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ABSTRACT

Ten-eleven translocation (Tet) genes encode for a
family of hydroxymethylase enzymes involved in reg-
ulating DNA methylation dynamics. Tet1 is highly
expressed in mouse embryonic stem cells (ESCs)
where it plays a critical role the pluripotency main-
tenance. Tet1 is also involved in cell reprogramming
events and in cancer progression. Although the func-
tional role of Tet1 has been largely studied, its regu-
lation is poorly understood. Here we show that Tet1
gene is regulated, both in mouse and human ESCs,
by the stemness specific factors Oct3/4, Nanog and
by Myc. Thus Tet1 is integrated in the pluripotency
transcriptional network of ESCs. We found that Tet1
is switched off by cell proliferation in adult cells and
tissues with a consequent genome-wide reduction
of 5hmC, which is more evident in hypermethylated
regions and promoters. Tet1 downmodulation is me-
diated by the Polycomb repressive complex 2 (PRC2)
through H3K27me3 histone mark deposition. This
study expands the knowledge about Tet1 involve-
ment in stemness circuits in ESCs and provides evi-
dence for a transcriptional relationship between Tet1
and PRC2 in adult proliferating cells improving our
understanding of the crosstalk between the epige-
netic events mediated by these factors.

INTRODUCTION

DNA methylation is the most important epigenetics event
involved in mammalian development and cancer growth
(1–6). Recently, several papers reported that the demethy-
lation mechanism involves TET family genes, in par-

ticular Tet1 member (7–11). Tet1 is a DNA hydroxy-
lases that can convert 5mC into 5-hydroxymethylcytosine
(5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC) through three consecutive oxidation reactions (7,12–
14).

The functional role of Tet1 has been largely studied in em-
bryonic stem cells (ESCs) and during early embryonic de-
velopment where its principal functions are to maintain hy-
pomethylated developmental and housekeeping gene pro-
moters and to contribute to the genome DNA demethyla-
tion taking place during primordial germinal cells specifi-
cation (15–22). Several works demonstrated that Tet1 is of
crucial importance during dedifferentiation of adult cells in
reprogramming experiments thus it plays an essential role
in the stemness circuits in mammalian (23–28). In adult tis-
sues Tet1 downregulation has been found to be implied in
tumor initiation and progression (29–32).

If on one hand the Tet1 biological and molecular func-
tion has been thoroughly studied, on the other hand its
regulation in mammalian cells remains almost completely
unknown. Recent works demonstrated that Tet1 can un-
dergo post-transcriptional and post-translational negative
modulation, respectively by microRNA (miR-22) and cellu-
lar proteolytic system (calpain) (31,33). The understanding
of Tet1 transcriptional regulation and its chromatin state
as well as the identification of the transcription factors in-
volved in its activation is essential to better delineate its bi-
ological role in stemness and during development.

In this study, we analyzed Tet1 regulatory elements in
mouse and human cells. We identified the key players of its
transcriptional regulation and its chromatin state and in dif-
ferent cellular systems.
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MATERIALS AND METHODS

Cell culture condition

E14 mouse ES cells were cultured on feeder-free gelatin-
coated plates in dulbecco’s modified Eagle’s medium
(DMEM) high glucose medium (Invitrogen) supplemented
with 15% fetal bovine serum (FBS) (Millipore), 0.1 mM
non-essential amino acids (Invitrogen), 1 mM sodium pyru-
vate (Invitrogen), 0.1 mM 2-mercaptoethanol, 1500U/ml
Leukemia Inhibitory Factor (LIF) (Millipore), 25 U of
penicillin/ml and 25 �g of streptomycin/ml. Mouse embry-
onic fibroblasts (MEFs) were derived from 13.5 d pregnant
female mice and cultured in DMEM high glucose medium
supplemented with 10% fetal calf serum (FCS). Mouse tis-
sues were extracted from 8 weeks old age mice. 3T3 and
3T3-Myc fibroblast cells were cultured in growth medium
(DMEM high glucose with 10% FCS). Human umbilical
vein endothelial cells (HUVECs) were grown on gelatin-
coated surfaces in M199 medium (Gibco) supplemented
with 20% FBS, 50 U/ml penicillin-streptomycin, 10 U/ml
heparin and 100 �g/ml brain extract and filtered through
a 0.22-�m-pore-size sterile filter (Millipore). BGO1V hu-
man ES cells were purchased by Invitrogen and cultured
on feeder free system in STEMPRO R© hESC SFM (In-
vitrogen) following the manufacturing protocol. Human
MCF10A cells were cultured in DMEM/F12 with 5% HS
(horse serum) freshly supplemented with insulin, EGF, hy-
drocortisone and cholera toxin. All the other human can-
cer cells were cultured in Roswell Park Memorial Institute
(RPMI) with 10% FCS. For differentiation in EBs, mouse
and human ES cells were cultured in non-adherent 96-wells
plates in �-MEM medium with 5% FCS and 10% of Serum
Replacement (SR––Gibco). For experiments with Ezh2 in-
hibitor cells were treated with Dimethyl sulfoxide (DMSO)
or 2 �M GSK343 (Sigma) for 48 h.

Animals

C57BL/6 mice (8–10 weeks old) were obtained from our
mouse facility. BALB/c-nude (6 weeks old) were obtained
from Janvier-labs. Housing and all experimental animal
procedures were approved by the Institutional Animal Care
and Research Advisory Committee of the University of
Turin.

DNA constructs and shRNA

shRNA against murine c-Myc and N-Myc were
previously described in (34). shRNA against
human c-Myc (shRNA#1: TRCN0000174055,
shRNA#2: TRCN0000039640), Nanog (shRNA#1:
TRCN0000075334, shRNA#2: TRCN0000075336)
and Suz12 (TRCN0000123889) were purchased from
Open Biosystem. All the other shRNA for was cloned
into PLKO vector as described in Public TRC Portal
(http://www.broadinstitute.org/rnai/public/). Oligonu-
cleotides sequences is provided in Supplementary Table
S1. pAAV-EF1a-HA-hTet1CD-WPRE-PolyA and pAAV-
EF1a-HA-hTet1CDmu-WPRE-PolyA were purchased
from Addgene (plasmid 39454 and 39455). pLVX-Tight-
Puro Vector was purchased from Clontech (plasmid S4934

and S4932). Catalytic domain of TET1 was subcloned into
pLVX-Tight-Puro-Vector.

Transfection and transduction

Transfection of 3T3 cells and human/mouse ESCs was per-
formed using LipofectamineTM 2000 Transfection Reagent
in according to manufacturing protocol using equal amount
of each plasmid in multiple transfections. To obtain 3T3-
Myc stable line, transfected cells were plated as single cell,
cultured for 2 weeks in growth medium with Puromycin 1
�g/ml and then drug resistant clones were picked, grown
and analyzed. MEFs and HUVECs were transduced with
10 �l of concentrated third generation lentivirus prepared
using Lenti-XTM Lentiviral Expression Systems (Clon-
tech).

Antibodies

The antibodies were purchased from Millipore (anti-Tet1,
anti-H3K27me3, anti-H3K4me3), Abcam (anti-ssDNA,
anti-Tet2), Roche (anti-HA-12CA5), Cell Signaling (anti-
EZH2) Sigma-Aldrich (anti-�-actin), SantaCruz (anti-
PCNA-sc56; anti-cMYC sc-764; anti-mOCT3/4 sc-5279;
anti-N-MYC sc56729; anti-E2F1;anti-Stat3 sc-482; anti-
hNANOG sc-33759; anti-hOCT3/4 sc-9081, anti-p16 sc-
1661, anti-p21 sc-397), Bethyl (anti-mNanog) and Active
Motif (anti-5mC, anti-5hmC).

Partial hepatectomy

Eight to ten-week old C57 black 6 (C57BL/6) male mice
were fasted overnight. The next morning, the mice were
anesthetized with Zoletil/Rompun mix and the median and
left lateral lobes of the liver were ligated at their stem and
excised. Food was re-introduced 6–8 h after surgery. The
animals were sacrificed by cervical dislocation at the indi-
cated time points following surgery. The Institutional An-
imal Care and Use Committee of the University of Turin
approved all experiments.

Cell growth and cell cycle analysis

For cell growth assay, 5 × 104 cells were plated in 35
mm wells and counted at the indicated time point using
ScepterTM Automated Cell Counter (Millipore). For FACS
cell cycle analysis, the cells were stained with propidium io-
dide (PI) solution (0.1% Triton X-100, 200 �g/ml RNase, 20
�g/ml PI in PBS) for 30 min at room temperature. EdU in-
corporation FACS analysis was performed by using Click-
iT R© EdU Flow Cytometry Cell Proliferation Assay (Invit-
rogen) in according to manufacturing protocol by stimulat-
ing MEF cells for 3 h with 5 mM EdU. Acquisition was per-
formed using Becton Dickinson FACS Canto and analysis
was done with FACS FlowJo Software.

Colony assay

Colony forming assay survival was defined as the ability
of the cells to maintain their clonogenic capacity and form
colonies. Briefly, after transfection, cells were trypsinized,
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counted and seeded for colony formation in 100 mm dishes
at 1000 cells/dish. After 14 days incubation, the colonies
were stained with crystal violet and manually counted.

Protein extraction and western blotting

For total cell extracts, cells were resuspended in F-buffer
(10 mM Tris–HCl pH 7.0, 50 mM NaCl, 30 mM Na-
pyrophosphate, 50 mM NaF, 1% Triton X-100, anti-
proteases) and sonicated for three pulses. Extracts were
quantified using bicinchoninic acid (BCA) assay (BCA pro-
tein assay kit; catalog no. 23225; Pierce) and were run on
sodium dodecyl sulphate-polyacrylamide gels at different
percentages, transferred to nitrocellulose membranes and
incubated with specific primary antibodies overnight.

Immunohistochemistry and immunofluorescence

For histology and immunostaining, organs were dissected
and fixed in 2% Paraformaldehyde (PFA) overnight at
4◦C, dehydrated and embedded in paraffin. Thick sec-
tions (5 �m thickness) were treated as previously described
(35). Immunostainings were performed using the following
primary antibodies: rabbit anti-PCNA (SantaCruz, sc56,
1:200), rabbit anti-5methyl and 5-hydroxymethyl cytosine
(Active Motif, 1:200). Sections were then incubated with
the appropriate fluorescently conjugated secondary anti-
bodies (Alexa 488 or 546, Molecular Probes, 1:500) or
for immunohistochemistry with secondary biotinylated an-
tibodies (R&D Cell and Tissue Staining kit), followed
by amplification with the high sensitivity streptavidin-
horseradish peroxidase (HRP) conjugate and reaction with
3, 3’-diaminobenzidine (DAB). We assessed liver morphol-
ogy based on hematoxylin and eosin-stained paraffin sec-
tions. The frequency of nuclear PCNA, 5mC and 5hmC
staining (anti-PCNA antibody; SantaCruz, sc56) was deter-
mined by examination of at least three random 200X field.

DNA extraction and dot-blot analysis

Genomic DNA was extracted from cells using DNeasy
Blood and Tissue kit (Qiagen). For dot-blot analysis, ex-
tracted genomic DNA was sonicated for 15 cycles to ob-
tain 300 bp fragments, denatured with 0.4 M NaOH and
incubated for 10 min a at 95◦C prior to being spotted onto
HybondTM-N+ (GE Healthcare). Membranes were satu-
rated with 5% milk and incubated 16 h with the specific an-
tibodies as described (36).

RNA extraction and RT-PCR analysis

Total RNA was extracted as previously described in (37)
by using TRIzol reagent (Invitrogen). Real-time polymerase
chain reaction (PCR) was performed using the SuperScript
III Platinum One-Step Quantitative RT-PCR System (Invit-
rogen, cat.11732-020) following the manufacturer’s instruc-
tions. For analysis of the hnRNA, RNA was treated with
DNAse I for 2 h and then analyzed with specific primers on
intronic sequences. For primers efficiency analysis, RT-PCR
products were run on gel and purified by using QIAquick
Gel Extraction Kit (Qiagen). Purified DNA was quantified

by nanodrop and a three-fold standard curve was prepared
by starting from 20 pg of DNA. qPCR of standard curve
was performed in triplicate in the same conditions of RT-
qPCR and CT values were used to calculate primer-specific
amplification coefficient. Primers sequences are provided in
Supplementary Table S2.

Chromatin immunoprecipitation

Each chromatin immunoprecipitation (ChIP) experiment
was performed in at least three independent biological sam-
ples and performed as previously described described (38).
Primers for ESCs were designed on E14 specific genome as-
sembly (39). The sequences are provided in Supplementary
Table S3.

RESULTS AND DISCUSSION

Tet1 expression is regulated by an ESC-specific promoter

To understand how Tet1 expression is regulated in mam-
mals during development, we first analyzed the RNA-seq
and H3K4me3 ChIP-seq data in mouse ESCs and MEFs
to better define the Tet1 gene structure (40).

The promoter-specific H3K4me3 modification and
RNA-seq indicate the presence of two transcriptional start
sites (TSSs) in ESCs (Figure 1A) that give origin of two
different Tet1 isoforms, which we named Tet1.1 and Tet1.2
bearing respectively a distal and a proximal promoter
relatively to the annotated gene. The first exon of each
isoform does not contain an open reading frame therefore
both isoforms code for the same Tet1 protein. We designed
different primers to discriminate between the two isoforms.
Quantitative RT-PCR (RT-qPCR) shows that Tet1.1 is
highly expressed in ESCs, its expression is rapidly reduced
during EBs differentiation (Figure 1 and Supplementary
Figure S1) and is almost undetectable in adult tissues,
MEFs and NIH-3T3. Tet1.2 is expressed at a lower level in
all samples, with a strong reduction in proliferating MEFs
and NIH-3T3 (Figure 1B). These results suggest that
the two promoters are regulated independently and that
the Tet1.1 isoform can be controlled by an ESC-specific
mechanism. The analysis of a meta-dataset of ChIP-seq
experiments (41) revealed that, in ESCs, the Tet1.1 pro-
moter (from −500 to +500 bp) is bound by the core ESC
factors Oct3/4 and Nanog, and by Myc, Mycn, Stat3, and
E2f1 transcriptional factors known to be required for ESC
self-renewal (34,42–46). Inspection of Tet1.1 promoter
sequence showed an enrichment of the DNA binding
motifs for these factors around the TSS (Supplementary
Figure S1A). By ChIP experiments, we confirmed the
binding of these factors on the TSS of the Tet1.1 promoter
using as negative controls the TSS of the annotated Tet1
and the Tet1.2 promoter (Figure 1C). To analyze the effect
of these factors on the transcription driven by the Tet1.1
promoter we cultured ESCs without LIF which promotes
ESC differentiation with the downmodulation of these
nuclear factors trough a Stat3 dependent mechanism
(34,46–48). LIF withdrawal induced a significant reduction
of the Tet1.1 mRNA level, which could be due to the
reduction of the pluripotency factors without affected
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Figure 1. Regulation of Tet1 in mouse ES cells. (A) Genomic view of RNA-seq and H3K4me3 in MEFs and mouse ESCs together with reconstructed
Tet1 gene structure. (B) Isoform-specific RT-qPCR of Tet1 mRNA in the indicated samples. (C) qPCR of ChIP analysis for the indicated transcriptional
factors on Tet1.1 promoter in mESCs. (D) Isoform-specific RT-qPCR of Tet1 mRNA in ESCs cultured without LIF for the indicated times. (E) Isoform-
specific RT-qPCR of Tet1 mRNA in control and cMyc/Mycn, Nanog and Oct3/4 knockdowns ESCs. Error bars represent the standard deviation of three
independent experiments. P-value was calculated by using t-test. (* = P-value < 0.01).
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the transcriptional regulation of the Tet1.2 isoform (Fig-
ure 1D). To further investigate the direct contribution of
each ESC-specific factor, we performed loss of function
experiments using two different specific shRNAs against
Myc, Nanog and Oct3/4 messengers. Since we recently
demonstrated that Myc is an important component for the
stem cell pluripotency and synergistically acts together its
family member MycN in ESCs (34), we performed a double
knockdown of Myc/Mycn. The silencing efficiency was
evaluated by RT-qPCR (Supplementary Figure S1C–E).
In the silenced ESCs, we observed a significant decrease of
the Tet1.1 expression, while no changes were observed in
the Tet1.2 mRNA level (Figure 1E). Taken together these
results show that the Tet1.1 isoform is highly expressed
in ESCs and its transcriptional activation is controlled by
ESC-specific factors. In differentiated cells and in adult
tissues is only expressed the Tet1.2 isoform, which does not
appear to be regulated by the pluripotency-transcriptional
network.

Tet1 expression is downmodulated in proliferating cells

The above experiments show that Tet1.2 is expressed at sim-
ilar levels during development and in adult tissues, but it is
downmodulated in proliferating MEFs and NIH-3T3 cells
(Figure 1B) suggesting that cell proliferation inhibits its ex-
pression in differentiated tissues. Because Tet1.2 downmod-
ulation could be an effect limited to the in vitro culture con-
ditions we explored whether the downregulation of Tet1.2
occurs also in proliferating cells in vivo. To this end we ana-
lyzed the expression of Tet1.2 in mouse hepatocytes during
liver regeneration after partial hepatectomy. We observed a
peak of Pcna+ cells (proliferating hepatocytes) at 48 h af-
ter resection. Hepatocytes proliferation was accompanied
by a reduced expression of Tet1.2 together with a signifi-
cant reduction of 5hmC staining (Figure 2A, B and Sup-
plementary Figure S2) indicating that Tet1.2 is downmodu-
lated in adult tissues when cells proliferate. Accordingly, we
observed in primary MEFs a drop in the level of 5hmC to-
gether with reduced Tet1.2 mRNA after few passages (Fig-
ure 2C and D). Moreover, the inhibition of cell prolifera-
tion, either by cell confluence or by mitomycin treatment,
inhibited both the Tet1.2 and 5hmC downregulation (Fig-
ure 2E). Interestingly, the block of cell proliferation did res-
cue the Tet1.2 expression and the 5hmC level even at later
passages (Figure 2F).

Tet1 regulates the cell proliferation in primary cells

The above experiments show a strict correlation between
cell proliferation and downregulation of Tet1.2/5hmC lev-
els. It has been demonstrated that Tet1 expression can re-
duce breast cancer malignancy and metastasis (29–31) and
we recently demonstrated that Tet1 downmodulation is nec-
essary for colon cancer growth (32).

To study the physiological function of Tet1.2 we per-
formed Tet1.2 silencing in freshly isolated MEFs (Fig-
ure 3A and Supplementary Figure S3A). Tet1 knockdown
in MEFs at p0 induced a faster decay of 5hmC, which was
accompanied by an increased cellular growth rate and a
higher number of cells in S phase (Figure 3B–E) suggesting

a functional role of Tet1.2 in controlling cell proliferation.
In agreement with this observation, the ectopic expression
of TET1 in these cells reduced the growth rate maintaining
high the levels of 5hmC even at late passages (Figure 3F, G
and Supplementary Figure S3B and C). This function is de-
pendent on the TET1 enzymatic activity because the expres-
sion of a catalytically dead mutant did not affect fibroblasts
cell growth (Supplementary Figure S4). These data under-
line the importance of the understanding of the regulation
of Tet1.2 in adult cells because it is very strictly connected
to the proliferative activity of the cells.

Although Tet1 and Tet2 knockout mice are viable, de-
pletion of both the genes causes epigenetic abnormalities
during mouse development, suggesting some compensatory
role of these two proteins (49–51) Li:2011cn, (51).

Tet1 is transcriptionally and epigenetically regulated by Poly-
comb complex

The mRNA level of Tet1.2 during cell proliferation can be
mediated either by transcriptional or post-transcriptional
mechanisms. To elucidate this point, we performed an RT-
qPCR analysis on the heterologous nuclear RNA (hnRNA)
of Tet1.2. In actively proliferating MEFs, we observed a de-
cline of the Tet1.2 hnRNA demonstrating that the downreg-
ulation of the Tet1.2 is a transcriptional event (Figure 4A).
In adult tissues, Tet1.2 is a ‘bivalent’ promoter since it
shows the repressive H3K27me3 histone modification to-
gether with the H3K4me3 mark associated with active tran-
scription (Figure 4B). We performed ChIP analysis for these
two epigenetics marks in freshly isolated MEFs and dur-
ing the first five passages. Although the Polycomb compo-
nents Suz12 and Ezh2 are slightly downregulated follow-
ing MEFs culturing (Supplementary Figure S5A), we ob-
served a specific increase of H3K27me3 and reduction of
H3K4me3 on the Tet1.2 promoter (Figure 4C) indicating
a progressive repression of the promoter. ChIP analysis of
Ezh2, the enzymatic subunit of the PRC2 complex respon-
sible for the H3K27 trimethylation, showed a progressive
engagement to the Tet1.2 promoter along with MEF pas-
sages (Figure 4D) suggesting that Ezh2 recruitment con-
tributes to switch off the transcription driven by the Tet1.2
promoter in proliferating cells. To confirm this hypothesis,
we performed the silencing of Suz12, another component of
the PRC2 core complex, which has been demonstrated to be
required for the correct enzymatic activity of the complex
(52,53). Knockdown of Suz12 in MEFs (at P2) resulted in
the upregulation of Tet1.2 transcript and protein (Figure 4E
and F), with a correspondent decrease of H3K27me3 sig-
nal and Ezh2 binding on the promoter (Figure 4G). Impor-
tantly, the upregulation of Tet1.2 in Suz12 silenced MEFs
correlated with an increase of total 5hmC signal (Figure
4H). The use of GSK343, an Ezh2 inhibitor (54,55) con-
firmed the results obtained by performing knockdown of
Suz12 (Supplementary Figure S5B and D). These results
demonstrated a strict connection between PRC2 and Tet1,
revealing a link between H3K27me3 histone modification
and DNA methylation, two of the major repressive epige-
netic features. PRC2 complex and H3K27me3 histone mark
are involved and, sometimes, necessary in a notable number
of human cancers (56–59). Our results could explain one of
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Figure 2. Regulation of Tet1 in mouse proliferating cells. (A) Immunofluorescence analysis of Pcna and 5hmC in liver after hepatectomyzed the indicated
time. DAPI is used for nuclei staining. (B) RT-qPCR of Tet1 and Pcna mRNA in liver after hepatectomy. (C) RT-qPCR of Tet1 mRNA in mouse embryo
or in MEFs after several passages. (D) Dot-blot analysis of 5hmC and 5mC in mouse embryo or in MEFs after several passages. (E) Left panel: dot-blot
analysis of 5hmC and 5mC in MEFs just extracted (p0) or maintained proliferating (p5) or blocked (by confluence or Mitomicyn C) from p0. Right
panel: RT-qPCR of Tet1 mRNA in MEF in the same conditions. (F) Same experiment as in (E), but the blocking of proliferation was induced at p5 and
maintained for other 5 days. Error bars represent the standard deviation of three independent experiments. P-value was calculated by using t-test.
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Figure 3. Tet1 regulates proliferation in primary cells. (A) Western blot analysis of Tet1 in control or Tet1 silenced MEF, after 24 h from silencing. Actb
was used as loading control. (B) Dot-blot analysis of 5hmC and 5mC in Tet1 silenced MEFs. ssDNA was used as loading control. (C and D) FACS cell
cycle and EdU incorporation analysis (at p2) in Tet1 silenced MEFs. (E) Cell growth assay in Tet1 silenced MEFs. (F) Dot-blot analysis of 5hmC and 5mC
in control or Tet1 expressing MEFs at several passages. ssDNA was used as loading control. (G) FACS EdU incorporation analysis (at p2) in control or
Tet1 expressing MEFs. Error bars represent the standard deviation of three independent experiments. (H) Cell growth assay in control or Tet1 expressing
MEFs at several passages.
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Figure 4. Transcriptional regulation of Tet1.2 in proliferating cells. (A) RT-qPCR of Tet1 hnRNA in MEFs at the indicated passages. (B) Genomic view of
the Tet1 promoters for the indicated ChIP-seq analysis in several mouse adult tissues. (C) qPCR of ChIP analysis for H3K4me3 and H3K27me3 in MEFs
at the indicated passages. (D) qPCR of ChIP analysis for Ezh2 in MEFs at the indicated passages. (E) RT-qPCR of Suz12 and Tet1 mRNAs in control
and Suz12 knockdown MEFs. (F) Western blot analysis of Tet1b in control or Suz12 silenced MEFs. Actb was used as loading control. (G) qPCR of ChIP
analysis for H3K27me3 and Ezh2 in MEFs in the indicated knockdown. (H) Dot-blot analysis of 5hmC and 5mC in control or Suz12 silenced MEFs.
ssDNA was used as loading control. Error bars represent the standard deviation of three independent experiments. P-value was calculated by using t-test.
** P-value < 0.001.
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Figure 5. Regulation of TET1 in human embryonic stem cells. (A) RT-qPCR of TET1 mRNA in the indicated samples. (B) Genomic view of RNA-seq and
of the indicated ChIP-seq in human ESCs. (C) qPCR of ChIP analysis of the indicated transcriptional factors on the TET1 promoter in human ESCs. (D)
RT-qPCR of TET1 mRNA in hESCs silenced for the indicated transcriptional factors. Error bars represent the standard deviation of three independent
experiments. P-value was calculated by using t-test.
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Figure 6. Regulation of TET1 in human adult cells. (A) RT-qPCR of TET1 mRNA in HUVECs at the indicated passages (B) Dot-blot analysis of 5hmC
and 5mC level in HUVECs at the indicated passages. ssDNA was used as a loading control. (C) Genomic view of the TET1 promoter for the indicated
ChIP-seq analysis in hESCs and several human differentiated cells. (D) qPCR of ChIP analysis for H3K4me3 and H3K27me3 in HUVECs at the indicated
passages. (E) qPCR of ChIP analysis for H3K4me3 and H3K27me3 in HUVECs at the indicated passages. Error bars represent the standard deviation of
three independent experiments.
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the mechanism by which Polycomb proteins can control cell
proliferation and chromatin structure during cancer devel-
opment. For this reason we extended our work also to hu-
man system and we checked whether the same mechanisms
of Tet1.2 regulation are maintained also in human cells.

TET1 is regulated by ESC-specific factors and Polycomb
complex also in human cells

To verify whether a similar regulation takes place in hu-
man cells we performed RT-qPCR of TET1 mRNA in hu-
man tissues, primary cells in culture, including human ESCs
(hESCs), hEBs, human umbilical endothelial cells (HU-
VECs), human microvascular endothelial cells (HMECs),
colon and several colon cell lines (Figure 5A). Similarly
to the mouse gene, the human TET1 was highly expressed
in hESCs and was downregulated during hEBs differentia-
tion. TET1 mRNA was low in human adult tissues such as
colon and umbilical cord and it was nearly absent in pro-
liferating primary and transformed cell lines. These results
showed an expression pattern similar to what we observed
in mouse cells and tissues, suggesting analogous mecha-
nisms of gene regulation. We therefore analyzed RNA-seq
and ChIP-seq of histone modifications datasets from hESCs
(Figure 5B) (40). These analyses did not identify alterna-
tive TET1 isoforms but revealed the presence of an active
intragenic enhancer, marked by H3K4me1 and H3K27ac,
localized at about 40 kb downstream of the TET1 TSS (Fig-
ure 5B). Interestingly, the region sequence surrounding the
center of the enhancer contained OCT3/4 and MYC bind-
ing motifs (Supplementary Figure S6A). By ChIP analysis
we identified a significant binding of OCT3/4, MYC and
NANOG proteins on this enhancer (Figure 5C). To vali-
date the functional role of these transcriptional factors on
the TET1 transcription level we performed loss of function
experiments by using two different shRNAs for OCT3/4,
MYC or NANOG (Supplementary Figure S6B–D). Silenc-
ing of each of these three factors reduced the level of TET1
mRNA in hESCs (Figure 5D). These results demonstrate
that pluripotency-associated transcriptional factors regu-
late the expression of the TET1 gene in hESCs.

Next we analyzed the expression of TET1 in differenti-
ated primary cells. To this end we isolated HUVECs and
we measured the TET1 mRNA level during the cell cultur-
ing. We observed that, similar to MEFs, in HUVECs TET1
was downregulated by cell passages (Figure 6A). Accord-
ingly, we also observed a progressive reduction of 5hmC
(Figure 6B). Analogously to the mouse model, the reduced
levels of TET1 hnRNA confirmed that TET1 downregu-
lation was triggered by transcriptional mechanisms (Sup-
plementary Figure S6E). We then analyzed the chromatin
status of TET1 promoter in a subset of primary cells and
we confirmed the presence of the repressive H3K27me3 sig-
nal (Figure 6C). Moreover, we performed ChIP analysis on
the TET1 promoter in proliferating HUVECs and we de-
tected a progressive reduction of H3K4me3 mark coupled
to an increase of H3K27me3 mark and EZH2 binding (Fig-
ure 6D and E). These results demonstrate that, although
the gene structures are different, both in human and mouse
ESCs TET1 is highly expressed in stem cells where it is reg-
ulated by stemness-specific factors, while in differentiated

cells TET1 is downregulated by cell growth via the PRC2
complex through the deposition of repressive histone mark
H3K27me3 on its promoter.

Our experiments showed a regulatory circuit between
Tet1 expression and cell proliferation in adult cells by which
Tet1 is both controlled and a controller of cell growth while
in ESCs the high levels of Tet1 do not alter the growth rate.
As stem cells are hypomethylated, it is likely that the differ-
ent phenotypic outputs depend on the DNA methylation
pattern of the cells where Tet1 is expressed.

It was previously observed a reduction of TET1 and
5hmC in cancers (60–62) with the resulting hypermethyla-
tion and switch off of tumor suppressor genes (29,31,32).
Our results unveiled the interplay between the epigenetic
modifications mediated by Polycomb and TET1. These re-
sults will improve the understanding of how this epigenetic
modification crosstalk contributes to cancer development.
After revising this manuscript, it has been published a work
that independently demonstrated the presence of the two
Tet1 isoforms by 5’-RACE (63).
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