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Abstract 
Characterizations of the classes of all choice functions that select the cores or the externally stable 
cores induced by an underlying revealed dominance digraph are provided. Relying on such cha-
racterizations, the basic order-theoretic structure of the corresponding sets of revealed cores is 
also analyzed. In particular, it is shown that the poset of all revealed cores ordered by set inclusion 
is a median meet semilattice: therefore, any profile of revealed cores may be aggregated by means 
of the simple majority rule. 
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1. Introduction 
The core of a game is the set of its undominated outcomes, with respect to a suitably defined dominance irref-
lexive relation, or loopless digraph. Now, consider the ongoing operation of a multi-agent system, e.g. an organ-
ization or indeed any decision-making unit whose outputs are aptly modeled as the outcomes of a game. Let us 
then assume that the set of available options does in fact change at a faster pace than the behavioural attitudes of 
the relevant players and the latter interact as predicted by the core of that game. It follows that the corresponding 
choice behaviour of the given interaction system as recorded by its choice function should be constrained in 
some way by its game-theoretic structure and thus somehow reveal that fact. But then, what are the characteris-
tic “fingerprints” of such a choice function, namely the testable behavioural predictions of the core as a solution 
concept? Or more simply, which choice functions defined over arbitrary subsets of an “universal” outcome set 
may be regarded as revealed cores? Let us call that issue, for ease of reference, the (full domain) core revelation 
problem.  
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Apparently, such a problem has never been addressed in its full generality in the extant literature. To be sure, 
parts of the massive body of literature on “revealed preference” provide partial answers addressing the case of 
nonempty cores, i.e. of acyclic revealed dominance digraphs (see e.g. [1]-[4]). Moreover, there is also some 
work covering the case of possibly empty sets of undominated outcomes for an arbitrary—i.e. possibly not ir-
reflexive-binary relation R, hence putting aside the original game-theoretic interpretation of R as a dominance 
relation (see e.g. [5], and [6]). But of course the dominance relation of a game in its usual meaning has to be ir-
reflexive (no outcome dominates itself), and the core of a game may well be empty, because its revealed domin-
ance digraph may have cycles. Here, we are interested precisely in the general version of the core revelation 
problem for the full domain, namely in a characterization of all revealed cores as solutions for a certain “uni-
versal” outcome set and all of its subsets, including (locally) empty-valued cores. 

The present paper is aimed at filling this gap in the literature by addressing the general core revelation prob-
lem with full domain as formulated above. It contributes to the extant literature in the following ways: 
• it provides characterizations of all choice functions with full domain—proper or not—that represent revealed 

cores, 
• under several variants of the notion of core (Theorems 7, 10, and 14). 

Moreover, 
• A study of the basic order-theoretic structure of the corresponding classes of revealed core-solutions as ca-

nonically ordered by set-inclusion is also provided (Theorems 17, 20, 21 and 22). In particular, it is shown 
that the class of all revealed cores (as opposed to, say, the class of nonempty-valued revealed cores) is a 
meet sub-semilattice of the lattice of all choice functions, and in fact a median meet semilattice (see Theorem 
17). A remarkable consequence of that fact is that any profile of revealed cores is amenable to aggregation 
by the simple majority rule.  

Thus, it turns out that each revealed core embodies a considerable part of standard maximizing choice, while 
the global structure of (full domain) revealed cores retains the order-theoretic properties of the space of all (full 
domain) choice functions that is most significant from the point of view of simple majority aggregation. 

A further generalization of the core revelation problem to the case of choice functions with an arbitrary do-
main (along the lines of [6]) would be most helpful. That task is left as a topic for another paper. 

The paper is organized as follows: Section 2 includes a presentation of the model and the main characteriza-
tion results; Section 3 provides some basic results concerning the order-theoretic properties of the classes of re-
vealed core-solutions previously characterized; Section 4 consists of a few concluding remarks. 

2. Choice Functions and Revealed Cores 
Let X be a set denoting the “universal” outcome set, with cardinality # 3X ≥ , and ( )X  its power set. It is 
also assumed for the sake of convenience that X is finite (but it should be remarked that the bulk of the ensuing 
analysis is easily lifted with suitable minor adaptations to the case of an infinite outcome set). A choice function 
on X (with full domain) is a deflationary operator on ( )X  i.e. a function ( ) ( ):c X X→   such that 
( )c A A⊆  for any A X⊆  (empty choice sets are allowed). A choice function c is proper if ( )c A ≠ ∅  when- 

ever A X∅ ≠ ⊆ . We denote CX the set of all choice functions on X, and XC  the subset of all proper choice 
functions on X. The proper subdomain of Xc C∈ -written Dc-is the set of all subsets of X with a nonempty-va- 
lued choice set i.e. ( ){ }:cD A X c A= ⊆ ≠ ∅ . For any binary relation X X⊆ × , and any Y X⊆ , a  and 

s  denote the asymmetric and symmetric components of  , respectively, while ( )Y Y Y= ∩ ×   and 
( ) \X X= ×  . Recall that X X⊆ ×  is reflexive iff x x  for all x X∈ , irreflexive iff not x x  for all 

x X∈ , total iff x y  or y x  for any ,x y X∈ , asymmetric iff x y  entails not y x  for any ,x y X∈ , 
transitive iff x y  and y z  entail x z  for any , ,x y z X∈ , quasi-transitive if a  is transitive, negatively 
transitive if   is transitive. The transitive closure ( )T   is the smallest transitive R ⊇  . Moreover,   is 
strictly acyclic iff its transitive closure is irreflexive, and a strict partial order iff it is both asymmetric and tran-
sitive. 

Let X X∆ ⊆ ×  be an irreflexive binary relation on X, denoting a suitably defined dominance relation: 
( ),X ∆  is the corresponding dominance digraph. In particular, ∆  is asymmetric if a∆ = ∆ . 

For any Y X⊆ , ( )Y Y Y∆ = ∆∩ ×  denotes the dominance relation induced by Δ on Y (of course X∆ = ∆ ), 
and ( ), YY ∆  is the induced dominance subdigraph on Y. Broadly speaking, the core of ( ), YY ∆  is the set of 

Y∆ -undominated outcomes in Y, namely 
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( ) { }, : for allY YY y Y not z y z Y∆ = ∈ ∆ ∈ . 

The a-core of ( ), YY ∆  is the set of a
Y∆ -undominated outcomes in Y, namely  

( ) ( ) ( ){ }, , : for allaa a
Y Y YY Y y Y not z y z Y∆ = ∆ = ∈ ∆ ∈  . 

The core (a-core) of ( ), YY ∆  is externally stable iff for any ( )\ , Yz Y Y∈ ∆  there exists ( ), Yy Y∈ ∆  
such that Yy z∆  (for any ( )\ ,a

Yz Y Y∈ ∆  there exists ( ),a
Yy Y∈ ∆  such that ( )a

Yy z∆ , respectively). 
A dominance digraph ( ),X ∆  is also said to be core-perfect or strictly acyclic (acyclic, respectively) if 
( ), YY ∆ ≠ ∅  ( ( ),a

YY ∆ ≠ ∅ , respectively) for any Y X⊆ . 
Remark 1. It should be emphasized here that any dominance digraph may arise in a natural way from an 

underlying game in coalitional form and from a related game in strategic form. Indeed, the dominance digraph  

( ), gX α∗
∆  defined by the following rule can be attached in a natural way to any coalitional game  

( )( ), , , i i N
g N X E

∈
=  :  
For any ,x y X∈ , ,x y X∈ , gx yα∗

∆  iff there exist A X⊆  and S N⊆  such that ( )x A E S∈ ∈  and 
iz y  for all i S∈  and z A∈  (see [7] for further details). 

Two binary relations ( )R c , Rc induced by a choice function Xc C∈  on X and defined as follows will play a 
pivotal role in the ensuing analysis: for any ,x y X∈ , cxR y  if and only if { }( ),x c x y∈ , while ( )xR c y  if 
and only if there exists Y X⊆  such that ( )x c Y∈  and y Y∈ . 

A choice function Xc C∈  is a revealed core-solution if there exists an irreflexive relation X X∆ ⊆ ×  such 
that ( ) ( ), Yc Y Y= ∆  for any Y X⊆ . Similarly, Xc C∈  is a revealed a-core-solution (ES core-solution, ES 
a-core-solution, respectively) if there exists an irreflexive relation X X∆ ⊆ ×  such that ( ) ( ),a

Yc Y Y= ∆  
( ( ) ( ), Yc Y Y= ∆  with ( ), YY ∆  externally stable, ( ) ( ),u Yc Y Y= ∆ , ( ) ( ),a

u Yc Y Y= ∆ , respectively) 
for any Y X⊆ . Then, we also say that c is core-rationalizable (a-core-rationalizable, ES-core-rationalizable, 
ES-a-core-rationalizable respectively) by the dominance digraph ( ),X ∆ . Clearly, ES (a-)core-solutions are 
refinements of (a-)core solutions. Revealed cores will also be used as a generic label to denote all the foregoing 
choice functions. 

The following choice functions provide some remarkable examples—and non-examples—of revealed cores. 
In particular, the first one will also play a role in the proofs of some results in Section 3, while the second one is 
a version of the well-known—and widely studied—“satisficing behavior”. 

Example 2. Notice that digraph ( ),X ∅  is also a dominance digraph, and ( ) ( ), ,a
A AA A A∅ = ∅ =   for 

any A X⊆  (hence it is also-trivially-externally stable). Therefore, the identity operator ( ) ( ):idc X X→   
is a revealed core-solution (a-core-solution, ES core-solution). 

Example 3. Take G X∅ ⊆ ⊂  and consider the nonempty valued dichotomic choice function  
( ) ( ):Gc X X+ →   as defined by the “lax” satisficing rule ( )Gc A A G+ = ∩  for any A X⊆  if A G∩ ≠ ∅ , 

and ( )Gc A A+ =  otherwise. Now, posit ( )\G X G∆ = ×  i.e. x y∆  iff x G∈  and \y X G∈ . It is easily 
checked that for any Y X⊆ , ( ) ( ) ( ), ,G a

Y Yc Y Y Y+ = ∆ = ∆   (which is also externally stable).  
Example 4. By way of contrast, take again G X∅ ⊆ ⊂  and consider the dichotomic choice function 

( ) ( ):Gc X X− →   as defined by the “strict” satisficing rule ( )Gc A A G− = ∩  for any A X⊆ . It is easily 
checked that Gc−  is not a revealed core: to see this, take any \x X G∈ . Then, { }( )Gc x− = ∅  while for any 
dominance digraph ( ),X ∆  and any x X∈ , it cannot be the case that x x∆  hence  

{ } { }( ) { } { }( ) { }, ,a
x xx x x∆ = ∆ =  .  

The main objective of this article is precisely to provide a characterization of all revealed cores in XC , and 
study their basic order-theoretic structure. 

To begin with, let us consider two requirements concerning local existence of nonempty choice sets. 
No-dummy property (ND): { }( ) { }c x x=  for any x X∈ . 
2-Properness (2-PR): ( )c A ≠ ∅  for any A X⊆  such that # 2A = . 
It is easily checked that ND is satisfied by all revealed cores, while 2-PR is only violated by core solutions 

when the underlying dominance digraph is not asymmetric. A stronger property that obviously entails both ND 
and 2-PR is: 

Properness (PR): ( )c A ≠ ∅  for any nonempty A X⊆ . 
The following properties of a choice function Xc C∈  play a prominent role, under various labels, in the 

extant literature: 
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Chernoff Contraction-consistency (C): for any ,A B X⊆  such that A B⊆ , ( ) ( )c B A c A∩ ⊆ . 
Concordance (CO): for any ,A B X⊆ , ( ) ( ) ( )c A c B c A B∩ ⊆ ∪ . 
Superset consistency (SS): for any ,A B X⊆ , if A B⊆  and ( ) ( )c B c A∅ ≠ ⊆  then ( ) ( )c A c B⊆ . 
Property C is a contraction-consistency condition for choice sets in that it requires that any outcome chosen 

out of a certain set should also be chosen out of any subset of the former: essentially, it says that any good rea-
son to choose a certain option out of a given menu should retain its strength in every submenu of the former 
containing that option.  

Conversely, property CO (also variously denoted as γ  or Generalized Condorcet-consistency) is an expan-
sion-consistency condition for choice sets, requiring that an outcome chosen out of a certain set and of a second 
one should also be chosen out of the larger set given by the union of those two sets: it says that any good reason 
to choose a certain option out of two given menus should retain its strength in the larger menu obtained by 
merging those two menus.  

Property SS is also an expansion-consistency requirement for choice sets: it rules out the possibility that the 
choice set of a certain menu be nonempty and strictly included in the choice sets of a smaller menu. 

We are now ready to prove the main results of this paper. Let us start from the following simple. 
Claim 5. Let R X X⊆ ×  be any (binary) relation on X, and define R X X∆ ⊆ ×  by the following rule: for 

any ,x y X∈ , Rx y∆  iff not yRx . Then, 
(i) 

R
R∆∆ = ; 

(ii) for any Y X⊆ , { }max : for allR
YR x Y not y x y X= ∈ ∆ ∈ , and  

{ }max : for allR
Y x Y not yRx y X∆ = ∈ ∈ ; 

(iii) R is reflexive iff R∆  is irreflexive, and irreflexive iff R∆  is reflexive; 
(iv) R is total iff R∆  is asymmetric, and asymmetric iff R∆  is total; 
(v) R is quasi-transitive iff R∆  is quasi-transitive.  
Proof. (i) For any ,x y X∈ , by definition 

R
x y∆∆  iff not Ry x∆  iff not (not xRy ) iff xRy . 

(ii) Let x Y∈ , and xRy for all y Y∈ : then, by definition, not Ry x∆  for all y Y∈ , and conversely if not 
Ry x∆  for all y Y∈  then not (not xRy) i.e. xRy for all y Y∈ . Similarly, x Y∈  and not yRx for all y Y∈ : 

then by definition Rx y∆  for all y Y∈ , and conversely.  
(iii) Indeed, by definition for any x X∈ , not Rx x∆  iff not (not xRx) i.e. xRx. Similarly, not xRx iff Rx x∆ . 
(iv) Suppose R∆  is asymmetric: then, for any ,x y X∈ , it may be the case that not Ry x∆  or not Rx y∆  

(or both). Now, if not Ry x∆  then xRy and if not Rx y∆  then yRx, therefore R is total. Conversely, suppose R 
is total. If xRy then not (not xRy) hence not ( Ry x∆ ) and similarly yRx entails not ( Rx y∆ ), thus in any case R∆  
is asymmetric. Similarly, R is asymmetric iff for any ,x y X∈  it cannot be the case that xRy and yRx, i.e. by 
definition iff it is not the case that not Ry x∆  and not Rx y∆ , namely R∆  is total. 

(v) Suppose that R is quasi-transitive, and that both ( )aRx y∆  and ( )aRy z∆ . Then, by definition (not yRx  

and xRy), and (not zRy and yRz) i.e. axR y  and ayR z , hence axR z . Therefore, xRz and not zRx i.e. not Rz x∆  
and Rx z∆ , namely ( )aRx z∆ . Conversely, suppose that R∆  is quasi-transitive, and that both axR y  and 

ayR z . Then, by definition (xRy and not yRx), and (yRz and not zRy) i.e. by definition (not Ry x∆  and Rx y∆ ) 
and (not Rz y∆  and Ry z∆ ), i.e. ( )aRx y∆  and ( )aRy z∆ , hence ( )aRx z∆ . Therefore, Rx z∆  and not 

Rz x∆  i.e. not zRx  and xRz , namely axR z .                                                  ■ 
Remark 6. The content of the previous Claim is certainly not unknown, but I have been unable to find a ref-

erence in print to it except for the statement of point (iv) in [8], while Theorem 8 of [3] only includes a specia-
lized version of the same point.  

The following Theorem extends and/or supplements some previous characterization results for revealed cores 
due to [1] and [2]. 

Theorem 7. Let Xc C∈ . Then, the following statements are equivalent: 
(i) c satisfies ND, C and CO; 
(ii) there exists an irreflexive X X∆ ⊆ ×  such that ( ) ( ), Yc Y Y= ∆  for any Y X⊆ ; 
(iii) there exists a reflexive relation R X X⊆ ×  such that ( ) max Yc Y R=  for any Y X⊆ . 
(iv) ( ) cR c R= , ( )R c  is reflexive and ( ) ( )max Yc Y R c=  for any Y X⊆ .  
Proof. (i) ⇒ (iv): Let Xc C∈ . Now, for each Y X⊆  and ( )x c Y∈ , ( )xR c y  for any y Y∈ , by definition 

of ( )R c . Hence ( ) ( )max Yc Y R c⊆ . Now, let Xc C∈  also satisfy ND, C and CO, and ( )max Yx R c∈ . Then, 
by definition, x Y∈  and for any y Y∈  there exists yY  such that yy Y∈  and ( )yx c Y∈ . It follows that  
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yy Y
x Y Y

∈
∈ ⊆



 and, by CO, ( )yy Y
x c Y

∈
∈


 whence ( )x c Y∈  by C. Therefore, ( ) ( )max Yc Y R c=  (clearly 

it might be the case that ( )max YR c = ∅ ). Notice however that, by ND, { }( )x c x∈  i.e. ( )xR c x  for any 
x X∈ . Thus, ( )R c  is reflexive, as required. Moreover, if ( )xR c y  then by C it must also be the case that 

{ }( ),x c x y∈  whence cxR y  and thus ( ) cR c R=  (since ( )cR R c⊆  by definition). 
(ii) ⇔ (iii) (see [1], Theorem 3): Let Xc C∈ . Thus, by Claim 5 (ii), if there exists R X X⊆ ×  such that 
( ) max Yc Y R=  for any Y X⊆ , then ( ) { }: for allRc Y x Y not y x y X= ∈ ∆ ∈ , for any Y X⊆ . Moreover, if 

R is reflexive then by Claim 5 (iii) R∆  is irreflexive hence ( ) ( ), R
Yc Y Y= ∆ . Conversely if there exists an 

irreflexive X X∆ ⊆ ×  such that ( ) ( ), Yc Y Y= ∆  for any Y X⊆  then by Claim 5 (ii)-(iii) ( ) max R
Yc Y = ∆  

for any Y X⊆ , and R∆  is reflexive. 
(iii) ⇒ (iv): See [1], Theorem 3. Moreover, observe that ( )cR R c⊆  by definition, and ( )xR c y  implies 

( ){ } { }( ),max ,x yx R c c x y∈ =  i.e. cxR y  hence ( )cR R c=  (of course, this is an extension to arbitrary choice 
functions of the proof of the same result for proper choice functions due to [2]). 

(iv) ⇒ (iii): Trivial. 
(iii) ⇒ (i): Suppose that there exists a reflexive relation R X X⊆ ×  such that ( ) max Yc Y R=  for any 

Y X⊆ . Clearly, by reflexivity of R, { }( ) { } { }max xc x R x= = , hence c satisfies ND. Moreover, for any 
Y Z X⊆ ⊆  and any ( ) max Zx c Z R∈ = , it must also be the case that ( )max Yx R c Y∈ =  hence C is also sa- 
tisfied by c. Finally, for any ,Y Z X⊆  and x X∈ , if ( ) max Yx c Y R∈ =  and ( ) max Zc Z R=  then clearly 

max Y Zx R ∪∈  whence ( )x c Y Z∈ ∪  and CO is satisfied as well.                                   ■ 
Remark 8. Notice that the equivalence between statements (ii) and (iii) of Theorem 7 above might in fact be 

credited to [1] because it is strictly related (indeed, essentially equivalent) to a full-domain specialized version 
of Theorem 3 of that paper, though the latter concerns nonempty core-solutions over an arbitrary domain 

( ) { }\D X⊆ ∅  hence, strictly speaking, is a statement about a class of proper choice functions on arbitrary 
domains. On the other hand, [9] has a similar result (see its Theorem 2.5), namely a characterization by the 
conjunction of C and CO of the choice functions selecting the outcomes “permitted” by all outcomes—or “not 
prohibited” by any outcome—according to an arbitrary “permission” or “prohibition” binary relation. A cha-
racterization of “sums” of revealed cores or “multi-criteria choice functions” by the conjunction of ND and C is 
suggested in [10].  

Remark 9. The foregoing characterization result is tight. To check that, consider the following examples. 
1) Let I

Xc C∈  be defined as follows: for any A X⊆ , ( ) maxI
Ac A L=  if { }A x∗≠ , and { }( )Ic x∗ = ∅  

where L is a linear order on X and x∗  is its bottom element. Clearly, Ic  violates ND, but satisfies C and CO; 
2) Let { }, ,X x y z= , and II

Xc C∈  be defined as follows: { }( ) { }IIc h h=  for any h X∈ , { }( ) { },IIc x y x= , 
{ }( ) { },IIc y z y= , { }( ) { },IIc x z z= , and ( )IIc X X= . It is immediately checked that IIIc  satisfies ND and 

CO, but violates C since e.g. ( ) { },IIy c X x y∈ ∩  but { }( ),IIy c x y∉ ; 
3) Let III

Xc C∈  be defined as follows: for any A X⊆ , ( ) maxIII
Ac A L=  if # 2A ≤  and ( )IIIc A = ∅  

otherwise, where L is a linear order on X. It is easily seen that IIIc  satisfies ND and C, but violates CO.  
Next, we have a similar characterization result for revealed a-cores which is also an extension to the general 

case of possibly non-proper choice functions of previous results as discussed below (see Remark 13). 
Theorem 10. Let Xc C∈ . Then, the following statements are equivalent: 
(i) c satisfies ND, 2-PR, C and CO; 
(ii) there exists an irreflexive relation X X∆ ⊆ ×  such that ( ) ( ),a

Yc Y Y= ∆  for any Y X⊆ ; 
(iii) there exists a total relation R X X⊆ ×  such that ( ) max Yc Y R=  for any Y X⊆ ; 
(iv) ( ) cR c R= , ( )R c  is total and ( ) ( )max Yc Y R c=  for any Y X⊆ .  
Proof. (i) ⇒ (iii): Let Xc C∈  satisfy ND, 2-PR, C, and CO. Then, by ND, C and CO (and in view of 

Theorem 7 above) there exists a reflexive relation R on X such that ( ) { }max : for allYc Y R y Y yRz z Y= = ∈ ∈  
for each Y X⊆ . Thus, by 2-PR, R is total. 

(ii) ⇔ (iii): Suppose that there exists a total relation R X X⊆ ×  such that ( ) max Yc Y R=  for any 
Y X⊆ .  
Then, as recorded by Claim 5 (ii) ( ) { }: for allRc Y x Y not y x y X= ∈ ∆ ∈  for any Y X⊆ . By Claim 5 (iv) R∆   

is asymmetric since R is total, hence in particular ( ) ( ) ( ), ,R a R
Y Yc Y Y Y= ∆ = ∆   for any Y X⊆ . Conversely, 

suppose that there exists a dominance digraph ( ),X ∆  such that  
( ) ( ) { }, : for alla a

Yc Y Y x Y not y x y X= ∆ = ∈ ∆ ∈ , for any Y X⊆ . Then, as recorded by Claim 5 (ii)  
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( ) ( )max
Ra

Y
c Y = ∆ : by Claim 5 (iv), ( )Ra∆  is total since a∆  is asymmetric. 

(ii) ⇒ (i): Suppose that there exists a dominance digraph ( ),X ∆  such that ( ) ( ),a
Yc Y Y= ∆  for any 

Y X⊆ . For any x X∈ , not { }xx x∆  i.e not x x∆  by irreflexivity of ∆  whence by definition  
{ }( ) { } { }( ) { } { }( ) { }, ,a

x xc x x x x= ∆ = ∆ =   and ND is therefore satisfied by c. Furthermore, for any ,x y X∈ , 

{ } ( ) ( ){ }, , , ,x y x y y x∆ ⊆  hence { } ( ){ } ( ){ }{ }, , , , ,a
x y x y y x∆ ∈ ∅ . If { },

a
x y∆ = ∅  then { } { }( ) { },, , ,a

x yx y x y∆ = ,  

otherwise { } { }( ) { },, ,a
x yx y x∆ =  or { } { }( ) { },, ,a

x yx y y∆ = , respectively, hence in any case  

{ }( ) { } { }( ),, , ,a
x yc x y x y= ∆ ≠ ∅  thus c satisfies 2-PR. 

Also, for any ,Y Z X⊆  such that Y Z⊆ , and any ( ) ( ),a
Zx c Z Y Z Y∈ ∩ = ∆ ∩ , it must be the case that 

not a
Zz x∆  for all z Z∈  hence in particular not a

Yz x∆  for all z Y∈ , i.e. ( ) ( ),a
Yx Y c Y∈ ∆ =  and c also 

satisfies C. 
Moreover, let ,Y Z X⊆  and ( ) ( ) ( ) ( ), ,a a

Y Zx c Y c Z Y Z∈ ∩ = ∆ ∩ ∆  . Then, by definition, not a
Yy x∆  

for all y Y∈  and not a
Yz x∆  for all z Z∈  hence not a

Yu x∆  for all u Y Z∈ ∪  i.e.  
( ) ( ),a

Y Zx Y Z c Y Z∪∈ ∪ ∆ = ∪  and CO is satisfied by c. 
(iii) ⇔ (iv): See the proof of Theorem 7 above.                                                 ■ 
Remark 11. The foregoing characterization result is also tight. To see this, consider the following examples. 
1) Let I

Xc C∈  as defined above (see Remark 9). Clearly, Ic  violates ND, but satisfies 2-PR, C and CO; 
2) Let II

Xc C
∗
∈  be defined as follows: { }( ) { }IIc x x

∗
=  for any x X∈ , and ( )IIc A

∗
= ∅  for any A X⊆  

such that # 2A ≥ . It is easily checked that IIc
∗
 does indeed satisfy ND, C and CO, but clearly violates 2-PR; 

3) Let { }= , ,X x y z , and II
Xc C∈  as defined above (see Remark 9). It is immediately checked that IIc  

satisfies ND, 2-PR, and CO, but violates C; 
4) Let III

Xc C∈  as defined above (see Remark 9). It is easily seen that IIIc  satisfies ND, 2-PR and C, but 
violates CO.  

Corollary 12. (see also [2] [4]) Let Xc C∈  . Then, the following statements are equivalent: 
(i) c satisfies C and CO; 
(ii) there exists a strictly acyclic dominance digraph ( ),X ∆  such that ( ) ( ) ( ), ,a

Y Yc Y Y Y= ∆ = ∆   for 
any Y X⊆ ; 

(iii) there exists a total relation R X X⊆ ×  such that ( ) max Yc Y R=  for any Y X⊆ ; 
(iv) there exists a relation R X X⊆ ×  such that ( ) max Yc Y R=  for any Y X⊆ . 
(v) ( ) cR c R= , ( )R c  is total, and ( ) ( )max Yc Y R c=  for any Y X⊆ .  
Proof. (i) ⇒ (ii): Since Xc C∈  , c is proper hence in particular it also satisfies ND and 2-PR. Therefore, by 

Theorem 10 (ii) above, there exists a dominance digraph ( ),X ∆  such that ( ) ( ),a
Yc Y Y= ∆  for any Y X⊆ . 

Moreover, since by hypothesis c is proper, ( ),a
YY ∆ ≠ ∅  for any Y X⊆  hence ( ),X ∆  must be acyclic.  

In particular, { } { }( ),, ,a
x yx y ∆ ≠ ∅  for any ,x y X∈ , therefore ∆  is asymmetric as well. Thus, ( ),X ∆  is  

indeed strictly acyclic and ( ) ( ), ,a
Y YY Y∆ = ∆ ≠ ∅   for any Y X⊆ . 

(ii) ⇒ (i): See the proof of Theorem 7 above. 
(i) ⇔ (iii): Obvious, by Theorem 10 above, since, again, Xc C∈   entails that c satisfies ND and 2-PR. 
(iii) ⇔ (iv): Suppose there exists R X X⊆ ×  such that ( ) max Yc Y R=  for any Y X⊆ . Since Xc C∈  , 
( )c Y ≠ ∅  for any Y X⊆ . Hence, in particular, for any ,x y X∈ , { }( ),c x y ≠ ∅ . It follows that R is total. 

The reverse implication is trivial. 
(iii) ⇔ (v): See the proof of Theorem 6 above, and of course [2].                                   ■ 
Remark 13. Actually, it is well-known that a proper c satisfies both C and CO if and only if there exists a bi-

nary relation R on X such that ( ) { }max :Yc Y R y Y yRz for all z Y= = ∈ ∈  for each Y X⊆  and, moreover, 
( ) cR R c R= =  as defined above -indeed, ( ) cR c R=  for any choice function that satisfies C (see e.g. [2] [4]). 

Also notice that the equivalence between (ii) and (iii) is due to [3]. Thus, Corollary 12 is—essentially—a res-
tatement of the Sen-Plott-Suzumura characterization of revealed “rational” (proper) choice functions or, equi-
valently, revealed non-empty core solutions.  

Let us now turn to characterizations of revealed externally stable core-solutions. Since externally stable cores 
(of nonempty sets) are nonempty the corresponding choice functions are proper: thus, given the traditional focus 
on proper choice functions, this subclass of revealed cores is the most widely studied, and best known (thanks 
again to [1] and [4]; it should also be recalled here that externally stable cores are in particular a subclass of 
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unique Von Neumann-Morgenstern stable sets). Therefore, for the sake of convenience, we collect in the fol-
lowing Theorem a few notable characterizations of revealed externally stable cores (to the best of the author’s 
knowledge, only some of them are already known and available in print, namely those recorded in [4] which 
correspond to the first equivalence of the following Theorem, as mentioned explicitly in its proof below). 

Theorem 14. Let Xc C∈ . Then, the following statements are equivalent: 
(i) c satisfies PR, C, CO and SS; 
(ii) there exists a quasi-transitive relation R X X⊆ ×  such that ( ) max Yc Y R= ≠ ∅  for any nonempty 

Y X⊆ ; 
(iii) there exists a total and quasi-transitive relation R X X⊆ ×  such that ( ) max Yc Y R= ≠ ∅  for any 

nonempty Y X⊆ ; 
(iv) ( ) cR c R= , ( )R c  is total and quasi-transitive, and ( ) ( )max Yc Y R c= ≠ ∅  for any Y X⊆ . 
(v) there exists a reflexive and negatively transitive relation R X X⊆ ×  such that ( ) max Yc Y R= ≠ ∅  for 

any nonempty Y X⊆ ; 
(vi) there exists a negatively transitive relation R X X⊆ ×  such that ( ) max Yc Y R= ≠ ∅  for any nonemp-

ty Y X⊆ ; 
(vii) there exists an irreflexive relation X X∆ ⊆ ×  such that ( ) ( ) ( ), ,a

Y Yc Y Y Y= ∆ = ∆   with ( ), YY ∆  
externally stable, for any Y X⊆ ; 

(viii) there exists an irreflexive and transitive relation X X∆ ⊆ ×  such that  
( ) ( ) ( ), ,a

Y Yc Y Y Y= ∆ = ∆ ≠ ∅   for any nonempty Y X⊆ ; 
(ix) there exists a a strict partial order X X∆ ⊆ ×  such that ( ) ( ) ( ), ,a

Y Yc Y Y Y= ∆ = ∆ ≠ ∅   for any 
nonempty Y X⊆ .  

Proof. (i) ⇒ (ii) ([10]): By Theorem 2.6 of [4], if c satisfies PR, C, CO and SS then there exists a (reflexive 
and) quasi-transitive relation R X X⊆ ×  such that ( ) max Yc Y R= ≠ ∅  for any nonempty Y X⊆ . But of 
course PR entails that { }( ) { },, max x yc x y R= ≠ ∅  for any ,x y X∈ , hence R is total as well. 

(ii) ⇒ (i) ([10]): See again [4], Theorems 2.5, 2.6 and 2.7. 
(ii) ⇔ (iii): Let be R X X⊆ ×  quasi-transitive and such that ( ) max Yc Y R= ≠ ∅  for any nonempty 

Y X⊆ . Of course, PR entails that in particular { }( ) { },, max x yc x y R= ≠ ∅  for any ,x y X∈ , hence R is total 
as well. The reverse implication is trivial. 

(iii) ⇔ (iv): See the proof of Theorem 7 above. 
(iii) ⇔ (v): Let R X X⊆ ×  be total and quasi-transitive, and , ,x y z X∈  such that not xRy and not yRz. 

Hence, yRx and zRy since R is total. Therefore, by definition, yRax and zRay. By quasi-transitivity, it follows that 
zRax, whence in particular not xRz i.e. R is negatively transitive. Moreover, totality implies reflexivity of R. 
Conversely, let R X X⊆ ×  be reflexive and negatively transitive. Suppose there exist ,x y X∈  such that not 
xRy and not yRx: then, by negative transitivity, not xRx, a contradiction since R is reflexive. Thus, R is also total. 
Moreover, let xRay and yRaz. Then, in particular, not yRx and not zRy. It follows that, by negative transitivity, not 
zRx whence, by totality, xRz. Thus, xRaz i.e. R is quasi-transitive as well. 

(v) ⇔ (vi): Let R X X⊆ ×  be a negatively transitive relation such that ( ) max Yc Y R= ≠ ∅  for any non-
empty Y X⊆ . Then in particular, { }( ) { }max xc x R= ≠ ∅  for any x X∈ , hence R is reflexive as well. The 
reverse implication is trivial. 

(iii)⇒ (vii): Let be R X X⊆ ×  total, quasi-transitive and such that ( ) max Yc Y R= ≠ ∅  for any nonempty 
Y X⊆ . Clearly, by construction, ( ) { }: for allc Y x Y xRy y Y= ∈ ∈  i.e. 
( ) { } ( ): for all ,R R

Yc Y x Y not y x y Y Y= ∈ ∆ ∈ = ∆  for any Y X⊆  (see Claim 5 (i) above). Moreover, by Claim 
5 (iii), R∆  is asymmetric since R is total, hence ( ) ( ), ,R a R

Y YY Y∆ = ∆  . Now, take any ( )1 \ , R
Yy Y Y∈ ∆ . By 

definition, there exists 2y Y∈  such that 2 1
R
Yy y∆ . If ( )2 , Yy Y∈ ∆  we are done. Suppose then that 

( )2 \ , R
Yy Y Y∈ ∆  as well: thus, there exists 3y Y∈  such that 3 2

R
Yy y∆ . It follows, by finiteness of Y and 

nonemptiness of ( ), R
YY ∆ , that there exists a finite k such that 1

R
i Y iy y −∆  for any 2, ,i k=  , and 

( ), R
k Yy Y∈ ∆ . Since R∆  is asymmetric, it also follows that 1

R
k Yy y∆ , hence ( ), R

YY ∆  is externally stable. 
(vii) ⇒ (i): Suppose that there exists a dominance digraph ( ),X ∆  such that ( ) ( ) ( ), ,a

Y Yc Y Y Y= ∆ = ∆   
with ( ), YY ∆  externally stable, for any Y X⊆ . By definition of external stability, ( )c Y ≠ ∅  for any 
nonempty Y X⊆ , hence c satisfies PR. Moreover, by Theorem 7 (ii) above (or, for that matter, by Theorem 8 
(ii)), it also satisfies C and CO. Finally, consider Y Z X⊆ ⊆  such that ( ) ( )c Z c Y⊆ , and suppose there 
exists ( ) ( )\y c Y c Z∈  i.e. ( ) ( ), \ ,Y Zy Y Z∈ ∆ ∆  . Then, by external stability of ( ), ZZ ∆ , there exists 

( ) ( ), ,Z Yz Z Y Y∈ ∆ ⊆ ∆ ⊆   such that z y∆ , a contradiction since ( ), Yy Y∈ ∆ . Therefore, c satisfies SS 
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as well. 
(viii) ⇔ (iii): Suppose that there exists a dominance digraph ( ),X ∆  such that ∆  is transitive (hence in 

particular quasi-transitive) and ( ) ( ) ( ), ,a
Y Yc Y Y Y= ∆ = ∆ ≠ ∅   for any nonempty Y X⊆ . Then, by Claim 

5 (i)-(ii) above, ( ) ( ) ( ), , maxR
Y Y Yc Y Y Y R

∆ ∆∅ ≠ = ∆ = ∆ =   for any nonempty Y X⊆ . Moreover, by Claim 
5 (v), R∆  is quasi-transitive. Also, notice that since by hypothesis ∆  is both irreflexive and transitive, it must 
be asymmetric as well. Therefore, by Claim 5 (iv), R∆  is total. Conversely, suppose that there exists a total and 
quasi-transitive relation R X X⊆ ×  such that ( ) max Yc Y R= ≠ ∅  for any nonempty Y X⊆ . Then, by 
Claim 5 (ii) ( ) ( )max , R

Y u Yc Y R Y= = ∆ ≠ ∅  for any nonempty Y X⊆ . Moreover, by Claim 5 (iii), (v), and 
in view of quasi-transitivity and totality of R, R∆  is both quasi-transitive and asymmetric, hence transitive as 
well, and such that ( ) ( ), ,R a R

u Y u YY Y∆ = ∆   as required. 
(viii) ⇔ (ix): Suppose that there exists a dominance digraph ( ),X ∆  such that ∆  is transitive and 
( ) ( ) ( ), ,a

Y Yc Y Y Y= ∆ = ∆ ≠ ∅   for any nonempty Y X⊆ . Again, irreflexivity and transitivity imply 
asymmetry of ∆ , which is therefore a strict partial order. The reverse implication is trivial.               ■ 

Remark 15. Observe that the characterization result of revealed externally stable cores in terms of properties 
of choice functions included in Theorem 14 is also tight. To see this, consider the following examples. 

1) Let I
Xc C∈  as defined above (see Remark 9). Clearly, Ic  violates PR,but satisfies C, CO and SS; 

2) Let { }, ,X x y z= , and II
Xc C∈  as defined above (see Remark 9). It is immediately checked that IIc  

satisfies PR,CO and SS, but violates C; 
3) Let { }, ,X x y z= , and IV

Xc C∈  such that { }( ) { }IVc u u=  for any u X∈ , { }( ) { }, ,IVc x y x y= ,  
{ }( ) { }, ,IVc y z y z= , { }( ) { }, ,IVc x z x z=  and { }( ) { }, , ,IVc x y z x y= . Clearly, IVc  satisfies PR, C and SS. 

However, IVc  fails to satisfy CO since { }( ) { }( )( ) { }( ), , \ , ,IV IV IVz c x z c y z c x y z∈ ∩ ; 

4) Let { }, ,X x y z= , and V
Xc C∈  such that { }( ) { }Vc u u=  for any u X∈ , { }( ) { },Vc x y x= ,  

{ }( ) { },Vc y z y= , { }( ) { }, ,Vc x z x z=  and { }( ) { }, ,Vc x y z x= . Clearly, Vc  satisfies PR, C and CO but fails  

to satisfy SS since { }( ) { }( ), , ,V Vc x y z c x z∅ ≠ ⊂ .  
Remark 16. Notice again that Theorem 14 above is essentially a refinement of well-known results due to 

Suzumura (see e.g. [4], Theorems 2.8 and 2.10) and [3], whose Theorems 3, 4, and 7 amount essentially to the 
equivalence between statements (iii), (iv) and (vii). It should also be mentioned here that the conjunction of C 
and SS turns out to be equivalent (see e.g. [4]) to another well-known and widely used property, namely: 

Path Independence (PI): for any ,A B X⊆ , ( ) ( ) ( )( )c A B c c A c B∪ = ∪ . 
Thus, the equivalent statements of Theorem 14 are also equivalent to the statement “ Xc C∈  satisfies PR, PI 

and CO”.  
It should be remarked that the characterizations provided above are in general quite straightforward exten-

sions to arbitrary choice functions (with full domain) of previously known results concerning proper choice 
functions (with full domain). Indeed, the gist of the results offered in the present section may be summarized as 
follows: 

(i) remarkably, the characterizations of general revealed cores and a-cores considered here consist of the very 
same properties used to characterize their nonempty-valued counterparts as supplemented with very mild-look- 
ing local nonemptiness requirements for choice sets of singleton and two-valued subsets, respectively; 

(ii) the exact correspondence between revealed core-solutions and maximizing “rational” choice functions is 
confirmed to hold within the general space of arbitrary choice functions: the alleged extra-generality of the lat-
ter subclass that has sometimes been alluded to in the literature (as e.g. in [4], p. 21) does not materialize within 
the space of (total) choice functions and is therefore strictly confined to the realm of partial choice functions; 

(iii) finally, and most notably, the class of general revealed cores turns out to inherit some of the supplemen-
tary order-theoretic structure enjoyed by its larger ambient space as compared to the smaller and less regular 
space of proper choice functions: that is precisely the topic of the next section. 

3. Posets and Semilattices of Revealed Cores 
Let us now turn to a global description of the order-theoretic structure of the class of all revealed core-solutions 
(a-core-solutions, nonempty-valued core-solutions, externally stable core-solutions, respectively). 

A partially ordered set or poset is a pair ( ),P=P   where P is a set and   is a reflexive, transitive and an-
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tisymmetric binary relation on P (i.e. for any x P∈ , x x  and for any , ,x y z P∈ , x z  whenever x y  
and y z , and x y=  whenever x y  and y z ). For any x P∈  we posit ( ] { }:x y P y x= ∈  . A coa-
tom of a poset ( ),P=P   with a top element or maximum 1P  is any j P∈  which is covered by 1P -written 

1Pj -i.e. 1Pj <  and l j=  for any l P∈  such that 1Pj l < . The set of all coatoms of P is denoted PA∗ . 
Dually, an atom of P is any j P∈  which is an upper cover of 0P -written 0P j -i.e. 0P j<  and l j=  for 
any l P∈  such that 0P l j<  . The set of all atoms of P is denoted PA . 

A poset ( ),P= P  is a meet semilattice (join semilattice, respectively) if for any ,x y P∈  the  -greatest 
lower bound x y∧  (the  -least upper bound x y∨ , respectively) of { },x y  does exist. Moreover, P is a 
lattice if it is both a meet semilattice and a join semilattice. 

A lattice ( ),P= P  is bounded if there exist both a bottom element 0P  and a top element 1P  (hence in 
particular a finite lattice is also bounded), distributive iff ( ) ( ) ( )x y z x y x z∧ ∨ = ∧ ∨ ∧  for any , ,x y z P∈ , 
complemented if it is bounded and for any x P∈  there exists x P′∈  such that 1Px x′∨ =  and 0Px x′∧ = , 
and Boolean iff it is both distributive and complemented. 

A meet semilattice ( ),P=P   is lower distributive if ( ] ( ]( ), xx   is a distributive lattice for any x P∈ , and  

has the coronation (or join-Kelly) property if—for any , ,x y z P∈ - ( )( )x y z∨ ∨  exists in P whenever 
,x y x z∨ ∨  and y z∨  also exist. A meet semilattice is median if it is lower distributive and has the coronation 

property. 
The set XC  of all choice functions on X can be endowed in a natural way with the point-wise set inclusion 

partial order   by positing, for any , Xc c C′∈ , c c′  iff ( ) ( )c A c A′⊆  for each A X⊆ . Clearly, the 
identity operator idc  is its top element, and the constant empty-valued choice function c∅  its bottom element. 
It is well-known, and easily checked, that ( ),XC   is in fact a Boolean lattice with join ∨ = ∪  (i.e. set-union) 
and meet ∧ = ∩  (i.e. set-intersection), both defined in the obvious component-wise manner: see e.g. [11]. 

For any ,x y X∈  such that x y≠ , xy Xc C+ ∈  and xy Xc C− ∈  are defined as follows: for all A X⊆ ,  
( ) { }\xyc A A y+ =  if { },x y A⊆ , and ( )xyc A A+ =  otherwise, and { }( ) { }xyc z z− =  for all z X∈ ,  
{ }( ) { },xyc x y y− = , and ( )xyc A− = ∅  for all A X⊆  such that { },A x y≠  and # 1A ≠ . Moreover, 

 
{ }: , ,xyC c x y X x y+

+ = ∈ ≠ , and { }: , ,xyC c x y X x y−
− = ∈ ≠ . 

The minimum ND choice function [ ]1c  is defined by the following rule: for any x X∈ , [ ] { }( ) { }1c x x= , and 
[ ] ( )1c Y = ∅  for any Y X⊆  such that # 1Y ≠ . 
Now, let X XC C∗ ⊆  denote the set of all revealed core-solutions on X, a

X XC C∗ ∗⊆  the set of all revealed 
asymmetric core-solutions, X X XC C C∗ ∗= ∩   the set of all revealed nonempty-valued core-solutions, and es

XC∗  
the set of all revealed externally stable core-solutions on X, respectively). We also denote with a slight abuse of  
notation ( ),XC∗  , ( ),a

XC∗  , ( ),XC∗   and ( ),es
XC∗   the corresponding subposets of ( ),XC   (where    

denotes ( )X XC C∗ ∗∩ × , ( )a a
X XC C∗ ∗∩ × , ( )X XC C∗ ∗= ∩ ×    and ( )es es

X XC C∗ ∗= ∩ ×  , respectively). We 
have the following. 

Theorem 17. The poset ( ),XC∗   of revealed core-solutions is a sub-meet-semilattice of ( ),XC   with idc  
itself as its top element, but not a sub-join-semilattice of ( ),XC  . It also satisfies the coronation property 
hence it is a median meet semilattice. The bottom element of ( ),XC∗   is the minimum ND choice function [ ]1c . 
Moreover, the set of coatoms of ( ),XC∗   is C+ , and the set of its atoms is C− .  

Proof. Let , Xc c C∗′∈ , and consider c c′∩ . Clearly, for any x X∈ , ( ) { }( ) { }( ) { }( ) { }c c x c x c x x′ ′∩ = ∩ =  
since c and c′  satisfy ND: hence c c′∩  does also satisfy ND. 

Moreover, for any A B X⊆ ⊆ , since c and c′  both satisfy C,  

( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( )

c c B A c B c B A c B c B A

c B A c B A c A c A c c

′ ′ ′∩ ∩ = ∩ ∩ = ∩ ∩

′ ′ ′= ∩ ∩ ∩ ⊆ ∩ = ∩
 

hence c c′∩  satisfies C. 
Finally, since c and c′  satisfy CO, for any ,A B X⊆ , 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

c c A c c B c A c B c A c B

c A B c A B c c A B

′ ′ ′ ′∩ ∩ ∩ = ∩ ∩ ∩

′ ′⊆ ∪ ∩ ∪ = ∩ ∪
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and CO also holds for c c′∩ . It follows that, by Theorem 7 above, Xc c C∗′∩ ∈ , whence ( ),XC∗   is a 
sub-meet-semilattice of ( ),XC  : in particular, it follows that ( ),XC∗   is lower distributive. 

Furthermore, let us suppose that 1 2 3 1 2 1 3 2 3, , , , , Xc c c c c c c c c C∗∪ ∪ ∪ ∈ . Then, take ( )1 2 3c c c∪ ∪  as defined 
in the obvious way. It is immediately checked that ( )1 2 3c c c∪ ∪  does satisfy ND and C, by construction. 

Thus, we only have to check that ( )1 2 3c c c∪ ∪  does also satisfy CO. In order to check this last point, 
consider any ,A B X⊆ , and ( )( ) ( ) ( )( ) ( )1 2 3 1 2 3x c c c A c c c B∈ ∪ ∪ ∩ ∪ ∪ . 

By definition, it follows that ( ) ( )i jx c A c B∈ ∩  for some , 1, 2,3i j = . Hence, in particular, it also follows 
that ( ) ( ) ( ) ( )i j i jx c c A c c B∈ ∪ ∩ ∪  for some , 1, 2,3i j = . Now, by hypothesis, ( )i j Xc c C∗∪ ∈  hence it 
satisfies CO. Therefore, ( ) ( ) ( )( ) ( )1 2 3i jx c c A B c c c A B∈ ∪ ∪ ⊆ ∪ ∪ ∪  and ( )1 2 3c c c∪ ∪  also satisfies CO. 
As a consequence, ( )1 2 3 Xc c c C∗∪ ∪ ∈ : thus, ( ),XC∗   has the join-Kelly property and is therefore a median 
meet-semilattice as claimed. 

It is easily checked that idc , the top element of ( ),XC  , does also satisfy ND, C and CO hence as observed 
above Xc C∗∈  (see Example 2). 

Now, consider [ ]1c  as defined above: it satisfies ND, by definition, and, being nonempty-valued precisely on 
singletons, it trivially satisfies C and CO as well. Thus, [ ]1

Xc C∗∈ . On the other hand, for any Xc C∗∈ , c must 
satisfy ND, hence [ ]1c c . 

Next, take any xyc C+
+∈ . Notice that, by definition, xyc+  satisfies ND. Also, if A B X⊆ ⊆  then the follow- 

ing cases may be distinguished: a) { },x y A⊆ ; b) { },x y A  and { },x y B⊆ ; c) { },x y B . If { },x y A⊆  
then ( ) { } ( )\xy xyc B A A y c A+ +∩ = = ; if { },x y A  and { },x y B⊆  then  

( ) { }( ) { } ( )\ \xy xyc B A B y A A y A c A+ +∩ = ∩ = ⊂ = ; if { },x y B  then ( ) ( )xy xyc B A A c A+ +∩ = = : thus in any 
case C holds. Furthermore, let ( )xyz c A B+∉ ∪ : then by definition z y=  and { },x y A B⊆ ∪ . Assume now 
that ( ) ( )xy xyy c A c B+ +∈ ∩ . Then, { },x y A  and { },x y B  while y A B∈ ∩ . It follows that x A B∉ ∪ , a 
contradiction. Thus, CO is also satisfied by xyc+ , Theorem 7 applies, and xy Xc C+ ∗∈ . 

Moreover, by definition id
xyc c+ <  i.e. id

xyc c+   and id
xyc c+ ≠ . 

Let Xc C∗∈  be such that id
xyc c c+   , and assume that xyc c+ ≠  i.e. there exists A X′ ⊆  such that 

( ) ( )xyc A c A A+ ′ ′ ′⊂ ⊆ . Clearly, by Theorem 7, c satisfies ND, C and CO. If idc c=  there is nothing to prove, 
so assume that there also exists B X⊆  such that ( ) ( )xyc B c B B+ ⊆ ⊂ . Notice that by definition of xyc+ , 

( )xyc A A+ ′ ′⊂  entails { },A x y′ ⊇  and ( ) { }\xyc A A y+ ′ ′= , hence in particular ( )c A A′ ′= . Also, there exists 
( )( ) ( )( )\ \ xyz B c B B c B+∈ ∩ . By definition of xyc+  again, ( )( )\ xyz B c B+∈  entails { },B x y⊇ , z y=  and 

( ) { }\xyc B B y+ =  (whence ( ) ( )xyx c B c B+∈ ∩ ). Therefore, ( ) { },x c B x y∈ ∩  whence, by C, { }( ),x c x y∈ . 
Suppose first that { }( ) { }, ,c x y x y= , and consider { }\B x . Clearly, by definition,  

{ }( ) { }( ) { }\ \ \xyc B x c B x B x+ = = . Thus, { }( ) { }( ), \y c x y c B x∈ ∩  hence, by CO, ( )y c B∈ : a contradiction, 
since ( )\y z B c B= ∈ . Suppose then { }( ) { },c x y x= : since by hypothesis Xc C∗∈ , there exists an irreflexive 
digraph ( ),X ∆  such that ( ) ( ), Ac A A= ∆  for any A X⊆ . Therefore, { }( ) { },c x y x=  entails x y∆  that 
in turn entails ( )y c A′∉  since { },A x y′ ⊇ : a contradiction again because ( )c A A′ ′= . 

It follows that if id
xyc c c+    then either idc c=  or xyc c+=  i.e. xyc+  is indeed a coatom of ( ),XC∗  . 

Conversely, let c be a coatom of ( ),XC∗   and suppose c C+∉ . Then, for any pair of distinct ,x y X∈ , 
neither xyc c+   nor xyc c+  i.e. there exist ,A B X⊆  such that ( ) ( )xyc A c A+⊂  and ( ) ( )xyc B c B+ ⊂ . Thus, 
by definition, ( ) { }\xyc B B y+ =  and ( ) { },c B B x y= ⊇ , while there exists z A∈  such that ( ) ( )\xyz c A c A+∈ . 
Hence, consider any { }\x A z∈ : then, there exists B′  such that { },x z B X′⊆ ⊆  and ( )c B B′ ′= . By C, 
{ } ( ) { } { }( ), , ,x z c B x z c x z′= ∩ ⊆  i.e. { }( ) { }, ,c x z x z A= ⊆  for any x A∈  while ( )z c A∉ , which contra-
dicts CO in view of finiteness of X. 

To check that each xyc C−
−∈  is an atom of ( ),XC∗  , notice first that xy Xc C− ∗∈ . Indeed, xyc−  satisfies ND by 

construction. Also, if A B⊆  then ( )xyc B A− ∩ ≠ ∅  entails that either { }A B z= =  for some z X∈ , or 
{ },A B x y⊆ ⊆  i.e. either A is a singleton or A B= . Thus, in any case, if A B⊆  then by definition 

( ) ( )xy xyc B A c A− −∩ ⊆  hence xyc−  satisfies C. Moreover, for any ,A B X⊆ , if ( ) ( )xy xyx c A c B− −∈ ∩  then by 
definition of xyc−  either { }A B x= =  or ( { },A B A B∪ ∈  and { },A B x y∪ = ): thus, in any case,  

( )xyx c A B−∈ ∪  and CO is also satisfied by xyc− . Next, observe that ( ) [ ] ( )1
xyc A c A− =  for any { },A x y≠ , and  

{ }( ) { },xyc x y x− =  while [ ] { }( )1 ,c x y = ∅ . Thus, for any Xc C∗∈  (indeed, for any Xc C∈ ) if [ ]1
xyc c c−    

then either [ ]1c c=  or xyc c−= . 
Conversely, assume that c is an atom of ( ),XC∗   and c C−∉ . Then, by definition of C− , ( )c A = ∅  for 

any A such that # 2A = , and there exists B X⊆  such that # 3B ≥  and ( )c B ≠ ∅ . It follows that, for any 
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( )x c B∈  and any { }\y B x∈ , ( ) { } { }( ), ,c B x y c x y∩ ∅ = , therefore violating C, a contradiction by 
Theorem 7. 

To check that ( ),XC∗   is not a sub-join-semilattice of ( ),XC  , just consider without loss of generality 
{ }, ,X x y z= , ( ) ( ) ( ) ( ) ( ) ( ){ }, , , , , , , , , , ,R x x y y z z y x y z x z=  and  
( ) ( ) ( ) ( ) ( ) ( ){ }1 , , , , , , , , , , ,R x x y y z z x y z y z x− = . 

Now, posit ( ) ( ), R
I Ac A A= ∆  and ( ) ( )1

, R
II Ac A X

−
= ∆  for any A X⊆ . By definition ( ) { }, RX y∆ = , 

{ } { }( ) { },, , R
x zx z x∆ = , ( ) { }1

, RX z
−

∆ = , and { } { }( ) { }1

,, , R
x yx y x
−

∆ =  hence ( ) ( ) { },I IIc c X y z∪ = , while  

( ) { }( ) ( ) { }( ), ,I II I IIx c c x y c c x z∈ ∪ ∩ ∪ , which contradicts CO.                                    ■ 
Remark 18. Notice that finiteness of X has been used in the proof above in order to show that the set of 

coatoms of ( ),XC∗   is contained in C+ . The latter statement clearly holds for an infinite X as well provided 
CO is replaced with the following stronger version of “Concordance” . 

CO*: for any family { }i i I
A

∈
 of subsets of X, ( )i i

i I i I
c A c A

∈ ∈

 
⊆  

 
 

.  

Remark 19. Since ( ),XC∗   is a semilattice with a top element (and indeed a finite one, under finiteness of 
X), it follows that it is also a lattice with meet = ∩  and join of a pair given by the meet of the (nonempty) set of 
upper bounds of that pair (see e.g. [12]), which is however not a sublattice of ( ),XC  .  

Thus, the poset of revealed core-solutions enjoys the remarkably regular structure of a median meet-semilat- 
tice. Notice that an important consequence of that fact is the following: any profile of revealed cores admits me-
dians and the latter coincide with the simple majority consensus revealed core if the profile consists of an odd 
list of revealed cores. Therefore, in case several revealed cores are to be considered for aggregation, due per-
haps to locally missing or unreliable data and/or plurality of information sources, an amalgamation process by 
means of the simple majority aggregation rule is available (see e.g. [11] for some results on posets and lattices 
of other classes of choice functions and related aggregation rules in the same vein). 

The posets of revealed a-core-solutions, nonempty-valued core-solutions, and externally stable core-solutions 
are considerably less regular, as recorded by the following results, namely: 

Theorem 20. The poset ( ),a
XC∗   of revealed a-core-solutions has a top element, idc , and C+  is the set of 

its coatoms, but it is neither a sub-meet-semilattice nor a sub-join-semilattice of ( ),XC  . The minimal elements 
of ( ),a

XC∗   are the choice functions Xc C∈  that satisfy ND, 2-PR, C, CO and such that (a) ( )# 1c A ≤  for 
any A X⊆  and (b) not c cD D′ ⊂  for any c′  that satisfies ND, 2-PR, C and CO.  

Proof. To check that idc  is indeed the top element of ( ),a
XC∗   it is only to be observed—in view of Theo-

rem 7—that idc  does in fact also satisfy 2-PR. Similarly—in view of Theorem 7 and of the proof of Theorem 
17 provided above—to see that C+  is the set of coatoms of ( ),a

XC∗   it is only to be checked that any 
xyc C+

+∈  does also satisfy 2-PR (which is clearly the case, by definition). 
The proof of Theorem 17 already establishes that ( ),a

XC∗   is not a sub-join-semilattice of ( ),XC   since, 
as it is easily checked, Ic  and IIc  as defined there do belong to a

XC∗ . 
Next, consider IIIc  and IVc  defined as follows: assume without loss of generality { }, ,X x y z= , and take 

( ) ( ) ( ){ }, , , , ,III x y x z y z∆ = , ( ) ( ) ( ){ }, , , , ,IV x y x z z y∆ =  (notice that both ( ), IIIX ∆  and ( ), IVX ∆  are asym- 
metric digraphs); then, for any A X⊆ , posit ( ) ( ), III

III Ac A A= ∆  and ( ) ( ), IV
IV Ac A A= ∆ . Clearly, by defi-

nition, { }, a
III IV Xc c C∗⊆ . 

However, ( ) { }( ) { } { }( ) { } { }( ) { } { }, ,, , , , ,III IV
III IV y z y zc c y z y z y z y z∩ = ∆ ∩ ∆ = ∩ = ∅ . 

Therefore, III IVc c∩  violates 2-PR hence by Theorem 7 a
III IV Xc c C∗∩ ∉ . It follows that ( ),a

XC∗   is not a 
sub-meet-semilattice of ( ),XC  . 

The last statement about minimal elements of ( ),a
XC∗   is a straightforward consequence of Theorem 10.  ■ 

Theorem 21. The poset ( ),XC∗   of nonempty-valued core-solutions has a top element, idc , and C+  is the 
set of its coatoms, but it is neither a sub-meet-semilattice nor a sub-join-semilattice of ( ),XC  . The minimal 
elements of ( ),a

XC∗   are the single-valued choice functions that satisfy C and CO.  
Proof. First, notice that by definition idc  is proper, hence id

Xc C∗∈   since as previously shown it is a 
core-solution. Also, it is immediately checked that, by definition, any xyc+  is proper. Therefore, the proof of 
Theorem 17 also establishes that C+  is the set of coatoms of ( ),XC∗  . In the same vein, it is immediately 
checked that , , ,I II III IVc c c c -as defined above in the proofs of the two previous Theorems-are also proper. It 
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follows, by those proofs, that ( ),XC∗   is neither a sub-meet-semilattice nor a sub-join-semilattice of ( ),XC  . 
The final statement about minimal elements of ( ),XC∗   is an immediate consequence of Corollary 12.      ■ 

Theorem 22. The poset ( ),es
XC∗   of revealed externally stable core-solutions, has a top element, idc , and 

C+  is the set of its coatoms, but it is neither a sub-meet-semilattice nor a sub-join-semilattice of ( ),XC  . The 
minimal elements of ( ),a

XC∗   are the single-valued choice functions that satisfy C, CO and SS.  
Proof. Observe that for any A B X⊆ ⊆ , if ( ) ( )id idc B c A⊆  then of course B A⊆  i.e. B A=  whence 
( ) ( )id idc A c B=  and SS is clearly satisfied by idc . In view of Theorem 14, this establishes that idc  is also the 

top element of ( ),es
XC∗  . Also, it is immediately checked that any xyc+  satisfies SS: indeed, let ,A B X⊆  be 

such that A B⊆  and ( ) ( )xy xyc B c A+ +∅ ≠ ⊆ . Since A B⊆ , the following jointly exhaustive cases are to be 
distinguished: a) { },x y A B⊆ ∩ ; b) { },x y A B∪ ; c) { },x y B⊆  and { },x y A . Under a),  

( ) { }\xyc A A y+ =  and ( ) { }\xyc B B y+ =  hence ( ) ( )xy xyc A c B+ +⊆ . Under b), ( )xyc A A+ =  and ( )xyc B B+ =  
hence again ( ) ( )xy xyc A c B+ +⊆ . Under c), ( )xyc A A+ =  and ( ) { }\xyc B B y+ =  whence A B≠  i.e. A B⊂ . By 
hypothesis, ( ) ( )xy xyc B c A+ +⊆  hence { }\B y A B⊆ ⊂ : thus, y A∉  and { }B A y= ∪  and therefore  

( ) { } ( )\xy xyc B B y A c A+ += = = . It follows that xyc+  does in fact satisfy SS. Therefore, the proof of Theorem 17 
also establishes that C+  is the set of coatoms of ( ),es

XC∗  . 
Finally, it is immediately checked by direct inspection that , , ,I II III IVc c c c —as defined above in the proofs of 

Theorems 17 and 20—do also (trivially) satisfy SS. It follows, by the very same proofs, that ( ),es
XC∗   is 

neither a sub-meet-semilattice nor a sub-join-semilattice of ( ),XC  . The final statement about minimal ele- 
ments of ( ),es

XC∗   is an immediate consequence of Theorem 14.                                    ■ 
Thus, while only the poset of revealed core-solutions is a (meet) sub-semilattice of ( ),XC   all the posets of 

revealed cores defined above share their top element and set of coatoms. 

4. Concluding Remarks 
Choice functions with full domain which may be regarded as core-solutions or externally stable core solutions of 
an underlying dominance digraph ( ),X ∆  have been characterized both in the general case and for asymmetric 
dominance digraphs. Both characterizations combine a version of the usual mix of contraction consistency and 
expansion consistency conditions which are required for the special case of proper i.e. nonempty-valued choice 
functions with a suitable local nonemptiness requirement for choice sets. The characterizations provided above 
have also been shown to be helpful for a simple analysis of the basic order-theoretic structure of revealed cores. 
In particular, as mentioned in the Introduction, every revealed core embodies a considerable part of the structure 
of standard maximizing choice functions, while the global structure of (full domain) revealed cores retains pre-
cisely the median semi-latticial properties of the space of all (full domain) choice functions that are most signif-
icant from the point of view of simple majority aggregation. The latter property, however, is not shared by 
asymmetric or externally stable revealed cores. 

An obvious extension of the present paper should address the characterization problem for revealed cores on 
arbitrary domains. That open issue is left as a topic for further research. 
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