. Indeed, before glucagon unbinds from its
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Fig. 2. Temporal trace of cAMP involved in the glycogen breakdown cascade. It can be observed an
increased formation of cAMP in presence of lower values of concentrations and rate constants, particularly
in terms of the extracellular ligand (see details in Appendix A.)

(a) (b)

Fig. 3. 3a Temporal trace for enzyme protein kinase A (cAMP dependent protein kinase (cAPK)) and 3b
glucose 1-phosphate.

receptor, several G-proteins can be activated. The activated proteins migrate along

the inner side of the plasma membrane and may enhance, in turn, the catalytic

capabilities of many adenylyl cyclases. Moreover, during the life-time of the G-

protein-adenylyl cyclase complex, several ATP molecules are converted into cAMP ,

thus leading to further amplification.

Throughout the signal cascade, cAMP is capable to activate the enzyme protein

kinase A (cAMP dependent protein kinase (cAPK)). Thus, high levels of cAPK

are observed in the system (see Figure 3a). This environment is a requirement for the

activation of others intracellular signalling molecules (see Equations EQ8-EQ12.1 in

Appendix A) and to promote the degradation of glycogen into molecules of glucose

1-phosphate (see Figure 3b). Therefore, the processing of information from the

external environment to the intracellular medium, starts at the level of the cell

membrane through the binding of the hormone glucagon to its respective receptor

in a “physical interaction” followed by a set of biochemical reactions (transduction

pathway) in which the initial stimulus is greatly amplified.

Our representation of the interactions is in agreement with [33]: the following

enzymes must be both present and available for activation: glycogen phosphorylase
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(a) (b)

Fig. 4. 4a Temporal trace for proteins glycogen synthase (active form) and 4b glycogen phosphorylase
(inactive form).

kinase and glycogen phosphorylase, as well as protein kinase A must be available

for activation by cAMP . The enzyme adenylyl cyclase must be present according

with [29]. In line with [33,29] in almost all species the activity of glycogen synthase

increases rapidly while glycogen phosphorylase remains low, and the ratio of the

active forms of glycogen phosphorylase and glycogen synthase might be of major

importance in the regulation of metabolism. Our simulations (see Figure 4) repro-

duce this behaviour: enzyme glycogen synthase (active) increases in an overshoot

and afterwards decreases and remains in a constant level especially when we con-

sider the configuration “medlimMode2” (see the blue arrow in Figure 4a) to perform

the simulations (see Tables A.1 and A.2). In such configurations the mid values of

concentrations and rate constants of the molecules and reactions in the network

are taken. When we consider the configuration “medlimMode3” (see Tables A.1

and A.2), the glycogen phosphorylase (inactive) decreases to lower levels of con-

centration (see the blue arrow in Figure 4b). Moreover, we can notice that the ratio

and behaviour of the inactive/active forms of glycogen phosphorylase and glycogen

synthase affects not only the degradation of glycogen to glucose 1-phosphate (the

active form of the glycogen phosphorylase degrades glycogen –see Equations EQ11-

11.1 in Appendix A) but also the glycogen synthesis (the active form of glycogen

synthase catalyses the formation of glycogen polymers –see Equations EQ12-12.1

in Appendix A). The ability of our modeling strategy and tool to easily adjust pa-

rameters and compose subsystems was crucial here to identify the above mentioned

behaviours and also to gain insights on the regulation of glycogenolysis.

3.2 The HIV life cycle: A representation based on biochemical interactions

Since the discovery of the human immunodeficiency virus (HIV), the etiologic agent

of the acquired immune deficiency syndrome (AIDS), scientists have studied the

dynamics and details of the HIV life cycle in order to develop efficient antiviral

therapies. In the context of computational biology the dynamics of cell-virus in-

teractions have traditionally been investigated through both ODEs and EMs. In

the latter case the proposed modelling approaches mainly focus on membrane in-

teractions (see e.g. in [11]). We shall use here BioWayS for building a model of the
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HIV infection cycle shifting the focus on quantitative issues. Our aim is to track

the time course of a set of molecules during the various steps of the infection cycle.

Our investigation is driven by the available observations describing the progression

throughout the infection cycle as conditioned by the presence of certain molecules

in each phase. In other words, each stage of the infection cycle is characterised by

a precise set of molecules which are necessary for bootstrapping the following step.

Our interest in modelling the timing of this process reflects one research strategy

in drug discovery, aiming at blocking the infection cycle by interfering with the

bootstrapping molecules. Our framework promises to be particularly suited for this

purpose since time rates can be taken into account and ntcc processes can be pro-

gressively composed in order to build a model integrating information coming from

different sources.

The various steps of the HIV infection process can be described as follows (see

[18] for a detailed description and Figure 5):

• Binding and Fusion: HIV binds to a specific receptor CD4 (cluster of differentia-

tion 4) and one of two co-receptors on the surface of a CD4+ T-lymphocyte and

fuses with the host cell releasing its RNA genome.

• Reverse Transcription: reverse transcriptase converts the single-stranded HIV

RNA to double-stranded HIV DNA.

• Integration: the HIV DNA enters the host cell’s nucleus where it may remain

inactive producing few or no new copies of HIV.

• Assembly: new virus particles are assembled in the host cell.

• Budding: the newly assembled virus pushes out (“buds”) from the host cell.

We used BioWayS to describe the interactions amongst the molecules of both the

virus and the host cell involved in the infection cycle. For this, we specified for each

reaction its duration and the initial amount of reactants. The equations composing

the model and the chosen parameters are reported in Appendix B. An interest-

ing observation that can be abstracted from the simulation results, is the cyclical

behaviour of the system based on the availability of the following molecules: ccr5

(C-C chemokine receptor type 5), cd4, gp41 (glycoprotein-membrane anchored fu-

sion protein subunit) and gp120 (glycoprotein-receptor binding domain) (see Figure

5). These molecules set a sort of boundary condition for the reaction scheme: if

they are not available to feed the system, the cycle is stopped.

BioWayS then allowed us to correctly identify a set of molecules whose presence

is a necessary condition for proceeding throughout each step of the infection cycle.

Consistently with available data, for instance, we found that in our model the

presence of the complex gp120/gp41 is necessary for both the Binding and Fusion

and the Budding phases. Without this complex, the virus is unable to infect the

host cell. Interestingly, drugs called Fusion Inhibitors, such as Maraviroc, block the

fusion phase interfering with the binding of the host-cell co-receptor ccr5 and the

complex gp120/gp41 : cd4 thus avoiding the HIV life cycle to continue.
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(a) (b)

Fig. 5. Steps of the replication of the virus (taken from http://www.niaid.nih.gov) (left) and the time
course of gp120/gp41 : cd4 : ccr5 necessary to initiate membrane fusion in the HIV life cycle (right).

4 Conclusions and future work

We have defined a technique based on a temporal extension of Concurrent Con-

straint Programming (CCP) for modelling biological systems that allows us to rep-

resent straightforwardly transition times and partial information. In this paper we

have presented also a software tool (BioWayS) for modelling and analysing bio-

chemical interaction networks. Through two working examples we have illustrated

how our method can be used for gaining insights on the dynamics of biological

phenomena.

We are currently developing an extension of our toolkit allowing us to consider

also stochastic waiting times distributed according to non-exponential probability

distribution functions. This will lay the ground to describe a larger set of biological

scenarios.
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[20] Julián Gutiérrez, Jorge A. Pérez, Camilo Rueda, and Frank D. Valencia. Timed concurrent constraint
programming for analysing biological systems. Electron. Notes Theor. Comput. Sci., 171(2), 2007.

[21] Diana Hermith, Carlos Olarte, Camilo Rueda, and Frank D. Valencia. Modeling cellular signaling
systems: An abstraction-refinement approach. In Miguel P. Rocha, Juan M. Corchado Rodŕıguez,
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A Glycogen breakdown pathway

Below we list the reactions we considered for the simulation of the signaling

pathway of glycogen breakdown. In Table A.1 we describe the experimental

conditions, i.e., the rate constants for each reaction. Table A.2 describes the

component of the system along with the molar concentration we considered in each

simulation.
EQ1 Rglcgn[GαGDP ] + Lglcgn � Rglcgn[GαGTP ]Lglcgn

EQ2 Rglcgn[GαGTP ]Lglcgn � GαGTP + RglcgnLglcgn

EQ3 GαGTP + GAP � GAP−→GαGDP + GAP + Pi

EQ4 GαGDP + Rglcgn � Rglcgn[GαGDP ]

EQ5 RglcgnLglcgn � Rglcgn + Lglcgn

EQ6 GαGTP + AC � AC[GαGTP ]

EQ7 AC[GαGTP ] + ATP � [AC[GαGTP ]]ATP −→ cAMP + 2Pi + AC[GαGTP ]

EQ8 4cAMP + 2cAPKinact � 2cAPKact

EQ9 cAPKact + GPKinact � [cAPKactGPKinact]

EQ9.1 [cAPKactGPKinact] + ATP−→(GPK − P )act + ADP + cAPKact

EQ10 (GPK − P )act + GPinact � [(GPK − P )actGPinact]

EQ10.1 [(GPK − P )actGPinact] + ATP−→(GP − P )act + ADP + (GPK − P )act

EQ11 (GP − P )act + Glycogen � (GP − P )actGlycogen

EQ11.1 (GP − P )actGlycogen + Pi −→ Glucose1− P + (GP − P )act

EQ12 (GPK − P )act + cAPKact + GSact � [cAPKactGSact(GPK − P )act]

EQ12.1 [cAPKactGSact(GPK − P )act] + ATP−→(GS − P )inact + ADP + cAPKact + (GPK − P )act

Duration of a reaction

Equations Mode 1 Mode 2 Mode 3

EQ1: Receptor and G-protein activa-
tion

kf = 1, kb = 1 kf = 1, kb = 1 kf = 1, kb = 1

EQ2: G-protein and ligand dissocia-
tion

kf = 1, kb = 1 kf = 1, kb = 1 kf = 1, kb = 1

EQ3: GAP-driven GTPase process kf = 1, kb = 1, khydr =
1

kf = 1, kb = 1,
khydr = 1

kf = 1, kb = 1,
khydr = 1

EQ4: G-protein-receptor inactive com-
plex

kf = 1, kb = 1 kf = 1, kb = 1 kf = 1, kb = 1

EQ5: Receptor and ligand dissociation kf = 1, kb = 1 kf = 1, kb = 1 kf = 1, kb = 1

EQ6: G-protein (active) and adenylate
cyclase association

kf = 1, kb = 1 kf = 1, kb = 1 kf = 1, kb = 1

EQ7: cyclic AMP formation kf = 1, kb = 1,
kform = 1

kf = 1, kb = 1,
kform = 1

kf = 1, kb = 1,
kform = 1

EQ8: cAPK activation kf = 1, kb = 1 kf = 1, kb = 1 kf = 1, kb = 1

EQ9;EQ9.1: GPK phosphorylation kf = 1, kb = 1, k3 = 2 kf = 1, kb = 1, k3 =
20

kf = 1, kb = 1, k3 =
200

EQ10;EQ10.1: GP phosphorylation kf = 1, kb = 1, k5 = 2 kf = 1, kb = 1, k5 =
20

kf = 1, kb = 1, k5 =
200

EQ11;EQ11.1: Degradation of glyco-
gen to glucose 1-phosphate

kf = 1, kb = 1, kdegr =
1

kf = 1, kb = 1,
kdegr = 1

kf = 1, kb = 1,
kdegr = 1

EQ12;EQ12.1: GS phosphorylation kf = 1, kb = 1, k7 = 2 kf = 1, kb = 1, k7 =
20

kf = 1, kb = 1, k7 =
200

Table A.1
Reaction scheme in the signaling pathway of glycogen breakdown. The total time of the simulation was
1.000.000 time-units. The corresponding rate constant of a reaction is represented as its duration in

discrete time units. Adapted from [5,22,23,27,34].
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Variables Definition Concentration (nM)

Rglcgn[GαGDP ] GPCR-transm. glucagon receptor-Gα subunit 200;350;500

Lglcgn Ligand (glucagon) 1;500;1000

Rglcgn[GαGTP ]Lglcgn GPCR-G Protein-Ligand Complex 200;350;500

GαGTP G-protein GTP-bound alpha subunit (active) 200;1400;3000

RglcgnLglcgn Ligand-receptor complex 1;250;500

GAP GTP-hydrolysis enzyme 10;145;300

[GαGTP ]GAP GTP-hydrolysis complex 200;250;300

GαGDP G-protein GTP-bound alpha subunit (inactive) 200;1400;3000

Rglcgn GPCR- transmem. glucagon recep. 1;250;500

AC Adenylate cyclase enzyme 1;250;500

AC[GαGTP ] AC enzyme and G-protein complex 200;350;500

ATP Adenosine triphosphate 4000;4000;4000

[AC[GαGTP ]]ATP AC enzyme, G-protein and ATP complex 200;350;500

cAMP Cyclic AMP 1× 105; 4.5× 105; 1× 106

Pi Inorganic phosphorus 4000;4000;4000

cAPKinact cAMP dependent protein kinase (inactive) 1000;1000;1000

cAPKact cAMP dependent protein kinase (active) 1000;1000;1000

GPKinact Glycogen phosphorylase kinase (inactive) 3000;3000;3000

[cAPKactGPKinact] cAPKactGPKinact complex 2000;2000;2000

(GPK − P )act Phosphorylate glycogen phosphorylase kinase 3000;3000;3000

ADP Adenosine diphosphate 4000;4000;4000

GPinact Glycogen phosphorylase (inactive) 7× 104; 7× 104; 7× 104

[(GPK −
P )actGPinact]

glycogen phosphorylase kinase-glycogen phos-
phorylase complex

3000;3000;3000

(GP − P )act Glycogen phosphorylase (active) 7× 104; 7× 104; 7× 104

Glycogen Glycogen 5× 107;5× 107;5× 107

(GP−P )actGlycogen Glycogen phosphorylase-glycogen complex 7× 104; 7× 104; 7× 104

Glucose1− P Glucose 1-phosphate 5× 107;5× 107;5× 107

GSact Glycogen synthase (active) 3000;3000;3000

[cAPKactGSact(GPK−
P )act]

Protein kinase glycogen synthase complex 1000;1000;1000

(GS − P )inact Glycogen synthase (inactive) 3000;3000;3000

Table A.2
Reacting species, their initial amount, and a model of biochemical reaction rules for the signaling pathway
of glycogen breakdown. For each mode of simulation, we use the lower, medium and upper limit of the

molar concentration of the variables: InfLim, MedLim, MaxLim, respectively. Adapted from
[5,22,23,27,34].
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B HIV infection cycle

Table B.1 describes the components of the system and the reactions considered for

the simulation of the HIV cycle.

Variables Definitions Biochemical Reaction Rules

gp120, gp41 Glycoprotein 120 - On the surface of the
HIV, glycoprotein 41 - Subunit of the
envelope protein complex

EQ1: gp120 + gp41→ [gp120]gp41

cd4 Cluster of differentiation 4 - Cell surface
glycoprotein

EQ2: [gp120]gp41 + cd4→ [[gp120]gp41]cd4

ccr5 C-C Chemokine receptor type 5 - Pro-
tein receptor for Chemokines

EQ3: [[gp120]gp41]cd4 + ccr5 →
[[[gp120]gp41]cd4]ccr5

ectgp41 Glycoprotein 41 ectodomain - Released
by a sequential binding of gp120 to cd4
and coreceptor

EQ4: [[[gp120]gp41]cd4]ccr5→ ectgp41

cpd Capsid - A shell containing the virus in-
formation

EQ5: ectgp41→ 2cpd

rT, int, prt Reverse transcriptase, integrase, pro-
tease - Enzymes released into the cell by
the virus

EQ6: cpd→ rT + int + prt

sRNA Single-stranded Ribonucleic acid - ge-
netic information of the virus

EQ7: cpd→ 2sRNA

dDNA Double-stranded Deoxyribonucleic acid
EQ8: 2sRNA + rT → dDNA

EQ9: dDNA + int→ [dDNA]int

gnm Genome - genetic information of the cell EQ10: [dDNA]int + gnm→ [[dDNA]int]gnm

vDNA Viral Deoxyribonucleic acid - viral infor-
mation produced by the genome

EQ11: [[dDNA]int]gnm→ vDNA

mRNAHIV Viral messenger ribonucleic acid - viral
information used in order to produce the
viral proteins

EQ12: vDNA→ mRNAHIV

pHIV
HIV viral protein-protein to be divided EQ13: prt + pHIV → [prt]pHIV

into small pieces by a protease EQ14: [prt]pHIV → 4prtv

prtv Viral proteins used to form new virus

EQ15: prtv → rTv

EQ16: prtv → prtvr

EQ17: prtv → intv

EQ18: prtv → 2sARNv

cpdv Viral capside - ontains the information
needed in order to form a new virus

EQ19: rTv + prtvr + intv → cpdv

EQ20: 2sARNv → cpdv

nV irus New virus - contains the information of
a new virus

EQ21: 2cpdv → nV irus

Table B.1
Reacting species, their initial amount, and a model of intracellular processes for the HIV life cycle. Our
simulation considers the parameter t = 1 (see Equation 2) and all the reactions have the same probability
to occur. Initial concentrations were set up to 100 copies for ccr5, cd4, gp120, gp41, and 0 for complexes.

Adapted from [18].
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