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1 Introduction

Research on Bertrand-Edgeworth competition (price competition among
capacity-constrained sellers) has tended to ignore the most obvious misal-
locations that would prevent maximization of consumers’ and total surplus.
More specifically, given the prices set by sellers of an identical good, at least
the two following requirements for an efficient buyer allocation are usually
assumed to hold: excess capacity at some firm cannot coexist with excess
demand at other firms; expensive firms receive no demand unless cheaper
rivals are already producing at capacity. One possible, yet quite unrealistic,
justification is to assume perfect mobility of buyers, that is, that any avail-
able capacity elsewhere is instantly detected and taken advantage of by any
buyer who is rationed or asked to pay more at the chosen firm.

In contrast, in some recent models the buyers are playing a static game
once prices have been set, by choosing independently which firm to visit (see,
among others, Peters, 1984 and 2000, Deneckere and Peck, 1995, Burdett,
Shi, and Wright, 2001). This amounts to assuming no ex-post buyer mobil-
ity: if rationed at the chosen firm, the buyer cannot move to other firms.
The buyer’s payoff thus depends on the probability of being served as well
as the price at the chosen firm. The buyer allocation may be efficient only at
a pure strategy equilibrium of the buyer game. Yet there are a multiplicity
of such equilibria, all the more so the larger the number of buyers. Thus
the attention has understandably been focused on the (symmetric) mixed
strategy equilibrium, where misallocations occur with positive probability.
Relying on this solution, the lack of buyer mobility proves to significantly
affect equilibrium prices. Consider this simple setting, that will be adopted
throughout this paper. Two identical firms produce the same indivisible
good at constant unit costs up to capacity. As in Burdett, Shi, and Wright
(hereafter, BSW), each buyer demands inelastically one unit at any price
not above the reservation price. Total capacity is fixed and equal to to-
tal demand. Under perfect mobility, both firms charging the reservation
price is the unique equilibrium; in contrast, equilibrium prices are signifi-
cantly less when the buyers are playing a static game. In fact, with equal
prices, expected output is less than each firm’s capacity at the mixed strat-
egy equilibrium of the buyer game. Consequently, with the rival charging
the reservation price, it pays to undercut since all buyers would then try the
lower-priced firm.

Compared to the two aforementioned approaches, our paper intends to
capture two features that are widely observed in real markets: goods are
often purchased repeatedly over the time period for which prices are set;
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though buyers can move across the firms, mobility is too costly or unfeasible
in a very short run, hence misallocations do occasionally occur. In the model
below, the buyers are playing a dynamic subgame of imperfect information
once prices are set: at each stage each buyer chooses which firm to visit
without observing the choices made by the other buyers in the preceding
stages.

To solve the buyer subgame we propose a variant of Kreps and Wilson’s
(1982) sequential equilibrium. Like sequential equilibrium, our “assessment
equilibrium” involves a profile of strategies together with coherent beliefs
at any information set where a buyer may be called upon to play. In a
setting of repeat purchasing decisions the firms may give service priority to
loyal customers rather than rationing purely at random among forthcoming
buyers. In our model the firms have in fact a strong incentive to choose
such “discriminatory” rationing rule. Then, over a wide range of prices it is
an assessment equilibrium for the buyers to obey a strategy of “conditional
loyalty”, prescribing loyalty if served by the previously chosen seller. Along
the equilibrium path some efficient allocation - where all buyers get served at
the chosen firm - is certainly achieved by the second stage of the buyer game.
Most important, although this equilibrium may also exist when the firms
ration randomly, conditional loyalty appears much more compelling under
the discriminatory rule. First, the benefits from conditional loyalty are then
much stronger and more easy to ascertain; second, unlike the random rule,
the discriminatory rule immediately disqualifies repeat playing of the mixed
strategy equilibrium as an equilibrium of the dynamic buyer game.

The successful matching between buyers and sellers quickly obtaining
at the assessment equilibrium of the dynamic buyer game has far-reaching
implications on pricing. At a symmetric pure strategy equilibrium prices are
higher than with a static buyer game; further, they converge to their value
under perfect mobility as the time period for which prices are set increases.
There is a clear intuition behind this result: each firm is going to quickly
achieve full capacity utilization, hence the incentives to undercutting the
rival’s price are considerably less than with a static buyer game.

The remainder of the paper is organized as follows. Section 2 considers a
pricing game when the buyers are involved in a static game after the setting
of prices. After reviewing the two-seller two-buyer case (already in BSW,
along with more general ones), we turn to the case of any (even) number of
buyers, thereby providing a general treatment of symmetric duopoly under
equality between total demand and capacity. Section 3 analyzes price setting
when demand is made repeatedly by the buyers over a finite number of
stages. Section 4 briefly concludes.
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2 Pricing under one-period purchasing

2.1 The basic setting

Two firms, A and B, produce the same indivisible good, each with a given
capacity y. Any quantity up to y is obtained at constant unit costs (nor-
malized to 0). There is a set Z={a, ..., h, ..., z} of z identical buyers. Prices
are set independently and simultaneously by the firms. Along with capac-
ities, prices are known to the buyers who choose simultaneously and inde-
pendently which firm to visit and how much to demand. Then each firm
produces its capacity or its forthcoming demand, whichever is less. In this
section, the buyers are playing a static game after the setting of prices. Ev-
ery buyer demands inelastically one unit so long as the price does not exceed
the reservation price, normalized to 1. Thus each firm chooses a price in the
set P = [0, 1] .

At any pair (pA, pB) ∈ P2 individual demand is equal to 1; granted
this, buyer h’s action space is simply denoted by {fh} = {A,B} , where
fh = A is the action of visiting firm A. The space of mixed strategies is

P
,

the unit simplex in the two-dimensional space. A mixed strategy by buyer
h is written σh = (υh, 1 − υh) - or, more concisely, υh - where υh is the
probability that h visits A. We denote by π(hsA) (π(h

s
B)) the probability

of buyer h being served conditional on visiting A (resp., B). Prospective
buyers at a firm have the same service probability.

Buyers are risk neutral, hence buyer h seeks to maximize his expected
surplus: this is (1− pA)π(hsA) if visiting A and (1− pB)π(hsB) if visiting B.
Total capacity is assumed to be equal to total demand:

2y = z, (1)

hence we are constrained to assume an even number of buyers. A useful
benchmark is the case of perfect mobility, where the buyers can instantly
and costlessly move across the firms. Then, with 2y ≤ z, the pair (pA =
1, pB = 1) is the unique equilibrium: charging the reservation price is in fact
strictly dominant because it allows the firm selling its capacity regardless of
the rival’s price.

2.2 The two-buyer case

We begin with the duopolists facing two buyers. (Apart from minor refine-
ments, most of the results in this subsection are in BSW.) For a wide subset
of P2, the buyer game has a symmetric mixed strategy equilibrium along
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with nonsymmetric pure strategy ones. Denote the buyers by h and k. Con-
ditional service probabilities at A andB are, respectively, π(hsA) =

υk
2 +1−υk

and π(hsB) = υk+
1−υk
2 for h and π(ksA) =

υh
2 +1−υh and π(ksB) = υh+

1−υh
2

for k. An equilibrium in strictly mixed strategies is symmetric, with υ such
that (1− pA)(υ2 + 1− υ) = (1− pB)(υ + 1−υ

2 ). This yields

υ = υ(pA, pB) =
1− 2pA + pB
2− pA − pB . (2)

Thus a mixed strategy equilibrium (hereafter, a MSE) exists so long as

2pA − 1 < pB < 1 + pA
2

. (3)

Holding (3), two pure strategy equilibria (PSE) also exist, (υh = 1, υk = 0)
and (υh = 0,υk = 1). At the MSE, each buyer has an expected surplus less
than min {1− pA, 1− pB} and expected output is less than capacity for each
firm. At the PSE, the buyers get 1− pA and 1− pB and the firms sell their
capacity. Thus the PSE Pareto-dominate the MSE. The buyers are assumed
to take their decisions independently because of too high costs they should
face to coordinate their actions.1 Consequently, it is far from obvious that
either of the two PSE is played. In a sense, by allowing for misallocations
of buyers the MSE seems to yield better predictions of the game outcome.
Accordingly, holding (3) the buyers will be assumed to play the MSE.

At pairs of prices such that 2pA − 1 > pB, the unique equilibrium is
(υh = 0, υk = 0); the equilibrium is likewise (υh = 1, υk = 1) if pB >

1+pA
2 .2

Special cases arise when 2pA − 1 = pB and when pB = 1+pA
2 . In the former,

any strategy profile (υh = 0, 0 ≤ υk ≤ 1) represents an equilibrium and
so does any profile (0 ≤ υh ≤ 1, υk = 0); yet it is reasonable to select
equilibrium (υh = 0, υk = 0) since υh = 0 is weakly dominant.3 By the same
token, with pB =

1+pA
2 one can select equilibrium (υh = 1, υk = 1).

Turn now to pricing. Without loss of generality the analysis will hence-
forth be carried out in terms of firm A. It must preliminarily be seen
that, unlike under perfect mobility, (pA = 1, pB = 1) is not an equilib-
rium. At equal prices, υ = 1

2 at the MSE of the buyer game; hence
expected output is (12)

2 + 2(12)
2 = 3

4 for each firm. Consequently, with
firm B charging the reservation price it pays firm A to slightly undercut,

1This assumption is certainly most appropriate when there are many buyers.
2 In either case, the equilibrium is ex-post inefficient. Let the equilibrium be (υh =

0, υk = 0) and let h be rationed. If h could move to A, then he would get a positive
surplus and benefit A without harming neither k nor B.

3With 2pA − 1 = pB , it is only when υk = 0 that υh = 1 is also a best response.
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which raises A’s profits from 3
4 to almost 1 (both buyers would try A,

where there is a chance of getting a tiny surplus). Denote by EΠA firm
A’s expected profits: EΠA = pAEyA, where EyA is A’s expected output.
dEΠA/dpA = ∂EΠA/∂pA + (∂EΠA/∂υ)(∂υ/∂pA), that is,

dEΠA
dpA

= EyA + pA
dEyA
dυ

∂υ

∂pA
. (4)

Holding (3), EyA = υ2+2υ(1−υ) with υ determined by (2), and ∂υ/∂pA =
3(pB − 1)/(2 − pA − pB)2. Concavity of EΠA in pA is readily established
for the two-buyer case. In eq. (4), EyA decreases as pA increases (and
υ correspondingly decreases). The term pA(dEyA/dυ)(∂υ/∂pA) decreases
too: indeed, the positive factors pA and dEyA/dυ both increase (dEyA/dυ
is decreasing in υ, hence increasing in pA), while the negative factor decreases
(∂2υ/∂p2A < 0).

Next we set the FOC for an interior maximum, dEΠA/dpA = 0. Looking
for a symmetric equilibrium we also put pA = pB ≡ p and υ = 1

2 , obtaining
(pA = 1

2 , pB =
1
2).

2.3 The z-buyer case

Here we take the duopolists as facing any (even) number of buyers.4 The
first step is to identify the region of P2 where a symmetric MSE of the buyer
game exists. Let Sh(σa, ...,σh, ...,σz) - or, more concisely, Sh(σh,σ−h) - be
h’s expected surplus at strategy profile (σa, ...,σh, ...,σz). We now see that
a symmetric MSE exists in the same region of P2 where it does with z = 2.

Lemma 1 (i) Holding (3), a symmetric MSE of the buyer game exists; (ii)
failing (3), the buyer game has no equilibrium in strictly mixed strategies.

Proof. (i) The buyer game is symmetric: Sh(σh,σ−h) = Sk(σk,σ−k)
∀h, k ∈ Z,σh = σk, σ−h = σ−k. For any profile σ−h = (σ, ...,σ) of iden-
tical strategies by h’s opponents, one can determine the set of h’s best
responses. This defines a correspondence Rh :

P → P
. All the sufficient

conditions of Kakutani’s theorem are met:
P
is a compact and convex sub-

set of the (two-dimensional) Euclidean space, Rh is nonempty, convex, and
4BSW generalize along different lines. For the case of equally sized firms, each firm is

assumed to have unit capacity and equilibrium prices are found for any number of firms
and buyers. Thus, given the number of firms, total demand increases relative to total
capacity as the number of buyers increases.
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upper hemicontinuous for all σ ∈P . Thus ∃ σ : σ ∈ Rh(σ). By symmetry,
Rh is the same for all h ∈ Z, hence (σ, ...,σ) is an equilibrium. Conse-
quently, if there exists no symmetric PSE, then there exists a symmetric
MSE. The symmetric pure strategy profile (σa = (1, 0), ...,σz = (1, 0)) is
ruled out as an equilibrium if 1− pB > 1−pA

2 ; similarly, 1− pA > 1−pB
2 rules

out (σa = (0, 1), ...,σz = (0, 1)). Together, these two inequalities constitute
(3).

(ii) Let 1 − pA < 1−pB
2 , so that 2pA − 1 > pB. Then υh = 0 is strictly

dominant, which disqualifies any strictly mixed strategy profile as an equi-
librium. In the special case where 2pA − 1 = pB, υh = 0 is the unique
best response to all k 6= h playing a strictly mixed strategy: again a strictly
mixed strategy profile is ruled out as an equilibrium. Similar reasoning
applies when pB >

1+pA
2 and when pB =

1+pA
2 .

Next we characterize the symmetric MSE of the buyer game. With all
k 6= h playing σ = (υ, 1− υ), the number of them at a firm, l, is a binomial,

with probability distribution
µ
z − 1
l

¶
υl(1− υ)z−1−l and

µ
z − 1
l

¶
(1−

υ)lυz−1−l, respectively, for A and B. Denote by [π(hsA)]υk=υ and [π(h
s
B)]υk=υ

buyer h’s service probability conditional on visiting A and B, respectively,
when all k 6= h visit A with probability υ. It is

[π(hsA)]υk=υ =
z−1X
l=0

µ
z − 1
l

¶
υl(1− υ)z−1−lmin

µ
1,
z/2

l + 1

¶
(5)

and

[π(hsB)]υk=υ =
z−1X
l=0

µ
z − 1
l

¶
(1− υ)lυz−1−lmin

µ
1,
z/2

l + 1

¶
= 0 (6)

When υ is the symmetric equilibrium strategy, then h is indifferent between
A or B. Denote by ϕ(υ, pA, pB) = 0 the function implicitly relating υ to pA
and pB at the symmetric MSE, that is,

ϕ(υ, pA, pB) = (1− pA) [π(hsA)]υk=υ − (1− pB) [π(hsB)]υk=υ = 0. (7)

By implicit differentiation of (7) we can see the impact of a change of pA
upon υ at the symmetric MSE:
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∂υ

∂pA
= −∂ϕ/∂pA

∂ϕ/∂υ
=

[π(hsA)]υk=υ

(1− pA)
h
dπ(hsA)
dυ

i
υk=υ

− (1− pB)
h
dπ(hsB)
dυ

i
υk=υ

, (8)

where

·
dπ(hsA)

dυ

¸
υk=υ

=
z−1X
l=0

l

µ
z − 1
l

¶
υl−1(1− υ)z−1−lmin

µ
1,
z/2

l + 1

¶

−
z−1X
l=0

(z − 1− l)
µ
z − 1
l

¶
υl(1− υ)z−2−lmin

µ
1,
z/2

l + 1

¶
, (9)

and·
dπ(hsB)

dυ

¸
υk=υ

= −
z−1X
l=0

l

µ
z − 1
l

¶
(1− υ)l−1υz−1−lmin

µ
1,
z/2

l + 1

¶

+
z−1X
l=0

(z − 1− l)
µ
z − 1
l

¶
(1− υ)lυz−2−lmin

µ
1,
z/2

l + 1

¶
. (10)

For subsequent use we evaluate ∂υ/∂pA when pA = pB ≡ p, obtaining:

·
∂υ

∂pA

¸
pA=pB≡p

=

Pz−1
l=0

µ
z − 1
l

¶¡
1
2

¢z−1
min

³
1, z/2l+1

´
(1− p)Pz−1

l=0

µ
z − 1
l

¶¡
1
2

¢z−2
(4l − 2z + 2)min

³
1, z/2l+1

´ .
(11)

This can more concisely be written

·
∂υ

∂pA

¸
pA=pB≡p

=
[π(hs)]υk= 1

2

2(1− p) £dπ(hsA)/dυ¤
υk=υ=

1
2

, (11’)

where

[π(hs)]υk= 1
2
≡
z−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
min

µ
1,
z/2

l + 1

¶
(12)
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and

·
dπ(hsA)

dυ

¸
υk=υ=

1
2

=
z−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−2
(2l − z + 1)min

µ
1,
z/2

l + 1

¶
.

(13)

To clarify the new notation in (11’), note that [π(hs)]υk= 1
2
is in fact the

probability of h being served at either firm when υk =
1
2 ∀k 6= h; stated

another way, it is the probability of any buyer being served at the symmetric
MSE of the buyer game when pA = pB. Further, look back at ∂ϕ/∂υ (see (7)
and (8)) and note that [dπ(hsA)/dυ]υk=υ= 1

2
= − [dπ(hsB)/dυ]υk=υ=1

2
: then

it is understood that, in (11), (1− p) is multiplied by 2[dπ(hsA)/dυ]υk=υ= 1
2
.

For any υ ∈ [0, 1), [dπ(hsA)/dυ]υk=υ < 0: when υk increases for all k 6= h,
buyer h’s service prospects deteriorate at A (while improving at B).

Let [Ey]υ= 1
2
be the firm’s expected output when υh =

1
2 ∀h ∈ Z. Then

[Ey]υ= 1
2
=

zX
l=0

µ
z
l

¶µ
1

2

¶z
min

³
l,
z

2

´
. (14)

Clearly,

[π(hs)]υk= 1
2
=
[Ey]υ= 1

2

y
=
[Ey]υ= 1

2

z/2
. (15)

A few facts about the magnitudes just introduced are now established.

Lemma 2 (i) [π(hs)]υk= 1
2
increases in z, converging to 1 as z → ∞; (ii)

[dπ(hsA)/dυ]υk=υ=1
2
is decreasing in z, converging to −1 as z → ∞; (iii)

[∂υ/∂pA]pA=pB≡p increases in z, converging to −1/2(1− p) as z →∞; (iv)
[∂υ/∂pA]pA=pB≡p decreases in p, converging to −∞ as p→ 1.

Proof. For (i), (ii), and (iii) see the Appendix; (iv) is immediate from
(11’).

Remarks For our purposes we are especially interested at the intuition
behind parts (i) and (iv). Let us begin with the former. With pA = pB, all
buyers are served at any PSE of the buyer game. Hence, 1−[π(hs)]υk= 1

2
is the

percapita loss in total surplus resulting from absence of buyer coordination
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(which prevents them from playing any of the several PSE). We now see
how limz→∞[π(hs)]υk= 1

2
= 1 can also be derived by the weak law of large

numbers. Recall that, with υk =
1
2 ∀k 6= h, the number of k 6= h at either

firm is a binomial with mean 1
2(z − 1). Hence, the fraction l

z−1 of k 6= h

visiting one firm has mean 1
2 . According to Bernoulli’s theorem,

lim
z→∞Pr

µ
1

2
− ε ≤ l

z − 1 ≤
1

2
+ ε

¶
= 1 ∀² > 0. (16)

A lower bound on [π(hs)]υk= 1
2
is found by noting that

[π(hs)]υk=1
2
> Pr

µ
l

z − 1 ≤
1

2
+ ε

¶
z/2

(z − 1)(1/2 + ε) + 1
=

Pr

µ
l

z − 1 ≤
1

2
+ ε

¶
1

1 + 2ε+ (1/z)(1− 2ε) .

In view of (17), limz→∞ Pr
³

l
z−1 ≤ 1

2 + ε
´
= 1 ∀² > 0; further, limz→∞[1/(1+

2ε+ 1
z (1− 2ε)] = 1

1+2ε , hence limz→∞ [π(h
s)]υk= 1

2
= 1.

Now we get the intuition of part (iv). Recall that (7) must hold at
the symmetric MSE of the buyer game. Starting from any pair (pA =
p, pB = p), implying υ = 1

2 , a unilateral change ∆pA in pA changes equi-
librium υ by ∆υ. Hence ∆pA < 0 must result in ∆υ > 0 such that (1 −
p − ∆pA) [π(hsA)]υk=1

2
+∆υ = (1 − p) [π(hsB)]υk= 1

2
+∆υ . Starting from a pair

(pA = p0, pB = p0) with p0 > p, the same ∆pA results in a larger increase in
equilibrium υ, hence in larger changes in the service probabilities at A and
B at the new equilibrium. Clearly, as the initial price converges to 1, for any
given ∆pA < 0 the increase in equilibrium υ converges to 1

2 (the probability
of picking A converges to 1) so that limp→1 [∂υ/∂pA]pA=pB≡p = −∞. ¤

We are now going to address price determination. Holding (3), the sym-
metric MSE of the buyer game is played, hence eq. (4) becomes

·
dEΠA
dpA

¸
υh=υ

= [EyA]υh=υ + pA

·
dEyA
dυ

¸
υh=υ

∂υ

∂pA
, (4’)

where

[EyA]υh=υ =
zX
l=0

µ
z
l

¶
υl(1− υ)z−lmin (l, z/2) , (17)
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with υ implicitly defined by (7), and

·
dEyA
dυ

¸
υh=υ

=
zX
l=0

l

µ
z
l

¶
υl−1(1− υ)z−lmin

³
l,
z

2

´
−

zX
l=0

(z − l)
µ
z
l

¶
υl(1− υ)z−1−lmin

³
l,
z

2

´
. (18)

The next result establishes that profit maximization has a unique interior
solution.

Lemma 3 (i) For any pB ∈ (0, 1), denote by p∗A(pB) any pA such that

dEΠA/dpA = 0. Then: (i) p∗A(pB) ∈
³
max {2pB − 1, 0} , 1+pB2

´
; (ii) EΠA

is concave, hence p∗A(pB) is unique and p
∗
A(pB) = argmaxpA EΠA(pA).

Proof. In the Appendix.
We can now solve the pricing game.

Proposition 1 (i) At the unique simmetric pure strategy equilibrium of
the pricing game, ( pA = p∗, pB = p∗), where

p∗ =

1− 1

2
£
dπ(hsA)/dυ

¤
υk=υ=

1
2

−1 ; (19)

(ii) p∗ ∈ £12 , 23) and increases monotonically in z.
Proof. (i) Looking for any symmetric equilibrium, let pA = pB ≡ p and

hence υ = 1
2 . Next, insert (11’) into (4’), to obtain·

dEΠA
dpA

¸
pA=pB≡p

= [EyA]υ= 1
2
+ p

·
dEyA
dυ

¸
υ= 1

2

[π(hs)]υk= 1
2

2(1− p) £dπ(hsA)/dυ¤
υk=υ=

1
2

.

(20)

where ·
dEyA
dυ

¸
υ=1

2

=
zX
l=0

µ
z
l

¶
(2l − z)

µ
1

2

¶z−1
min

³
l,
z

2

´
. (21)
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The demand (l) forthcoming to the firm when υh = 1
2 ∀h ∈ Z has probability

distribution
µ
z
l

¶
(1/2)z, mean z/2, and variance z/4. Consequently,

·
dEyA
dυ

¸
υ= 1

2

=
zX
l=0

µ
z
l

¶
(2l − z)

µ
1

2

¶z−1
min

³
l,
z

2

´

= 4

z/2−1X
l=0

µ
z
l

¶³
l − z

2

´µ1
2

¶z
l

+2z

z/2−1X
l=0

µ
z

z − l
¶³
z − l − z

2

´µ1
2

¶z

= 4

z/2−1X
l=0

µ
z
l

¶³
l − z

2

´2µ1
2

¶z
=
z

2
. (22)

Making use of (22), (20) becomes

·
dEΠA
dpA

¸
pA=pB≡p

= [EyA]υ= 1
2
+
z

2

p

(1− p)
[π(hs)]

υk=
1
2

2
£
dπ(hsA)/dυ

¤
υk=υ=

1
2

. (23)

By Lemma 3, the price at a symmetric pure strategy equilibrium is found by
setting (23) equal to zero. Taking (15) into account, this leads immediately
to (19).

(ii) This follows from part (ii) of Lemma 2.

Thus, regardless of the number of buyers, absent buyer mobility equilib-
rium prices remain considerably less than the reservation price. The intu-
ition behind Proposition 1 is readily understood. At equilibrium, marginal
costs and marginal benefits of a unilateral price reduction are equal. At a
symmetric equilibrium, the marginal cost, per unit of capacity, of decreasing
pA is [EyA]υ= 1

2
/(z/2) (A’s output is now sold at a lower price): it converges

to 1 as z → ∞ (recall (15) and part (i) of Lemma 2). The marginal ben-
efit, per unit of capacity, is −p [dEyA/dpA]υ= 1

2
/(z/2) (A’s expected out-

put increases when pA decreases), or −p [dEyA/dυ]υ= 1
2
[∂υ/∂pA]pA=pB≡p

/(z/2) = −p [∂υ/∂pA]pA=pB≡p: by part (iv) of Lemma 2, this is increasing in
p, going to infinity as p→ 1. In view of all this, p∗ increases in z converging
to a limit less than 1. Finally, equating marginal cost and marginal benefit
in the limit (that is, putting 1 = − p

2(1−p)) yields limz→∞ p
∗ = 2

3 .
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3 Pricing under repeat purchasing

3.1 The buyer game

The buyers are now assumed to take repeat purchasing and visiting decisions,
based on the pair of prices (pA, pB) ∈ P2 set by the firms at t = 0. Without
loss of generalization, it is assumed throughout this subsection that pA ≥ pB.
At each t = 1, ..., T+1 every buyer chooses which firm to visit and how much
to demand, whereupon each firm produces the minimum between capacity
and its forthcoming demand. This setting incorporates imperfect mobility
in a very simple way: if rationed by the chosen firm, a buyer cannot switch
to the other firm in the same stage.

The buyer does not observe the actions previously taken by the other
buyers: we are envisaging a dynamic buyer game of imperfect information
and simultaneous moves. For simplicity, the buyers are assumed to care
only about their current payoff; further, in each stage the buyer demands
one unit, no matter whether he got served or rationed in the preceding
stages.

In this repeat purchasing setup, the firms might reward loyalty: in par-
ticular, rather than rationing forthcoming buyers at random, they might
commit themselves to the following, discriminatory rule.

A discriminatory rationing rule Let a firm receive more than z/2
buyers at t. Then: if t = 1, any such buyer is served with equal probability;
if t > 1, the firm serves any forthcoming buyer whom it served at t− 1 and
allocates randomly any remaining capacity among remaining forthcoming
buyers.

As a matter of fact, the firms often reward loyalty some way or an-
other. Sometimes repeat purchasers are offered better prices or higher-
quality goods (Bulkley, 1992, Caminal and Matutes, 1990): examples of
the former include “frequent flyer” programs offered by airlines, discount
coupons for the next purchase, and trading stamps at retailers (Crémer,
1984; Schumann, 1986; Banerjee and Summers, 1987; Klemperer, 1987).
As another possibility, the firms might give service priority to more regular
customers. As noted by Carlton and Perloff: “in many producer good indus-
tries, good customers often get the product during ‘tight’ times, and other
customers must wait. [...] Such rationing has occurred in many industries,
such as paper, chemicals, and metals” (1990, p. 522; see also Carlton, 1991,
p. 253). This pattern of rationing had earlier been interpreted by Richard-
son as a device to induce buyer loyalty for the purpose of stabilizing demand
for the firm (1960, p. 64).

12



In what follows we begin by exploring the implications of the discrimi-
natory rationing rule, which will give us insights into the rationale for such
a rule. In our context of fixed demands and capacities, the discriminatory
rule guarantees future delivery to any currently satisfied buyer who keeps
loyal. The implications are noteworthy. Let buyer h be served by firm B at
some stage t. Then loyalty is actually dominant for this buyer at t+1, for it
guarantees getting the good at the lowest price. One immediate consequence
is that repeat playing of the MSE of the static game cannot be an equilib-
rium of the dynamic buyer game. Further, a buyer who gets rationed by B
has no hope of being served by trying B again, if only the buyers currently
served by B are subsequently taking their dominant action. Putting these
two things together, it seems safe to predict that even boundedly rational
buyers are going to be matched to sellers in a quite short time.

But we want to build a complete argument for fully rational buyers,
showing that it is an equilibrium of the dynamic buyer game for all buyers
to abide by a norm of “conditional” loyalty, that is, a norm prescribing to
keep loyal if previously served. To pursue this task we need some more
notation. Events and probabilities are now dated by a time index. At any
stage t, we denote by hsA(t) the event of buyer h being served if visiting
A, by zA(t) = # {h : fh(t) = A} the number of buyers visiting A, and bybzA(t) = # {k 6= h : fk(t) = A} the number of such buyers but h (when
fh(t) = A). At any date t ≥ 2, - namely, just before stage t is played - buyer h
is at an information set, denoted by H(t), containing the buyer’s experience
thus far: H(t) is a (t− 1)-component vector, the τ -th component being an
element of the set {hsA(τ), hrA(τ), hsB(τ), hrB(τ)} for any τ = 1, ..., t− 1.

To solve the dynamic buyer game we develop a variant of Kreps and Wil-
son’s (1987) sequential equilibrium, to be called “assessment equilibrium”.5

It is characterized as follows. At every information set where he may be
called upon to move, the player has a belief on what has transpired, namely,
a probability distribution over histories of the game thus far. An “assess-
ment” is a profile of behavioural strategies along with a system of beliefs
(one for any conceivable information set). Our assessment equilibrium is an
assessment that meets basic consistency requirements, all of which featur-
ing prominently in Kreps and Wilson. “Sequential rationality” extends to
imperfect-information games the requirement that strategies be mutual best
responses: at every information set each player’s equilibrium strategy is an
optimal response to other players obeying their equilibrium strategies from
then on. Sequential rationality must hold at information sets on the equi-

5Binmore (1992) defines so a weakened version of sequential equilibrium.
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librium path - information sets that occur with positive probability when
the players have always adhered to their equilibrium strategies - as well
as at out-of-equilibrium information sets. Concerning coherence of beliefs
with strategies, our assessment equilibrium imposes Kreps and Wilson’s re-
quirement of “structural consistency” rather than their more controversial
requirement of “consistency”.6 Structural consistency means that, in all
contingencies, beliefs can be derived using Bayes’ rule. More precisely, at
information sets on the equilibrium path, beliefs are derived by Bayes’ rule
and the assumption that every other player has adhered to his equilibrium
strategy thus far. At out-of-equilibrium information sets, beliefs are derived
by Bayes’ rule under some alternative assumption about the strategies the
other players have played thus far. As illustrated later on, when dealing
with such information sets the following restriction is conveniently placed
upon beliefs, besides structural consistency.

Assumption 1 Suppose at some date buyer h is at an information set
off the equilibrium path. Then h’s belief allows for past deviations from
their equilibrium strategy on the part of other buyers to the extent that this
is needed to reconcile h’s past experience with Bayes’ rule.

To shorten our argument, we rule out, by assumption, the most obvious
mistake the buyers might do.

Assumption 2 No buyer ever plays a strictly dominated action.

Of course, for a myopic buyer, playing a strictly dominated action -
one entailing a lower expected payoff at that stage, regardless of the other
buyers’ current actions - is definitively wrong, no matter the future course
of action. Every buyer should avoid making such an obvious mistake. Yet
Assumption 2 involves a limitation in our analysis in that a truly complete
action plan for the dynamic buyer game should also include prescriptions
for information sets which might only arise after some buyer has played a
strictly dominated action. Unfortunately, laying down the prescriptions of
the equilibrium strategy applying at such information sets is not always easy.
We better avoid these difficulties altogether by assigning zero probability to
such information sets.

In this connection, it is worth noting that there are two different circum-
stances under which a buyer has a strictly dominated action. First, with

6For doubts about the latter, see Osborne and Rubistein (1994, pp. 224-225). Inci-
dentally, though not included in the definition of sequential equilibrium, structural con-
sistency was held by Kreps and Wilson to be implied by “consistency”, a claim that was
subsequently disproved by Kreps and Ramey (1987).
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2pA−1 > pB, visiting B at stage one yields a strictly higher expected payoff
than visiting A, no matter what the other buyers are doing. Second, when
pB < pA, switching to A at any stage t ≥ 2 is a strictly dominated action
for a buyer who has been served by B at t− 1.

We now incorporate the norm of conditional loyalty into the following
strategy.

A strategy of conditional loyalty (denoted by Θ). According to
Θ:

(a) With 2pA − 1 < pB, the buyer at t = 1 plays the equilibrium mixed
strategy of the static buyer game; at any t > 1, he keeps loyal if served at
t− 1 and switches between sellers if rationed;

(b) With 2pA− 1 ≥ pB, the buyer at t = 1 visits B with unit probability.
At any t ≥ 2, prescriptions are as in part (a).

The outcome of the game when all buyers obey Θ is readily found.

Proposition 2 If all buyers obey Θ, then each firm will have a stable
stock of z/2 customers at any t ≥ 2.

Proof. With all buyers obeying Θ, zA(2) = zB(2) = z/2 no matter the
buyer allocation at t = 1. All buyers are thus certainly served at t = 2, hence
they all keep loyal at t = 3, and so on.

The stage is now set for establishing that the strategy of conditional
loyalty represents an equilibrium.

Proposition 3 Along with coherent beliefs, all buyers obeying Θ is an
assessment equilibrium of the dynamic buyer game.

Proof. Further notation must preliminarily be introduced. Denote by
ρ the allocation of all k 6= h among the firms. At any date t ≥ 2, we denote
by µ(ρ(t− 1) | H(t)) buyer h’s ex-post probability distribution over ρ in the
stage just elapsed and by π(ρ(t) | H(t)) his ex-ante probability distribution
over ρ for the incoming stage, both conditional on H(t). From H(t) buyer
h can derive a belief, that is, an ex-post joint probability distribution over
ρ(τ) at any τ = 1, .., t − 1. This allows h to compute µ(bzA(t − 1) | H(t))
and µ(bzB(t − 1) | H(t)), that is, an ex post probability distribution over
the number of k 6= h having visited A and B, respectively, at stage t − 1.
Next, assuming all k 6= h are obeying Θ in the incoming stage t, buyer h
can construct an ex-ante probability distribution over the number of k 6= h
visiting each firm at t, denoted by π(bzA(t) | H(t)) and π(bzB(t) | H(t)).
Together with µ(bzA(t − 1) | H(t)) and µ(bzB(t − 1) | H(t)), this in turn
allows h to estimate his own service probability at A and B, denoted by
π(hsA(t) | H(t)) and π(hsB(t) | H(t)), respectively. For example, π(hsA(3) |
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hrA(1), h
s
B(2)) denotes the probability that buyer h is served if visiting A at

t = 3, as assessed by h conditional on service history H(3) =(hrA(1), h
s
B(2)).

Along this proof we will occasionally use Assumption 1. To illustrate
it, let 2pA − 1 < pB and concede validity of Proposition 3. Suppose h’s
information set at date 3 is, say, H(3) = (hrA(1), h

s
A(2)). Then h is clearly

off the equilibrium path at that date: h has deviated himself from Θ at stage
two; further, h infers from H(3) that some buyer previously served by A has
switched to B at t = 2, in violation of Θ. On the other hand, by Assumption
1, any buyer who was served by B as well as any buyer who was rationed by
A is believed to have obeyed Θ at stage two: this is indeed consistent with
H(3).

Along the proof it is helpful to distinguish among stage one, stage two,
and any subsequent stage.

Optimality of Θ at t = 1. Obeying Θ is by definition a mutual best
response at t = 1.

Optimality of Θ at t = 2. At t = 2 obeying Θ is dominant when hsB(1)
or when hsA(1) and pA = pB. With h

r
A(1) or h

r
B(1), switching between sellers

is clearly h’s best response to the other buyers playing Θ at t+ 1.
So we are left with the case in which H(2) = hsA(1) and pA > pB.

Note that, if it were 2pA − 1 > pB, then h would have played a strictly
dominated action at stage one by visiting A. Therefore, by Assumption 2
we can restrict ourselves to the case 2pA − 1 ≤ pB. The case 2pA − 1 = pB
is readily dealt with. All k 6= h are believed to have obeyed Θ at stage one:
consequently, µ(bzB(1) = z − 1 | hsA(1)) = 1, implying π(hsB(2) | hsA(1)) = 0.
Some more elaboration is needed if 2pA − 1 < pB. Again the event hsA(1) is
consistent with all k 6= h having obeyed Θ at stage one, that is, with every
k having picked either firm with positive probability. Then h perceives to
have a positive service probability if switching to B at stage two: there is
in fact a chance of being served if bzA(1) ≥ z/2, in which case, according to
Θ, unsatisfied buyers are moving to B at stage two. While keeping loyal to
A yields a surplus of 1− pA, switching to B results in an expected surplus
of (1− pB)π(hsB(2) | hsA(1)). So it has to be shown that

1− pA > (1− pB)π(hsB(2) | hsA(1)). (24)

Note that (1 − pA)π(hsA(1)) = (1 − pB)π(hsB(1)) : since all k 6= h are held
to have obeyed Θ at stage one, h was indifferent between A and B at that
stage. Hence we would be done by showing that

π(hsB(2) | hsA(1)) < π(hsB(1)). (25)
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Note that

π(hsB(1)) = π (bzB(1) < z/2) + z−1X
l=z/2

π(bzB(1) = l) z/2
l + 1

, (26)

where π(bzB(1) = l) = µ z − 1
l

¶
(1− υ)lυz−1−l. On the other hand,

π(hsB(2) | hsA(1)) =
z/2−1X
l=0

µ(bzB(1) = l | hsA(1)) (z/2)− l
(z/2)− l + 1 . (27)

Eq. (27) is readily understood. By moving to B at t = 2, h has a chance
of being served if B was faced with l < z/2 buyers at t = 1. Then h would
compete at B with (z/2 − l) buyers - those previously rationed by A, who
are now moving to B in accordance to Θ - over an output of z/2 − l. To
see that the RHS of (27) is less than that of (26) it suffices to show thatPz/2−1
l=0 µ(bzB(1) = l | hsA(1)) < π(bzB(1) < z/2). It must preliminarily be

noted that π(bzB(1) < z/2) = π(bzB(1) < z/2 | fh(1) = A) = π(bzB(1) < z/2 |
fh(1) = B).

7 Consequently,

π(bzB(1) < z/2) = π (bzB(1) < z/2, hsA(1)) + π(bzB(1) < z/2, hrA(1))
= π (hsA(1))µ(bzB(1) < z/2 | hsA(1)) + π(hrA(1))µ(bzB(1) < z/2 | hrA(1))

= π (hsA(1))µ(bzB(1) < z/2 | hsA(1)) + 1− π(hsA(1)). (28)

The scrutiny of (28) reveals that µ (bzB(1) < z/2 | hsA(1)) < π(bzB(1) < z/2).
Optimality of Θ at t ≥ 2. We begin supposing h at date t is at an

information set on the equilibrium path. This means that h has obeyed Θ
thus far and, by Proposition 2, that h has been served at τ = 2, ..., t − 1.
Then obeyingΘ at stage t results in a unit service probability while switching
between firms results in a zero service probability.

Suppose next h at some date t > 2 is at an information set off the
equilibrium path. The argument follows the previous lines when hrB(t − 1)
or hrA(t − 1) as well as when hsB(t − 1) or, with pA = pB, hsA(t − 1). So we
are again left with the case in which hsA(t− 1) and pA > pB. This collection
of information sets can be partitioned into the following subsets:

(a) H(t) =(..., hsA(t−2), hsA(t−1)). Note that for any such H(t) to be off
the equilibrium path the same must be so as for H(t − 1) =(..., hsA(t − 2)).
By Assumption 1, at date t all k 6= h are then believed to have obeyed Θ at

7Obviously, the probability that bzB(1) < z/2 does not depend on h’s action at t = 1.
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stage t− 1. On reflection, this implies µ(bzB(t− 1) = z/2 | H(t)) = 1, hence
π (hsB(t) | H(t)) = 0.

(b) H(t) = (..., hrA(t − 2), hsA(t − 1)). This reveals that at t − 1 some
buyer previously served by A has moved to B. Along with Assumption 1
this implies that µ(bzB(t− 1) ≥ z/2 | H(t)) = 1, hence π (hsB(t) | H(t)) = 0.

(c) H(t) = (..., hsB(t − 2), hsA(t − 1)). By Assumption 2, we can limit
ourselves to the case in which pA = pB. Optimality of Θ at t is then obvious.

(d) H(t) = (..., hrB(t − 2), hsA(t − 1)). This is consistent with all k 6= h
having obeyed Θ at t − 1. Accordingly µ (bzB(t− 1) = z/2 | H(t)) = 1 and
π (hsB(t) | H(t)) = 0.

Remarks It should be clear the type of learning that is taking place
along the equilibrium path. Some efficient allocation (any such that zA(t) =
zB(t) = z/2) is certainly achieved by t = 2 without buyer h actually knowing
which firm any k 6= h is going to visit in the incoming stage. The action
currently made by any k depends on whether k was served at t−1, something
which h can neither observe nor infer for sure (at least if z > 2). Yet h is
able to predict the custom sizes at the two firms. For example, let hsA(t−1).
Then h predicts bzA(t) = z/2 − 1 and bzB(t) = z/2, which is correct if all
k 6= h are obeying Θ at t.

It is worth emphasizing that the market becomes segmented at the same
time as the buyers are learning about each firm’s custom size. Assume
pA = pB ≡ p. Here, at any t ≥ 2 every buyer gets surplus 1 − p on the
equilibrium path. Yet the firms are ex post no longer equivalent to the
buyers: at any t ≥ 2 switching between sellers would prejudice the buyer’s
service prospects. ¤

3.2 Solving the entire game

At t = 0 the firms set prices whereupon the assessment equilibrium of the
buyer game is played. Each firm is concerned with its (undiscounted) ex-
pected profits over the T + 1 stages of the buyer game. This is writtenP
EΠA(t) = EΠA(1) +

PT+1
t=2 EΠA(t) for firm A. Searching for a symmet-

ric pure strategy equilibrium of the pricing game leads to:

Proposition 4 (i) At the unique symmetric pure strategy equilibrium (pA =
p∗∗, pB = p∗∗), where

p∗∗ =

1− 1

2
£
dπ(hsA)/dυ

¤
υk=υ=

1
2

³
1 + T/ [π(hs)]υk=υ= 1

2

´
−1 ; (29)
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(ii) p∗∗ > p∗, and p∗∗ increases in T with p∗∗ → 1 as T → ∞; (iii)
p∗∗ increases in z with p∗∗ → 2+2T

3+2T as z →∞.

Proof. (i) Holding (3),
P
EΠA(t) = pA [EyA]υh=υ+pAT

z
2 with [EyA]υh=υ =Pz

l=0

µ
z
l

¶
υl(1−υ)z−lmin ¡l, z2¢ and υ defined by (7). Looking for a sym-

metric equilibrium we put pA = pB ≡ p∗∗ and υ = 1
2 into the first-order

condition for an internal maximum. Recalling (22) and (11’), it is obtained:

[EyA]υ= 1
2
+
z

2

p∗∗

(1− p∗∗)
[π(hs)]υk=1

2

2
£
dπ(hsA)/dυ

¤
υk=υ=

1
2

= −z
2
T. (30)

Solving (30) leads to (29), when use is made of (15). Any unilateral deviation
from p∗∗, however large, is unprofitable. First, it follows from part (i) of
Lemma 3 that any pA such that 2pA − 1 ≤ pB ≤ 1+pA

2 is less profitable
than p∗∗. Lowering pA so that pB > 1+pA

2 is even worse because A is already
producing at capacity at t = 1 when pB = 1+pA

2 . If raising pA so that
2pA − 1 ≥ pB, then the best option would be charging pA = 1 because A
is already receiving no demand at t = 1 when 2pA − 1 = pB. Doing so
affords a total profits of (z/2)T to A, which, as one can check, is less than
p∗∗(z/2)([π(hs)]υk=1

2
+ T ).

(ii) By comparing (29) with (19) it is seen that p∗∗ > p∗. It is also
immediate from (29) that p∗∗ increases in T , converging to 1 as T →∞.

(iii) That p∗∗ increases in z follows from the fact that
[π(hs)]

υk=
1
2

[dπ(hsA)/dυ]υk=υ=
1
2

increases in z (see part (iii) of Lemma 2 and recall (11’)). Further, it follows
from parts (i) and (ii) of Lemma 2 that limz→∞ p∗∗ = 2+2T

3+2T .

The intuition of part (ii) goes as follows. At any (pA = p, pB = p) the
marginal benefit of unilaterally reducing pA is −p[dEyA/dpA]υ= 1

2
, reflecting

the resulting increase in A’s expected output at t = 1. This is proportional
to p

1−p , hence increasing in p and becoming indefinitely large as p→ 1. The

marginal cost is now z
2

³
[π(hs)]υk= 1

2
+ T

´
, the term (z/2)T reflecting the fall

in revenues at any t ≥ 2. The marginal cost thus increases in T and becomes
indefinitely large as T →∞. It follows from all this that p∗∗ > p∗; further,
p∗∗ increases in T with limT→∞ p∗∗ = 1. Thus the impact on equilibrium
prices of imperfect mobility becomes less and less important as the number
of stages of the buyer game increases: equilibrium prices under imperfect
mobility converge to their value under perfect mobility.
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3.3 More on the rationing rule

Adoption of the discriminatory rationing rule has thus far been taken for
granted. The question naturally arising is whether the firms would act so in
the first place. Let us begin by taking the firms to be somehow committed
to ration randomly among their forthcoming buyers. Then, it is immedi-
ately seen that, unlike under the discriminatory rule, with (pA, pB) meeting
(3), repeat playing of the symmetric MSE of the static buyer game is an
equilibrium of the dynamic game.

Existence of such an equilibrium clearly suggests that there is no guaran-
tee that misallocations will disappear when the firms ration randomly. Yet,
and somewhat surprisingly, this is still a possibility: a generalized pattern
of conditional loyalty can be an assessment equilibrium.8 Suppose buyer h
is rationed at t : one can readily check that, as long as all k 6= h are obeying
Θ at t+1, buyer h will be served with unit probability at t+1 if obeying Θ
and with probability z/(z+2) if deviating from Θ. Exactly the same service
probabilities obtain if h is served at t. The implication is straightforward:
even under random rationing, if prices are equal or sufficiently close to each
other, then obeying Θ is an assessment equilibrium of the dynamic buyer
game.

Note, however, that the fall in service probability from unilaterally de-
viating from Θ, equal to (1 − z/(z + 2)), is much less than under the dis-
criminatory rule and becoming smaller and smaller as z increases. Further,
boundedly rational buyers may fail to recognize the benefits from general-
ized adoption of conditional loyalty. To keep the argument most simple, it
is assumed below that, under random rationing, repeat playing of the MSE
of the static game is the equilibrium actually played by the buyers. Then
we can draw on Section 2 to solve for the pricing game: with the random
rule in place, the firms set prices at p∗ at the pure-strategy equilibrium.

We can now see what happens when both firms turn exogeneously from
the random to the discriminatory rationing rule. The market becomes more
efficient due to the full exploitation of capacity at t = 2, ..., T +1: total sur-
plus rises by zT (1− [π(hs)]υk=1

2
). The firms benefit from both the increased

efficiency and their increased market power (p∗∗ > p∗), whereas the buyers
are worse off. The buyer is clearly harmed at t = 1, where his expected sur-
plus falls by (p∗∗−p∗) [π(hs)]υk= 1

2
. He is also worse off at any t > 1, though

8This result can actually be extended to the case of any number of firms. In two earlier
works we have shown that, with the firms charging the same exogenously given price,
conditional loyalty is an assessment equilibrium of the dynamic buyer game with either
rationing rule (De Francesco, 1996 and 1998).
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being now served for sure: as one can check, 1− p∗∗ < (1−p∗) [π(hs)]υk= 1
2
.9

At long last, we are able to endogenize the rationing rule. Let the firms
have two simultaneous choice variables at t = 0 : besides setting prices, they
commit independently to either the random or the discriminatory rationing
rule. One may ask whether the random rule can be adopted at an equilib-
rium. With this rule in place, pA = pB = p∗ at the candidate equilibrium.
This is ruled out, however, by showing that it pays the firm to unilaterally
deviate to the discriminatory rule (even keeping its price unchanged). Note
that loyalty is dominant for any buyer who gets served by the deviating
firm. Consequently, repeat playing of the MSE of the static buyer game is
no longer an equilibrium of the dynamic game, while the assessment equi-
librium in which the buyers obey Θ becomes more compelling than it was
before. Thus the deviation is expected to result in higher output and profits.

It can similarly be shown that it is an equilibrium for the firms to adopt
the discriminatory rationing rule and set p∗∗. Consider a unilateral deviation
to random rationing. Since one firm is still adopting the discriminatory rule,
repeat playing of the MSE of the static buyer game cannot be an equilibrium,
while the assessment equilibrium where the buyers obey Θ still retain its
intuitiveness. So the deviation under discussion does not affect expected
profits of either firm.

4 Conclusion

We have examined Bertrand-Edgeworth competition for a symmetric duopoly
in a setting where total capacity equals (an inelastic) total demand, the good
is purchased repeatedly once prices are set, and the buyers are imperfectly
mobile across firms. A strong case case has emerged for the firms to serve
loyal customers first. Then being loyal if previously served is readily recog-
nized by the buyers as the right thing to do. This leads to some efficient
buyer allocation to be quickly reached and mantained forever after. The
implications for pricing are straightforward. The gain from undercutting
the rival’s price becomes a short-lived one because the buyers will be soon

9This condition holds if and only if

[π(hs)]υk= 1
2
>
1− 2(1− T )[dπ(hsA)

dυ
]υk=υ= 1

2

1− 2[ dπ(hsA)
dυ

]υk=υ= 1
2

This inequality is always met. In fact, taking account of part (ii) of Lemma 2, the LHS
has a maximum at z = 2 and T = 2. This maximum is equal to zero because, as one can
check from eq. (9), [dπ(h

s
A)

dυ
]υk=υ= 1

2
= −1/2 at z = 2.

21



perfectly matched to sellers anyway. As a result, equilibrium prices are
higher than if the buyers were involved in a static buyer game; they actually
converge to their equilibrium value under perfect mobility as the number of
stages of the buyer game increases.

While market efficiency improves when loyalty is rewarded, it is only the
sellers who reap the benefits; the increase in their market power is large
enough so as to make the buyers worse off. It would be interesting to check
how this conclusion depends on the short-run setting of the present model.
This is a task we leave to future research, which might analyze price compe-
tition with imperfect mobility in a long-run framework in which the number
and the capacity of firms are endogenous.
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APPENDIX
Proof of Lemma 2. (i) In view of (14), (15) can be written

[π(hs)]υk=1
2
=
2

z

z/2X
l=0

µ
z
l

¶µ
1

2

¶z
l +

zX
l=z/2+1

µ
z
l

¶µ
1

2

¶z
, (31)
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where l is a binomial, with mean z/2 and standard deviation
√
z/2. It

follows from symmetry and unimodality that

zX
l=z/2+1

µ
z
l

¶µ
1

2

¶z
=
1

2
− 1
2

µ
z
z/2

¶µ
1

2

¶z
. (32)

Using the Stirling formula, n! ≈ √2πn(n+1/2)e−n, it is obtained
1

2

µ
z
z/2

¶µ
1

2

¶z
=

1√
2
√
π
√
z
. (33)

On reflection, the mean of l can be written

z

2
=

z/2X
l=1

µ
z
l

¶µ
1

2

¶z
l +

z/2−1X
s=0

µ
z
s

¶µ
1

2

¶z
(z − s). (34)

Note that
µ
z
l

¶
l =

µ
z
s

¶
(z − s) for any l = 1, ..., z2 , s = l − 1, hence the

two sums on the RHS of (34) are equal. Consequently,

z/2X
l=0

µ
z
l

¶µ
1

2

¶z
l =

z

4
. (35)

Inserting (32), (33), and (35) into (31) yields

[π(hs)]υk= 1
2
= 1− 1√

2
√
π
√
z
. (36)

Thus [π(hs)]υk=1
2
increases in z with limz→∞ [π(hs)]υk= 1

2
= 1.

(ii) Equation (13) can be written·
dπ(hsA)

dυ

¸
υk=υ=

1
2

= 4
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µ
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or, more concisely, as·
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¸
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1
2
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2
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2
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Note that
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Binomial l in
Pz/2−1
l=0

µ
z − 1
l

¶
(12)

z−1l is symmetric and bimodal, with

mean z−1
2 and standard deviation

√
z−1
2 . The mean can be written

z − 1
2

=

z/2−1X
l=1

µ
z − 1
l

¶µ
1

2

¶z−1
l +

µ
z − 1
z/2

¶µ
1

2

¶z−1 z
2
+

z/2−2X
s=0

µ
z − 1
s

¶µ
1

2

¶z−1
(z − 1− s). (39)

The two sums on the RHS are equal because
µ
z − 1
l

¶
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µ
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¶
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1− s) for any l = 1, ..., z2 − 1 and s = l − 1. Therefore,
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or, by applying the Stirling’s formula,
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Inserting (41) into (38) yields
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By substituting (42) and (36) into (37’) it is finally obtained·
dπ(hsA)

dυ

¸
υk=υ=

1
2

= −1 + 2√
2
√
π
√
z
. (43)

The RHS of (43) is decreasing in z and converging to −1 as z →∞.
(iii) Inserting (36) and (43) into (11’) gives:·
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It is immediately seen that [∂υ/∂pA]pA=pB → − 1
2(1−p) as z → ∞. Further,

differentiating with respect to z and rearranging leads to:
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Proof of Lemma 3. (i) From inspection of (4’) one can check that
[dEΠA/dpA]υh=υ is continuous in pA for any pA ∈ (0, 1) , [dEΠA/dpA]υh=υ >
0 at pA = 0, and [dEΠA/dpA]υh=υ < 0 at any pA ∈

h
1+pB
2 , 1

i
(where υ = 0).

Note that, if pB < 1
2 , then υ < 1 for any pA ∈ [0, 1] while, with pB ≥ 1

2 ,
then υ = 1 at any pA ∈ [0, 2pB − 1] and [dEΠA/dpA]υh=υ = z/2 at any such
pA. It follows from all this that, given pB, [dEΠA/dpA]υh=υ = 0 at some pA

(called p∗A(pB)); further, p
∗
A(pB) ∈

³
max {2pB − 1, 0} , 1+pB2

´
.

(ii) To shorten notation, from now on we drop subscripts for variables at
the simmetric mixed-strategy equilibrium of the buyer game: accordingly,
we refer to [π(hsA)]υk=υ , as π(h

s
A), to d [π(h

s
A)]υk=υ /dυ as dπ(h

s
A)/dυ, and so

on. In (4’), EyA obviously decreases as pA increases (and υ correspondingly
decreases). Hence we are assured of concavity if

d
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We know that dEyA/dυ ≥ 0 and ∂υ/∂pA < 0. Further, ∂2υ/∂p2A ≤ 0 given
that

∂2υ

∂p2A
=

1

[∂ϕ/∂υ]2
π(hsA)

dπ(hsA)

dυ
(47)

and dπ(hsA)/dυ ≤ 0.10 Hence, a sufficient condition for (45) to hold is
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To study the sign of d2EyA/dυ2, note that
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It is readily checked that, for any l ∈ {2, ..., z} , l0 = l − 1, and l00 = l − 2,
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The equation for d2EyA/dυ2 can thus be written
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10The reader can readily check that dEyA/dυ = 0 at υ = 1 while dπ(hsA)/dυ = 0 at
υ = 0.
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The value of the bracketed expression in (51) is -1 at l = (z/2) + 1 and 0
otherwise, so that

d2EyA
dυ2

= −
³z
2
+ 1
´ z
2
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z

z
2 + 1

¶
υ(z/2)−1(1− υ)(z/2)−1. (52)

Therefore, d2EyA/dυ2 < 0 at any υ ∈ (0, 1), hence at any pA ∈ (2pB −
1, 1+pB2 ). Next we turn to the sign of ∂2ϕ/∂υ2. Making use of (7), ∂ϕ/∂υ
and ∂2ϕ/∂υ2 can be written
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and
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Further, from the equations for dπ(hsA)/dυ and dπ(h
s
B)/dυ it is obtained:
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Inserting (55) and (56) into (54) yields:
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A close scrutiny of (57) reveals that ∂2ϕ/∂υ2 S 0 depending on whether

υ Q 1
2 . All the above leads to a first result: inequality (49) - ensuring

concavity of EΠA - is clearly met at any pA ≥ pB (implying υ ≤ 1
2).

Establishing concavity is even more troublesome at pA < pB. By insert-
ing (53) and (54) into (49), the latter becomes
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Since the expression on the first line is always non-negative, a sufficient
condition for (58) to hold would be
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Validity of (59) follows from the fact that both of the two following inequal-
ities hold:
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dυ2

dπ(hsA)

dυ
− dEyA

dυ

d2π(hsA)

dυ2
≥ 0, (60)

d2EyA
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dπ(hsB)

dυ
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dυ

d2π(hsB)

dυ2
≤ 0. (61)

We omit here the argument establishing these inequalities for any z, which
is long and involved. One might easily be convinced, however, by running
simulations through a package such as Maple: it would be found that, no
matter the value of z being tried, (60) and (61) are always met.
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