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Chronic pain has to be considered in all respects a debilitating disease and 10–20% of the world’s adult population is affected by
this disease. In the most general terms, pain is symptomatic of some form of dysfunction and (often) the resulting inflammatory
processes in the body. In the study of pain, great attention has been paid to the possible involvement of gonadal hormones,
especially in recent years. In particular, testosterone, the main androgen, is thought to play a beneficial, protective role in the
body. Other important elements to be related to pain, inflammation, and hormones are lipids, heterogenic molecules whose altered
metabolism is often accompanied by the release of interleukins, and lipid-derived proinflammatory mediators. Here we report data
on interactions often not considered in chronic pain mechanisms.

1. Introduction

Chronic pain and inflammation involve multiple pathophys-
iological systems described or only suggested to be involved
in their modulation, from genetic to environmental/cultural
influences. Among all these actors, gonadal hormones have
repeatedly been suggested to play a prominent role. Indeed,
a number of studies have shown the ability of gonadal
hormones to affect pain intensity andoccurrence, for example
[1]. Also important is the ability of pain (and pain therapies)
to affect gonadal hormone metabolism, as recently reported
by our group [2–4]. Patients often suffer complex side effects
(fatigue, depression, osteoporosis, etc.) attributed to the orig-
inal disease and not to the drug-induced endocrinopathies,
and thus not adequately treated.

Gonadal hormones, androgen, and estrogen in particular
are steroids present in both male and female subjects at
different concentrations (Table 1), which depend mainly on
age but are also highly sensitive tomany internal and external
factors. In both sexes, androgens are primarily synthe-
sized in the gonads but also by the reticular portion of
the adrenal gland as dehydroepiandrosterone (DHEA). The
amount of testosterone (T) synthesized is regulated by

the hypothalamic-pituitary-gonadal axis [5]. In males, T is
reduced to 5𝛼-dihydrotestosterone (DHT) by 5𝛼-reductase
(about 7%), an enzyme highly expressed in the urogenital
tract, hair follicles, skin, liver, and brain [6]. In addition,
0.3% of T is converted to estradiol (E2) [7] by the enzyme
aromatase, a member of the cytochrome P450 superfamily
expressed in brain, liver, and adipose tissue. Testosterone
and DHT bind to androgen receptors (AR) mostly located
in the brain, skin, muscle, kidney, liver, and bone [8]. E2
is the most potent estrogen and targets a variety of tissues
in the reproductive tracts, mammary gland and skeletal and
cardiovascular systems. E2 acts by binding to its specific
receptors (ER 𝛼 and 𝛽).

In the “classic” pathway of action, steroid hormones
bind to their specific ligands and interact through the DNA
binding domain with specific DNA sequences, activating
or repressing transcription of target genes [9]. In addition
to these well-known genomic effects of gonadal hormones,
rapid effects appearing between seconds to a few minutes
from stimulation have been described in different cell models
[10].

Among the many effects of androgens and estrogens on
body functions, we have concentrated on that between T and
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Table 1: Hormone levels commonly recorded in adult men and
women. In females, the high variability of estradiol concentration
is due to the menstrual cycle variations. Note that testosterone is
expressed in ng/mL and estradiol in pg/mL (1 ng = 1000 pg).

Hormones Adult men Adult women
Testosterone (ng/mL) 3–8 0.5–1
Estradiol (pg/mL) <50 20–400
Estriol (mg/dL) <2 <2

Estrone (pg/mL) 15–65 Pre-menopausal: 15–200
Post-menopausal: 15–55

Androstenedione ng/dL 50–220 30–285
SHBG nmol/L 14–71 20–155
DHEA ng/dL 180–1250 130–980

DHEA-Sulfate 𝜇g/dL 10–619 Pre-menopausal: 12–535
Post-menopausal: 30–260

lipids, particularly in view of their involvement in inflam-
mation and pain. Firstly, T is described as being involved in
lipid modulation of inflammatory processes. Secondly, since
obesity and other pathological or physiological conditions
like aging can be accompanied by a hypogonadic state, we
report data on the possible role played by this condition in
the development of inflammation and pain.

2. Lipids and Testosterone

The first step to be considered is the possible interactions
between T and the other steroids, starting with cholesterol,
its precursor. Cholesterol is the major constituent of cell
membranes and serves as a precursor of important hormones
and other substances. Cholesterol is insoluble in blood and
is transported in the circulatory system bound to different
lipoproteins. Low-density lipoproteins (LDL-C) carry choles-
terol from the liver to cells of the body, particularly to organs
that require it in large amounts (such as endocrine glands
synthesizing steroids). The denser but smaller high-density
lipoproteins (HDL-C), mainly consisting of lipoproteins and
only a small cholesterol fraction, collect cholesterol from
peripheral tissue and take it to the liver where it is metab-
olized [11]. It has been suggested that HDL-C and their
protein and lipid constituents participate in body functions
related to oxidation, inflammation, coagulation, and platelet
aggregation [12].

The different concentrations of gonadal hormones inmen
and women are thought to be important factors contributing
to the sex difference in lipoprotein profiles [13]. Epidemiolog-
ical data suggest that T levels are negatively associated with
total cholesterol, LDL-C, and triglyceride (TG) [14], while in
men T levels appear to have a complicated and controversial
relationship with HDL-C levels and cardiovascular risk. In
fact, androgen levels within the normal adult male range
were found to have a suppressive effect on HDL-C [15]. On
the other hand, several studies on patients with coronary
artery disease have shown that higher T levels are associated
with higher HDL-C concentrations [16]. In particular, it was
found that two genes involved in the catabolism of HDL-
C are upregulated by T, namely, hepatic lipase (HL) and

scavenger receptor B1 (SR-B1). SR-B1 mediates the selective
uptake of HDL-C lipids into hepatocytes and steroidogenic
cells, including Sertoli and Leydig cells of the testes, as well as
cholesterol efflux from peripheral cells [5]. T upregulates SR-
B1 in the human hepatocyte and in macrophages and thereby
stimulates selective cholesterol uptake and cholesterol efflux,
respectively. HL hydrolyzes phospholipids on the surface of
HDL-C, facilitating the selective uptake of HDL-C lipids by
SR-B1. The activity of HL is increased after administration
of exogenous T [17]. The increases in both SR-B1 and HL
activities are consistent with the total cholesterol lowering
effect of T [5].

Obesity, and particularly visceral fat excess, is associated
with insulin resistance, hyperglycemia, atherogenic dyslipi-
demia, and hypertension, as well as prothrombotic and pro-
inflammatory states. Adiposity, with its associated hyperin-
sulinism, suppresses sex hormone-binding globulin (SHBG)
synthesis and therewith the levels of circulating total T [18].
It may also decrease the strength of luteinizing hormone
(LH) signaling to the testis [19]. In addition, insulin and
leptin have a suppressive effect on testicular steroidogenesis
[20, 21]. Visceral fat cells secrete a large number of cytokines
which impair testicular steroidogenesis [22]. Hence there are
reasons to believe that adiposity is a significant factor in
lowering circulating levels of T. Furthermore, white adipose
tissue, found in high levels in obese men, exhibits elevated
aromatase activity and secretes adipose-derived hormones
as well as adipokines. High levels of estrogens in obese
males result from the increased conversion of androgens to
estrogens, owing to the high bioavailability of these aromatase
enzymes [23]. Hammoud et al. [24] recently discovered
that an aromatase polymorphism modulates the relationship
between weight and E2 levels in obese men. Abdominal or
visceral fat is more likely to lead to changes in hormone levels
and to cause inflammation than fat stored in other parts of
the body [25]. An increase in aromatase activity also causes
an alteration in the estrogen/T ratio, whichmay contribute to
decreased androgen production.

Aromatase inhibitors were found to be an effective
treatment in restoring normal hormone levels: this led to
normalization of the patient’s T, LH and FSH hormone levels,
as well as suppression of the serum E2 levels [26].

3. Inflammation and Testosterone

Inflammation is the body’s response to cellular injury. The
inflammation process involves several reciprocally modu-
lating actors, from chemical factors derived from plasma
proteins to cells that mediate vascular and cellular inflam-
matory reactions. To appreciate the inflammatory process, it
is important to understand the role of chemical mediators
such as eicosanoids, kinins, complement proteins, histamine,
monokines, and cytokines, a group of soluble polypeptides.
Even excess body fat can produce inflammation [27]. These
inflammatory mediators act synergistically in the devel-
opment of pain and hyperalgesia [28–30]. Cytokines are
polypeptides produced by cells of both the innate and specific
compartments of the immune system.There are various types
of cytokines with widespread actions in the body. Many
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of these cytokines are produced by leukocytes, on which
they also exert their key actions; it is common to call them
interleukins (IL followed by a number). Although each one
has a specific function, it is possible to identify common basic
features: short period and self-limiting secretion, molecular
weight between 10 and 50 kD, pleiotropic and redundant
actions, influence on other cytokines (synthesis; action),
systemic and local action, binding tomembrane cell receptors
[31].These substances are known to be involved in changes to
vascular permeability, the oxidative burst, and chemotaxis of
leukocytes.

In some cases, especially in the elderly, the body loses its
ability to stop the cytokine secretion [32]; indeed, aging is
accompanied by a pro-inflammatory state expressed by the
increasing levels of several cytokines, including interleukin-6
(IL-6). The need to focus attention on aging derives from the
evidence that in men over 45–50 years there is a progressive,
slow, but continuous decrease of serum T levels, and andro-
gens have been shown to inhibit the expression and release
of cytokines and chemokines [33, 34]. This relationship is
supported by the finding that androgen deprivation therapy is
associated with increased levels of pro-inflammatory factors
and decreased levels of anti-inflammatory cytokines [35, 36],
while observational and interventional studies indicate that
T supplementation reduces inflammatory markers in both
young and old hypogonadal men [35].

Moreover, several lines of evidence support a close associ-
ation between T levels, the evolution of diabetes secondary to
hyperglycemia and hyperlipidemia and oxidative stress [37].
This association is most likely the result of elevatedmetabolic
rates required tomaintain normal biological processes and an
increased level of stress in the local testicular environment,
both of which naturally produce reactive oxygen species
(ROS).

As ROS are generated mainly as by-products of mito-
chondrial respiration, mitochondria are thought to be the
primary target of oxidative damage and play an important
role in aging. Emerging evidence has linked mitochondrial
dysfunction to a variety of age-related diseases, including
neurodegenerative diseases, cancer, and chronic inflamma-
tion [38].

Oxidative stress is the result of an imbalance between the
production of ROS and antioxidant defenses [39, 40]. In par-
ticular, ROS and reactive nitrogen species (RNS) are unstable
and very reactive by-products of normal metabolism, leading
to lipid peroxidation, nucleic acid oxidation (including DNA
modification andDNA strand breaks), protein oxidation, and
enzyme inactivation [39, 41–43].

Lipid peroxidation refers to the addition of oxygen
to unsaturated fatty acids to form organic hydroperoxides
(ROOH). Organic peroxyl (ROO∙) radicals arise during the
radical-initiated and O

2

-dependent peroxidation of lipids,
which can also produce alkoxyl radicals (RO∙) in metal-
catalyzed reactions [44]. The oxidation of membrane phos-
pholipids in the plasma membrane, as well as within internal
organelle membranes such as the mitochondria, leads to
biophysical changes that disrupt membrane and organelle
function. While these processes may stimulate cellular sig-
naling pathways, they are generally associated with the

promotion of cell death. Breakdown of lipid peroxidation
yields additional reactive species (e.g., 4-hydroxynonenal,
4-HNE and malonyldialdehyde), which may contribute to
toxicity and/or cellular signaling [45]. In addition, an increase
in lipid peroxidation may be one of the factors responsible
for the disruption of the normal feedback mechanism in the
hypothalamus-pituitary-gonadal (HPG) axis [46].

Since T usually enhances the metabolic rate [47, 48], it
could be expected that high T levels might alter the balance
between ROS production and antioxidant defenses, resulting
in an enhanced risk of oxidative stress [49, 50]. Yet, closer
scrutiny of the available data reveals a more complex pattern,
and different studies indicate that the relationship between
T and oxidative stress can be more complex than previously
thought, as it is tissue- and gender-dependent [51, 52].

4. Testosterone, Aging, and Inflammation

Aging is associatedwith a decrease in circulatingT levels.This
characteristic hormonal change of male aging is of interest
because lower T concentrations are commonly associated
with a number of clinical conditions of particular importance
such as metabolic syndrome, type 2 diabetes, carotid intima-
media thickness, and aortic and lower limb arterial disease
[53–55]. The effects related to the cardiovascular system are
particularly important because of the high personal and
economic costs. Putativemechanisms bywhich lower T levels
could contribute to an increased burden of cardiovascular
disease range from the loss of beneficial effects of T on
endothelial function and vasodilation to epidemiological
correlations between T and more favorable lipid profiles [56,
57]. Indeed, lower T is associated with higher body mass
index and fat mass, which are recognized cardiovascular risk
factors. A study by Nettleship et al. [58] provided evidence
that low serumT is linked to increased fatty streak formation.
Moreover, as already reported, many of these conditions
present in the elderly are accompanied by a pro-inflammatory
state expressed by the increasing levels of inflammatory
cytokines, including interleukin-6 (IL-6), tumor necrosis
factor alpha (TNF-alpha), and interleukin-1 beta (IL-1beta).

These inflammatory cytokines are known to modulate
lipid homeostasis, vascular endothelial function, plaque,
and atherosclerosis. During inflammation, peroxynitrite, a
potent pro-inflammatory nitro-oxidative species with an
established role in inflammation [59], induces endothelial
cell damage and increased microvascular permeability [60]
and activates redox-sensitive transcription factors, including
NF-𝜅B and AP-1, which in turn regulate genes encoding the
pro-inflammatory and pronociceptive cytokines such as IL-
1𝛽, TNF-𝛼, and IL-6 [61, 62]. Peroxynitrite also upregulates
adhesion molecules such as ICAM-1 and P-selectin to recruit
neutrophils at sites of inflammation [63] and autocatalyzes
the destruction of neurotransmitters and hormones such
as norepinephrine and epinephrine [64]. Age-associated
induction of NF-𝜅B activation is especially interesting since
it seems to contribute significantly to endothelial activation
in aged vessels, a critical initial step in the development
of atherogenesis [65]. A significant clinical example of the
possible interaction between these factors is peripheral artery
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disease (PAD), consisting of partial or complete obstruction
of the arteries in the lower limbs; it is one of themost common
manifestations of atherosclerosis and is more frequent in
aging men. Patients often describe claudication pain as
episodic, which may be accompanied by physical findings of
foot blanching and disappearance of pedal pulses. This was
attributed primarily to a flow-limiting stenosis or occlusion of
a conduit artery that limits oxygen delivery during exercise.
A large body of evidence indicates that, with exercise, limb
ischemia evokes an acute systemic response characterized
by increased oxidative stress, local and systemic inflamma-
tion and endothelial dysfunction [66, 67]. In patients with
claudication, these inflammatory responses to exercise may
have adverse interactions with both the microcirculation and
skeletal muscle metabolism, which could further compro-
mise exercise performance and increase pain.

5. Vitamin D, Testosterone, and Inflammation

Vitamin D, in particular its metabolite 25-hydroxyvitamin
D (25[OH]D), is widely recognized for its involvement
in calcium homeostasis and immunomodulatory effects.
Its hormonal action decreases the risk of many chronic
illnesses, including osteoporosis, osteoarthritis, metabolic
syndrome, fibromyalgia, and chronic fatigue syndrome [68–
70]. Vitamin D can be synthesized in the skin from sun
exposure and is found in salmon, mushrooms, eggs, and
dairy products.Biological actions of vitamin D are mediated
through the vitamin D receptor (VDR). The VDR is almost
ubiquitously expressed in human cells, which underlines the
clinical significance of the vitamin D endocrine system [68].
Altered vitamin D homeostasis is associated with increased
risk of developing obesity [71, 72], hypertension [73], glucose
intolerance, and metabolic syndrome [74]. Indeed, plasma
vitamin D levels were associated inversely with body mass
index (BMI) and fat levels and positively with HDL choles-
terol [75]. Furthermore, visceral adipose tissue was higher
in vitamin D deficient subjects. Sequestration of vitamin D
in body fat stores and its consequent reduced bioavailability
offer a plausible explanation for this association [76, 77].
Recent research revealed that calcitriol also exhibits multiple
anti-inflammatory effects. First, calcitriol inhibits the synthe-
sis and biological actions of pro-inflammatory prostaglandins
(PGs) by three mechanisms: suppression of the expression of
cyclooxygenase-2, the enzyme that synthesizes PGs; upregu-
lation of the expression of 15-hydroxyprostaglandin dehydro-
genase, the enzyme that inactivates PGs; and downregulation
of the expression of PG receptors that are essential for
PG signaling [78]. Moreover, vitamin D is able to suppress
the release of TNF-𝛼 and to enhance synthesis of the
anti-inflammatory cytokine IL-10 [79, 80]. Finally, vitamin
D enhances the effect of anti-estrogen-like substances. In
addition to these general/indirect effects, it has been shown
that vitamin D increases T levels. This is primarily due to
vitamin D being able to decrease the enzyme aromatase,
which converts T into E2.

In fact, vitamin D reduces the production of E2 itself
and blocks the production of the alpha-E2 receptor [81].
Thus, vitamin D increases T levels, as further confirmed by

a study in which men with sufficient 25(OH)D levels had
significantly higher levels of T and significantly lower levels
of SHBG than 25(OH)D-insufficient men [82]. Moreover,
Pilz and colleagues reported that vitamin D supplementation
increases T levels [83]. Symptoms of T deficiency, which may
be indirectly contributed to by a lack of vitamin D, include
fatigue, depression, andmuscle wasting.This reducedmuscle
mass could promote pain in muscles, causing older men to
attribute muscle aches and pains to the aging process.

6. Clinical Aspects

As we have shown, there are various problems related to
androgen dysfunction and inflammation such as fatigue,
obesity, glycemic imbalance and altered immunity.Thesemay
represent the precursors of more severe conditions leading to
disease in many individuals [84–86].

The neurodegenerative disorder X-linked-adrenoleukod-
ystrophy (X-ALD) is an example of interesting links between
T, lipid metabolism and inflammation. In X-ALD, a certain
percentage of patients present hypogonadism. Moreover, due
to the mutation of a peroxisomal transport protein, the
metabolic pathways of specific long chain fatty acids (FA,
very long chain fatty acids) are impaired [87, 88]. These FA
accumulate abnormally in plasma and in all tissues, although
the most affected ones are the nervous system, the adrenal
and the testis, all characterized by elevated steroidogenesis.
FA can be esterified in different forms, an important compo-
nent being FA esterified with cholesterol. They are vehicled
by lipoproteins. The adrenal cortex and testis of affected
patients contain intracytoplasmic lamellar inclusions consist-
ing of FA-cholesteryl esters [89]. Cholesterol, as mentioned
above, can be metabolized into androgens. In steroidogenic
tissues, free cholesterol can be obtained in three ways: after
cholesteryl ester hydrolysis, de novo synthesis from acetate,
or mainly imported from lipoproteins by specific receptor-
mediated pathways. In the adrenals, this mechanism is
mediated by adrenocorticotropic hormone (ACTH).

In X-ALD, since cholesterol is entrapped as esters in the
lamellar inclusions, it cannot be normallymetabolized into T.
Moreover, the functionality of the T-converting enzyme 5𝛼-
reductase is altered inX-ALD [90, 91], indicating an alteration
of the homeostasis of androgens. In X-ALD and in other
chronic disorders, alterations of lipid metabolism, such as
FA peroxisomal catabolism and esterification processes, and
the presence of secondary inflammation, augmented by the
release of interleukins and lipid-derived pro-inflammatory
mediators, can contribute to a T deficit or generally to an
alteration of T homeostasis and to the consequent clinical
symptoms of the patients.

7. Conclusion (See Figure 1)

Androgens are large functional molecules able to greatly
affect body functions. In this paper, we have considered the
relationships between the main androgen hormone, T, and
some aspects of inflammatory processes in order to high-
light possible mechanisms able to affect pain chronicization.
Indeed, it is becoming increasingly clear that inflammation,
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Figure 1: Representative schema of the clinical consequences suggested to be related to androgen deficiency. Lower testosterone levels are
associated with an increased metabolic risk, systemic inflammation, and chronic pain.

often not clearly acknowledged, is involved in many chronic
painful syndromes still far from being explained by the
“usual” pain system alterations.

Database

The methodology utilized here follows a narrative review
process. Some aspects of the systematic review process were
derived from observational studies along with previous sys-
tematic reviews.The search involvedmultiple sources includ-
ing PubMed. The search terminology included testosterone,
lipids, and inflammation.
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[57] J. I. Mäkinen, A. Perheentupa, K. Irjala et al., “Endogenous
testosterone and serum lipids in middle-aged men,” Atheroscle-
rosis, vol. 197, no. 2, pp. 688–693, 2008.

[58] J. E. Nettleship, T. H. Jones, K. S. Channer, and R. D. Jones,
“Physiological testosterone replacement therapy attenuates fatty
streak formation and improves high-density lipoprotein choles-
terol in the Tfm mouse: an effect that is independent of the
classic androgen receptor,”Circulation, vol. 116, no. 21, pp. 2427–
2434, 2007.

[59] L. R.Watkins, M. R. Hutchinson, I. N. Johnston, and S. F. Maier,
“Glia: novel counter-regulators of opioid analgesia,” Trends in
Neurosciences, vol. 28, no. 12, pp. 661–669, 2005.

[60] M. T. Droy-Lefaix, Y. Drouet, G. Geraud, D. Hosford, and P.
Braquet, “Superoxide dismutase (SOD)and the PAF-antagonist
(BN 52021) reduce small intestinal damage induced by
ischemia-reperfusion,” Free Radical Research Communications,
vol. 12-13, pp. 725–735, 1991.

[61] J. J. Haddad and S. C. Land, “Redox/ROS regulation of
lipopolysaccharide-induced mitogen-activated protein kinase
(MAPK) activation andMAPK-mediated TNF-𝛼 biosynthesis,”
British Journal of Pharmacology, vol. 135, no. 2, pp. 520–536,
2002.

[62] M. M. Ndengele, C. Muscoli, Z. Q. Wang, T. M. Doyle,
G. M. Matuschak, and D. Salvemini, “Superoxide potentiates
NF-𝜅B activation and modulates endotoxin-induced cytokine
production in alveolar macrophages,” Shock, vol. 23, no. 2, pp.
186–193, 2005.

[63] D. Salvemini, D. P. Riley, P. J. Lennon et al., “Protective effects of
a superoxide dismutase mimetic and peroxynitrite decomposi-
tion catalysts in endotoxin-induced intestinal damage,” British
Journal of Pharmacology, vol. 127, no. 3, pp. 685–692, 1999.

[64] D. Salvemini, M. P. Jensen, D. P. Riley, and T. P. Misko,
“Therapeutic manipulations of peroxynitrite,” Drug News and
Perspectives, vol. 11, no. 4, pp. 204–211, 1998.

[65] Z. Ungvari, Z. Orosz, N. Labinskyy et al., “Increased mitochon-
drial H

2

O
2

production promotes endothelial NF-𝜅B activation
in aged rat arteries,”American Journal of Physiology—Heart and
Circulatory Physiology, vol. 293, no. 1, pp. H37–H47, 2007.

[66] J. J. F. Belch, M. McLaren, F. Khan, P. Hickman, A. Muir,
and P. Stonebridge, “The inflammatory process in intermittent
claudication,”EuropeanHeart Journal, vol. 4, pp. B31–B34, 2002.

[67] A. Silvestro, F. Scopacasa, G. Oliva, T. de Cristofaro, L. Iuliano,
and G. Brevetti, “Vitamin C prevents endothelial dysfunction
induced by acute exercise in patients with intermittent claudi-
cation,” Atherosclerosis, vol. 165, no. 2, pp. 277–283, 2002.

[68] M. F. Holick, “Vitamin D deficiency,”The New England Journal
of Medicine, vol. 357, pp. 266–281, 2007.

[69] Y. Arnson, H. Amital, and Y. Shoenfeld, “Vitamin D and
autoimmunity: new aetiological and therapeutic considera-
tions,” Annals of the Rheumatic Diseases, vol. 66, no. 9, pp. 1137–
1142, 2007.

[70] M. Cutolo, “Vitamin D or hormone D deficiency in autoim-
mune rheumatic diseases, including undifferentiated connec-
tive tissue disease,” Arthritis Research and Therapy, vol. 10, no.
6, article 123, 2008.

[71] S. Konradsen, H. Ag, F. Lindberg, S. Hexeberg, and R. Jorde,
“Serum 1,25-dihydroxy vitamin D is inversely associated with
body mass index,” European Journal of Nutrition, vol. 47, no. 2,
pp. 87–91, 2008.

[72] E. A. Yetley, “Assessing the vitamin D status of the US popula-
tion,” American Journal of Clinical Nutrition, vol. 88, no. 2, pp.
558S–564S, 2008.



8 Mediators of Inflammation

[73] K. J. Schmitz, H. G. Skinner, L. E. Bautista et al., “Association
of 25-hydroxyvitamin D with blood pressure in predomi-
nantly 25-hydroxyvitamin D deficient Hispanic and Ameri-
cans,” American Journal of Hypertension, vol. 22, no. 8, pp. 867–
870, 2009.

[74] E. Hyppönen, B. J. Boucher, D. J. Berry, and C. Power, “25-
hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years
of age: a cross-sectional study in the 1958 British Birth Cohort,”
Diabetes, vol. 57, no. 2, pp. 298–305, 2008.

[75] A. T. McGill, J. M. Stewart, F. E. Lithander, C. M. Strik, and
S. D. Poppitt, “Relationships of low serum vitamin D3 with
anthropometry and markers of the metabolic syndrome and
diabetes in overweight and obesity,”Nutrition Journal, vol. 7, no.
1, article 4, 2008.

[76] J.Wortsman, L. Y.Matsuoka, T. C. Chen, Z. Lu, andM. F.Holick,
“Decreased bioavailability of vitamin D in obesity,” American
Journal of Clinical Nutrition, vol. 72, no. 3, pp. 690–693, 2000.

[77] M. Blum, G. Dolnikowski, E. Seyoum et al., “Vitamin D3 in fat
tissue,” Endocrine, vol. 33, no. 1, pp. 90–94, 2008.

[78] A.V.Krishnan andD. Feldman, “Molecular pathwaysmediating
the anti-inflammatory effects of calcitriol: implications for
prostate cancer chemoprevention and treatment,” Endocrine-
Related Cancer, vol. 17, no. 1, pp. R19–R38, 2010.

[79] Y. Zhu, B. D. Mahon, M. Froicu, and M. T. Cantorna, “Calcium
and 1𝛼, 25-dihydroxyvitamin D3 target the TNF-𝛼 pathway to
suppress experimental inflammatory bowel disease,” European
Journal of Immunology, vol. 35, no. 1, pp. 217–224, 2005.

[80] M. O. Canning, K. Grotenhuis, H. de Wit, C. Ruwholf, and
H. A. Drexhage, “1-𝛼,25-dihydroxyvitamin D3 (1,25(OH)2D3)
hampers the maturation of fully active immature dendritic cells
from monocytes,” European Journal of Endocrinology, vol. 145,
no. 3, pp. 351–357, 2001.

[81] K. Kinuta,H. Tanaka, T.Moriwake, K.Aya, S. Kato, andY. Seino,
“Vitamin D is an important factor in estrogen biosynthesis of
both female andmale gonads,” Endocrinology, vol. 141, no. 4, pp.
1317–1324, 2000.

[82] E. Wehr, S. Pilz, B. O. Boehm et al., “Association of vitamin D
status with serum androgen levels in men,” Clinical Endocrinol-
ogy, vol. 73, pp. 243–248, 2010.

[83] S. Pilz, S. Frisch, H. Koertke et al., “Effect of vitamin D sup-
plementation on testosterone levels in men,” Hormone and
Metabolic Research, vol. 43, no. 3, pp. 223–225, 2011.

[84] I. Ben-Zvi and A. Livneh, “Chronic inflammation in FMF:
markers, risk factors, outcomes and therapy,” Nature Reviews
Rheumatology, vol. 7, no. 2, pp. 105–112, 2011.

[85] J. M. Cash and R. L. Wilder, “Neurobiology and inflammatory
arthritis,” Bulletin on the Rheumatic Disease, vol. 41, pp. 1–3,
1992.

[86] M. A. Miller and F. P. Cappuccio, “Inflammation, sleep, obesity
and cardiovascular disease,” Current Vascular Pharmacology,
vol. 5, no. 2, pp. 93–102, 2007.

[87] H. W. Moser, “Adrenoleukodystrophy: phenotype, genetics,
pathogenesis and therapy,” Brain, vol. 120, no. 8, pp. 1485–1508,
1997.

[88] J. Mosser, Y. Lutz, M. E. Stoeckel et al., “The gene responsible
for adrenoleukodystrophy encodes a peroxisomal membrane
protein,” Human Molecular Genetics, vol. 3, no. 2, pp. 265–271,
1994.

[89] J. M. Powers and H. H. Schaumburg, “The testis in adreno-
leukodystrophy,” American Journal of Pathology, vol. 102, no. 1,
pp. 90–98, 1981.

[90] A. Petroni, M. Blasevich, and G. Uziel, “Effects of the
testosteronemetabolite dihydrotestosterone and 5𝛼-androstan-
3𝛼,17𝛽-diol on very long chain fatty acid metabolism in X-
adrenoleukodystrophic fibroblasts,” Life Sciences, vol. 73, no. 12,
pp. 1567–1575, 2003.

[91] A. Petroni, M. Cappa, M. Blasevich, M. Solinas, and G. Uziel,
“New findings on X-linked Adrenoleukodystrophy: 5𝛼-reduc-
tase isoform 2 relative gene expression is modified in affected
fibroblasts,” Neuroscience Letters, vol. 367, no. 3, pp. 269–272,
2004.


