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Abstract

The criteria used to define the similarity among images for their retrieval in
visual databases are usually predefined and based on specific local or global per-
ceptual features. In this paper, we propose a novel approach based on neural
networks by which the retrieval criterion is derived on the basis of learning
from examples. In particular, the proposed approach is based on a graph-based
image representation that denotes the relationships among regions in the image
and on recursive neural networks which can process Directed Ordered Acyelic
Graphs (DOAGS). The graph-based representation combines structural and sub-
symbolic features of the image, while recursive neural networks can discover
the optimal representation for searching the image database. Some preliminary

experiments on artificial images are reported which clearly indicate that the
proposed approach is very promising.

1. Introduction

In the last few years many efforts have been spent to efficient and effective
devise engines capable of searching images in large multimedia databases. The
established techniques are based on global or local perceptual features of the
images. The most used features are color [8], texture [4, 10, 7] and shape [3,
5. 6, 11]. Visual Information Retrieval Systems (VIRS) represent images with
fixed-length real vectors containing a set of parameters describing some of these
features. Moreover, the retrieval task is usually based on a similarity criterion
which is usually predefined by the particular choice of the feature vector. Some
systems allow the combination of multiple criteria among a set of predefined
ones. In general an user may want to adapt the search to his/her own criteria of
similarity among images, and may also want to define different criteria. From
this point of view, machine learning algorithms can be the basis for solutions in
which the user can define the search criterion by providing a set of examples. In
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this case the system could also tune its performance during the searches using
the feedbacks of the user.

In this paper. we propose an algorithin to learn the concept of similarity from
examples. In order to use a rich description of the images. we propose a struc-
tured representation which maintains both the perceptual features and the
structural relationships among the parts of the image. Each image is splitted
into elementary pieces (small regions with common features), and the rela-
tionships among these elementary regious are explicitly coded as a graph. In
particular. we consider the relationships defined by the mutual spatial posi-
tion of the regions. The data structures that can be used to describe images
in this framework are Directed Ordered Acyclic Graphs. The graphs represent-
ing the images can have very different sizes. In order to obtain a fixed-length
and low-dimensional vector representation. the DOAGs corresponding to the
images can be processed by Recursive Neural Networks [2]. Tn order to face
the task of learning the search criteria for visual retrieval, we define a novel
learning scheme in which RNNs are trained in order to learn the similarity
among images, i.e. in order to map DOAGs representing similar images into
near vectors.

This paper is organized as follows. In the next section we describe how the
graph-based representation of the images is obtained using a region-growing
segmentation technique. In section (3.) we present the Recursive Neural Net-
work model and the extension of the training algorithm to deal with the learning
of similarity constraints among pairs of graphs. In section (4.) we report a set of
complete experimental results on a retrieval task for artificial images. Finally,
in section (5.) we draw some conclusions.

2. Graph-based image representation

We are interested in describing the patterns with a representation which takes
into account both their structure and the sub-symbolic information. In par-
ticular, an image can be represented by its component regions and their rela-
tionships. The image can be splitted into homogeneous regions by an image
segmentation based on perceptual features. The regions can he determined by
a region growing algorithm. This algorithm is initialized by assigning each pixel
to a different region. Every region is described by a set of features: average
color, color variance, area, perimeter. and bounding box. Then an iterative
process is started to merge homogeneous regions. At each step k, each region
tries to absorb the surrounding regions by comparing the values of its features
to those of the neighbor regions, using a logical predicate P. For example in
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the experiments described further, P depends on a non-linear score functio
which compares the features of a pair of regions: Fa

P(R} URY) = (min(A(R}). A(R}))"d.(Rf . R¥) < 6;) (1) '

where R¥ and Rj' are the two adjacent regions that are evaluated, A(R) is th;e :
normalized area of the region R, d.(R,S) is the distance between the average ' 
colors of the regions R and S, a is a fixed parameter and 6y is a threshold that
decreases with k till it reaches a minimum. This function merges two regions
on the basis of the similarity of their colors and also penalizes the presence
of small regions. Using this function a set of pairs of regions to be merged is
selected at each step of the algorithm. Then, the features of the new regions are
calculated. This process is iterated till no pair of regions satisfies the predicate
2

Once an image has been segmented, it is subdivided into N regions each de-
scribed by a real valued vector of features. The structural information related
to the relationships among these regions can be represented by a graph. In
particular, two connected regions R,. R, are adjacent if for each pixel a € R, s
and b € R, there exists a path connecting a and b, entirely lying into R; U R». oS
In order to represent this type of structural information, the Region Adjacency ;
Graph (RAG) can be extracted from the segmented image by (see fig.1):

1. associating a node to each region. It is possible to store the real vector of
the features of the region as the label of the node.

2. linking the nodes associated to adjacent regions. The edge added in this
step is not oriented.

The generic relationship of adjacency between regions could be expanded into
many different (and more specific) relationships: horizontal, vertical, diagonal,
included-in, or centered-into adjacency. In this case, we would obtain a graph
with labelled edges. Anyway we did not explore this possibility at this moment
but we consider this possibility for further developments.

Then, it is possible to transform the RAG into a Directed Ordered Acyclic Graph
(DOAG). This transformation requires to define a direction and an ordering for
the edges in the graph. This can be obtained by applying the following steps:

1. a starting region (root node) is chosen;

2. an ordering rule among the adjacent regions is selected. For example the
adjacent regions can be ordered by scanning the region boundary in a clock-
wise direction starting from the vertical axis:

3. the graph is constructed recursively using a breadth-first visit of the nodes
starting from the root node. When a new node a is visited, the edges from :
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Fig.1. (a) an artificial image; (b) the hmage is segmented, using a segmentation
algorithm. Omne node is associated to each connected region and the graph is con-
structed linking the nodes associated to adjacent regions; (c) the region adjacency
graph (RAG); (d) the RAG is transformed into a DOAG.

a to the nodes by which have not been already visited are considered. The
direction of these edges is chosen to be from a to by. Moreover the order of
these arcs is defined using the ordering established by the previous rule.

The need to derive a DOAG from the RAG which is directly obtained from the
image is motivated by the fact that processing undirected graphs is significantly
more difficult. In particular, the framework for adaptive graph processing based
on neural networks described in the following section is only defined for DOAGs.

3. Learning similarities with Recursive Neural Networks

We consider a computational model to process data represented by Directed
Ordered Acyclic Graphs (DOAGs) which is based on neural units [9, 2]. In
particular, this model realizes mappings from graphs to n-dimensional vectors
using a recursive Frontier to Root computation.

The input graph is processed by a system characterized by a state vector x € "
whose dynamics is defined by a state transition function

w(v) = gixlq v} s x(q;'v), L(v)), (2)

where v is a generic node in the graph. L(v) € R™ is the label attached to the
node v, and ql-"lv specifies the i-th child of the node v. Hence, this function
computes the state of the node v given the states x(qi_lv) of its descendants
and the attribute vector L(v) stored in the node. This definition requires each
node to have the same number of children 0. When a child is not specified, a
given initial state xo is used for the missing link (nil pointer). In particular,
the state of the leaves x(vy) of the input graph is computed as:

x(1) = ¢(Xo. ..., Xo, L(w)). (3)
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The nodes are processed following their topological order. This guarantees that
the state of each child of the node v is already available when x(v) is computed
using eq. (2). Hence, the computation starts from the frontier nodes since their
state is simply obtained from the label and the initial state x, as shown in
eq. (3). Then. equation (2) is applied recursively to the nodes following their
topological order.

The state vector x(v) encodes a representation of some properties of the sub-
graph rooted at the node v. In fact, if we consider a labelled DOAG ¢ =
tigiea 9k), where [ is the label of the root node' S and 015 = gy 15 tihe
ordered list of the subgraphs attached to the root node, the encoding func-
tion enc : DOAG — R", which computes the vectorial representation of the
input graph, can be defined as enc(g) = x(S) and recursively computed as
enc(l(g1,....gr)) := p(enc(gy), ..., enc(gi), NIL”" 1), where the o — k empty
links (NIL) are encoded by the initial state x,.

The function ¢() defining the recursive computation can be implemented us-
ing a multilayer perceptron (MLP) having m + o x n inputs and n outputs.
In this case the function is parametrized by a vector §,, collecting the weights
of the connections in the MLP. This encoder network N,,. is applied recur-
sively following equation (2) to compute the state vector for each node. This
computational scheme defines a Recursive Neural Network. The complete com-
putation performed on the input graph can be viewed as an encoding network
whose topology results from the unfolding of the recursive neural network on
the input graph. An example is shown in figure 2. In this case the recursive
neural network is a single-layer perceptron with 2 outputs and it allows a max-
imum out-degree 0 = 3. When processing the input graph shown on the left.
we obtain the encoding network depicted on the right. Note that all the sub-
networks in the encoding network are copies of recursive neural network. i.e.
they share the same set of weights 6.

If the encoder network is a single-layer feedforward network, the dependence of
the state of the node v from the states of its children q; 'v is expressed by the
pointer matrices A, € R"", r = 1,...0. Similarly, the label vectors attached
to the nodes are propagated by a weight matrix B € R . Hence, the vector
of the parameters of the recursive neural network is by = {Ai,..., 4,, B}, and
the state is updated according to the recursive equation

! The DOAGSs 'we consider have only one root node, i.e. a node with nO ancestors.
This does not limit the computational model we introduce since any DOAG can
always be transformed into a DOAG which satisfies this property [9].
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Fig. 2. The input DOAG and the recursive neural network shown on the left vield the
encoding network depicted on the right. Note that o = 3 (graph out-degree), and that
the nil pointers are represented by the initial state xo. The nodes must be processed
according to their topological sorting, e.g. e.c.d,b,a.

%) =0 Z.~l‘.-x((1;ll')+B~L(u) 5 (4)
k=1

where o is a vectorial sigmoidal function.
The parameters of the neural network can be learned in order to develop a
mapping which vields vectorial representations for the input graphs satisfving
a set of similarity constraints. This framework is different with respect to the
usual learning in supervised neural networks when a target output is speci-
fied for each pattern in the learning set. The aim of similarity learning is to
tune the mapping between inputs and outputs in order to satisfy topological
relationships between pairs of inputs. Given a differentiable distance measure
d(xy,xs) in the state space, we can assign topological constraints which define
the similarity or the dissimilarity between two input graphs. Two graphs g;, ¢»
are similar with degree s € [0, 1] provided that d(enc(g,).enc(g2)) < (1-5)D,.
Analogously two graphs ¢, g» are dissimilar with degree d >= 0 provided that
d(enc(gy).enc(gs)) > (1 + d)D4. The reference distances Dy and Dy can be
properly ‘chosen by considering the size of the subset where the state of the
recursive neural network lies and the number of different clusters defined by
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the dissimilarities. For example when using sigmoidal units in the output layer
of the MLP, the state vector is inside the hypercube (0.1)" and D, can be
defined as a fraction of the hypercube diagonal.

The learning set contains a list of pairs for which a similarity or (lissimilarity
is specified: thus an example is a triple (g, g2.58) or (g, g2,d). The learning
process is based on the optimization of a cost function which penalizes those
mappings which violate the given similarity constraints. The possible choices
for the cost functions in the case of a similarity triple (g, g2, s) and in the case
of a dissimilarity (g, g».d) are respectively

E(91.92,5) = H(d(enc(g1),enc(g2)) = (1 - s)D,) >
E(g1,92,d) = H((1 + d)Dy — d(enc(g,), enc(gn))). (5)

where H(x) yields x* if > 0 and 0 otherwise. The complete cost function is
obtained by summing the contribution of all the triples in the learning set. This
function depends on the vector of the MLP weights 6, and can be optimized
using the usual gradient descent scheme. The gradient can be computed by a
modified version of the Backpropagation Through Structure (BPTS) algorithm
[9] which takes into account that each term in the cost function combines the
contribution of a pair of examples.

4. Experimental results

We designed a set of experiments to perform a preliminary evaluation of both
the structured representation of images and the similarity learning scheme.
In order to provide a systematic and quantitative analysis we used a test set
composed of artificial images generated by a set of attributed plex grammars.
Plex grammars [1] allow us to compose terminal symbols with more general
relations than simple concatenation. The images are composed by combining a i
set of predefined blocks which can be connected together at given attachment |
points. The productions of the grammar define how the blocks are joined to-
gether and the attachment points of the composed object. Further, attributed ‘
plex grammars associate a quantitative information represented by a vector of
attribute values to each terminal symbol (i.e. length, color. texture parameters,
shape parameters, orientation, etc.).

In the experiments we used three different grammars to generate three different
classes of images: houses, ships and traffic policemen (see figure 3). By randomly
choosing the productions in the grammar and the attribute vector associated '4
to each block, we generated a test set composed of 450 different images (150
images per class).
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Fig. 3. Example of images generated by the plex grammars: a house (a), a ship (b),
and a traffic policeman (c).
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Fig.4. Average retrieval precision of the proposed algorithm with respect to the
percentage of similarities used for training. The results are for different numbers of
retrieved images.

In order to build the learning set, we randomly chose pairs of images defining
a similarity triple if they were from the same class or a dissimilarity triple if
they were from different classes. The number of examples was varied between
0% and 20% of the total number of possible pairs of images. For each set of
similarities a recursive neural network with two state units was trained for a
maximum number of 600 epochs. Then the retrieval precision was evaluated
by choosing a test image and by counting the number of the retrieved images
belonging to the same class of the selected image when considering the N
nearest vectors. The average retrieval precision was obtained by varying the test
image among all the images in the database. Finally the measure was repeated
for values of N among {2,5,20,50,100,150}. When N = 150, an exact algorithm
would retrieve all the images in the test set belonging to the same class of the




| 2 5 20 50 100 150

0 [93.790.4 85.4 81.3 77.4 72.5

0.2(99.0 98.6 98.6 98.6 98.5 97.5
5 199.2 98.9 98.9 98.9 98.8 98.2

20{99.4 99.3 99.3 99.3 99.2 98.7

Table 1. Average retrieval precision of the algorithm for different percentages of simi-
larities in the learning set (rows) and different numbers of retrieved images (columns).
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Fig. 5. Plot of the vectors generated by a recursive neural network with 2 output
units when processing the graphs in the test set before (a) and after (b) training.

selected image. The results are reported in figure 4. A random (not trained)
neural network retrieves between 93.7% (N = 2) and 72.5% (N = 150) images
of the same class (see table 1), but the performance is effectively improved just
inserting a small fraction of the total number of possible similarity triples. For
example, when using only 0.2% of the pairs, the precision is between 99.0%
(N = 2) and 97.5% (N = 150). A further increase in the number of examples
does not improve significantly the performance. The experiments show that the
recursive network can be trained to define a mapping able to separate almost
optimally the patterns in the dataset, even if few similarities are provided.
In figure 5 it is shown that using random weights the patterns of a class are
often clustered together with patterns belonging to different classes. After the
training, 3 separate clusters can be identified, collecting almost all (and only)
patterns of the same class.




5. Conclusions

In this paper, we have proposed a representation of segmented images based on
Directed Ordered Acyclic Graphs. DOAGs can represent both the features of
each region and the relationships among the regions. The DOAG representation
can be further processed with Recurrent Neural Networks in order to obtain a
fixed size vector which can be used to define topological relations between the
images. The network can be trained to extract the concept of similarity between
images from a set of examples. Even when very few similarity constraints are
used, the system shows good retrieval and generalization performance. The
results reported in this paper are preliminary but they show the promising
properties of the proposed scheme. We expect this technique to be an useful
framework for developing an image retrieval system whose performance can be
tuned using the feedback from an user who can define his/her own criterion
in searching the database by providing a set of examples. These examples can
consist of only a very small fraction of all possible image pairs.
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