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Abstract—A method is presented for computing aperture-radiated
fields in terms of complex-source type beams. These beams are
generated in a natural way by expanding the aperture field spectrum
in a sum of complex exponentials. The latter are obtained by using the
2D-GPOF method. Inverse transformation in spatial domain leads to
an analytical form in terms of complex source points. Fields radiated
by apertures obtained via this approach are validated by direct near
field integration and compared with those calculated with spectral-
based beam expansion which starts from the Hankel spectrum and
uses a 1D-GPOF approach.

1. INTRODUCTION

In this paper we introduce a simple formulation for expanding aperture
fields in terms of complex source point (CSP) beams [1] and discuss
its potential advantages and disadvantages with respect to other
formulations. In contrast with other beam expansions, here the
maximum directivity of each beam is on the aperture plane. The beam
expansion of an aperture-radiated field is obtained by expanding the
field spectrum in the aperture plane in terms of complex exponentials.
The latter are obtained by the 2D Generalized Pencil of Function 2D-
GPOF [2]. The original radiation integral is thus reduced to a sum
of contributions, which can be identified as a CSP in spatial domain
by means of the Sommerfeld identity [3]. The radiated field is thus
expressed as CSP expansion where the vector complex displacements
are in the aperture plane. The vector field is then obtained through
the use of vector potentials.
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A number of different beams have been introduced in the
past [1, 6–16]: Gaussian beams (GB), Gaussian-ray basis functions
(GRBF), higher-order Gauss-Laguerre (GLB) or Gauss-Hermite
(GHB) beams, CSP, Bessel Beams (BB).

GB [6] have the limitation of satisfying Maxwell’s equations only
in the paraxial region; however, they desirably don’t possesses branch
singularity in space. GRBF [7] are obtained from GB by introducing
an extra empirical parameter, with the aim to control the beam width
at a given distance from the source. GL or GH beams [8–10] deal with
expansions around a preferred axis of propagation with higher-order
terms representing the off-axis variations. They have the advantage of
constituting an orthogonal set, and therefore are often used as basis
for a mode matching technique. However, their descriptive capability
is still restricted to the paraxial region.

To expand the field in the whole space, CSP beams [1, 11]
represents a good solution. Recently an exact method to express a field
as a sum of complex-source points has been proposed [12]. It makes
use of the Love’s equivalence principle extended to a surface in the
complex space enclosing the source. The continuous equivalent current
distribution is then sampled obtaining a discrete number of sources
radiating as a CSP. This interesting method however presents two open
issues. The first one is the optimal selection of the spatial sampling
rate as a function of the representation error while the second one is
the choice of the optimal complex displacement for the equivalence
surface.

In Gabor-type (phase-space) expansions [13–15] the field is
expanded using a lattice of beams emerging from a set of points in
the aperture plane and propagating from each point in a 2D lattice
of directions. These beams describe the local radiation properties of
the aperture distribution; the beam amplitudes are determined by the
local radiation properties (the local spectrum) of the aperture near
the lattice points. The difficulty of the implementation resides in the
optimal choice of the spatial (space lattice points) and spectral (angular
beam density) resolutions.

Recently, novel complex conical beams have been introduced [16].
Their aperture field expansion is obtained by applying the Generalized
Pencil of Function Method (GPOF) [17–19] to the spectral domain
radiation integral in cylindrical coordinates. These beams obey
Maxwell’s equation and, although applicable to any aperture shape,
they are particularly suitable to represent circular domain aperture
fields.

Different beam-expansion approaches may require a different
number of beams to represent a given field. This property should
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be viewed in light of the concept of degrees of freedom introduced
by Bucci and Franceschetti [20], which establishes a natural criterion
for the definition of a sufficient and non-redundant number of wave
functions able to fully reconstruct an arbitrary field in a given region
within a predetermined error. The minimal number of wave functions
needed to represent the field in the half-space above any radiating
aperture is

Ndof = 2Σ/(λ/2)2 (1)
where Σ is the area of the aperture, λ the wavelength, and the factor
2 arises from the two independent orthogonal polarizations. Any
representation requiring more beams than the number prescribed by
Ndof has some redundancy and should be improved. We emphasize
that Ndof leads to a criterion for representing the fields without any
a priori knowledge of the actual sources. If, instead, the sources are
known, aperture field-matched wave objects can be found which require
a number of terms much lower than Ndof .

In the following, we will assume that the aperture field is known;
however, the degrees of freedom of the aperture are taken as terms
of comparison for assessing the goodness of a certain field-matched
expansion.

2. FORMULATION

2.1. Scalar Formulation

Let us consider the Fourier-type spectral radiation integral in Cartesian
coordinates [21]

I =
1

(2π)2

∞∫

−∞

∞∫

−∞
F̃ (kx, ky)

e−j(kxx+kyy)−jkz |z|

2jkz
dkxdky (2)

where F̃ (kx, ky) denotes an aperture spectrum of an electric field
or a scalar potential, and e−jkz |z|/2jkz is the spectral-domain
representation of the free-space Green’s function, kz =

√
k2 − k2

x − k2
y.

The aperture spectrum F̃ , restricted to the compact set {−kmax ≤
kx ≤ kmax, −kmax ≤ ky ≤ kmax}, can be expressed as a series of
exponential terms by the use of the 2D-GPOF algorithm [2]:

F̃ (kx, ky) =
N∑

n=1

bne(sn
xkx+sn

y ky) (3)

where the complex amplitudes bn, 2D complex numbers sn
x, sn

y , and the
number of terms N are automatically selected by the GPOF procedure.
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It has to be noted that, if the aperture has finite dimension, it
is always possible to represent F̃ as in (3) by the use of the sampling
theorem [24].

The parameter kmax is set a priori and truncates the evanescent
portion of the aperture-field spectrum that one decides to exclude as
irrelevant at the given observation level. A systematic way to choose
kmax is presented in [24].

We observe that the aperture Fourier spectrum F̃ (kx, ky) does
not necessarily be known in analytical form, but can be for instance
obtained through a FFT of spatial-field samples.

Using (3) in (2) leads to

I '
N∑

n=1

bn
1

8π2j

∞∫

−∞

∞∫

−∞

e−j(kx(x+jsn
x)+ky(y+jsn

y ))−jkz |z|

kz
dkxdky (4)

which can be analytically evaluated by the use of the double spectral
version of the Sommerfeld identity [3]:

1
(2π)2

∞∫

−∞

∞∫

−∞

e−j(kxx+kyy)−jkz |z|

2jkz
dkxdky =

e−jkr

4πr
= G (x, y, z) (5)

where r =
√

x2 + y2 + z2.
The use of (5) in (4) yields

I =
N∑

n=1

bnG
(
x + jsn

x, y + jsn
y , z

)
(6)

where G(x + jsn
x, y + jsn

y , z) can be interpreted as fields from a CPS
located at the complex coordinates:

r′n = −jsn
xx̂− jsn

y ŷ = r′R − janr̂′C (7)

where

r′R ==[sn
x]x̂+=[

sn
y

]
ŷ, an =

√
<[sn

x]2 + <[
sn
y

]2
, r̂′C =

<[sn
x]x̂+<[

sn
y

]
ŷ

an
.

In order to use (7) in (5) we have to compute the complex distance

r=
√

(r−r′n) · (r−r′n)=R

√
1 +

1
R2

(
a2

n+2jan

(
r−r′R

) · r̂′C
)

(8)

where R = |r− r′R|. In the far-field region (8) can be approximated as

r ' R + janR̂ · r̂′C (9)
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Figure 1. Field radiated by a CSP.

where R = RR̂ = r− r′R.
Using (12) in (5) leads to

G
(
x + jsn

x, y + jsn
y , z

)
=

e−jkR

4πR

(
ekanR̂·r̂′C

)
+ O

(
R−2

)
(10)

Equation (10) shows that the CSP beam radiates most strongly in
the direction r̂′C and most weakly n the direction −r̂′C . Considering a
local cylindrical coordinate system (ρ, φ, z) centered in r′R as shown
in Fig. 1, we obtain the expression

G
(
x + jsn

x, y + jsn
y , z

) ' e−jkR

4πR
ekan cos φ ' e−jkR

4πR
ekan(1− 1

2
φ2) (11)

that clearly presents the Gaussian behavior near the direction r̂′C .
In fact, in a local coordinate system with the z-axis aligned to r̂′C

as shown in 1, the complex distance r can be approximated as

r =
√

(ρ2
c + (zc + jan)2) ' zc + jan +

1
2

ρ2
c

(zc + jan)
(12)

leading to

G
(
x+jsn

x, y+jsn
y , z

)' 1
zc+jan

e
−jkzc

(
1+ 1

1

ρ2
c

z2
c+a2

n

)

e
kan

(
1+ 1

2

ρ2
c

z2
c+a2

n

)

(13)

which represents the field of a Gaussian beam with Rayleigh distance

zr = an, minimum waist size w0 =
√

2an
k and phasefront radius of

curvature R(z) = 1
z (z2 + a2

n).
We note that expansion (4) is accurate only within the selected

spectral range {−kmax ≤ kx,y ≤ kmax}. It normally happens that
<{sn

x} 6= 0 ∧ <{sn
y} 6= 0, then (3) diverges exponentially for kρ =√

k2
x + k2

y → ∞ (kz → −jkρ) in some direction of the complex plane.
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On the other hand, when (3) is inserted in (4), the integrability must be
preserved over the infinite domain to yield the final representation (6).
This apparent contradiction is solved under condition

|z| > max
n

[|<{sn
x}|, |<{sn

y}|
]

(14)

namely, when the exponential attenuation term e−jkz |z| of the spectral
Green’s function filters out the spectral components of (4) larger than
kmax, where (3) is inaccurate. This does not present a practical
limitation in most cases.

2.2. Vector Formulation

In order to find the vector form of (6), it is necessary to determine
how (2) relates to fields or vector potentials, depending on the choice
of the spectrum F̃ . The simplest approach is to assume F̃ in (2) as
a Cartesian spectral components of a vector potential F associated to
twice the equivalent magnetic current at the aperture [22]; this leads
to

E = x̂

(
1
ε

∂Fy

∂z

)
− ŷ

(
1
ε

∂Fx

∂z

)
+ ẑ

(
1
ε

(
∂Fx

∂y
− ∂Fy

∂x

))
(15)

where
Fx,y =

∑
n

bx,y
n W (x + jsx,y

x,n, y + jsx,y
y,n, z) (16)

and the coefficients bx
n, sx

x,n, sx
y,n and by

n, sy
x,n, sy

y,n are obtained by the
GPOF expansion of

F̃x = 2Ẽy(kx, ky) (17)

F̃y = −2Ẽx(kx, ky). (18)

respectively. Finally, one has

Ex,y =±
∑
n

by,x
n

∂G(x+jsx,y
x,n,y+jsx,y

y,n,z)
ε0∂z

(19)

Ez =
∑

n

bx
m

∂G(x+jsx,y
x,n, y+jsx,y

y,n, z)
ε0∂y

−by
mn

∂G(x+jsx,y
x,n,y+jsx,y

y,n,z)
ε0∂x

(20)

where the upper (lower) sign in (19) is associated to x (y) component
of the E-field.

The fields (19)–(20) can be interpreted as the field radiated by a
magnetic CPS located at complex points r′n = (−jsx,y

x,n,−jsx,y
y,n).



Progress In Electromagnetics Research M, Vol. 28, 2013 251

b

a

a
1

b
1

z

y

x

a
1
/b

1

a/b
z

x /y

 
1
/  

2

ρ ρ

'

'

'

' '

'

Figure 2. Geometry of the pyramidal horn antenna.

3. EXAMPLES OF APERTURE FIELD EXPANSION

The described approach is applied here to calculate the radiation from a
pyramidal horn aperture, a rectangular phased aperture, and a circular
modal aperture. The radiated field results are compared with those of
a complex conical beam (CCB) expansion of type A and B formulated
in [16] and a reference solution calculated by conventional aperture
field integration [23].

3.1. Pyramidal Horn

A pyramidal horn antenna of dimensions a1 = 12λ, b1 = 6λ, a = 0.5λ,
b = 0.25λ, ρ1 = ρ2 = 6λ is considered (see Fig. 2). The degrees of
freedom of the antenna aperture can be found using (1)

Ndof = 2
a1b1

(λ/2)2
= 576 (21)

A standard analytical approximation of the Cartesian components of
the aperture y-directed E-field spectrum [23] has been used for the
expansion.

A total of 117 magnetic-current complex point sources have been
automatically generated by the GPOF procedure. Fig. 3(a) gives a
synthetic map of the complex displacement: the real part (namely
r′R = (={sn

x},={sn
y}) are denoted by small dots; the imaginary part

of the complex position of the CPS’s (anr̂′C = (<{sn
x}, <{sn

y}), related
to the beam direction, by small arrows applied to the dots. Fig. 3(b)
represents the phasors of the complex coefficients bx

n associated to the
CPS’s, and applied to the real part of the CPS position.

Figure 4 presents comparative results between the radiated electric
field in the φ = 0◦/90◦ cut-planes obtained by this technique and by
the reference solution. Results provided by the complex conical beams
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Figure 3. Aperture 12λ × 6λ of the pyramidal horn. (a) Real parts
(r′R, dots) and imaginary parts (anr̂′C , arrows) of the source complex
positions. (b) Phasors of the complex coefficients of the CPS aperture
field expansion.
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Figure 4. Pyramidal horn antenna aperture 12λ × 6λ: E-plane
(φ = 0◦) and H-plane (φ = 90◦) cuts of the total electric field
amplitude radiated by the horn in far zone calculated with various
beam expansions.

expansion (CCB) [16] type A (296 beams) and type B (204 beams) are
included for comparison.

3.2. Rectangular Aperture

As a second example, a rectangular aperture of dimensions 5λ × 2λ
(Ndof = 80 ) is considered.

A first test has been made considering an aperture field which
possesses a uniform amplitude and a linear phase field such as to
radiate the main beam in direction θ0 = 45◦, φ0 = 0◦. Figures 5(a)
and 5(b) present the map of the source complex positions and the
far-field results in the φ = 0◦ cut-plane, respectively. Even being the
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and imaginary parts (anr̂′C , arrows) of the source complex positions
on the aperture plane. (b) E-plane (φ = 0◦) cuts of the total electric
field magnitude.
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accuracy, the present solution requires a lower number of beams (35
beams) with respect to CCB-A (181 beams) and CCB-B (99 beams).

A second test has been done using a uniform illumination
(broadside beam) in order to compare the results also with those
provided by a Gauss-Hermite (GH) expansion. The 2D-GPOF
procedure give rise to 40 beams vs. 91 beams needed with CCB type
A and 58 beams with CCB type B. The far-field results are shown in
Fig. 6. We observe that a GH expansion with 225 beams only matches
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the main lobe, and increasing the expansion to 3600 terms does not
improve the accuracy in the overall range.

3.3. Circular Aperture

The Cartesian nature of the present formulation provides an excellent
ability to describe aperture distribution field conformal to rectangular
coordinates. However, circular aperture can be described as well at the
cost of redundancy. Consider the case a circular aperture with radius
rw = 4λ illuminated by a circular wave-guide TM44 mode. For this
aperture size, this particular mode is the closest one to cut-off, i.e.,
its eigenvalue α44 is the closest to the visible region boundary, thus
resulting in a fast aperture field variation.

Figure 7(a) shows the corresponding source complex positions
while Fig. 7(b) presents successful comparisons among this formulation
(400 beams), CCB formulation A (64 beams) and B (52 beams). The
present solution needs a number of beams similar to the degrees of
freedom (Ndof = 402 ).

As expected, the CCB are naturally more suitable for circular
aperture; however, the present algorithm allows obtaining a given
accuracy also for non-rectangular shapes.

Table 1 synthesizes the comparisons among the number of beams
needed for the various type of representations for the various cases;
Ndof is also reported for reference.
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Figure 7. Circular waveguide of radius 4λ. (a) Real parts (r′R, dots)
and imaginary parts (anr̂′C , arrows) of the source complex positions on
the aperture plane. (b) (φ = 0◦) and H-plane (φ = 90◦) cuts of the
radiated total electric field magnitude by a TM44 circular waveguide
mode.
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Table 1. Comparison among terms of the various expansions.

Example CCB-A CCB-B 2D-GPOF Ndof

Pyramidal Horn
(12λ× 6λ)

296 204 117 576

Uniform Rectangular
Aperture (5λ× 2λ)

91 58 40 80

Phased Rectangular
Aperture (5λ× 2λ)

181 99 35 80

Cyrcular Aperture
TM44 (Diam = 8λ)

64 52 400 402

4. CONCLUSION

A method for calculating aperture-radiated fields via CSP beams has
been developed. The beams are obtained starting from a standard
spectral domain radiation integral, upon applying 2D-GPOF expansion
to the aperture field spectrum. This allows for reducing the initial
double integral to a sum of CPS, whose complex displacement vector
belong to the aperture plane. The numbers of beams and the complex
displacement are “automatically” chosen by the 2D-GPOF spectral
matching. However, whatever the aperture field is (provided it is
known a priori), rectangular apertures are well-described by a number
of beams lower than the Ndof of the aperture. Circular apertures
are indeed much better described by our previous conical beam
formulation [16]. We finally observe that the formulation defined here
is inspired by the one discussed in [24] and based on the Shannon
sampling theorem.
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