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Abstract

The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial
pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33
peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-
positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while
retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their
differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was
confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models
where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively.
M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against
bacterial pathogens of clinical importance.
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Introduction

Antimicrobial resistance (AMR) is not a recent phenomenon,

but it is a critical health issue today. Over several decades, to

varying degrees, bacteria causing common infections have

developed resistance to each new antibiotic, and AMR has

evolved to become a worldwide health threat. With a dearth of

new antibiotics coming to market, the need for action to avert

a developing global crisis in health care is increasingly urgent [1].

Antimicrobial peptides (AMPs) are seen with great interest for

the development of new agents against bacterial infections,

because most of them show strong bactericidal activity against

multidrug-resistant (MDR) bacterial pathogens, and may also

contribute to innate immunity by modulating dendritic cell

differentiation and maturation, angiogenesis and chemokine

production [2]. These features are particularly attractive and

many natural host defense peptides (HDPs) or artificial AMPs are

currently under experimentation for drug development [3].

Unfortunately, certain drawbacks have limited the development

of AMPs as drugs for bacterial infections: i) toxicity to eukaryotic

cells, that may lead to nephrotoxicity, neurotoxicity and

neuromuscular blockade [4,5]; ii) selection of resistant strains

that may be cross-resistant to human-neutrophil-defensin-1, a key

component of the innate immune response to infection [6]; iii)

the fact that natural AMPs are generally very short peptides

easily attacked by circulating proteolytic enzymes, making their

half-life too short to be active against bacteria in vivo. Researchers

and industry have been seeking new AMPs of natural and non-

natural origin, with low toxicity and the longer half-life necessary

for drug development.

A few years ago, we observed that short peptides synthesized in

oligodendrimeric form [7] showed high resistance to proteolytic

degradation, making them suitable for use in vivo [8–10]. The

synthetic peptide M33 was obtained by random selection from

PLOS ONE | www.plosone.org 1 October 2012 | Volume 7 | Issue 10 | e46259



a home-made phage-display peptide library panned against E. coli

cells and a successive optimization phase for biological activity,

synthesis and purification procedures [11–14]. The M33 sequence

(KKIRVRLSA) is amphipathic and cationic, which is typical for

AMPs, but did not show any sequence homology with known

AMPs of natural or non-natural origin. M33 was synthesized in

tetra-branched form, proving resistant to proteolytic degradation

and very active in vitro against clinical isolates of several Gram-

negative pathogens, including MDR strains of Pseudomonas

aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae and Escherichia

coli, while being less active against the Gram-positive pathogen

Staphylococcus aureus. The peptide also protected mice lethally

infected with multi-resistant clinical isolates of P. aeruginosa and is

currently under preclinical characterization for the development of

a new drug for bloodstream and lower respiratory tract infections.

In previous reports [11–14] the peptide was always synthesized

and used with L aminoacids (M33-L). Recently, we used the same

sequence synthesized in the tetra-branched form using D

aminoacids (M33-D). Here we report that compared to M33-L,

M33-D has stronger activity against S. aureus and coagulase-

negative staphylococci, including methicillin-resistant strains, with

MIC values comparable to those of many antimicrobial agents

used in clinical practice. We also report a study of the mechanism

of action of M33-D compared to M33-L. Since M33-D retains

strong activity against Gram-negative pathogens, it appears to be

an interesting candidate for the development of novel broad-

spectrum AMPs.

Results and Discussion

MIC Determination
MICs of M33-L and M33-D were determined against strains

of different bacterial species, including major Gram-negative

and Gram-positive pathogens (Table 1). Compared to M33-L,

M33-D exhibited the same activity against P. aeruginosa and the

same or a slightly lower (2–4 fold) activity against Enterobacter-

iaceae. On the other hand, M33-D showed higher antimicrobial

activity than M33-L against the Gram-positive bacteria S. aureus

and S. epidermidis, including methicillin-resistant and vancomy-

cin-intermediate strains, with MICs 4 to 16-fold lower than

those of M33-L. As previously observed with M33-L [13], M33-

D exhibited antimicrobial activity (MIC values) against antibi-

otic-susceptible reference bacterial strains and MDR strains of

clinical origin expressing several different mechanisms of

antibiotic resistance.

Binding of M33-L and M33-D to Lipopolysaccharide (LPS)
and Lipoteichoic Acid (LTA)

In a previous report [13] we hypothesized that LPS was the first

bacterial structure to interact with M33-L. In order to evaluate

possible differential binding of M33-L and M33-D to Gram-

negative LPS and to Gram-positive LTA, we therefore analyzed

the interactions of both peptides with LPS and LTA by surface

plasmon resonance. LTA from S. aureus and Streptococcus faecalis,

and LPS from E. coli, P. aeruginosa and K. pneumoniae were injected

at a concentration of 10 mg/ml over immobilized M33-L or M33-

D peptides. No significant difference in binding or kinetic rates

that could explain such dissimilar antimicrobial activity of the two

peptides was observed (Fig. 1).

Interaction of M33 with Liposomes Mimicking Bacterial
Cells

To investigate interaction of peptides M33-D and M33-L

with the bacterial membrane, including possible perturbation,

we used vesicles with two lipid compositions to mimic the

membrane of S. aureus (CL/PG, 4:6 mol/mol) and E. coli (PE/

PG, 7:3 mol/mol) [15]. Both liposome preparations were

treated with increasing peptide concentrations from 0,5 to

15 mM and the membrane permeability was revealed by

measuring the fluorescence increase due to the calcein leakage

from the vesicles. The dose-response curves obtained from CL/

PG or PE/PG liposomes are reported in Fig. 2a. The peptide-

induced effect was dose-dependent in both vesicle lipid

compositions. However, effectiveness on the two lipid composi-

tions was significantly different, since maximum calcein release

from CL/PG liposomes was obtained at peptide concentrations

greater than 10 mM, whereas in PE/PG liposomes total leakage

occurred at peptide concentration of 5 mM. No significant

differences in the effects induced by M33-D and M33-L were

evident, although the D peptide seemed slightly more efficient

towards CL/PG liposomes at doses above 8 mM. Fig. 2b shows

the time-course of probe release when the vesicles were treated

with M33-D or M33-L at 1 or 5 mM final concentrations. In all

cases, the peptide-induced increase in fluorescence showed

a typical biphasic kinetic profile, in which a fast phase due to

the initial membrane-peptide interaction was followed by a slow

steady-state. The greater perturbing effect of both forms of M33

on PE/PG vesicles, compared to vesicles containing cardiolipin,

was evident.

These tests, along with the Biacore analysis described above,

revealed that M33-D and M33-L have substantially similar

behavior in terms of binding to LPS and LTA and of perturbation

of membranes of different phospholipid composition. We deduced

that the mechanism used by M33-L and M33-D for interacting

with bacterial surfaces and disruption of bacterial membranes was

basically the same.

Stability to Bacterial Proteases
Peptide stability to bacterial proteases was analyzed with

purified aureolysin and elastase enzymes derived from S. aureus

and P. aeruginosa, respectively. These proteins play a key role in

bacterial virulence by breaking down natural HDPs produced by

the infected individuals [16–18]. S. aureus aureolysin and

P. aeruginosa elastase are members of the family of M4 metallo-

peptidases (thermolysin family) [19–21] and have similar specific-

ity, hydrolyzing peptide bonds preferentially on the amino-

terminal side of hydrophobic residues. To determine whether

these proteases affect the performance of M33 peptides, M33-L

and M33-D were incubated with aureolysin and elastase, re-

spectively, and after appropriate time intervals the crude solutions

were analyzed by HPLC and mass spectroscopy. Unlike M33

incubated without enzymes (Figs. 3a, 3b, 3c and 3d), M33-L was

degraded within 1h by staphylococcal aureolysin (Fig. 3e), through

hydrolysis at R6-L7 and S8-A9 peptide bonds (Fig. 3f). Converse-

ly, M33-D was completely stable to proteolysis by this metallo-

protease, remaining unaltered after 24 h of incubation (Figs. 3g

and 3h). Incubation of M33-L with P. aeruginosa elastase showed

moderate peptide stability after 5 h (a peak corresponding to

a retention time of 23 min is still present in Fig. 3i), and again the

cleavage sites were R6-L7 and S8-A9 peptide bonds (Fig. 3j). In

contrast, the M33-D peptide resisted degradation by elastase for

24 h (Figs. 3k and 3l). The cleavage sites of both peptides are

illustrated in Fig. 3m and the MS peaks are assigned to the

fragments.

Altogether, these results suggest that the increased stability of

M33-D to staphylococcal aureolysin could be at least partly

responsible for the increased activity exhibited by this isomer

against S. aureus. The same phenomenon could also explain the

Antimicrobial Activity of M33 Peptide D-Isomer
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increased activity of M33-D against S. epidermidis (Table 1), which

produces an ortholog of aureolysin (the metallo-protease SepA,

with 71% aminoacid identity [22–23]).

Assessment of Anti-biofilm Activity
In biofilms, bacteria grow as multicellular aggregates within an

extracellular matrix that protects the cells from host defences.

Biofilms are also more resistant to antimicrobial agents due to the

physiological state of bacterial cells and, in some cases, reduced

antibiotic penetration [24]. Bacterial biofilms form in natural,

medical and industrial settings, and play a major role in several

human infections, including infections of prosthetic devices and

intravascular catheters, bone and joint infections, chronic

rhinosinusitis and otitis media [25,26]. The search for new

antimicrobials that eradicate microbial biofilms has therefore

become extremely pressing.

M33-L and M33-D were tested for their anti-biofilm activity

against the Gram-negative strains E. coli ATCC 25922 and

P. aeruginosa ATCC 27853, as well as the Gram-positive strain

S. aureus ATCC 25923. As reported in Table 2, the minimum

biofilm eradication concentrations (MBECs) of the two peptides

observed with Gram-negatives were on the whole similar. On the

other hand, M33-D exhibited higher anti-biofilm activity against

S. aureus than M33-L (MBEC, 1.5 mM vs. 12 mM), which is

consistent with the difference in MIC of the two isomers for this

strain (Table 1). The minimum bactericidal concentration on

biofilm (MBCb), i.e. the concentration that kills 99.9% of biofilm

cells, was also investigated. The two isomers showed an MBCb of

Table 1. MICs of M33-L and M33-D for different bacteria species and strains.

Species and strains Relevant featuresa M33-L (mM) M33-D (mM)

P.aeruginosa ATCC 27853 Reference strain, wild type 1.5 1.5

P.aeruginosa AV 65 FQr AGr ESCr NEMr (MBL/IMP-13) 3 3

K.pneumoniae ATCC 13833 Reference strain, wild type 1.5 3

K.pneumoniae 7086042 FQr AGr ESCr NEMr (MBL/VIM-1) 3 6

E.coli ATCC 25922 Reference strain, wild type 3 3

E.coli W03BG0025 FQr AGr ESCr (ESBL/CTX-M-15) 0.7 3

S.aureus ATCC 29213 Reference strain, wild type 6 1.5

S.aureus USA 300 MR 6 1.5

S.aureus 3851 MR VANi 12 0.7

S.epidermidis ATCC 14990 Reference strain, wild type 1.5 0.4

S.epidermidis 6154 MR 3 0.7

aM33 antimicrobial activity was evaluated on reference strains and clinical isolates (mostly with an MDR phenotype). Relevant resistance phenotypes and resistance
determinants are indicated. Resistance phenotypes: FQr, resistant to fluoroquinolones; AGr, resistant to aminoglycosides (gentamycin, amikacin, and/or tobramycin);
ESCr, resistant to expanded-spectrum cephalosporins; NEMr, resistant to carbapenems (imipenem and/or meropenem); MRr, methicillin-resistant; VANi, vancomycin-
intermediate. Resistance determinants: ESBL, extended spectrum b-lactamase; MBL, metallo-b-lactamase.
doi:10.1371/journal.pone.0046259.t001

Figure 1. Binding of LTA and LPS on M33-L or M33-D measured by surface plasmon resonance. LPS from P. aeruginosa, K. pneumoniae,
E. coli and LTA from S. faecalis and S. aureus, diluted to 10 mg/ml were injected over M33-L and M33-D immobilized peptides.
doi:10.1371/journal.pone.0046259.g001

Antimicrobial Activity of M33 Peptide D-Isomer
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6 mM against the Gram-negatives E. coli and P. aeruginosa (Table 2),

whereas the MBCbs of M33-L and M33-D for the Gram-positive

S. aureus matched the respective MBECs, being 12 and 1.5 mM,

respectively.

In vivo Anti-MRSA Activity of M33-D vs. M33-L
Given the good in vitro activity shown by M33-D against

methicillin-resistant S. aureus (MRSA), we compared the in vivo

activity of this peptide and the original M33-L in an animal model

of infection caused by the highly virulent MRSA strain USA 300,

a lineage that has become a dominant cause of community-

associated MRSA infections in North America [27,28].

The smallest number of bacteria causing 100% lethal infection

(LD100) after intra-peritoneal (i.p.) injection was 16106 in the

presence of 7% mucin. An LD100 killed mice within 20 hours.

Mice were infected with the LD100 of bacteria and treated i.p.

with the peptides 30 minutes later. 100% survival after 7 days was

obtained with mice treated with M33-D, while mice treated with

M33-L showed a mortality overlapping that of controls (Fig. 4),

confirming the potent anti-MRSA activity of M33-D.

Conclusions
The M33 peptide, previously reported as active against a broad

spectrum of Gram-negative bacteria [13], is also strongly active

against staphylococci when synthesized with D-aminoacids. We

hypothesized that the increased stability of M33-D to staphylo-

coccal proteases could at least partly explain this different activity.

It was known that branched peptides, like those used in this study,

are particularly resistant to circulating proteases produced by

higher animals [8–10,29–31]. It was also known that peptides with

D-aminoacids show increased stability to circulating proteases

[32]. Stability of D-peptides to bacterial proteases has also been

reported [33,34]. In our case the concomitant improvement of

stability of M33-D to infected individual proteases and to

infectious agent proteases dramatically increased the overall

performance of the peptide. This is particularly evident in

Figure 2. Release of calcein from bacterial-surface-mimicking liposomes. a, dose-response of M33-induced calcein release. The vesicles
were incubated with different concentration of M33 peptide for 10 min at 20uC (for details see Methods section). CL/PG liposomes (triangles); PE/PG
liposomes (squares); M33-D: full symbols; M33-L: empty symbols. Values are means 6 SE of three independent experiments. b, time course of calcein
release from: CL/PG liposomes (triangles) and from PE/PG liposomes (squares); M33-D: full symbols; M33-L: empty symbols. continuous line 5 mM,
dotted line 1 mM.
doi:10.1371/journal.pone.0046259.g002

Antimicrobial Activity of M33 Peptide D-Isomer
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Figure 3. Proteolytic activity of aureolysin and elastase on peptides M33-L and M33-D. a and b, HPLC and MS profiles, respectively, of
M33-L before incubation with enzymes. c and d, HPLC and MS profiles, respectively, of M33-D before incubation with enzymes. In HPLC the retention
time of M33-L and M33-D was 23 minutes. The calculated MW of M33 was 4682. e and f, HPLC and MS, respectively, of M33-L incubated for 1 hour
with aureolysin. f shows the peaks indicating the proteolytic site (RL or SA). g and h, HPLC and MS, respectively, of M33-D incubated for 24 hours with
aureolysin. i and j, HPLC and MS, respectively, of M33-L incubated for 5 hours with elastase. j shows the peaks indicating the proteolytic site (RL or
SA). k and l, HPLC and MS, respectively, of M33-D incubated for 24 hours with elastase.m, proteolytic sites of the two enzymes on the tetrabranched
M33 are indicated by arrows. The table assigns MS peaks to the cleavage fragments.
doi:10.1371/journal.pone.0046259.g003

Table 2. Anti-biofilm activity of M33-L and M33-D towards different bacterial species.

Bacterial species

Minimum biofilm eradication concentration
(MBEC, mM)a

Minimum bactericidal concentration on
biofilm (MBCb, mM)b

M33-L M33-D M33-L M33-D

Gram-negatives

E. coli ATCC 25922 3 3 6 6

P. aeruginosa ATCC 27853 1.5 3 6 6

Gram-positive

S. aureus ATCC 25923 12 1.5 12 1.5

aMBEC is the minimum peptide concentration preventing regrowth of bacteria from the treated biofilm within 4 hours.
bMBCb is the minimum peptide concentration required to reduce the number of viable biofilm cells by $3 log10 (99.9% killing) after 2 h.
doi:10.1371/journal.pone.0046259.t002
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experiments in vivo where M33-D neutralized signs of sepsis due to

S. aureus USA300, while M33-L, stable to mouse [13] but not to

bacterial proteases, was not active at all.

M33-D was highly stable to the proteases aureolysin, from S.

aureus, and elastase, from P. aeruginosa. M33-L was not at all stable

to aureolysin and poorly stable to elastase, as confirmed by its

activity in vivo against P. aeruginosa [13]. For M33-D we propose the

following mechanism of action. M33-D binds LTA and persists on

the bacterial surface for some time by virtue of its resistance to

bacterial proteases, causing membrane perturbation that kills the

bacteria.

Concluding, we identified a new form of the peptide M33,

which is strongly active against S. aureus and retains its

antimicrobial activity irrespective of strain-resistance phenotypes

and mechanisms. MRSA and S. aureus strains with altered

susceptibility to glycopeptides pose a serious clinical threat and

major therapeutic challenge. In this context, development of a new

broad-spectrum therapeutic agent with no cross-resistance to

available drugs would be a major achievement.

Materials and Methods

Peptide Synthesis
Solid-phase synthesis was carried out by standard Fmoc

chemistry on Fmoc4-Lys2-Lys-b-Ala Wang resin with a Syro

multiple peptide synthesizer (MultiSynTech, Witten, Germany).

Side chain protecting groups were 2,2,4,6,7-pentamethyldihydro-

benzofuran-5-sulfonyl for R, t-butoxycarbonyl for K and t-butyl

for S. M33-L was synthesized using Fmoc-L-aminoacids, and

M33-D with Fmoc-D-aminoacids with the exception of the three

lysins of the branched core which were Fmoc-L-Lys(Fmoc)-OH

(M33-D is consequently a diastereomer). The final products were

cleaved from the solid support, deprotected by treatment with

TFA containing triisopropylsilane and water (95/2.5/2.5), and

precipitated with diethyl ether. Crude peptides were purified by

reversed-phase chromatography on a Phenomenex Jupiter C18

column (300 Å, 10 mm, 250610 mm) in linear gradient form for

30 min, using 0.1% TFA/water as eluent A and methanol as

eluent B. Purified peptides were obtained as trifluoroacetate salts

(TFacetate). The exchange from TFacetate to acetate form was

carried out using a quaternary ammonium resin in acetate form

(AG1-X8, 100–200 mesh, 1.2 meq/ml capacity, Bio-Rad). The

resin-to-peptide ratio was 2000:1, resin and peptide were stirred

for 1 h, the resin was filtered off, washed extensively and the

peptide recovered and freeze-dried. Final peptide purity and

identity were confirmed by reversed phase chromatography on

a Phenomenex Jupiter C18 analytical column (300 Å, 5 mm,

25064.6 mm) and by mass spectrometry with a Bruker Daltonics

ultraflex MALDI TOF/TOF.

MIC Testing
MICs were determined using a standard microdilution assay as

recommended by the Clinical and Laboratory Standards Institute.

Assays were performed in triplicate using cation-supplemented

Mueller-Hinton (MH) broth (Becton Dickinson, Franklin Lakes,

NJ, USA) and a bacterial inoculum of 5x104 CFU/well, in a final

volume of 100 ml. The tested concentrations ranged from 0.1 mM

to 24 mM for both peptides. Results were recorded after 18–20 h

of incubation at 37uC.

Surface Plasmon Resonance
Biotinylated peptides were immobilized on SA coated flow cells.

M33-L and M33-D peptides, diluted to 10 mg/ml in HBS-EP+
buffer (10 mM Hepes, 150 mM NaCl, 3.4 mM EDTA, 0.05%

polysorbate 20 pH 7.4), were injected for 90 sec at a flow rate of

10 ml/min, obtaining 550 RU and 580 RU for M33-L and M33-

D respectively.

LTA and LPS molecules from different species (LPS from

E. coli, K. pneumonia, P. aeruginosa and LTA from S. aureus and S.

faecalis, were obtained from Sigma-Aldrich: L-3012, L-4268,

L9143, L2515 and L4015, respectively) were diluted in HBS-

EP+ buffer at the concentration of 10 mg/ml and injected for

180 sec with a flow rate of 30 ml/min over immobilized peptides.

An empty flow cell was used as reference. Regeneration was

achieved with a short pulse of SDS 0.05%.

Preparation of Calcein-liposomes and Leakage
Measurement

L-a-phosphatidylethanolamine (PE), L-a-phosphatidyl-DL-glyc-

erol (PG), cardiolipin (CL), calcein, ammonium thiocyanate and

Figure 4. In vivo antibacterial activity of tetrabranched M33-L and M33-D peptides. Balb-c mice (20 g) were injected i.p. with a lethal
amount of S. aureus USA300 cells. Dashed line (Ctr), injection with bacteria and no peptides; dotted line, injection with bacteria and a single injection
of M33-L peptide (25 mg/kg) 30 min later; continuous line, injection with bacteria and a single injection of M33-D peptide (25 mg/kg) 30 min later.
doi:10.1371/journal.pone.0046259.g004

Antimicrobial Activity of M33 Peptide D-Isomer
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iron (III) chloride hexahydrate and all other chemical (reagent

grade) were obtained from Sigma.

Calcein-loaded liposomes of two different composition (PE/PG,

7:3 mol/mol and CL/PG, 4:6 mol/mol) were prepared as follows.

The lipids were dissolved in chloroform (1 ml) and sonicated

together with 60 mM calcein solution (1 ml in phosphate buffer,

pH 7.0); the liposomes were obtained by the reverse phase

evaporation method [35]. The calcein excess was removed by gel

filtration (Sephadex G-50) followed by centrifuging at 22000 g for

30 min. For vesicle size homogeneity, the pellet was passed several

times through 200 mm polycarbonate membranes in a Mini-

extruder apparatus (Avanti Polar Lipids Inc., Alabaster AL) [36].

Lipid concentration of vesicles was measured by the method of

Stewart [37] and the final concentration used for all measurements

was 50 mM. Calcein fluorescence in the vesicles is self-quenched

and leakage was measured by relief of quenching; the measure-

ments were carried out at 517 nm, exciting at 490 nm, with

a Perkin-Elmer LS 50B spectrofluorimeter. The maximum value

of leakage was obtained by addition of 10 ml of Triton X-100

(10%, v/v in water) to the liposome suspension, which caused total

disruption of vesicles. Leakage was calculated by the equation:

Leakage (%)~100|(F{F0)=(Ft{F0),

where F and Ft are fluorescence before and after addition of

detergent and F0 the fluorescence of intact vesicles [38].

Protease Sensitivity Assay
Tetrabranched M33-L or M33-D peptides (300 mg) were

incubated at 37uC with Staphylococcus aureus aureolysin (3 mg,

BioCol GmbH) or Pseudomonas aeruginosa elastase (3 mg, Calbio-

chem) in 300 ml 20 mM Tris-HCl, 1 mM CaCl2 pH 7.8. At

indicated time intervals, 50 ml aliquots were removed, diluted with

950 ml of 0.1% trifluoroacetic acid (TFA)/water and analyzed by

HPLC and mass spectrometry. Liquid chromatography was

performed on Phenomenex Jupiter C18 analytical column

(300 Å, 5 mm, 25064.6 mm) in a 30 min gradient, using TFA

0.1%/water as solvent A and methanol as solvent B. Mass

spectrometry analysis was performed on withdrawn samples and

repeated on HPLC-eluted peaks with a Bruker Daltonic ultraflex

MALDI TOF/TOF mass spectrometer.

Anti-biofilm Activity
Biofilm formation was performed by adapting the procedure

described in [39] using the Calgary Biofilm Device (Innovotech,

Innovotech Inc. Edmonton, Canada). Briefly, 96-well plates

containing the bacterial inoculum were sealed with lids bearing

96 pegs on which the biofilm could build up. The plates were

placed in an orbital incubator at 35uC (for P. aeruginosa and E. coli)

or 37uC (for S. aureus) for 20 h under agitation at 125 rpm. Once

biofilms formed, the lids were removed from the plates and the

pegs were rinsed twice with phosphate buffered saline (PBS) to

remove planktonic cells. The peg-lid was then transferred to a 96-

well challenge microtiter plate, each well containing 200 ml of

a twofold serial dilution of each peptide in LB medium. The

challenge plate was incubated at 37uC for 2 hours. Peptide activity

on pre-formed biofilm was evaluated by two independent

methods: (i) visual observation of bacterial growth and (ii) counting

of living bacterial cells after peptide treatment. In the first case, the

peg-lid was removed from the challenge plate, rinsed with PBS

and used to cover a 96-well recovery microtiter plate, each well

containing 200 ml LB medium. The recovery plate was sealed,

incubated at 37uC for 4 hours and then observed for any visible

growth of bacteria detached from the peptide-treated biofilm.

Growth of bacteria in a particular well indicated regrowth of

planktonic cells from surviving biofilm. Minimum biofilm eradi-

cation concentration (MBEC) was defined as the minimum

peptide concentration preventing regrowth of bacteria from the

treated biofilm within 4 hours.

In the second case, to determine viable cell counts of biofilms

after peptide treatment, pegs from the challenge microtiter plate

were removed and transferred to Eppendorf tubes containing

500 ml PBS. After sonication at room temperature for 15 min to

break up the biofilm and remove bacterial cells from the peg,

aliquots of bacterial suspension were plated on LB-agar plates for

counting. Colony forming units (CFU) were expressed as

percentage with respect to control (peptide-untreated biofilms).

Minimum bactericidal concentration (MBCb) was defined as the

lowest peptide concentration required to reduce the number of

viable biofilm cells by $3 log10 (99.9% killing) [40].

In vivo Experiments
Animal procedures were approved by the Ethical Committee of

the Azienda Ospedaliera Universitaria Senese on November 18,

2010. Balb-c mice (20 g) were infected i.p. with lethal amounts of

bacteria (see results) mixed in 500 ml PBS +7% mucin (mucin from

porcine stomach, type II, Sigma-Aldrich). Bacteria were cultured

overnight, centrifuged, mixed in sterile PBS, and measured by

spectrophotometer. Possible further dilutions in PBS were

sometimes necessary to obtain the right amount of bacteria.

Groups consisted of 5 animals. Moribund animals were killed

humanely to avoid unnecessary distress. Surviving mice were

monitored for 7 days. Thirty minutes after bacterial administra-

tion, peptides were inoculated i.p. with 0.5 ml PBS solution

containing the indicated amount of peptide (see Results). Control

animals received only PBS. P values were calculated using

GraphPad Prism software.
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