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We present a measurement of the W-boson-pair production cross section in pp collisions at 1.96 TeV
center-of-mass energy and the first measurement of the differential cross section as a function of jet
multiplicity and leading-jet energy. The W W~ cross section is measured in the final state comprising
two charged leptons and neutrinos, where either charged lepton can be an electron or a muon. Using
data collected by the CDF experiment corresponding to 9.7 fb~! of integrated luminosity, a total
of 3027 collision events consistent with W W~ production are observed with an estimated background
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contribution of 1790 & 190 events. The measured total cross section is o(pp - WHW~) = 14.0+
0.6(stat) ™| ¢ (syst) £ 0.8(lumi) pb, consistent with the standard model prediction.

DOI: 10.1103/PhysRevD.91.111101

The measurement of W-boson-pair production is an
important test of the electroweak gauge sector of the
standard model (SM) of particle physics [1,2]. Extending
the measurement to include the properties of jets produced
in association with the boson pair is an interesting test of
quantum chromodynamics (QCD) that has not been per-
formed before in events with multiple heavy gauge bosons.
This process is a significant background for Higgs-boson
studies in the W*W~(WW) decay mode at particle col-
liders, where the use of jet vetoes and jet counting is an
essential element of the analysis technique [3-6].
Furthermore, a final state consisting of two massive gauge
bosons and two jets is typical of vector-boson scattering, a
process sensitive to many non-SM contributions to the
electroweak-symmetry-breaking sector [7]. With the first
evidence of vector-boson scattering at the Large Hadron
Collider (LHC) [8,9], it is essential to verify and tune the
simulation tools used to describe electroweak processes
produced in association with jets.

This article reports measurements of the WHW~ pro-
duction and differential cross sections as a function of jet
multiplicity and jet energy in a final state consisting of
events with two oppositely charged leptons, where each
lepton is identified as either an electron or a muon, and an
imbalance in the total event transverse momentum (trans-
verse energy), due to the presence of neutrinos. The
differential measurements of jet multiplicity and jet energy
are unfolded to hadronic-jet level to account for the detector
response to jets of hadrons and compared directly to
predictions from two Monte Carlo (MC) simulations.
The simulations considered are the ALPGEN generator
[10], which calculates the lowest perturbative order of
the strong interaction that produces a W+ W~ pair of vector
bosons and a fixed number of partons in the final state
(typically referred to as fixed-order MC), and the MC@NLO
next-to-leading order (NLO) generator [11] both interfaced
to parton-shower generators. Fixed-order and NLO simu-
lation are widely used methods for modeling electroweak
processes with multiple jets. The measurement of differ-
ential cross sections as a function of the number of
associated jets is particularly suited to the Tevatron because
the large rate of top-quark-pair production at the LHC
makes this analysis much more difficult. The production of
W-boson pairs was first observed by the CDF experiment
using Tevatron Run I data [12]. This process has since been
measured by the CDF [13], DO [14], ATLAS [15], and
CMS [16,17] experiments.

This measurement uses an integrated luminosity of
9.7 fb~! of pp collision data collected by the CDF experi-
ment which comprises the full Tevatron Run II data set. A

PACS numbers: 14.70.Fm, 12.38.Qk, 12.15.Ji

12% increase in signal acceptance is obtained by using
events in which one or both W bosons decay to a tau lepton
that subsequently decays to an electron or muon. Events are
classified based on the multiplicity and the transverse
energy of jets, where jets are the products of the parton
showering and hadronization of high energy partons
produced in the initial scattering process. The cross section
measurement uses an artificial neural network (NN)
method to distinguish signal and background events. The
jet multiplicity classifications are zero, one, and two or
more jets and separate NNs are used for each multiplicity
class. Events with a single jet are further classified
according to the energy of the jet transverse to the beam
line into bins of 15-25 GeV, 25-45 GeV, and more than
45 GeV. The cross sections are extracted via a maximum-
likelihood fit to the data of a weighted sum of the
normalized binned NN distributions for signal and back-
grounds, simultaneously over the five event classes.

The CDF experiment consists of a solenoidal spectrometer
with a silicon tracker and an open-cell drift chamber
surrounded by calorimeters and muon detectors [18]. The
kinematic properties of particles and jets are characterized
using the azimuthal angle ¢ and the pseudorapidity

= —In (tan(6/2)), where @ is the polar angle relative to
the nominal proton beam axis. Transverse energy, Er, is
defined to be Esiné, where E is the energy deposited in
pointing-tower geometry electromagnetic and hadronic cal-
orimeters. Transverse momentum, pr, is the momentum
component of a charged particle transverse to the beam line.

This analysis uses jets, electrons, muons and missing
transverse energy. Electron and muon candidates (hereafter
electrons and muons) are typically identified using the
drift chamber and electromagnetic calorimeter or muon
chambers, respectively. Jet candidates (jets) are measured
using an iterative cone algorithm that clusters signals
from calorimeter towers within a cone of AR =
V/ (An)? + (Ag)? = 0.4. Corrections are applied to the
calorimeter cluster-energy sums to account for the average
calorimeter response to jets [19]. The missing transverse
energy vector, E, is defined as the opposite of the vector
sum of the E; of all calorimeter towers, corrected
to account for the calorimeter response to jets and to
muons [3].

The experimental signature of the signal events is two
leptons with opposite charge and large E;. A number of
SM processes result in this observed final state and are thus
backgrounds. The WZ and ZZ processes can yield the same
final state if one boson decays hadronically, or some decay
products are not detected. Top quarks decay predominantly
to a b quark and a W boson, which can decay leptonically,

111101-4
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making #f production a dominant background for events
with two jets. Incorrect measurements of the energy or
momentum of leptons or jets result in apparent E;. This
allows the large-production-rate Drell-Yan (DY) process,
Z/y* — ¢T¢~, where £ refers to any charged lepton, to be
included in the candidate sample. A third source of back-
ground arises from the misidentification of a final-state
particle, such as in W + jets and Wy processes, where the
photon or jet is incorrectly reconstructed as a lepton.
Events are selected from a sample containing at least one
electron (muon) of E(py) > 20 GeV and || < 2.0 that
satisfy an online single-lepton selection requirement in the
trigger [20]. A second lepton is required to have opposite
charge and E;(py) > 10 GeV. Jets are required to have
E; > 15 GeV and |y < 2.5. In order to reduce the con-
tribution of DY events with mismeasured E7(pr), the E7

is defined as Er . = E7sin Aq’)(fb Z/j) if the azimuthal

separation between the £, and the momentum vector of the
nearest lepton or jet is less than 5. Otherwise E7 o = E7.
E7 1 18 required to be greater than 25 GeV for same-flavor
lepton pairs, or 15 GeV for electron-muon events from the
leptonic decays of t77z— DY events, where the DY con-
tribution is small. Requiring the invariant mass of the same-
flavor lepton pairs (m,,) to be outside the Z mass range
(between 80 and 99 GeV/c?) further suppresses Z/y* —
£1¢~ events, while requiring one radian of azimuthal
separation between the E; and the dilepton momentum
suppresses Z/y* — t7 7~ events. Leptons are required to be
isolated, by applying the criteria that the sum of E; for
calorimeter towers (or the sum of the py of charged
particles for central muons) in a cone of AR around the
lepton is less than 10% of the electron £ (muon p7). This
helps to purify the lepton sample and reduce backgrounds
due to misidentified particles, particularly W + jets and
Wy. The Wy background is further reduced by requiring
my, greater than 16 GeV/c?. To suppress tf background
we reject events with two or more jets in which any jet
passes a b-flavored-quark identification algorithm [21].
The geometric and kinematic acceptance for the WW
signal and the yields of the DY, WZ, ZZ, Wy and tf
backgrounds is determined by simulation. Backgrounds
consisting of DY leptons associated with the production of
zero or one jet are simulated using the PYTHIA generator
[22]. DY background with two or more jets and WW
samples are simulated with up to three partons with the
ALPGEN generator. The contributions to the WW production
from the next-to-next-to-leading-order (NNLO) process
gg — WTW~ are accounted for by reweighting the WW
simulation as a function of the WW p; distribution to
incorporate the extra contribution predicted in Ref. [23].
The DY background is studied in a sample of low E7
events and a correction is applied to account for the
mismodeling of E; in the simulation of zero-jet and
one-jet events [3]. The WZ, ZZ, and i samples are
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simulated with the PYTHIA generator [22]. The expected
yields for simulated processes are normalized using cross
section calculations performed at NNLO for #7 [24], NLO
for WZ, ZZ [25] and DY [26], and fixed order for WW [10].
The Wy background is simulated using the Baur MC
generator [27], but is normalized according to a study of
same-charge lepton with low m,, [3]. Samples are gen-
erated using the CTEQSL [28] parton distribution functions
(PDFs), and interfaced to PYTHIA for parton showering,
fragmentation, and hadronization. The detector response
for these processes is modeled with a GEANT3-based
simulation [29], and further corrected for trigger,
reconstruction, and identification efficiencies using sam-
ples of W — ev and Z — £¢ events [20]. The W + jets
background is determined using collision data. The prob-
ability for a jet to be reconstructed as a lepton is measured
in jet-triggered data samples and applied to a W + jets data
sample to estimate the contribution from W + jets events.
The estimated and observed yields for signal and back-
ground in each jet region are shown in Table L.

We use a NN method to further discriminate signal
from background. Separate NNs are trained using the
NEUROBAYES [30] program with simulated signal and
background events for events with zero, one, and two or
more jets. Inputs to the NN are selected to exploit features
of the signal and background processes. The inputs include
the total energy of the event, which tends to be modest in
WW events compared to t7 events; the p; of the second
highest pr lepton, which tends to be low in events where a
jet or photon is misidentified as a lepton; missing E that is
not aligned with a lepton or jet, suggesting that it is the
result of neutrino production; and, in events with two or
more jets, the vector sum of the p; of the leading two jets,
which tends to be greater if the jets are /7 decay products.
For events without jets, we use a likelihood ratio of the
signal probability density over the sum of signal and

TABLE I. Estimated and observed event yields. Event yields
and uncertainties are normalized to the values returned by fitting
signal and background (bk) distributions to the data. Uncertain-
ties are due to statistical and systematic sources as described in
the text.

Events (best fit)

Process Zero jets One jet Two or more jets
wZz 19.5 £3.0 16.7+2.3 4.26 +0.81
77 13.2+1.9 425 +0.61 1.33 £0.26
1t 37£1.0 76 £ 12 158 £16
DY 150 £+ 34 83 +21 20.2 £8.6
Wy 214 £27 440£64 7.5+ 19
W 4 jets 685 £ 118 250 £ 46 81 £ 15
Total bk 1086 £ 124 474 £ 57 272 +26
ww 963 + 108 224 +29 73 £20
WW +bk 2049 £ 177 698 + 73 345+ 39
Data 2090 682 331
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FIG. 1 (color online). Estimated and observed combined dis-
tributions of outputs for NNs trained to identify WW events, with
a higher NN output value indicating a more signal-like event.
Event yields are normalized to the values returned by fitting
signal and background distributions to the data.

background probability densities as an input to the NN [3].
The probability densities are calculated on an event-by-
event basis for the signal and each background hypothesis
using the observed kinematic properties of the events in
leading-order (LO) matrix-element calculations [25]. The
sum of final NN outputs for all event classes is shown
in Fig. 1.

Systematic uncertainties affecting both the normalization
and shape of the signal and background NN distributions
are assessed for the following sources. Uncertainties on
acceptance originating from lepton-selection and trigger-
efficiency measurements contribute a 4.3% uncertainty on
all event yields. Acceptance uncertainties due to potential
contributions from higher-order effects are evaluated as
follows. For the WW contribution, the ALPGEN sample is
reweighted by the p; of the WW system according to
samples generated with different choices of PDF, renorm-
alization, and factorization scales. The PDF uncertainty is
evaluated with the CTEQ61 PDF error set, and ranges from
1.2% to 1.8%, increasing as a function of jet multiplicity
and jet energy. The scale uncertainty is evaluated by
doubling or halving the renormalization and factorization
scales simultaneously and ranges from 0.5% to 24%,
increasing as a function of jet multiplicity and decreasing
as a function of jet energy. The scale uncertainties are
anticorrelated between adjacent bins of jet energy and jet
multiplicity. Between the zero-jet and one-jet bins the
anticorrelation is specifically between the bin with no jets
and one jet but having the lowest E;. The effect of the scale
uncertainty on the shape of the WW NN distributions is
also evaluated. For 7 contribution an uncertainty of 2.7% is
assigned due to QCD effects [31]. For WZ and ZZ
backgrounds, which are simulated at LO, a 10% uncer-
tainty is assigned, arising from the difference in the
observed acceptance of WW events generated at LO and
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NLO with pYTHIA and MC@NLO, respectively. Because
modeling of higher-order amplitudes can affect the extrapo-
lation of the normalization to the predicted Wy event yield,
this uncertainty is also applied to the Wy background. A
6.8% uncertainty is also assigned to the Wy background
due to the photon-conversion modeling. An uncertainty of
19% to 26%, increasing as both a function of jet multi-
plicity and jet energy, is assigned to the DY background to
account for mismodeling of £ based on the differences in
acceptance observed when varying the E; template in the
study of low E7 ; DY events described above. Uncertainty
on jet modeling for simulated backgrounds varies from
1.0% to 29%, and is anticorrelated between jet multiplicity
and jet energy and generally increases as a function of jet
multiplicity. For WW and DY processes, the effect on the
shape of the distribution is also evaluated. For the W + jets
background, systematic uncertainties of 20% to 30%,
depending on lepton types, are determined by calculating
the misidentification probabilities at different jet-energy
thresholds. Theoretical uncertainties of 6.0% are assigned
to WZ and ZZ cross sections [25] and 4.3% to the ¢ cross
section [24]. The measured luminosity, which is used to
normalize the yield of all signal and background processes
modeled using simulations, has an uncertainty of 5.9%
[32]. Tables including the systematic uncertainties used in
each jet classification and all correlations and anticorrela-
tions are given in Ref. [3]. The sum of uncertainties from
statistical and systematic sources is included for each signal
and background for each jet multiplicity in Table I. The
uncertainties on the background predictions are those after
the fit described below.

The differential WW cross section is extracted from the
NN output shapes incorporating the normalizations and
systematic uncertainties of signal and background in each
signal region via a binned-maximum-likelihood method.
The likelihood is formed from the Poisson probabilities of
observing n; events in the ith bin, in which y; are expected.
Systematic uncertainties are included as normalization
parameters on signal and background and subject to
constraint by Gaussian terms. The likelihood is given by

r— HM?:‘—M He%g 0
i ir T

where
Hi = Zakn(l + fiSe)(Ny);- (2)
k c

For a process k and a systematic effect ¢, f{ is the
fractional uncertainty assigned, and S, is a Gaussian-
constrained floating parameter associated with c. (Ny);
is the expected number of events from process k in bin i.
Systematic uncertainties that affect the shape of the dis-
tribution are treated as correlated with the appropriate rate
uncertainties. The parameter a; is an overall normalization
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TABLE II. Measurements and predictions of 6(pp — WTW~ + jets). Values are given inclusively and differentially as functions of
jet multiplicity and jet-transverse energy.
a(pb) Uncertainty(pb) o(pb)

Jet bin Measured Statistical Systematic Luminosity ALPGEN MC@NLO
Inclusive 14.0 +0.6 e +0.8 11.3+14 11.7+0.9
Zero jets 9.57 +0.40 By +0.56 82+ 1.0 8.6 0.6
One jet inclusive 3.04 +0.46 e +0.18 243 £0.31 2.47+£0.18
One jet, 15 < E; < 25 GeV 1.47 +0.17 A +0.09 1.26 £0.16 1.18 £0.09
One jet, 25 < E; < 45 GeV 1.09 +0.18 ol +0.06 0.77 £0.10 0.79 £ 0.06
One jet, E; > 45 GeV 0.48 +0.15 oL +0.03 0.40 £ 0.05 0.46 £0.03
Two or more jets 1.35 +0.30 e +0.08 0.64 +0.08 0.61 +0.05

that is fixed to one for all processes except WW, for which
it is determined by the fit independently for each analysis
region. The likelihood function is maximized with respect
to the systematic parameters S, and cross section normal-
izations ayy simultaneously in all regions. The cross
section in each region is calculated by multiplying the
value of ayy by the predicted cross sections calculated
by ALPGEN. The total cross section is determined to
be o(pp = WTW™ + X) = 14.0 £ 0.6(stat) 7|3 (syst) +
0.8(lumi) pb which is consistent within one ¢ with the
inclusive NLO cross section prediction of 11 4+ 0.7 pb as
calculated by the MC@NLO program and the total prediction
of the fixed-order program ALPGEN. The result is unfolded
to the hadronic-jet level based on the results of a study of
the bin-to-bin migration of events due to jet reconstruction,
jet-energy scale, and jet-resolution effects as determined
in simulated events. The final result is iteratively corrected
to account for differences in acceptance between the
reconstructed and true distributions using a Bayesian
[33,34] technique. Migrations between jet-multiplicity and
jet-energy bins are typically of order 10% or less. An

- CDFRun ll: L=9.7 fo”' i

N WW(lIvv)
........ L SR

f Measured cross section

-
o
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—y
H
i e
1
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—e—

Production cross section [pb]
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H
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Inclusive 0 jets 1jet

>2jets

FIG. 2 (color online). Measurement and predictions of
o(pp > WTW~ 4 njets). Values are given inclusively and
differentially as functions of jet multiplicity and jet-transverse
energy. Transverse energy ranges are (a) 15 < Ey <25 GeV,
(b) 25 < Ey <45 GeV, and (c) E > 45 GeV.

independent training sample of simulated events is used to
test the unfolding process. The correct differential cross
sections are reproduced stably with a minimal number of
iterations. The unfolded results are compared to ALPGEN,
using the CTEQSL PDFs and interfaced to PYTHIA for parton
showering with the MLM matching algorithm [35], and
MCc@NLO, using the CTEQ5M PDFs and interfaced to
HERWIG [36,37] for parton showering. The measured and
predicted differential cross sections are shown in Table Il and
Fig. 2. The differential cross section measurements are
consistent with both simulation predictions. The largest
deviation occurs in the two-jet sample being less that two
standard deviations. NNLO contributions to the gg —
W W= cross section are not accounted for in the calculations
and are expected to increase the predicted cross section.

In summary, the WW cross section is measured in the
dilepton channel both inclusively and differentially in jet
multiplicity and E; using a neutral-net discriminant and
binned-maximum-likelihood fit. This is the first measure-
ment of the differential cross section for pair production
of massive-vector bosons. The measured cross section,
14.0 & 0.6(stat) 7|3 (syst) + 0.8(lumi) pb, and the differ-
ential cross sections are consistent with both the NLO and
fixed-order predictions. This result indicates the suitability
of using either of these theoretical techniques to study
processes with multiple gauge bosons and jets. Processes of
this type will be used extensively at the LHC to perform
searches for non-SM physics and to investigate the nature
of electroweak-symmetry breaking by studying the process
of vector-boson scattering.
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