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1 Introduction

Searches for physics beyond the standard model (SM) based on final states with jets and
large values of transverse momentum imbalance piE* are sensitive to a broad class of new-
physics models. Here, we report the results of such searches based on the Mys variable [1].

The Mo variable characterizes ﬁrTniss in events with two pair-produced heavy particles,
each of which decays to at least one undetected particle, leading to ﬁ%ﬁss. An example

is supersymmetry (SUSY) with R-parity conservation [2], in which pair-produced SUSY



particles each decay to SM particles and to a massive, neutral, weakly interacting lightest
SUSY particle (LSP), which escapes without detection. The value of Mty reflects the
masses of the pair-produced particles, which are much lighter for SM background processes
than expected for SUSY particles such as squarks and gluinos. The Mro variable was
previously used for top-quark mass measurements by the CDF and CMS experiments [3, 4],
and for SUSY searches by the CMS [5, 6] and ATLAS [7-13] experiments.

This paper describes searches for physics beyond the SM performed using a data sam-
ple of pp collisions collected in 2012 at a centre-of-mass energy of 8 TeV with the CMS
detector at the CERN LHC. The size of the sample, measured by its integrated luminosity,
is 19.5 b1

Two different Mro-based searches are presented. The first search, called the inclusive-
My search, employs several signal regions defined by the number of jets (NNj), the number
of tagged bottom-quark jets (IVp), the value of Mro, and the hadronic energy in an event.
This general search aims to cover a large variety of SUSY and other new-physics signatures.
The second search, called the Mro-Higgs search, is a specialized analysis targeting events
with a Higgs boson produced in the decay of a heavy SUSY particle. The SM Higgs boson
decays primarily to a bottom quark-antiquark (bb) pair. For a large variety of SUSY
models, the lightest Higgs boson (h boson) has SM properties, especially if the masses
of all other SUSY Higgs bosons are much larger. In the Mro-Higgs search, we therefore
search for an excess of events at the SM Higgs boson mass of 125 GeV in the invariant mass
distribution of b-tagged jet pairs.

The two searches rely on similar selection criteria for the Mrs variable to enhance the
sensitivity to a potential SUSY signal and to reduce the background from SM multijet
events to a minimal level. The remaining SM background consists mostly of Z+jets events
where the Z boson decays to neutrinos, and W+jets and tt +jets events where one W boson
decays leptonically. These backgrounds are mostly estimated by methods using data.

This analysis extends a previous CMS publication [5], based on pp collisions at 7 TeV,
by exploiting a higher collision energy and a larger data sample. Alternative inclu-
sive searches in hadronic final states based on the 8 TeV data sample are presented in
refs. [14-18].

This paper is organized as follows. In section 2, the Mo variable is defined. A descrip-
tion of the detector and trigger is given in section 3. The data sets and the general event
selection procedures are discussed in section 4. Section 5 presents the analysis strategy
for the inclusive- Mo and Mre-Higgs searches, and section 6 the background estimation
method based on data control samples. A comparison between the observed numbers of
events and the predicted background yields is presented for the two searches in section 7.
Systematic uncertainties are discussed in section 8. The statistical procedures used to
calculate exclusion limits on SUSY particles are presented in section 9, with the limits
themselves presented in section 10. Section 11 contains a summary.

2 Definition of the My, variable and interpretation

The use of Mty as a search variable is discussed in our previous publication [5]. Here, we
recapitulate the most salient aspects. The kinematic mass variable My was introduced as



a means to measure the mass of pair-produced particles in situations where both particles

decay to a final state containing an undetected particle X of mass mx. For each decay chain,

the visible system is defined by the transverse momentum ﬁ%is(i), transverse energy Effis(i),

and mass m"5() (; = 1, 2) obtained by summing the four-momenta of all detected particles
in the decay chain. The two visible systems are accompanied by the two undetected

X In analogy with the transverse mass

particles with unknown transverse momenta pr
used for the W boson mass determination [19], two transverse masses are defined for the

two pair-produced particles:
(Mr}l))Q — (mvis(i))2 + m%{ +9 <E¥1S(Z)E¥(l) _ﬁTvis(i) ﬁTX(z)> ) (2'1)

If the correct values of mx and ﬁTX(i), m
masses Mj@ do not exceed the mass of the parent particles. The momenta pr<(® of the

vis(t) and pp¥() are chosen, the transverse

unseen particles, however, are not experimentally accessible individually. Only their sum,
the missing transverse momentum ﬁ?rniss, is known. A generalization of the transverse mass,
the Mo variable, is defined as:

Mra(mx) = ﬁTX<1>+ngixI}z):ﬁrTniss [max (Mél), Mq(ﬁz))} : (2.2)
where the unknown mass my is a free parameter. The minimization is performed over trial
momenta of the undetected particles fulfilling the ﬁ%iss constraint.

In this analysis, all visible objects, such as jets, are clustered into two pseudojets. For
this purpose, we use the hemisphere algorithm defined in section 13.4 of ref. [20]. The
algorithm is seeded by the two jets with largest dijet invariant mass. The clustering is
performed by minimizing the Lund distance measure [21, 22]. Standard model multijet
events, interpreted as two pseudojets, may give rise to large Mo if both pseudojets have
large masses. Setting m"*(") = 0 in eq. (2.1) suppresses the multijet contributions without
affecting signal sensitivity, since the kinematic terms of eq. (2.1) are large for most new-
physics scenarios. In the following, Mo is computed using E%is(i), prve (i =1,2), and
PSS setting both m"0) terms in eq. (2.1) to zero.

Although most the background from SM multijet events is thus characterized by small
values of Mrs, a residual background at large Mo arises from multijet events in which
the two pseudojets are not back-to-back because of jet energy mismeasurements. Further
selection criteria are applied to suppress these events, as discussed in section 4.

3 Detector and trigger

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume
are a silicon pixel and strip tracker, a lead-tungstate crystal electromagnetic calorimeter,
and a brass/scintillator hadron calorimeter, each composed of a barrel and two endcap
sections. Muons are measured in gas-ionization detectors embedded in the steel flux-
return yoke outside the solenoid. Extensive forward calorimetry complements the coverage
provided by the barrel and endcap detectors. The detector is nearly hermetic, covering



0 < ¢ < 27 in azimuth, and thus allows the measurement of momentum balance in the
plane transverse to the beam direction. The first level of the CMS trigger system, composed
of custom hardware processors, uses information from the calorimeters and muon detectors
to select the most interesting events in a fixed time interval of less than 4 us. The high
level trigger processor farm further decreases the event rate, from around 100 kHz to around
300 Hz, before data storage. A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the relevant kinematic variables, can
be found in ref. [23].

Events are selected using three complementary triggers. A trigger based on the scalar
sum of jet pp values (Hrt) requires Hy > 650 GeV. A second trigger requires Effniss >
150 GeV, where E%liss is the magnitude of ﬁTniSS. A third trigger requires Ht > 350 GeV
and E%liss > 100 GeV. The trigger efficiency is measured to be larger than 99% for events
that satisfy the event selection criteria outlined in section 4.

4 Data sets and event selection

The event selection is designed using simulated samples of background and signal pro-
cesses. Background events are generated with the MADGRAPH 5 [24], PYTHIA 6.4.26 [22],
and POWHEG 1.0 [25] programs. Signal event samples based on simplified model scenarios
(SMS) [26] are generated using the MADGRAPH 5 program, with the decay branching frac-
tions of SUSY particles set either to 0% or 100% depending on the SUSY scenario under
consideration. We also generate signal events in the context of the constrained minimal
supersymmetric SM (cMSSM/mSUGRA) [27]. The cMSSM/mSUGRA events are gener-
ated using the PYTHIA program, with the SDECAY [28] program used to describe the SUSY
particle decay branching fractions and the SOFTSUSY [29] program to calculate the SUSY
particle mass spectrum. The PYTHIA program is used to describe the parton shower and
hadronization. While all generated background samples are processed with the detailed
simulation of the CMS detector response, based on GEANT 4 [30], for signal samples the
detector simulation is performed using the CMS fast simulation package [31]. Detailed
cross checks are conducted to ensure that the results obtained with fast simulation are in
agreement with the ones obtained with GEANT-based detector simulation. For SM back-
grounds, the most accurate calculations of the cross sections available in the literature are
used [32, 33]. These are usually at next-to-leading order (NLO) in aig. For the SUSY signal
samples, cross sections are calculated at NLO [34-38] using the PROSPINO 2.1 [39] program.

The data and simulated events are reconstructed and analyzed in an identical man-
ner. The event reconstruction is based on the particle-flow (PF) algorithm [40, 41], which
reconstructs and identifies charged hadrons, neutral hadrons, photons, muons, and elec-
trons. Electrons and muons are required to have transverse momentum pr > 10 GeV and
pseudorapidity |n| < 2.4. For electrons, the transition region between barrel and endcaps
(1.442 < |n| < 1.566) is excluded because the electron reconstruction in this region is not
optimal. An isolation requirement is also employed, requiring that the pp sum of photons,
charged hadrons, and neutral hadrons, in a cone of AR = Vv (An)? + (A¢)? = 0.3 along
the lepton direction, divided by the lepton pr value, be less than 0.15 for electrons and



0.20 for muons. The isolation value is corrected for the effects of pileup, that is, multi-
ple pp collisions within the same bunch crossing as the primary interaction. The electron
and muon reconstruction and identification criteria are described in refs. [42] and [43], re-
spectively. All particles, except the isolated electrons and muons, are clustered into PF
jets [44] using the anti-kp jet-clustering algorithm [45] with a size parameter of 0.5. The
jet energy is calibrated by applying correction factors as a function of the pt and the n of
the jet [44]. The effect of pileup on jet energies is treated as follows: tracks not associated
with the primary interaction are removed from the jet; for the neutral part of the jet, the
effect of pileup is reduced using the FASTJET pileup subtraction procedure [46, 47]. All
jets are required to satisfy basic quality criteria (jet ID [48]), which eliminate, for example,
spurious events due to calorimeter noise. Jets are also required to have pp > 20 GeV and
In| < 2.4. Jets are b-tagged using the medium working point of the combined secondary
vertex (CSV) algorithm [49]. Tau leptons are reconstructed in their decays to one or three
charged particles [50] and are required to have pp > 20GeV and |n| < 2.3. The 7 leptons
are also required to satisfy a loose isolation selection: the pp-sum of charged hadrons and
photons that appear within AR < 0.5 of the candidate 7-lepton direction is required to be
less than 2 GeV after subtraction of the pileup contribution. Throughout this paper, any
mention of a 7 lepton refers to its reconstructed hadronic decay. Photons [51] are required
to have pt > 20GeV, |n| < 2.4, and to not appear in the transition region between the
barrel and endcap detectors. Photons are further required to satisfy selection criteria based
on the shape of their calorimetric shower, to deposit little energy in the hadron calorimeter,
and to fulfill isolation requirements.

The missing transverse momentum vector ﬁ‘{iiss is defined as the projection onto the
plane perpendicular to the beam axis of the negative vector sum of the momenta of all
reconstructed particles in the event. Its magnitude is referred to as E%ﬂss. The hadronic
activity in the event, Hr, is defined to be the scalar pr sum of all accepted jets with
pr > 50GeV and |n| < 3.0. Events selected with the pure- Hy trigger described in section 3
are required to satisfy Ht > 750 GeV. Events selected with one of the two other triggers
are required to satisfy Ht > 450 GeV and E‘T]rliss > 200 GeV.

Corrections for differences observed between the simulation and data due to the jet
energy scale [44], the b-tagging efficiencies [49], and the pt spectrum of the system recoil [52]
are applied to simulated events.

Events are required to contain at least two jets that, in addition to the previous
general jet requirements, have pr > 100GeV. To reduce the background from events
with W (4v)+jets and top-quark production, events are rejected if they contain an isolated
electron, muon, or 7 lepton. Background from multijet events, which mostly arises because
of jet energy misreconstruction, is reduced by requiring the minimum difference A¢p, in
azimuthal angle between the ﬁ%iss vector and one of the four jets with highest pr to exceed
0.3 radians. To reject events in which ErTniSS arises from unclustered energy or from jets
aligned near the beam axis, a maximum difference of 70 GeV is imposed on the magnitude
of the vectorial difference between ﬁffnss and the negative vector sum of the pr of all leptons
and jets. Finally, events with possible contributions from beam halo processes or anomalous
noise in the calorimeter or tracking systems are rejected [53].
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Figure 1. Definition of the topological signal regions in terms of the number of jets N; and the
number of b-tagged jets Ny, (left), and their subsequent division in terms of H and ERsS (right).
The pie charts illustrate the expected contributions from different SM processes in the different
signal regions; they are similar in all three Hr regions.

5 Search strategy

The Mrso-based search strategy is outlined in this section. For both the inclusive- Mo and
the Mro-Higgs searches, all selected jets are clustered into two pseudojets as described
in section 2. Several mutually exclusive signal regions are defined to optimize the search
for a wide variety of new-physics models. The definition of signal regions is based on the
event topology and event kinematic variables. The more general inclusive- M9 search is
described first.

The inclusive-Mrs and Mro-Higgs searches are not mutually exclusive. All but 4% of
the events selected by the Mro-Higgs search are also selected by the inclusive- Mo search.

5.1 Inclusive-Mts search

For the inclusive- Mo search, nine regions, called topological regions, are defined by Nj and
Ny, the numbers of jets and b-tagged jets in the event with pr > 40 GeV, as illustrated
in figure 1 (left). These regions are chosen after testing the sensitivity of the search to
various SUSY SMS models using simulated data. The regions with N, = 0 are the most
sensitive to the production of gluinos that do not decay to top and bottom quarks, and
to the production of squarks of the first two generations. The regions with Ny, > 0 and
low (high) values of Nj are designed for bottom- and top-squark production with decays
to bottom (top) quarks. Finally, the signal regions with N; > 3 and N}, > 3 provide extra
sensitivity to final states with multiple bottom or top quarks, for example from gluino
pair-production. Since the values of M1y and Ht in a SUSY event depend strongly on the
mass of the initially produced SUSY particles, a wide range of values in Mty and Hrt is
considered. Each of the nine topological regions is divided into three sub-regions of Hr, as
shown in figure 1 (right): the low-Hr region 450 < Hp < 750 GeV, the medium-H region
750 < Hr <1200 GeV, and the high- Ht region Ht > 1200 GeV.



Low-Ht region Medium-Ht region High-Hr region
M bin [GeV] M bin [GeV] Mo bin [GeV]
200-240 350-420 570-650 | 125-150 220-270 425-580 | 120-150 260-350

xi _207 240-290 420-490  >650 | 150-180 270-325 580-780 | 150-200 350-550
290-350 490-570 180-220 325-425  >780 | 200-260  >550
Nj =2, 200-250 310-380 450-550 | 100-135 170-260  >450 | 100-180
Ny >1 250-310 380-450  >550 | 135-170 260-450 >180
200-240 420-490 160-185 300-370  >800 | 160-185 350-450
Nj =3-5, | 240-290 490-570 185215 370-480 185220  450-650
Ny, =0 290-350 570-650 215-250 480640 220-270  >650
350-420  >650 250-300 640-800 270-350

N; =3-5, | 200-250 310-380 460-550 | 150-175 210-270 380-600 | 150-180 230-350
Ny =1 250-310 380-460  >550 | 175-210 270-380  >600 180-230  >350

N; = 3-5, | 200250 325-425 130-160 200-270  >370 | 130-200

Ny =2 250-325  >425 160-200 270-370 >200

N; > 6, 200-280  >380 160-200 250-325  >425 | 160-200  >300
Ny, =0 280-380 200-250 325-425 200-300

Nj > 6, 200-250  >325 150-190  250-350 150-200  >300
Ny =1 250-325 190-250  >350 200-300

N; > 6, 200-250  >300 130-170  220-300 130-200

Ny =2 250-300 170-220  >300 >200

N; > 3, 200-280  >280 125-175 175-275  >275 >125

Ny >3

Table 1. Definition of the signal regions used in the inclusive- Mty search.

Each of these regions is examined in bins of Mg, where the number of bins (up to nine)
depends on the specific topological and Hr selection. By design, the lowest bin in Mo is
chosen such that the multijet background is expected to be less than ~1-10% of the total
background. The minimum threshold on Mo varies between 100 and 200 GeV, depending
on the topological region and the Hr requirement. The edges of the Mo bins are adjusted
to ensure that there are a sufficient number of events in each bin of the corresponding
control samples for the background evaluation (section 6). The definitions of all signal
regions are specified in table 1.

Figure 2 shows the M9 distributions in simulation and data for the low-, medium-, and
high- Hr selections, inclusively in all signal regions of the Nj—Ny, plane. For Mty < 80 GeV
the distribution in the medium- and high- Ht regions is completely dominated by multijet
events. For this reason, these bins are used only as control regions.

In the signal regions with N; = 2 or N, = 0, the dominant background is from Z
(vD)+jets production. The next-most important background is from W (/v)+jets events,
while the background from tt +jets events is small. In the regions with Ny, = 1 all three pro-
cesses (Z (vv)+jets, W(lv)+jets, and tt +jets production) are important. For all regions
requiring multiple b-tagged jets, tt +jets events are the dominant source of background.
The tt +jets contribution to the total background typically increases with the jet multi-
plicity and is important for all selections with N; > 6, regardless of the N}, selection. The
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Figure 2. Distribution of the Mty variable after the low-Hr (top), medium-Hr (bottom left), and
high-Hr (bottom right) event selections, respectively. The event yields are integrated in the (IVj,
Ny,) plane over all the topological signal regions, for both simulated and data samples. These plots
serve as an illustration of the background composition of the Mrs distributions.

relative contribution of tt +jets production decreases with increasing Mo because of the
natural cutoff of My above the top-quark mass for these events.

Contributions from other backgrounds, such as y+jets, Z (¢T¢~)+jets, and diboson
production, are found to be negligible.

5.2 Mro-Higgs search

The Mro-Higgs search is designed to select events with a light h boson produced in a
cascade of supersymmetric particles initiated through the strong pair production of squarks
or gluinos. As the dominant decay mode of the h boson in many SUSY models is h —
bb, a signature of a SUSY signal would be an excess in the invariant mass distribution
of the selected b-tagged jet pairs, My,. An excess could help identify a preferred new-



physics model, as the associated new particles would couple to the Higgs sector. Such an
identification is not possible with the inclusive-Mrs search.

Within a cascade of SUSY particles, the h boson is produced together with the LSP
in the decays of neutralinos, such as X3 — XJ + h. As the neutralino Y3 can be a typical
decay product of squarks and gluinos, the cross section for this kind of processes is among
the largest in a large part of the SUSY parameter space. The final state contains at least
two b-tagged jets, multiple hard jets, and a large value of Mrs.

For the Mro-Higgs search, b-tagged jets are required to have pp > 20GeV. The
event selection requires at least two b-tagged jets, along with Nj > 4. The two b-tagged
jets stemming from the h boson decay are generally expected to appear within the same
pseudojet, as they originate from the same decay chain. Using b-tagged jets within the
same pseudojet, a b-tagged jet pair is selected if it has AR(by,bg) < 1.5. If multiple pairs
are found in one or both pseudojets, the pair with the smallest AR(by,bs) is chosen. If no
pair is found within the same pseudojet, pairs with b-tagged jets in different pseudojets
are considered. If none of the pairs has AR(by,bs) < 1.5, the event is rejected. For signal
events containing b quarks from the h boson decay, the efficiency to find the correct pair
of b-tagged jets is about 70%.

Using the known h boson mass of 125 GeV [54, 55], 12 signal regions are defined as
15 GeV-wide bins in the 20 < My, < 200 GeV range. Each of these signal regions is further
divided into two sub-regions as follows: a low-H selection requiring 450 < Ht < 750 GeV,
E%liss > 200 GeV, and My > 200 GeV; and a high-Ht selection requiring Hp > 750 GeV
and Mre > 125 GeV.

The overall yields of the main SM backgrounds (tt +jets, W (¢v)+jets, and Z (v7)+jets)
are estimated using the same methods as for the inclusive- M9 analysis. The contribution
of the SM production of the Higgs boson is negligible in the search regions of this analysis.
The shapes of the My, distributions for signal and the various backgrounds are obtained
from simulation. Since in simulation we observe no appreciable correlation between Mo
and My, in either the signal or background sample, the shape of the My, distribution is
obtained from large simulated samples with relaxed My requirements. An uncertainty
due to the looser Mo selection is taken into account. Further uncertainties in the shapes
are assessed by varying several modelling parameters of the simulation.

6 Background estimation

This section describes the procedures used to estimate the main backgrounds: multijet
events, Z+jets events where the Z boson decays to neutrinos, and W+jets and tt +jets
events where one W boson decays leptonically but the corresponding charged lepton lies
outside the acceptance of the analysis, is not reconstructed, or is not isolated. The
same background estimation procedures are used for both the inclusive- Mo and Mrs-
Higgs searches.

6.1 Determination of the multijet background

The multijet background consists of direct multijet production, but also of events with
tt pairs or vector bosons that decay hadronically. From figure 2, the multijet background



is expected to be negligible at large values of MTo. This background, arising from difficult-
to-model jet energy mismeasurements, is nonetheless subject to considerable uncertainty.
A method based on data control samples is used to predict this background. The method
relies on Mo and the variable A¢min, described in section 4. In general terms, the mul-
tijet background entering each of the signal regions, for which a selection requirement is
Apmin > 0.3, is estimated from a corresponding control region defined by the same criteria
as the signal regions except for A¢min, which is required to be less than 0.2. The control
regions are dominated by multijet event production.

The transfer factor between control and signal regions, and our parameterization
thereof, are given by

N (A¢pin > 0.3)

riMr2) = R 0

=exp(a—bMrs) +c for Mty > 50 GeV. (6.1)

The parameters a and b are obtained from a fit to data in the region 50 < Mrse <
80 GeV, where the contributions of electroweak and top-quark (mainly tt +jets events)
production are small. The constant term c is only measurable in control samples requiring
high- My values. For these events, however, the non-multijet contribution is dominant,
and so ¢ cannot be obtained from a fit to data. Therefore, the parameterization of r(Mrs2)
is fixed to a constant for Mo > 200 GeV. This constant is chosen as the value of the
exponential fit to r(Mrs) at My = 200 GeV.

The parameterization is validated by fitting (M) to a sample of simulated multijet
events, and multiplying this ratio by the number of events found in data with A@mi, < 0.2.
The result is compared to the number of events in data with A¢pni, > 0.3, after subtraction
of the non-multijet contribution using simulation. An example is shown in figure 3. The
prediction is seen to provide a conservative estimate of the expected multijet background.
The robustness of the method is further validated by varying the range of Mro in which
the exponential term is fitted, and by changing the A¢ui, requirement used to define the
control regions.

In the low-Hr regions, the EMisS requirement of the triggers distorts r(Mms) for low
values of MTs. Therefore, the data selected by the standard triggers cannot be used to
obtain r(Mrs). Other triggers, based on Ht only, are used instead. These triggers accept
only a small fraction of the events that satisfy the trigger criteria (“prescaled”), allowing
access to the low-Hr region without a E%liss requirement.

The dominant sources of uncertainty for this method include the statistical uncertainty
of the fit, the stability of the fit under variations of the fit conditions, the statistical
uncertainty of the control region with A¢nyin, < 0.2 used for the extrapolation, and a 50%
uncertainty assigned to the choice of the Mro value used to define the constant term in
the functional form of r(Mrs). In signal regions with low My, where the exponential
term of eq. (6.1) dominates the constant term, this method provides a relatively accurate
estimate of the background, with uncertainties as small as 10% that increase to around
50% for signal regions with less statistical precision. For signal regions with large Mo,
the constant term dominates and the uncertainty increases to 50-100%. Note that at large
Mo, the estimate of the multijet background provided by this method, while conservative,
is nonetheless negligible compared to the contributions of the other backgrounds.

~10 -
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Figure 3. The ratio r(Mrs), described in the text, as a function of My for events satisfying
the medium-Hr and the (Nj = 3-5,N, = 0) requirements of the inclusive-Mry search. The solid
circle points correspond to simple data yields, while the points with open circles correspond to data
after the subtraction of the non-multijet backgrounds, as estimated from simulation. Two different
functions, whose exponential components are fitted to the data in the region 50 < Mty < 80 GeV,
are shown. The green dashed line presents an exponential function, while the blue solid line is the
parameterization used in the estimation method.

6.2 Determination of the W (£4v)-+jets and leptonic top-quark background

The background from W (/v)+jets and top-quark production (mainly tt +jets events, but
also single top-quark production) stems from events with a leptonically decaying W boson
in which the charged lepton either lies outside the detector acceptance, or lies within the
acceptance but fails to satisfy the lepton reconstruction, identification, or isolation criteria.
Since these events arise from a lepton (e, u, or 7 lepton) that is not found, we call them
“lost-lepton” events. For both sources of lost leptons, the contribution from 7 leptons is
slightly higher than from electrons or muons since the reconstruction efficiency for 7 leptons
is smaller and the acceptance criteria are more stringent than for the other two types of
leptons. According to simulation, around 40% of this background can be attributed to
events containing a lost 7 lepton. The contribution of electron and muon events is of
equal size.

For each signal region, the lost-lepton background is estimated in a corresponding data
control sample for which the full event selection is applied, with the exception of the lepton
veto, i.e. exactly one charged lepton (e, p, or 7 lepton) is required instead of zero. To reduce
the potential contribution of signal events to the control samples, the transverse mass of
the lepton—E%liss system is required to satisfy Mt < 100 GeV. The Mty distributions of
events satisfying the selection as outlined in section 4, but after requiring one reconstructed
and identified lepton, are shown in figure 4 for both data and simulation.

After subtracting the number of events expected due to the misidentification of hadrons
as leptons and due to leptons from hadron decays, the numbers of events in the one-lepton
control samples are scaled by a lost-lepton factor Ry = [1 —e(¢)]/[e(¢)e(Mr)], where £(¥)
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Figure 4. Distribution of the Mty variable for events with one electron (left), one muon (middle),
or one 7 lepton (right) in data and simulation. The events satisfy either the low-Hrt selection
(top) or either of the medium- and high- Ht selections (bottom). They also satisfy the remaining
inclusive- M5 selection requirements, with the exception of the lepton veto. Finally, the condition
Mt < 100 GeV is imposed on the charged lepton- EsS system.

is the combined lepton efficiency and acceptance, and e(Mr) is the efficiency of the Mt
selection. This factor Ry is therefore the transfer factor from the control region to the
signal region, obtained in simulation.

For large values of Mrs, we expect very few events with a single reconstructed charged
lepton. Therefore, the estimation of the lost-lepton background is performed in data for
all topological regions in (Vj, N},) and for the different Hr selections, but integrating over
all Mty bins. The factor Ry is recalculated for each topological signal region and for the
different selections in Hp. The estimated number of background events is divided among
the different M9 bins using the shape of the Mo distribution as predicted by simulation.

The systematic uncertainty in the integrated lost-lepton background estimate includes
the uncertainties in the lepton efficiencies, acceptance, and the subtraction of the lep-
ton events associated with misidentification and hadron decays. These uncertainties are
obtained by studying the differences between data and simulation using so-called tag-and-
probe [56] and tight-to-loose [57] methods. These uncertainties amount to about 10-20%.
Including the statistical uncertainties from the data control regions, the total uncertainty
of the lost-lepton background ranges from 10 to 65%. The uncertainty in the shape of
the M9 distribution is estimated by varying parameters in the simulation. The most im-
portant of these uncertainties are the recoil modelling [52] (20%), the matching scale, the
renormalization and factorization scales (10-20%), and the jet energy scale [44] (10%). The
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numbers in parentheses correspond to maximal variations in the Mo shape, but the overall
normalization is not affected since it is predicted using the aforementioned method. The
differences in shape between the distributions in data and simulation, shown in figure 4,
lie within these uncertainties.

The effect of signal contributions to the lost-lepton control samples can be significant
and is taken into account before the interpretations presented in sections 9 and 10 are
performed. Specifically, the predicted yield in the signal regions is corrected by subtracting
the additional signal contribution caused by the possible presence of the signal in the lost-
lepton control sample.

6.3 Determination of the Z(vv)+jets background

The Z (v7)+jets background is estimated by selecting a control sample of y+jets events
and then subtracting the photon momentum in the computation of all the relevant event
quantities, such as Mo, in order to replicate the decay of a Z boson into undetected
neutrinos. After the subtraction of the photon momentum, the ;5‘%1155 and the M9 variables
are recalculated and the event selections corresponding to the different signal regions are
applied. The number of selected events, which is rescaled as described below, provides the
background estimate for the Z (v7)+jets process.

As discussed in ref. [58], the Z+jets and y+jets processes differ because of the different
electroweak couplings and the non-zero Z-boson mass myz. For vector boson pr > my,
however, the ratio of cross sections for prompt-photon to Z-boson production is deter-
mined by the ratio of the couplings of the respective boson to quarks, and thus approaches
a constant value. In this range of the boson pr, the distributions of Hr and other kine-
matic observables are very similar for the Z+jets and y+jets processes. The y-+jets pro-
cess, with its relatively large event yield, is thus well suited to provide an estimate of the
Z (vv)+jets background.

Figure 5 shows a comparison between data and simulation for the Mo distribution
in y+jets control samples, for which N, =0 is required. The photon pr is added to
ﬁ‘Tniss vector and all event variables are recalculated. To reduce the potential contribution
of signal events to these control samples, we require the reconstructed Effmss to be less
than 100 GeV prior to including the reconstructed photon momentum. For the low-Hr
signal regions, the v+jets events are selected with a single-photon trigger, which requires
the photon pr to exceed 150 GeV. The single-photon trigger is used because the triggers
discussed in section 3 are unable to select events with low enough E%liss. For the medium-
and high- Ht signal regions, the triggers discussed in section 3 are used.

The selected photon control samples contain both genuine prompt-photon events and
events with collinear pairs of photons that stem from neutral-meson decays within jets and
are reconstructed as single photons. The prompt-photon fraction in the control samples is
obtained by means of a maximum likelihood fit of templates from simulation to a photon
shower shape variable in data. The shower shape variable that we use is oy, which is a
measure of the lateral extent in 7 of the photon energy cluster in the calorimeter [51]. The fit
is performed separately in the electromagnetic calorimeter barrel and endcap detectors, for
events with Ny, = 0 and with no requirement on Mro. This sample of events is dominated by
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Figure 5. Distribution of the M9 variable for data and simulation after requiring the presence of
one photon, Ny, = 0, and the remainder of the inclusive- My selection criteria. Events satisfying
the low-Hr selection (left), and the medium- and high- Hy selections (right) are shown. For these
results, Mo is calculated after adding the photon pr to the Eﬁf‘iss vector.

low-pT photons, for which the shower shape variable provides high discrimination between
prompt photons and photons from neutral-meson decays. Starting from the overall prompt-
photon fraction observed in data, we use simulation to extrapolate the contributions of
the two types of photon events in Mto. For each signal region with N, = 0, the final
Z (vv)+jets background estimate is obtained from the number of prompt-photon events,
rescaled by the Mro-dependent ratio of Z (vv)+jets to y+jets events from simulation. The
Z(vD)/~ ratio increases as a function of the photon pr and reaches a constant value above
350 GeV, as shown in figure 6.

The accuracy of the Z-boson pr distribution in simulation is validated using a control
sample of dileptonic Z-boson events, i.e. Z — ete™ or up~, selected with dilepton triggers.
Here, analogously to the photon control sample, the dilepton momentum is subtracted in
the computation of all relevant event quantities, such as Mrs, in order to model the Z — v
decay. From the data-to-simulation comparison of the Z(¢7¢~)/v ratio as a function of
the search variables, a systematic uncertainty of 20% is assigned to the Z(v7)/~ ratio. For
the signal region bins corresponding to Mo > 350 GeV, this uncertainty increases to 30%
because of large statistical uncertainty in the ratio for events with large MTo. Compared
to these uncertainties, the normalization uncertainty associated with the shower shape fit
is negligible.

The Z(vv)/~ ratio may not be well modelled in simulation for N, > 1 as the coupling
of Z bosons and photons differs for b quarks. If the b-quark content in simulation is
mismodelled (for example the modelling of gluon splitting g — bb), the Z(vv)/v ratio
might be biased in b-quark enriched events. Another biasing effect might be the treatment
of the b-quark mass in simulation, which affects the coupling of b quarks to Z bosons and
photons. Therefore, the previous procedure is only applied in signal regions with N, = 0.
For the N, = 1 case, the results obtained from the N, = 0 control samples are scaled
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Figure 6. Ratio Z(v7)/v of events satisfying the event selection of the (Nj > 2, Ny, = 0) signal
region as a function of the boson pr. The events are summed inclusively in all Ht sub-regions with
Ht > 450 GeV. The ratio is obtained in simulated events after the photon momentum is included
in the B calculation.

by Zg(1b)/Ze(0b), the ratio of the numbers of events containing dileptonic decays of the
Z boson and Ny, = 1 or IV, = 0, respectively. This ratio is obtained using data from the
dilepton control sample for different values of NN;. As the ratio is found to depend neither
on Mrg nor Hr, its value is measured without any requirement on these two variables, in
order to increase the statistical precision of the control samples.

Uncertainties in the Zg(1b)/Zg(0b) ratio are evaluated by varying the kinematic se-
lections to test the stability of the ratio. The resulting uncertainties are mostly determined
by the statistical limitations of the control samples. The size of the uncertainty is 10-30%
for the regions with Nj < 5, while it is 50-75% for regions with Nj > 6.

For the signal regions with N, > 2, the Z (v7)+jets background is estimated from
simulation and is assigned an uncertainty of 100%. We verified that using an uncertainty
twice as large, or twice as small, has a negligible impact on the final results. The explanation
for this is that for Ny > 2, the Z (v7)+jets background is very small compared to the
tt +jets background.

7 Results

This section reports the number of events observed in the signal regions. The yields are
compared with the estimated number of background events as predicted by the methods
described in section 6.

7.1 Results for the inclusive- M9 analysis

For the inclusive-Mro search, the final event yields in all signal regions are shown in
figures 7-9. The comparison between observed and predicted yields is shown separately for
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Figure 7. Distributions of the My, variable for the estimated background processes and for
data. Plots are shown for events satisfying the low-Hr (left), the medium-Hr (middle), and the
high-Hr (right) selections, and for different topological signal regions (Nj, Ny,) of the inclusive-
My event selection. From top to bottom, these are (Nj = 2, N, = 0), (N; = 2, Ny, > 1), and
(3 < Nj < 5,Np, = 0). The uncertainties in each plot are drawn as the shaded band and do not
include the uncertainty in the shape of the lost-lepton background.

different topological regions and for the different Hr selections. The total uncertainty of the
background estimates is the quadratic sum of the statistical and systematic uncertainties
from the three categories of background. The results are tabulated in table 2. The shape
uncertainty in the estimation of the lost-lepton background is not included either for the
figures or table.

The level of compatibility between the data and the SM predictions is assessed by
computing the pull value for all signal regions, where the pull value is defined for each
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Signal Low-Hr region Medium-Hr region High-Ht region
region Mrys [GeV]  Prediction Data | My [GeV] Prediction Data | Myg [GeV] Prediction Data
200-240  553£70 588 125-150 167421 171 120-150  21.9+4.9 18
240-290  395+53 451 150-180 128417 104 150-200 19.4+4.3 18
290-350  288+40 318 180-220 85.8+11.3 91 200260 14.5+3.4 10
350-420  236+52 232 220-270 70.0£10.3 78 260-350 6.3+1.8
x:)::% 420-490 165436 162 270-325 38.1£5.8 48 350-550 4.3+1.6
490-570  68.9+15.5 61 325-425 43.4+10.1 45 >550 3.0+1.4
570-650 17.3£4.3 19 425-580  21.34+4.7 29
>650 4.1+1.6 1 580-780 20.8+5.6 10
>780 3.5+1.4 2
200-250 56.4+£12.8 56 100-135 27.44+9.6 30 100-180  11.4+£8.1 2
250-310 34.2+8.1 44 135-170  21.14+7.5 19 >180 4.44+2.6 2
Nj =2, 310-380 25.9£7.4 29 170-260 13.44+5.4 15
Ny >1 380-450 19.9+£5.8 13 260-450 7.3£3.5 7
450-550  12.6+3.8 15 >450 3.4+1.7 9
>550 2.6+0.8 3
200240  979+108 1041 160-185  243+23 234 160-185  34.9+4.7 39
240-290  711+86 827 185-215 180419 203 185-220 31.1+4.7 32
290-350 492465 522 215-250  134+16 152 220270 25.5+4.3 25
No—35 350-420  280+57 333 250-300  112+14 119 270-350  19.3+3.5 19
NJb -0 ’ 420-490  138+29 145 300-370  89.0+12.2 91 350-450  9.1+2.5 6
490-570  60.0+13.6 66 370-480 67.0+14.2 75 450-650  5.0+1.6 5
570-650 13.8+3.9 21 480-640 35.0£8.0 40 >650 4.44+1.6 5
>650 3.6£1.5 2 640-800 10.0£2.7 16
>800 3.4+1.5 4
200-250  305£34 300 150-175  93.4+10.7 87 150-180  13.5£3.1 28
250-310  167+21 172 175-210  69.5+8.7 71 180-230 8.7£2.2 7
Nj = 3-5, 310-380  103+£16 98 210270 52.8£6.8 63 230-350 6.2+1.6
Ny =1 380-460 43.6£8.7 47 270-380 38.6£5.1 47 >350 3.5£1.0 3
460-550 17.94+4.1 19 380-600 15.9+3.2 19
>550 4.0+1.1 4 >600 3.6+0.9 4
200-250 91.1+£22.0 97 130-160  42.447.5 53 130-200 6.8£2.3 9
250-325 52.7£13.7 39 160-200  26.5+5.5 29 >200 2.9+1.1
xii 32 > 325-425 18.6£5.8 16 200-270 15.4+3.7 19
>425 4.5+1.9 11 270-370 5.5+1.7 11
>370 2.9+1.1 5
200-280 50.8+8.9 56 160-200 38.5+6.2 44 160-200 12.1+2.9 12
N> 280-380 14.7+3.1 16 200-250 19.3+£3.6 34 200-300  10.1+3.2
NJb:d >380  7.3+2.3 8 250-325 14.1£2.8 23 >300  4.5+1.7 2
325-425 5.84+1.9 9
>425 2.34+0.8 4
200-250  32.0£6.7 31 150-190  38.7+5.9 38 150-200 7.3£3.2 6
N; > 6, 250-325 14.7+3.1 23 190-250 21.1+3.5 21 200-300 5.1£2.4 5
N, =1 >325 48+1.5 11 250-350 10.5£1.9 13 >300 2.3+1.1 1
>350 3.0+0.8 4
200-250 12.0+4.3 15 130-170  41.0+7.0 54 130-200 10.6£6.0 10
N; > 6, 250-300 4.6+1.6 13 170-220 19.443.8 28 >200 4.7+2.9 2
Ny =2 >300 2.8+£1.0 6 220-300 10.4+£2.1 8
>300 4.3+0.8 6
N> 3, 200-280 16.1£6.2 16 125-175  31.94+11.4 17 >125 4.54+2.1 3
NL _2 3 >280 4.6+1.7 7 175-275  16.14+6.3 13
>275 6.1+2.4 1

Table 2. Event yields, for estimated background and data, in the signal regions of the inclusive-
Mo search. The uncertainties are the quadratic sum of statistical and systematic uncertainties.
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Figure 8. Distributions of the My variable for the estimated background processes and for data.
Plots are shown for events satisfying the low-Hr (left), the medium-Hr (middle), and the high-
Hr (right) selections, and for different topological signal regions (Nj, Ny,) of the inclusive- Mo
event selection. From top to bottom, these are (3 < N; < 5,Np, = 1), (3 < N; < 5, N, = 2),
(N; > 6, Ny, = 0). The uncertainties in each plot are drawn as the shaded band and do not include
the uncertainty in the shape of the lost-lepton background.

signal region bin as:
Nobs - kag

2 2’
Tobs T Tbkg

where Nps is the observed number of events, o, is its statistical uncertainty, and Ny, is

Pull = (7.1)

the background estimate with a total uncertainty of opys. After the average pull over all
the signal regions is calculated, pseudo-experiments are used to evaluate the probability
to observe an average at least as large as the average observed in data. The probability is
found to be 11%. Thus, the data are found to be in agreement with the SM predictions
within the uncertainties.
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Figure 9. Distributions of the My variable for the estimated background processes and for data.
Plots are shown for events satisfying the low-Hr (left), the medium-Hy (middle), and the high- Hp
(right) selections, and for different topological signal regions (Nj, Ny) of the inclusive-Mro event
selection. From top to bottom, these are (Nj > 6, Ny, = 1), (N; > 6, Ny, = 2), (Nj > 3, N, > 3).
The uncertainties in each plot are drawn as the shaded band and do not include the uncertainty in
the shape of the lost-lepton background.

In order to present the results in a compact manner, the yields of all M7y bins that
belong to the same topological region and that satisfy the same Hrt selection are summed.
The resulting sums are presented in figure 10.

7.2 Results for the Mo Higgs analysis

For the Mro-Higgs analysis, the observed numbers of events in data and the predicted
background yields are summarized in table 3 for the two different selections in Ht. The
background predictions and the data yields are shown for the different My, bins in figure 11
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Channel | Lost lepton Z (v7)+jets | Total background Data
Low-Hr 37.14£9.0 6.9+6.9 44.0+11.3 55
High-Ht | 64.8 +16.4 44 +44 69.2 + 17.0 81

Table 3. Event yields for the W(¢r)+jets and tt +jets processes (i.e. the lost-lepton background),
the Z (vD)+jets background, and data. Yields are shown for both the low- and the high-Hr
selections of the Mro-Higgs search. The lost-lepton background is estimated from data control
samples, while the Z (v7)+jets is evaluated using simulation.

along with the distribution of events for a possible SUSY scenario. This scenario is based
on gluino pair production in which one of the gluinos produces one h boson in its decay
chain. More details about this signal scenario are provided in section 10.1.

8 Systematic uncertainties

A summary of the range-of-effect for each source of uncertainty relevant for the background
prediction or signal efficiency is presented in table 4. While the systematic uncertainties in
the background predictions have already been discussed in section 6, the dominant sources
of systematic uncertainties in the selection efficiencies of signal events are described here.
The corrections for the differences observed between the signal simulation and data
due to the jet energy scale and b-tagging efficiencies yield uncertainties in the signal yield
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Figure 11. Distributions of the My, variable for the W({v)+jets and tt +jets processes (i.e.
the lost-lepton background), the Z (v7)+jets background, data, and a possible SUSY signal. The
distributions are shown for both the low- (left) and the high- Hr (right) selections of the Mro-Higgs
search. The lost-lepton background is estimated from data control samples, while the Z (v7)+jets
is evaluated using simulation. The uncertainties in each plot are drawn as the shaded band and do
not include the uncertainty in the shape of the lost-lepton background. The signal model consists
of gluino pair production events with one of the two gluinos containing an h boson in its decay
chain. For this model it is assumed mgz = 750 GeV and mszo = 350 GeV.

of around 5%, but these uncertainties can become as large as 40% in kinematically ex-
treme regions. The uncertainty associated with the corresponding correction to account
for the pr spectrum of the recoil system reaches a maximum of 20% for pr > 250 GeV.
The systematic uncertainty associated with the parton distribution functions is evaluated
following the prescription of the PDF4LHC group [59-63], and is found to have an effect
of about 5%, increasing to a maximum of 15% for small splittings between the parent par-
ticle mass and the LSP mass. Additionally, uncertainties associated with the luminosity
determination [64] and the trigger efficiency are included.

9 Statistical interpretation of the results

This section describes the statistical procedure used to interpret the observed event yields
in order to set upper limits on the cross sections of potential signal processes. A test
of the background-only and signal-+background hypotheses is performed using a modified
frequentist approach, often referred to as CLg [65].

Signal regions are combined through a joint likelihood function. This function is con-
structed as the product of Poisson probabilities for each bin of Nj, Ny, Hr, and M. The
Poisson probabilities are functions of the number of observed events in each bin, n;, and
the predictions in each bin, A;, where i ranges from 1 to the number of bins, Nyjns. The
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Process Source/Region Effect  Shape

N Mre < 200 GeV 10-50% —
Multijet

My > 200 GeV 50-100% —
Lost-lepton method (sys & stat) 10-65% —
b-tagging scale factor — b
Jet energy scale — X

W (lv)+jets and Top &Y
Matching scale — X
Renormalization and factorization scales — X
System recoil modelling — X

Systematics on Z(v)/v ratio (N, = 0-1) 20-30% —

. Systematics on 1b/0b ratio from Zy (N, =1) 10-75% —
Z (vD)+jets

Statistics from y+jets data (N, = 0-1) 5-100% —

Simulation (N, > 2) 100% —

Integrated luminosity 2.6% —

Trigger efficiency 1% —

Signal Parton distribution functions 5-15% —
b-tagging scale factor 5-40% X

Jet energy scale 5-40% X

System recoil modelling 10-20% X

Table 4. Summary of the different systematic uncertainties of the SM background predictions and
of the signal efficiency. A given source of uncertainty can contribute differently depending on the
search region, and the typical ranges of effect are shown. Sources of uncertainty that change the
shape of the Mo distributions in the inclusive- Mo analysis or the shape of the My, distributions
in the Mro-Higgs search are marked with a cross in the last column.

likelihood function is given by

Nbins \n; —\;
AteT M
=1

The prediction in each bin is a sum over the signal and background contributions:

Npkg

)\i = U S; + Z bz'j; (92)
J=1

where b;; is the background prediction in bin ¢ for background source j, and s; is the signal
prediction in bin ¢, scaled by the signal-strength modifier i to test other values of the signal
production cross section, o = uoge, with o the nominal cross section for the signal model
under consideration.

The uncertainties are handled by introducing nuisance parameters . The signal and
background expectations, therefore, become dependent on Ngy nuisance parameters 0,,,
where m = 1... Ny, ie. s = s(0p,) and b = b(6,,). All sources of uncertainties are
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taken to be either 100%-correlated (positively or negatively) or uncorrelated (independent),
whichever is found to be appropriate. Incorporating the nuisance parameters, the likelihood
function becomes:

L(data|u, 8) = Poisson(data|u s(0) 4+ b(6))p(0), (9.3)

where p(0) is the probability density function associated with the given systematic uncer-
tainty. In this equation, £(data|u, ) is the likelihood function for data for a given value of
w and 6.

In order to test the compatibility of the data with the background-only and sig-
nal+background hypotheses, a test statistic g, [66] is constructed starting from the profile-

likelihood ratio: )
qu=—2In MLW, with 0 < i < p, (9.4)
L(datalf, )
where “data” can be the actual data or the output of a pseudo-experiment. Both the de-
nominator and numerator are maximized. In the numerator, the signal parameter strength
p remains fixed and the likelihood is maximized for only the nuisance parameters, whose
values after the maximization are denoted éu- In the denominator, the likelihood is max-
imized with respect to both p and 6, and i and 0 are the values for which £ is maximal.
The lower constraint 0 < ji is imposed as the signal strength cannot be negative, while
the upper constraint guarantees a one-sided confidence interval (this means that upward
fluctuations of data are not considered as evidence against the signal hypothesis). The
value of the test statistic for the actual observation is denoted as qﬁbs. This test statistic
was chosen by the LHC Higgs Combination Group [67].
To set limits, probabilities to observe an outcome at least as signal-like as the one
observed are calculated for the null (background-only) hypothesis Hp and for the test
(signal+background) hypothesis Hi, for a given value of the signal-strength modifier p, as:

CLatb (1) =P(g, > ¢2*|HY),

b (9.5)
CLy(p) =P(qu = q;,°|Ho)-
The CLg quantity is then defined as the ratio of these probabilities:
CLgyp (1)
ClLg(p) = 22207 9.6
() = G 96)

In the modified frequentist approach, the value of CLg(p) is required to be less than or
equal to a in order to declare a (1 — a) CL exclusion. We set 95% CL limits on the signal
cross section by finding the value of p for which CLg(u) = 0.05.

In practice, the probability distributions of the background-only and the sig-
nal+background hypotheses are determined from distributions of the test statistic con-
structed from pseudo-experiments. Once the ensembles of pseudo-experiments for the two
hypotheses are generated, the observed CLg limit is calculated from these distributions
and the actual observation of the test statistic qzbs. The expected CLg limit is calculated
by replacing qzbs by the expected median from the distribution of the background-only
hypothesis. Further details on the procedure employed to compute the limits on the signal
production cross section are given in ref. [67].
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10

Exclusion limits

The 95% CL upper limits on signal production cross sections are computed following the

CLs formulation described in section 9, using the results presented in section 7 and the

systematic uncertainties summarized in section 8.

10.1

Exclusion limits on simplified models

In this section, we interpret the results of our search in terms of simplified models [26],

which allow the exclusion potential of the data to be examined in the context of a large

variety of models.

The following list describes the simplified models that are probed and the correspond-

ing subsets of signal regions from the inclusive- M9 search that are used to set the limits:

direct pair production of squarks with ¢ — qx}. The topological regions that are
used to probe this model are those defined by the selections (N; = 2, N, = 0),
(Ny = 2,N, > 1), B3 < N; <5N, =0), (3<N; <5 N, = 1), and (Nj >
6, N, = 0). Exclusions limits are shown in figure 12 (upper left) for two scenarios:
one assumes that the first two generations of squarks (ur, ug, aL, aR, CL, CR, SL,
Sr) are degenerate and light; the other requires that only one light-flavour squark be

kinematically accessible.

direct pair production of bottom squarks with b — bx}. The signal regions that are
used are those defined by (Nj = 2, N, > 1), (3 < Nj < 5,Np, = 1), and (3 < Nj <
5, Ny, = 2). The corresponding exclusion limits are shown in figure 12 (upper right).

direct pair production of top squarks with t — tX}. The topological regions used to
probe this model are those defined by (3 < N; < 5,N, = 1), (3 < Nj <5,N}, = 2),
(Nj > 6,N, = 1), (Nj > 6,N, = 2), and (Nj > 3,N, > 3). The corresponding
exclusion limits are shown in figure 12 (bottom).

gluino pair production with g — qqy}. The topological regions used to probe this
model are those defined by (3 < Nj < 5,N, = 0), (3 < Nj < 5, Ny, = 1), (N >
6, N, = 0), and (Nj > 6, N, = 1). The corresponding exclusion limits are shown in
figure 13 (upper left).

gluino pair production, with g§ — bbx!{. The topological regions used to probe this
model are those defined by (3 < Nj < 5, N, = 1), 3 < Nj < 5, Ny, = 2), (N >
6, N, = 1), (N; > 6, N, = 2), and (Nj > 3, N, > 3). The corresponding exclusion
limits are shown in figure 13 (upper right).

gluino pair production, with g — ttxY. The topological regions used to probe this
model are those defined by (Nj > 6, N, = 1), (Nj > 6, N, = 2), and (N; > 3, Ny, > 3).
The corresponding exclusion limits are shown in figure 13 (bottom).

All exclusion limits are obtained at NLO + next-to-the-leading-logarithm (NLL) order

in ag.
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For the direct pair production of top squarks, the analysis is not sensitive to model
points with mg; — mge = my, because the )2(1) is produced at rest in the top-squark frame.

For all the considered models, the observed limits are compatible within one standard
deviation with the expected limits, with the exception of the limits on the direct pair
production of top squarks with t — tX?, which are shown in figure 12 (bottom). A
comparison between the background estimates obtained directly from simulation and those
calculated from the data control samples suggests that the weaker-than-expected limits
are not caused by an excess in the signal region, but rather by a downward fluctuation
in the lost-lepton control sample, leading to a possible underestimate of the lost-lepton
background. Considering the large number of data control samples (there are 81 lost-
lepton control regions), the probability to observe a fluctuation as large as the one observed
is ~65%.

The results of the Mro-Higgs search are used to probe the following model: gluino
pair production with one gluino decaying via g — qqxy, X3 — hx}, and the other gluino
decaying via g — qq’ )zli, ili — WYY, In this scenario, the neutralino X3 and chargino ﬁ[
are assumed to be degenerate, with mass Mgy = Mg = Mso +200 GeV. The corresponding

X X
exclusion limits are shown in figure 14.

10.2 Exclusion limit in the cMSSM/mSUGRA model

We also provide an interpretation of our results in terms of the cMSSM/mSUGRA model.
The model has five free parameters: mo, m; /3, Ao, tan 3, and sign p. In order to obtain an
h boson mass of about 125 GeV, the value Ay = —2max(mg,m, /) is chosen, as proposed
in ref. [68]. Furthermore, we choose > 0 and tan 8 = 30. Exclusion limits as a function
of my and my /o are shown in figure 15. These limits are presented in figure 16 as a function
of mz and mg, where mg is the average mass of the first-generation squarks.

In table 5, we summarize the exclusion limits from figures 12-15.

11 Summary

A search for supersymmetry (SUSY) in hadronic final states characterized by large values
of unbalanced transverse momentum has been carried out using a sample of /s = 8 TeV pp
collisions. The data were collected by the CMS experiment at the CERN LHC and corre-
spond to an integrated luminosity of 19.5fb~1. An event selection based on the kinematic
mass variable Mo has been employed to reduce the background from standard model
processes and to enhance the sensitivity of the search to a wide range of SUSY signatures.

Two related searches have been implemented. The first is an inclusive search based on
several signal regions defined by the number of jets and b-tagged jets, the hadronic energy
in the event, and the value of the Mgy variable. The second is a search for events that
contain a Higgs boson in the decay chain of a heavy SUSY particle. Assuming that this
boson decays to a bottom quark-antiquark pair in accordance with the branching fraction
of the standard model Higgs boson, this category of events has been investigated to seek
an excess at 125 GeV in the invariant mass distribution of the selected b-tagged jet pairs.
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Figure 12. Exclusion limits at 95% CL for (upper left) direct squark production, (upper right)
direct bottom-squark production, and (bottom) direct top-squark production. For the direct squark
production, the upper set of curves corresponds to the scenario where the first two generations of
squarks are degenerate and light, while the lower set corresponds to only one accessible light-

flavour squark. For convenience, diagonal lines have been drawn corresponding to mgo = m

bt
and mgo = Mg pT — (mw + mp) where applicable.

No significant excess over the expected number of background events has been ob-
served, and 95% confidence level exclusion limits on several SUSY simplified models and
on the cMSSM/mSUGRA model have been derived. Mass limits have been conservatively
derived using the theoretical signal cross sections reduced by one times their uncertainty
(—10theory)- In the context of simplified models based on pair-produced gluinos, each decay-
ing into a quark-antiquark pair and a lightest SUSY particle (LSP) via an off-shell squark,
gluino masses have been probed up to 1225-1300 GeV depending on the squark flavour. For
the direct pair production of the first- and second-generation squarks, each assumed to de-
cay to a quark of the same flavour and a light LSP, masses below 875 GeV have been probed
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Figure 13. Exclusion limits at 95% CL for gluino mediated (upper left) squark production, (upper
right) bottom-squark production, and (bottom) top-squark production. For convenience, diagonal
lines have been drawn corresponding to mso = mg and mgo = mg — my where applicable.

under the assumption of eight degenerate light squarks. If only a single squark is assumed
to be light, this limit decreases to 520 GeV. For the direct production of third-generation
squark pairs, each assumed to decay to a quark of the same flavour and a light LSP, masses
up to 640 GeV for bottom squarks and 450 GeV for top squarks have been probed. In the
cMSSM/mSUGRA scenario corresponding to tan 3 = 30, A9 = —2max(mg,my/2), and
p > 0, absolute mass limits have been found to be: mg > 1450 GeV, mz > 1150 GeV, and
mg = mg > 1550 GeV when equal squark and gluino masses are assumed.
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Simplified Limit on parent particle Best limit on Limit on

model mass at mgo = 0 LSP mass mass splitting

Direct squark production

Single light squark mg > 520 GeV mszo > 120 GeV  Am(q,xY) < 200 GeV

8 degenerate light squarks mg > 875 GeV myo >325GeV. Am(q, X)) < 50 GeV

Bottom squark my > 640 GeV mzo > 275 GeV Am(b,x?) < 10 GeV

Top squark

my > my + Mo m; > 450 GeV mze >60GeV  Am(t, X9) < 230 GeV

my < my + mso mz > 175 GeV mzo > 60 GeV Am(t, X9) < 90 GeV

Direct gluino production

g — qax; mg > 1225 GeV mgo >510GeV  Am(g,XY}) < 25GeV

g — bby} mg > 1300 GeV mszo > 740 GeV Am(g, X)) < 50 GeV

g — ttxy mg > 1225 GeV mgo > 450GeV  Am(g, X)) < 225GeV

& qq/xi Xg: hX?’i mg > 825 GV mep > 410GV Am(E, 1)) < 225GeV

g — qd'Xi, xi = WEXY '

cMSSM/mSUGRA model  Mass limit for mg = mz  Gluino mass limit Squark mass limit
mg g > 1550 GeV mg > 1150 GeV mg > 1450 GeV

Table 5. Summary of observed mass limits (at 95% CL) for different SUSY simplified models and
for the cMSSM/mSUGRA model. The limits quoted are the observed limits using the signal cross
section minus one standard deviation (Ggneory) Of its uncertainty. For the simplified models, the
limit on the mass of the parent particle is quoted for mgo =0, while for the LSP the best limit on
its mass is quoted. The best limit on the mass splitting between the parent particle mass and the

LSP mass is also given. Finally, the absolute limits on the squark and gluino masses are quoted for
the cMSSM/mSUGRA model.
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