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Production of the Υð1SÞ meson in association with a vector boson is a rare process in the standard
model with a cross section predicted to be below the sensitivity of the Tevatron. Observation of this
process could signify contributions not described by the standard model or reveal limitations with the
current nonrelativistic quantum-chromodynamic models used to calculate the cross section. We perform
a search for this process using the full Run II data set collected by the CDF II detector corresponding
to an integrated luminosity of 9.4 fb−1. The search considers the Υ → μμ decay and the decay of the W
and Z bosons into muons and electrons. In these purely leptonic decay channels, we observe one ΥW
candidate with an expected background of 1.2� 0.5 events, and one ΥZ candidate with an expected
background of 0.1� 0.1 events. Both observations are consistent with the predicted background
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contributions. The resulting upper limits on the cross section for ΥþW=Z production are the most
sensitive reported from a single experiment and place restrictions on potential contributions from
non-standard-model physics.

DOI: 10.1103/PhysRevD.91.052011 PACS numbers: 14.70.-e, 12.39.Jh, 14.40.Pq

I. INTRODUCTION

The standard model production of an upsilon (Υ) meson
in association with aW boson or a Z boson is a rare process
whose rate was first calculated in Ref. [1], where ΥW and
ΥZ production occur through the parton-level processes
producing W þ bb̄ and Z þ bb̄ final states, in which the
bb̄ pair may form a bound state (either an Υ or an excited
bottomonium state that decays to an Υ). More recently,
rates for these processes have been calculated at next-to-
leading order in the strong-interaction coupling for proton-
antiproton (pp̄) collisions at 1.96 TeV center-of-mass
energy and proton-proton collisions at 8 and 14 TeV [2].
The cross sections calculated for ΥW andΥZ production

inpp̄ collisions at 1.96 TeVare 43 fb and 34 fb, respectively.
These values were calculated at leading order using the
MADONIA quarkonium generator [3] as detailed below and
are roughly a factor of 10 smaller than the earlier calculations
from Ref. [1]. The calculations of these processes are very
sensitive to nonrelativistic quantum-chromodynamic
(NRQCD) models, especially the numerical values of the
long-distance matrix elements (LDME), which determine
the probability that a bb̄ will form a bottomonium state.
Measurements of ΥþW=Z cross sections are important
for validating these NRQCD models.
Supersymmetry (SUSY) is an extension of the standard

model (SM) which has not been observed. Reference [1]
describes some SUSY models in which charged Higgs
bosons can decay into ΥW final states with a large
branching fraction (B). Similarly, in addition to the
expected decays of a SM Higgs to an ΥZ pair, further
light neutral scalars may decay into ΥZ. Therefore, if the
observed rate of ΥW and/or ΥZ production is significantly
larger than the predicted SM rate, it may be an indication of
physics not described by the SM.
In 2003, the CDF collaboration reported [4] a search for

the associated production of an Υ meson and a W or Z
boson. In that analysis, a sample corresponding to 83 pb−1

of 1.8 TeV pp̄ collision data collected with the Run I CDF
detector was used to set upper limits on the production
cross sections (σ) at the 95% confidence level (C.L.) of
σðpp̄→ΥWÞ×BðΥ→ μþμ−Þ< 2.3 pb and σðpp̄→ΥZÞ×
BðΥ→ μþμ−Þ< 2.5 pb. The ATLAS collaboration has
also reported on the related channels of J=ψ þW=Z
production [5,6].
Here we present a search forΥþW=Z production, using

a sample corresponding to 9.4 fb−1 of 1.96 TeV pp̄
collision data collected with the CDF II detector. We use
the dimuon decay channel to identify the Υ meson. We use

only the electron and muon decay channels of theW and Z
bosons, which give the best sensitivities for this search.

II. THE CDF DETECTOR

The CDF II detector is a nearly azimuthally and
forward-backward symmetric detector designed to study
pp̄ collisions at the Tevatron. It is described in detail in
Ref. [7]. It consists of a magnetic spectrometer surrounded
by calorimeters and a muon-detection system. Particle
trajectories are expressed in a cylindrical coordinate
system, with the z axis along the proton beam and the
x axis pointing outward from the center of the Tevatron.
The azimuthal angle (ϕ) is defined with respect to the x
direction. The polar angle (θ) is measured with respect to
the z direction, and the pseudorapidity (η) is defined as
η ¼ − lnðtan θ

2
Þ. The momentum of charged particles is

measured by the tracking system, consisting of silicon
strip detectors surrounded by an open-cell drift chamber,
all immersed in a 1.4 T solenoidal magnetic field. The
tracking system provides charged-particle trajectory
(track) information with good efficiency in the range
jηj ≲ 1.0. The tracking system is surrounded by pointing-
geometry tower calorimeters, that measure the energies
of electrons, photons, and jets of hadronic particles. The
electromagnetic calorimeters consist of scintillating tile
and lead absorber, while the hadronic calorimeters are
composed of scintillating tiles with steel absorber. The
calorimeter system includes central and plug subdetectors,
with the central region covering jηj < 1.1 and the plug
region covering the range 1.1 < jηj < 3.6. The muon
system is composed of planar multiwire drift chambers.
In the central region, four layers of chambers located just
outside the calorimeter cover the region jηj < 0.6. An
additional 60 cm of iron shielding surrounds this system,
and behind that is a second subdetector composed of
another four layers of chambers. A third muon subdetector
covers the region 0.6 < jηj < 1.0, and a fourth subdetector
extends coverage to jηj < 1.5. Cherenkov luminosity
counters measure the rate of inelastic collisions, that is
converted into the instantaneous luminosity. A three-level
online event-selection system (trigger) is used to
reduce the event rate from 2.5 MHz to approximately
100 Hz. The first level consists of specialized hardware,
while the second is a mixture of hardware and fast
software algorithms. The software-based third-level trig-
ger has access to a similar set of information to that
available in the off-line reconstruction.
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III. MONTE CARLO AND DATA SAMPLES

We use a number of quantities based on track and
calorimeter information in the event selection. The transverse
momentum of a charged particle is pT ¼ p sin θ, where p is
the particle’s momentum. The analogous quantity measured
with the calorimeter is transverse energy, ET ¼ E sin θ. The
missing transverse energy,ET is defined as ~ET ¼ −

P
iE

i
Tn̂i,

where n̂i is a unit vector perpendicular to the beam axis and
pointing to the center of the ith calorimeter tower. The ~ET is
adjusted for high-energy muons, which deposit only a small
fraction of their energies in the calorimeter, and off-line
corrections applied to themeasured energies of reconstructed
jets [8] which result from the hadronization of quarks and
gluons. We define ET ¼ j~ET j. The invariant mass of two
leptons is Mll ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEl1 þ El2Þ2=c4 − j~pl1 þ ~pl2j2=c2

p
,

and the transverse mass of a lepton and neutrino (estimated
with ET) is MT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2El

TETð1 − cos ξÞ=c3
p

where ξ is the
angle between the lepton track andET vector in the transverse
plane. For muons, pl and pl

T are used rather than their
measured energies El and El

T in the definitions of Mll
and MT .
The analysis uses events selected with triggers requiring a

high-ET central electron candidate (ET > 18GeV, jηj< 1.0)
or a high-pT central muon candidate (pT > 18 GeV=c,
jηj < 1.0). The integrated luminosity of these samples is
9.4 fb−1. All the search channels include theΥ → μμ signal,
so we only use data acquired when the muon detectors were
operational, resulting in the same integrated luminosity for
the electron and muon samples.
We also use a low-pT dimuon-triggered Υ sample to

estimate one of the backgrounds as detailed in Sec. V. The
dimuon invariant-mass distribution from this low-pT sam-
ple, whose integrated luminosity is 7.3 fb−1, is shown in
Fig. 1 for the mass range in the region of the Υ resonances.

We produce simulated event samples of the signal
processes, ΥW and ΥZ, by first generating events with
MADGRAPH [9] and its quarkoniumextensionMADONIA [3].
We include all ΥW and ΥZ processes from Ref. [1] and the
LDME values relevant for the Tevatron from Ref. [10]. An
explanation of how LDME values are determined from fits
to quarkonia data is given in Ref. [11], although the values
obtained in this reference are specific for the LHC. PYTHIA
[12] is used to simulate the Υ, W, and Z decays and parton
showering. Generated Υ mesons are forced to decay to two
muons. We use a GEANT3-based [13] detector simulation to
model the response of the CDF II detector [14].

IV. EVENT SELECTION

Events are selected with Υ mesons decaying to muon
pairs and decays of vector bosons resulting in at least one
electron or muon. In this analysis we have two categories
of lepton candidates: low-pT muon candidates with 1.5 <
pT < 15 GeV=c from the Υ decay and high-ET (or pT)
electron (or muon) candidates from the W or Z decay.
High-ET electron candidates are identified by matching

a track to energy deposited within the calorimeter. Muon
candidates are formed from charged particle tracks matched
to minimum ionizing energy deposition in the calorimeter,
which may or may not be matched to track segments in
the muon chambers situated behind the calorimeters.
Lepton reconstruction algorithms are described in detail
elsewhere [15].
Electron candidates are distinguished by whether they

are found in the central or forward calorimeters (jηj > 1.1)
where only silicon tracking information is available. The
electron selection relies on track quality, track-calorimeter
matching, calorimeter energy, calorimeter profile shape,
and isolation information. Most muon candidates rely on
direct detection in the muon chambers, which are distin-
guished by their acceptance in pseudorapidity: central
muon detectors (jηj < 0.6), central muon extension detec-
tors (0.6 < jηj < 1.0), and the intermediate muon detector
(1.0 < jηj < 1.5). Remaining muon candidates rely on
track matches to energy deposits consistent with a mini-
mum ionizing charged particle in the central and forward
electromagnetic calorimeters respectively, and which fail to
have an associated track segment in the muon subdetectors.
All high-ET (or pT) leptons are required to be isolated
by imposing the condition that the sum of the transverse
energy of the calorimeter towers in a cone of ΔR≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔϕÞ2 þ ðΔηÞ2

p
¼ 0.4 around the lepton is less than

10% of the electron ET (muon pT).
The analysis uses the high-ET electron triggered, and

high-pT muon triggered, data sets where events are addi-
tionally required to contain Υð1SÞ candidates using the Υ
decay to two low-pT muons (1.5 < pT < 15 GeV=c).
We define the Υð1SÞ region as the invariant-mass range
9.25 < Mμμ < 9.65 GeV=c2. We do not use Υð2SÞ or
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FIG. 1 (color online). Dimuon invariant-mass spectrum in CDF
II data from events contained within the low-pT dimuon-triggered
sample. Shown are the defined Υ signal region and the sideband
regions used for background determination.
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Υð3SÞ decays. We define two sideband regions, 8.00 <
Mμμ < 9.00 GeV=c2 and 10.75 < Mμμ < 11.75 GeV=c2,
for obtaining background estimates. Events are required to
have at least two low-pT muon candidates whose invariant
mass lies within the Υð1SÞ region. To increase the
efficiency for reconstructing Υ candidates, we use looser
quality requirements on these low-pT muon candidates
than for the high-pT muon candidates used in the vector-
boson reconstruction. In particular, there are no isolation
requirements on the Υ muon candidates, and geometrical
matching requirements between charged particles in the
tracker and track segments in the muon detectors are less
stringent. Most low-pT muon candidates surviving event
selection are found to be within acceptance of the muon
chambers (jηj < 1.5). In the small fraction of events (less
than 2%) that have more than two low-pT muons identified,
we randomly choose one pair of those muons.
We then look for additional high-energy electron (or

muon) candidates consistent with the decay of a vector
boson. Events with exactly one high-energy lepton candi-
date, l, which will henceforth refer to an electron or muon,
with ET (pT) greater than 20 GeV (GeV=c), in addition to
theΥ → μþμ− candidate, and significant missing transverse
energy (ET > 20 GeV) are selected as Υþ ðW → lνÞ
candidates. Such candidates are further required to have a
transverse mass in the range 50 < MT < 90 GeV=c2,
as expected from a W boson decay. Figures 2 and 3 show
the distributions of these quantities as predicted from the
simulated ΥþW event samples.
Events with two oppositely charged high-energy lepton

candidates of same flavor are selected as Υþ ðZ → lþl−Þ
candidates. The Υþ ðZ → llÞ candidates are selected
by requiring one additional high-ETðpTÞ electron (muon)
candidate with ETðpTÞ > 20 GeV ðGeV=cÞ and a second
candidate with the same flavor but opposite charge and
ETðpTÞ > 15 GeV ðGeV=cÞ. Both additional lepton

candidates are required to be isolated and have an invariant
mass in the range 76 < Mll < 106 GeV=c2. The invari-
ant-mass distribution predicted from the simulated
Υþ ðZ → llÞ event samples is shown in Fig. 4.
The total signal efficiencies, after all selection criteria are

applied, are determined from simulated event samples to be
1.8% for Υþ ðW → eνÞ, 1.3% for Υþ ðW → μνÞ, 1.8%
for Υþ ðZ → eeÞ, and 1.4% for Υþ ðZ → μμÞ events.
These efficiencies do not include the branching fractions
for Υ → μμ and the electronic and muonic decays of the
vector bosons. The low acceptances are primarily driven
by the geometric acceptance of the drift chamber for the
two low-pT muons from the Υ decay. We expect a small
contribution to the W → lν acceptance from W → τν
events where the tau lepton decays to an electron or muon.
The contribution is determined to be less than 2% of the
acceptance, and is therefore neglected. The contribution

missing transverse energy [GeV]
0 10 20 30 40 50 60 70 80 90 100

ev
en

ts
 / 

(2
 G

eV
)

0

100

200

300

400

500

600
MadGraph+Pythia

 MC→+W, W

Analysis requirement

FIG. 2 (color online). Missing-transverse-energy distributions
predicted for signal Υþ ðW → lνÞ events. The distributions are
shown for events that satisfy all other event requirements. The
scale of the vertical axis is arbitrary.
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FIG. 3 (color online). Transverse-mass distributions predicted
for signal Υþ ðW → lνÞ events. The distributions are shown for
events that satisfy all other event requirements. The scale of the
vertical axis is arbitrary.
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predicted for signal Υþ ðZ → llÞ events. The distribution is
shown for events that satisfy all other event requirements. The
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from Z → ττ events to the Z → ll channels is found to be
negligible.
Summaries of the selection criteria and their associated

efficiencies are given in Tables I and II.

V. BACKGROUNDS

There are two main background contributions to the
samples of ΥW and ΥZ signal candidates after the final
selection: events containing a correctly identified W=Z
candidate and a misidentified Υ candidate (real W=Zþ
fake Υ) and those with a correctly identified Υ candidate
and a misidentified W=Z candidate (real Υþ fake W=Z).
Generic dimuon backgrounds, originating predominantly
from bb̄ production, contribute events in the Υð1SÞ mass
range and are the primary source of fake Υ candidates.
Misidentification of jets as leptons can mimic the decay
signatures of W and Z bosons. In the case of Z candidates,
where two leptons are required, this background is
negligible.
The real W=Zþ fake Υ background contributions are

estimated by counting the number ofW orZ candidate events
in the high-pT lepton data samples that additionally contain
a dimuon candidate in the sideband region of the dimuon
spectrum (defined in Fig. 1). An exponential fit to these
sideband regions is used to determine a ratio of the areas of
the signal to sideband regions, which is then applied to these
numbers for an estimate of this background contribution.
The probabilities for reconstructed jets to be misidenti-

fied as leptons are measured in jet-enriched data samples as

functions of the jet ET and lepton type, and are corrected for
the contributions of leptons fromW and Z boson decays, as
more fully described in Ref. [16]. To estimate real Υþ fake
W=Z background contributions, we select from the low-pT
dimuon data sample events containing a high-ET jet instead
of a high-ET (pT) isolated lepton candidate that otherwise
satisfy the full selection criteria. Background estimates
are obtained using the measured probabilities associated
with each of the jets within these events as weighting
factors on the potential contribution of each. The low-pT
dimuon sample is relied upon to extract these background
estimates because a strong correlation between high-pT
lepton trigger selection requirements and jet-to-lepton
misidentification rates renders the high-pT lepton data
set unsuitable for the chosen methodology. To interpolate
between the two samples, additional small corrections are
applied to account for differences in the integrated lumi-
nosities of the two samples andΥ selection inefficiencies in
the low-pT dimuon sample originating from trigger
requirements.
In evaluating the real Zþ fake Υ background contribu-

tion, no events containing Υ candidates in the sideband
mass regions are observed. Background contributions to the
corresponding signal samples are therefore estimated by
extrapolating from the estimated real Wþ fake Υ back-
ground contributions, using the ratio of Z-to-W cross
sections. This makes the assumption that the probability
for misidentifying a Υð1SÞ is independent of the type of
vector boson. In calculating cross-section limits, we also
account for small background contributions from ΥZ

TABLE I. Efficiencies for the ðΥ → μμÞ þ ðW → lνÞ selection criteria. The individual efficiencies for each
requirement, in the given order, are listed with the total at the bottom. The uncertainty on the total efficiency is
discussed in the text.

Υþ ðW → eνÞ Υþ ðW → μνÞ
Υð1SÞ → μμ candidate 6.8% 6.8%
One additional high-ETðpTÞ isolated e or μ candidate 55% 46%
High-ETðpTÞ lepton candidate is triggerable 55% 52%
ET > 20 GeV 96% 94%
50 < MT < 90 GeV=c2 94% 95%
Trigger efficiency 97% 92%
Total ð1.8� 0.4Þ% ð1.3� 0.3Þ%

TABLE II. Efficiencies for the ðΥ → μμÞ þ ðZ → llÞ selection criteria. The individual efficiencies for each
requirement, in the given order, are listed with the total at the bottom. The uncertainty on the total efficiency is
discussed in the text. OS means opposite sign.

Υþ ðZ → eeÞ Υþ ðZ → μμÞ
Υð1SÞ → μμ candidate 6.7% 7.0%
Two additional OS high-ETðpTÞ isolated e or μ candidates 32% 25%
One of the two high-ETðpTÞ lepton candidates is triggerable 86% 80%
76 < Mll < 106 GeV=c2 99% 99%
Trigger efficiency 98% 95%
Total ð1.8� 0.4Þ% ð1.4� 0.3Þ%
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production to the ΥW samples, originating from events in
which one of the two leptons produced in the Z boson
decay is not reconstructed.

VI. SYSTEMATIC UNCERTAINTIES

For determining cross-section limits we incorporate
systematic uncertainties on the signal expectation and the
background predictions. Systematic uncertainties on the
signal expectation include those associated with the inte-
grated luminosity measurement, low-pT muon identifica-
tion, high-ETðpTÞ lepton identification, high-ETðpTÞ lepton
trigger efficiency, theoretical modeling of the signal, and
efficiencies of the event selection criteria. The upsilon-muon
identificationuncertainty is derived fromstudies that use data
and simulated samples ofJ=ψ → μμ as described inRef. [17].
Lepton identification and trigger efficiencies are measured
using samples of leptonic Z decays [16]. Requirements
of ET > 20 GeV (pT > 20 GeV=c) for electrons (muons)
matched to lepton trigger objects ensure a uniform trigger
efficiency over the lepton momentum spectra.
We use the CTEQ6L parton distribution functions

(PDFs) [18] for generating the MADGRAPH samples. To
estimate the acceptance uncertainty associated with the
choice of PDFs, we generate additional samples using
MSTW PDFs [19] and take the difference in the estimated
signal acceptance as the uncertainty.
We vary the bottomonium LDMEs from Ref. [10] by one

standard deviation to estimate their effect on the signal
acceptance. This procedure results in an additional 6%
systematic uncertainty on the signal acceptance. These
uncertainties correspond only to those associated with the

procedure for computing LDMEs described within the
cited reference. Allowing for a wider range of assumptions
within the LDME calculations gives rise to additional
uncertainties, which are not accounted for in this analysis.
However, if an uncertainty of 20% were to be placed on the
LDMEs, the cross-section limits we obtain would only
increase by about 10%.
With respect to uncertainties associated with event

selection criteria, we vary the ET by �10% (an estimate
of the ET resolution) in the simulated signal samples to
quantify the effect of ET resolution.
It is possible for the Υ meson and the W or Z boson to

originate from different parton-parton interactions in the
same pp̄ collision. This double-parton-scattering process is
difficult to identify, but estimates have been made for
several related final states using LHC and Tevatron data
(see for example Ref. [5] where J=ψ production in
association with a W boson was studied by the ATLAS
collaboration). These estimates, together with a calculation
using the Υ and vector boson cross sections at the Tevatron
collision energy lead to an estimated effect of approx-
imately 15%. Based on lack of knowledge on double-
parton scattering, we assign this effect as a systematic
uncertainty on the signal acceptance. In Table III we
summarize all investigated systematic uncertainties asso-
ciated with the signal expectation.
Uncertainties on predicted background contributions

are also incorporated into the cross-section limits. For
the real W=Zþ fake Υ background, we use the statistical
uncertainty originating from the small sample size in the
sideband regions used for making this estimate. We assign a
50% uncertainty to the real Υþ fake W=Z background
based on the application of uncertainties associated with the
measured jet-to-lepton misidentification rates.

VII. RESULTS

Table IV summarizes the predicted signal and back-
ground contributions, and number of observed events for
each of the search samples using data from 9.4 fb−1 of
integrated luminosity at CDF. We observe one Υþ ðW →
lνÞ candidate with a total expected background of 1.2�
0.5 events. In the observed Υþ ðW → lνÞ candidate the
electron has pT ¼ 27.4 GeV, and the two muons with an
invariant mass in the Υð1SÞ region have pTs of 3.8 GeV=c

TABLE III. Systematic uncertainties associated with the signal
expectation.

Luminosity 6%
Υ muon identification 4%
High-ETðpTÞ lepton identification 1%
High-ETðpTÞ lepton trigger efficiency 1%
PDFs 12%
LDMEs 6%
Double parton scattering 15%
Event selection efficiency 3%
Total 22%

TABLE IV. Summary of signal expectation (Nsig), background estimations (Nbg), and observed events (Nobs).

ΥþW → eν ΥþW → μν ΥþW → lν Υþ Z → ee Υþ Z → μμ Υþ Z → ll

Nsig 0.019� 0.004 0.014� 0.003 0.034� 0.007 0.0048� 0.0011 0.0037� 0.0008 0.0084� 0.0018
Nbg (fake Υ) 0.7� 0.4 0.4� 0.3 1.1� 0.5 0.07� 0.07 0.04� 0.04 0.1� 0.1
Nbg (fake W=Z) 0.06� 0.04 0 0.06� 0.04 0 0 0
Nbg (Υþ Z) 0.0006� 0.0001 0.0033� 0.0007 0.0039� 0.0009
Nbg (total) 0.8� 0.4 0.4� 0.3 1.2� 0.5 0.07� 0.07 0.04� 0.04 0.1� 0.1
Nobs 0 1 1 0 1 1
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and 7.1 GeV=c. The ET in this event is 30.8 GeV, which,
with the electron gives a transverse mass of 58.1 GeV=c2.
We also observe one Υþ ðZ → llÞ candidate with a

total expected background of 0.1� 0.1 events. An event
display of the Υþ ðZ → llÞ candidate is shown in Fig. 5.
This is the first observed Υþ ðZ → llÞ candidate event at
the Tevatron. The two high-pT muon candidates have an
invariant mass of 88.6 GeV=c2, and the two low-pT muon
candidates have an invariant mass of 9.26 GeV=c2. All
muon candidates are detected in the central region of the
detector. The invariant mass of all four muon candidates is
98.4 GeV=c2. Further properties of the muons in this event
are given in Table VI.
Having observed no clear evidence for a ΥþW=Z

signal, we set 90% C.L. and 95% C.L. upper limits on
the ΥW and ΥZ production cross sections. We use the
branching fractions of Υ → μμ (0.0248), W → lν (0.107),
and Z → ll (0.0336) from Ref. [20]. A Bayesian

technique is employed, described in Ref. [21], where the
posterior probability density was constructed from the joint
Poisson probability of observing the data in each vector
boson decay channel, integrating over the uncertainties
of the normalization parameters using Gaussian prior-
probability densities. A non-negative constant prior in
the signal rate was assumed. The expected and observed
limits are shown in Table V and compared to the observed
limits from the CDF Run I analysis [4].

VIII. CONCLUSIONS

We search for ΥþW=Z production using the leptonic
decay channels of the vector bosons and dimuon decay
channel of the Υ. The search utilizes the full CDF Run II
data set. Having observed no significant excess of events
with respect to standard model predictions, we set
95% C.L. upper limits on the ΥþW=Z cross sections.
The limits are σðpp̄ → ΥWÞ < 5.6 pb and σðpp̄ → ΥZÞ <
21 pb which are the most stringent bounds on these
processes to date. Under the assumption that potential
non-SM physics contributions to the ΥþW=Z final state
do not significantly impact the kinematic properties of
events, these limits can be interpreted as cross section
(times branching ratio to ΥþW=Z) limits on non-SM
physics processes contributing to this final state. Potential
non-standard-model heavy particles decaying to ΥþW=Z
final states are likely to result in leptons that are more
central than those from standard-model ΥþW=Z produc-
tion and therefore provide higher signal acceptance. Hence,
the limits presented here can be considered as conservative
limits on such processes.
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