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Abstract. The observed deformation pattern in the central-western Mediterranean area, in particular 16 

the development of the Northern, Central and Southern Tyrrhenian basins in three well distinct 17 

phases, can hardly be explained as an effect of the gravitational sinking of subducted lithosphere, an 18 

hypothesis often advanced in literature. A more plausible and coherent explanation of the spatio-19 

temporal distribution of major tectonic events in the study area can instead be achieved by 20 

supposing that tectonic activity has mainly been driven by the convergence of Africa and Eurasia 21 

and the roughly westward displacement of the Anatolian-Aegean-Pelagonian belt. The development 22 

of Arc-Trench-Back Arc systems is interpreted as an effect of extrusion processes, that in some 23 

constricted contexts have represented the most convenient shortening process for accommodating 24 

plate convergence. 25 

 26 
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 29 

1. Introduction 30 

 31 

 In the last 30-35 My the Mediterranean area has undergone a drastic change (Fig. 1), as 32 

suggested by several authors (e.g., Dercourt et al., 1986; Meulenkamp and Sissingh, 2003; 33 

Mantovani, 2005, Mantovani et al., 2006, 2009; Viti et al., 2009 and references therein). The pre-34 

existing Alpine orogenic belt has undergone considerable distortions and long migrations of even 35 

several hundreds of Km. Some zones, mainly located in the internal side of the migrating arcs, have 36 

undergone crustal extension and consequent thinning, with the formation of large basins (Balearic, 37 

Tyrrhenian, Aegean and Pannonian). The oceanic and thinned continental zones which surrounded 38 

the African/Adriatic promontory have been almost completely consumed by subduction. Since 39 

extensional deformations are generally considered as scarcely compatible with the compressional 40 

context induced by plate convergence, some authors have tentatively advanced the hypothesis that 41 

other types of forces acted in the Mediterranean region. In particular, the most often cited 42 

interpretation suggests that the migration of arcs and the related back-arc extension have been 43 

driven by the gravitational sinking of subducted lithosphere, as originally proposed by Malinverno 44 

and Ryan (1986) and Royden (1993). In this work, we argue that the main implications of the above 45 

interpretation can hardly be reconciled with the observed features and that a more plausibile and 46 

coherent explanation of the evolutionary history can be achieved by supposing that Arc-Trench-47 

Back Arc systems (ATBA) have developed in the framework of extrusion processes, driven by the 48 

convergence of the confining plates. With respect to previous attempts (e.g., Mantovani et al., 2009, 49 

2014; Viti et al., 2009), this work reports new evidence and arguments about the compatibility of 50 

the interpretations here discussed with the observed deformations.  51 

 52 
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2. Balearic and Tyrrhenian basins interpreted as effects of the slab-pull genetic mechanism: 53 

main problems 54 

 55 

Balearic basin  56 

 In the Oligocene, the western Alpine belt, tentatively reconstructed by the Al-Ka-Pe-Ca system, 57 

and the Corsica-Sardinia block (Fig.1a) detached from the European-Iberian foreland and 58 

underwent a fairly long eastward migration and strong bowing (Fig.2), while crustal extension 59 

occurred in the wake of the migrating arc, forming the Balearic basin (e.g., Maillard and Mauffret, 60 

1999; Gaspar-Escribano et al., 2004; Gattacceca et al., 2007; Lustrino et al., 2009; Etheve et al., 61 

2016) 62 

 63 

 Several authors (e.g., Royden and Burchfiel, 1989; Schmid et al., 1996, 2004; Stampfli et al., 64 

1998; Finetti et al., 2005a; Handy et al., 2015) suggest that the western Alpine belt built up as an 65 

effect of the subduction of the Valais and Piemont-Ligurian oceanic domains and the European 66 

thinned continental margin, which generated a southward verging slab. In the Oligocene, such 67 

process underwent slowdown/cessation, when continental crust entered the trench zone. Then, along 68 

the Alpine sector lying aside the Iberian domain, another opposite verging (North to NW ward) 69 

subduction process started, involving the consumption of the Tethyan oceanic domain under the 70 

migrating Al-Ka-Pe-Ca belt (Gaspar-Escribano et al., 2004; Lustrino et al., 2009; Schettino and 71 

Turco, 2006; Handy et al., 2015; Etheve et al., 2016). This implies that when the ATBA system 72 

began to migrate, in the Oligocene, the northward dipping slab did not exist or was scarcely 73 

developed, being thus unable to induce a sufficient slab-pull force. To this regard, it should be 74 

considered that laboratory and numerical modelings suggest that a minimum slab length (150-300 75 

km) is required in order to initiate back-arc extension driven by slab-pull (e.g., Hassani et al., 1997; 76 

Faccenna et al., 1999; Schellart, 2005). 77 
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 Other authors instead, suggest that prior to the formation of the Liguro-Provencal basin (30-25 78 

My) there was a well developed northward dipping slab at least 150 km long (Jolivet and Faccenna, 79 

2000, Carminati et al., 2012; van Hinsbergen et al., 2014, Faccenna et al., 2014a) beneath the 80 

Alpine belt. However, no clear information is provided about the correspondence between the 81 

dimension and age of the present Alpine-Apennine belt and the orogenic material that the presumed 82 

subduction process would have accumulated in the trench zone. 83 

 The fact that during the formation of the Balearic basin the Northern Al-Ka-Pe-Ca arc 84 

underwent an evident sinistral NE-SW shift with respect to the Western Alps (Fig.2), leading to the 85 

formation of the Ligurian basin (e.g., Makris et al., 1999; Mosca et al., 2010), suggests that such arc 86 

was stressed by belt-parallel push. This kind of stress field is also suggested by the kinematics of 87 

the strike-slip faults and lateral escape of blocks in the Sardinia-Corsica microplate (e.g., 88 

Carmignani et al., 1994, 2004; Oggiano et al., 2009 and references therein). The Oligocene-89 

Aquitanian age of this tectonic regime has been mainly constrained by the analysis of the infilling 90 

succession of transtensive basins. The above evidence is not compatible with the roughly eastward 91 

orientation of the trench suction force that would have been induced by a slab-pull mechanism. 92 

 Another major feature of the Balearic ATBA system that cannot easily be explained as an 93 

effect of slab-pull forces is the strong bowing that the Arc underwent during its migration (Fig. 2b). 94 

Numerical modelings of a slab-pull mechanism (e.g., Schellart et al., 2007) could justify a curvature 95 

of the migrating arc, but the resulting effect is much smaller than the one that really occurred in the 96 

western Mediterranean area (Mantovani et al., 2001a; 2002; Viti et al., 2009 and references therein). 97 

Moreover, the horizontal bowing predicted by modellings would need more than 16 My to develop 98 

(e.g., Schellart et al., 2007). Other laboratory experiments suggest instead a linear shape of the 99 

retreating subduction boundary, without significant arc bowing (Becker et al., 1999).   100 

 It is not demonstrated that the trench-suction force induced by gravitational sinking of a slab 101 

can break the upper plate. The results of some laboratory and numerical experiments (e.g., 102 

Shemenda, 1993; Hassani et al., 1997; Capitanio et al., 2010) indicate that slab-pull cannot produce 103 
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significant deformation in the upper plate unless it was not previously weakened by other tectonic 104 

or magmatic processes. Even in this last case, the trench suction force would be unable to produce 105 

extension in the overriding plate until the slab has reached a length of about 150-300 km. 106 

 107 

Northern Tyrrhenian basin (9-6 My) 108 

 From about 9 to 6 My, the sector of the Alpine-Apennine belt that lay aside the Corsica-109 

Sardinia block (Fig. 3a) underwent roughly E-W crustal extension and consequent thinning (e.g., 110 

Mauffret et al., 1999; Sartori et al., 2001; Carmignani et al., 2004; Finetti et al., 2005a; Peccerillo, 111 

2005; Sartori, 2005; Moeller et al., 2013; Cornamusini et al., 2014). This process formed the 112 

Northern Tyrrhenian basin (Fig.3b), a roughly triangular zone confined to the South by the Selli 113 

fault, which divided the extending Tyrrhenian area from an orogenic Alpine-Apennine body 114 

(Sartori et al., 2001, 2004).   115 

 116 

 Explaining the main features of such extensional event as an effect of slab-pull forces (e.g., 117 

Malinverno and Ryan, 1986; Royden, 1993) involves serious difficulties.  118 

 Most authors suggest that the stop of the northern Al-Ka-Pe-Ca Arc and the Corsica-Sardinia 119 

block occurred when the Adriatic continental domain entered the trench zone, around 15 My 120 

(Speranza et al., 2002; Finetti et al., 2005a; Gattacceca et al., 2007; Molli 2008, Malusà et al., 121 

2016). In that context, any further development of slab roll-back would have encountered very 122 

strong resistance from buoyancy forces (e.g., Brancolini et al., 2019). In fact, in the subsequent 123 

period (from about 15 to 9 My) no possible effects of trench retreat (such as crustal extension) has 124 

developed in the zone overlying the slab (Faccenna et al., 2001, 2014a; Finetti et al., 2005a). Thus, 125 

the hypothesis that the subducted Adriatic margin has undergone gravitational sinking from about 9 126 

to 6 My, forming the Northern Tyrrhenian basin, suggests some questions:  127 

- Why slab-roll back did not occur for about 6 My and why it would have resumed at 9 My ? 128 
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- Why from 9 to 6 My gravitational sinking would have only affected the northern sector of a long 129 

slab lying beneath the whole Apennine belt ? in spite that the slab sector lying under the Central-130 

Southern Apennines and Calabria was certainly more developed.  131 

- Why was there no accretionary activity in the Northern Apennine belt during the formation of the 132 

Northern Tyrrhenian basin ? If crustal extension is supposed to be an effect of slab-pull forces, one 133 

could expect to observe as well the other major effect of that driving mechanism, i.e. the 134 

development of accretionary activity along the front of the migrating Arc, as indeed occurred in the 135 

previous period, during the formation of the Balearic basin. 136 

- Why was the zone affected by crustal extension confined by the Selli fault, which is obliquely 137 

oriented with respect to the eastward orientation of slab roll-back (and of crustal extension) ? 138 

- Why in the Messinian (6-5 My) gravitational sinking of the slab would have ceased beneath the 139 

Northern Apennines and started beneath the Southern Apennines ?  140 

    The attempts at interpreting the evolution of the Northern Tyrrhenian-Apennine system as an 141 

effect of slab-pull forces are encouraged by some tomographic studies (Lucente et al., 1999; 142 

Piromallo and Morelli, 2003; Spakman and Wortel, 2004) which suggest the presence of a well 143 

developed lithospheric body (hundreds of Km long) beneath that belt. However, these 144 

interpretations cannot easily be reconciled with the results of other tomographic investigations 145 

(Scafidi et al., 2009; Scafidi and Solarino, 2012) and CROP seismic soundings (e.g., Finetti et al., 146 

2001, 2005a), which do not evidence any well developed lithospheric slab beneath the Apennine-147 

Tyrrhenian system. The occurrence of some subcrustal earthquakes beneath the Northern Apennines 148 

cannot be used to confirm the results of tomography, since focal depths are mainly lower that 70 km 149 

(e.g., Chiarabba et al., 2005) and the magnitudes are very low (ISIDe Working Group, 2016). It is 150 

worth noting that the distribution of subcrustal earthquakes is compatible with the geometry of the 151 

crustal slivers suggested by CROP sections (Finetti et al., 2005a). 152 

 Some authors have tried to identify possible explanations for episodic effects of gravity on 153 

subducted lithosphere. For instance, Faccenna et al. (2001, 2014a) recognize the problem of 154 
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episodic slab retreat, stating that it could be explained by the interaction of the subducted 155 

lithosphere with the 670 km-depth mantle discontinuity. The inability of the slab to penetrate across 156 

such discontinuity would cause a sudden decrease of the subduction rate and trench retreat. Only 157 

after the slab has folded over the mantle discontinuity, subduction and trench migration may resume 158 

again, leading to a new phase of back-arc extension (Faccenna et al., 2004, 2007). However, it must 159 

be considered that the above results have been obtained by experiments where the upper plate is not 160 

present at all, a quite irrealistic condition. Other experiments have shown that the presence of a 161 

sufficiently strong upper plate can prevent slab roll-back (see figure 11 by Capitanio et al., 2010 and 162 

Shemenda, 1993; Hassani et al., 1997). 163 

 164 

Central Tyrrhenian basin (about 5-2 My) 165 

 In the late Miocene-Early Pliocene crustal extension ceased in the Northern Tyrrhenian and 166 

began to develop in the Alpine-Apennine sector located south of the Selli fault, generating oceanic 167 

crust in the central Tyrrhenian area (Magnaghi and Vavilov basins, Fig.4, e.g., Finetti and Del Ben, 168 

1986, 2005a; Mascle and Rehault, 1990; Sartori, 1990, 2005; Sartori et al., 2004; Guillaume et al., 169 

2010). 170 

 Such extension was accompanied by other coeval major tectonic events in the central 171 

Mediterranean region, as listed in the following.  172 

 173 

- Thrusting and folding underwent a significant acceleration in the Apennine belt (e.g., Patacca et 174 

al., 1990; Coward et al., 1999; Catalano et al., 2004; Cerrina Feroni et al., 2004; Parotto and 175 

Praturlon, 2004; Patacca and Scandone, 2007; Ghielmi et al., 2013).  176 

-  In the Northern Apennines, the foredeep geometry underwent a major change during the Late 177 

Pliocene, passing from a continuous (cylindrical) to highly fragmented (non-cylindrical) pattern 178 

(Amadori et al., 2019). 179 
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- Seismic soundings (Finetti et al. 2001, Finetti et al., 2005b) indicate that since the latest Miocene 180 

the Adriatic lithosphere has undergone strong shortening, accommodated by major thrust faults 181 

cutting the entire crust and that significant shortening (several tens of Km) also affected the 182 

migrating arc.  183 

- Since the late Messinian, a major transtensional fault system (Sicily Channel, Medina and Victor 184 

Hensen, Fig. 4) developed in the Pelagian and Ionian zones (e.g., Finetti and Del Ben, 1986, 2005b; 185 

Boccaletti et al., 1987; Cello, 1987; Reuther et al., 1993; Hieke et al., 2003, 2006 and references 186 

therein). 187 

- During the Lower Pliocene, the western border of the thinned Hyblean domain (Sciacca fault) was 188 

activated as a dextral shear zone (Civile et al., 2018), while compressional deformation is 189 

recognized in the Maghrebian sector lying north of the Adventure block (Pepe et al., 2005) and an 190 

extensional regime formed the Pantelleria trough (Civile et al., 2014, 2018, Finetti and Del Ben, 191 

2005b).  192 

- The Malta and Linosa troughs started developing (Catalano et al., 1994; Furlani et al., 2013). 193 

- The Sicilian Apennines underwent a southward bending, attributed to E-W shortening (e.g., 194 

Ghisetti et al., 2009), forming the Gela nappe.  195 

- Dextral transpressional deformation, associated with a system of NW-SE faults, is recognized in 196 

the Maghrebian belt lying north of the Hyblean-Adventure promontory (Fig. 4, e.g., Catalano et al., 197 

1994, 1996; Sulli, 2000; Guarnieri, 2004; Finetti et al., 2005c).  198 

- An old NW-SE discontinuity in the northern Adriatic foreland reactivated with a sinistral strike-199 

slip regime (the Schio-Vicenza fault system, Fig. 4, e.g., Castellarin and Cantelli, 2000; Zampieri et 200 

al., 2003; Massironi et al., 2006; Pola et al., 2014).  201 

- Since the late Miocene, NW-SE to N-S thrusting in the Southern Alps mostly affected the sector 202 

lying east of the Schio-Vicenza fault (e.g., Bressan et al., 1998; Galadini et al., 2005), while such 203 

activity almost ceased west of that discontinuity.  204 
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- In the Northern Dinarides several thrust faults reactivated as dextral strike-slip faults (Placer et al., 205 

2010). 206 

 207 

 Any attempt at explaining the formation of the Central Tyrrhenian basin as an effect of slab-208 

pull forces should provide plausible answers to some demanding questions: 209 

- Why in the Pliocene would gravitational sinking have only affected the sector of the slab located 210 

beneath the Southern Apennines ? (although at that time the slab was well developed under the 211 

Calabrian Arc).  212 

- Why would such sinking have only begun in the latest Miocene ? notwithstanding the slab under 213 

the Apennines was already well developed in the middle Miocene. 214 

- Why would the effects of slab-pull forces beneath the southern Apennines have ceased in the late 215 

Pliocene-early Pleistocene ?  i.e. when crustal stretching ended in the Central Tyrrhenian basin.  216 

 217 

Other major problems for slab-pull supporters are discussed in the following: 218 

 The subsidence predicted by the slab-pull mechanism in the trench zone (Shemenda, 1993; 219 

Hassani et al., 1997; Buiter et al., 2001; Hampel and Pfiffner, 2006; Husson, 2006) is just opposite 220 

to the uplift that most of the Apennines belt and Calabrian Arc have undergone in the Pliocene and 221 

Quaternary (e.g., Westaway, 1993; Pizzi, 2003; Schiattarella et al., 2003; Rusciadelli, 2005, 222 

Ghielmi et al., 2013). 223 

 Belt-parallel shortening of the whole Apennine chain, evidenced by the formation of major and 224 

minor arcs and transversal thrust fronts, as the Olevano-Antrodoco and Sangro-Volturno (e.g., Pizzi 225 

and Galadini, 2009; Di Domenica et al., 2012; Ghielmi et al., 2013; Amadori et al., 2019), is not 226 

compatible with the trench suction forces implied by slab roll-back. 227 

 The Northern Adriatic foredeep does not show any evidence of tilting after the early Pliocene, 228 

suggesting that tectonic activity in the Apennine belt can hardly be imputed to slab-pull forces 229 

(Brancolini et al., 2019). 230 
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 Since the activation of major fault systems in the Pelagian zone (Sicily Channel) and the 231 

northern Adriatic foreland (Schio-Vicenza) can hardly be explained as effects of slab-pull forces 232 

beneath the Southern Apennines, there remains the problem of identifying which other driving 233 

mechanisms were active in the central Mediterranean zone during the Pliocene. In this regard, 234 

Faccenna et al. (2004, 2007) suggest that transtensional deformation in the Sicily Channel could be 235 

related to the breaking that would have affected the most curved sector of the wide slab formed 236 

during the Balearic phase. Such deep break would have caused the Late Miocene alkaline 237 

volcanism in northern Tunisia and Sardinia and deformation in the Sicily Channel zone. However, 238 

slab breaking and related magmatism (e.g., Lustrino and Wilson, 2007) do not necessarily 239 

presuppose passive lithosphere sinking. Moreover, one must consider that tectonic activity in the 240 

Sicily Channel relates to transcurrent fault systems, with some sectors of pull-apart extension, 241 

which cannot simply be generated by uprising of magma.  242 

 243 

 Southernmost Tyrrhenian (Pleistocene) 244 

 In the early Pleistocene, crustal stretching ended in the Central Tyrrhenian and started 245 

developing in the southernmost Tyrrhenian area (Marsili basin, e.g., Finetti and Del Ben, 1986; 246 

Sartori, 1990; Savelli, 2002). This extension (Fig. 5) was accompanied by other major tectonic 247 

events in the surrounding regions:  248 

- In the late Pliocene-Early Pleistocene thrusting underwent slowdown/cessation in the Southern 249 

Apennines (e.g., Cello and Mazzoli, 1999; Catalano et al., 2004; Patacca and Scandone, 2004, 250 

2007). 251 

- Tectonic activity considerably strengthened in the Calabria-Peloritani wedge, with development of 252 

major troughs, transversal discontinuities and relative block rotations, accompanied by fast uplift 253 

(e.g., Westaway, 1993; Van Dijk and Scheepers, 1995; Zecchin et al., 2004, 2010, 2011, 2015; 254 

Finetti, 2005a; Tansi et al., 2007; Del Ben et al., 2008; Spina et al., 2011; Roda-Boluda and 255 

Whittaker, 2017; Tripodi et al., 2018). 256 
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- Thrusting and folding increased along the external front of the Calabrian wedge, with the 257 

formation of the External Calabrian Arc complex (e.g., Patacca et al., 1990; Del Ben, 1993; Finetti, 258 

2005a). 259 

-Tectonic and volcanic activity increased at the Taormina and Palinuro fault systems (e.g., Finetti 260 

and Del Ben, 1986; Finetti et al., 1996; Ventura et al., 1999; Savelli, 2002; Peccerillo, 2005).  261 

- Thrusting at the front of the Adventure block and extension in the Pantelleria graben slowed down 262 

with respect to the Pliocene (Pepe et al., 2005; Civile et al., 2010, 2018). 263 

- The southern Adriatic plate underwent upward flexure, with the formation of the Apulian swell 264 

(e.g., Finetti and Del Ben, 1986; Tropeano et al., 2002; Santangelo et al., 2012).  265 

- In the Early Pleistocene, the northern Adriatic foreland and the surrounding foredeeps were 266 

affected by intense subsidence (Ghielmi et al., 2013; Zecchin et al., 2017). 267 

 268 

 Explaining the formation of the southernmost Tyrrhenian basin and the coeval tectonic events 269 

cited above (Fig. 5) as an effect of slab-pull forces involves some major problems, as discussed in 270 

the following. 271 

-The uplift that the Calabrian Arc underwent in the Pleistocene cannot be reconciled with the 272 

subsidence predicted by gravitational sinking of the underlying slab (Shemenda, 1993; Hassani et 273 

al., 1997: Buiter et al., 2001; Hampel and Pfiffner, 2006; Husson, 2006; Faccenna et al., 2014b).  274 

- The strong deformation that the Calabria-Peloritani wedge has undergone since the late Pliocene, 275 

with the formation of several longitudinal troughs and transversal sphenocasms and the bowing and 276 

uplift of that arc, is compatible with belt-parallel compression, which can hardly be taken as an 277 

effect of slab roll-back.  278 

- The upward flexure of the southern Adriatic domain (Apulian swell) cannot easily be explained as 279 

an effect of slab roll back.  280 

- The very small width of the Marsili basin (about 50 Km, Fig.5) would imply the roll-back of a 281 

corresponding narrow slab. However, such slab shape would require the presence of major 282 
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decoupling tear faults between the sinking lithosphere and the lateral (not sinking) sectors. When 283 

and why did such tears develop ?  284 

 285 

Recent/present tectonic setting in the Apennine belt  286 

 Around the middle Pleistocene (Fig.6), the deformation pattern in the Apennines underwent an 287 

important change, recognized by most authors (e.g., Hippolyte et al., 1994; Galadini, 1999; 288 

Bartolini, 2003; Piccardi et al., 2006): 289 

- Strike-slip tectonics has developed in the southernmost (Lucanian) sector of the Southern 290 

Apennines, with the formation of a system of NW-SE sinistral strike-slip faults, accompanied by 291 

compressional and tensional features at restraining and releasing stepovers respectively (e.g. Cello 292 

et al., 2003; Catalano et al., 2004; Maschio et al., 2005; Ferranti et al., 2009). 293 

- In the northern sector of the Southern Apennines, from the Irpinia to Matese zones, a system of 294 

normal faults roughly trending NW-SE has developed in the axial part of the belt (e.g., Ascione et 295 

al., 2003, 2007; Brozzetti, 2011).  296 

- In the Central Apennines, sinistral transtension is recognized in the system of NW-SE normal-297 

oblique faults located in the axial belt (e.g. Galadini, 1999; Piccardi et al., 1999; Galadini and 298 

Messina, 2004; Elter et al., 2012).  299 

- In the Northern Apennines, sinistral transtensional faulting in the axial belt (e.g., Cello et al., 300 

1998, 2000; Boncio and Lavecchia, 2000; Tondi and Cello, 2003; Piccardi et al., 2006) and 301 

thrusting at the outer border (e.g., Boncio and Bracone, 2009; Scisciani and Calamita, 2009; 302 

Boccaletti et al., 2011) have occurred. The middle-upper Pleistocene evolution of this belt sector 303 

indicates a predominance of vertical motion, with uplift and widening of the Northern Apennine 304 

range (Ghielmi et al., 2013). 305 

- Uplift has affected the axial and outer sectors of the whole Apennine belt (e.g., Argnani et al., 306 

2003; Bartolini, 2003; Schiattarella et al., 2003, Ascione et al., 2008).  307 
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- Compressional features have developed in the inner part of Adria, such as the Middle Adriatic 308 

Ridge (Fig. 6, e.g., Scisciani and Calamita, 2009). 309 

- Two major volcanic episodes (Roman and Campanian provinces, Fig.6) occurred in the western 310 

side of the Apennine belt (Peccerillo, 2005; Alagna et al., 2010). The emplacement of such 311 

volcanism has been related to transtensional faulting (Milia and Torrente, 2003; Acocella and 312 

Funiciello, 2006). 313 

- Around the middle-late Pleistocene, the northern part of the Calabrian wedge reaches the 314 

continental Adriatic domain and a new major fault system (Sibari), almost parallel to the Adria 315 

border develops (Fig. 6, e.g., Guarnieri, 2006; Del Ben et al., 2008; Ferranti et al., 2014; Zecchin et 316 

al., 2015, Volpi et al., 2017). 317 

- The Crati and Mesima longitudinal troughs and the Catanzaro and CapoVaticano transversal 318 

troughs/faults develope in the Calabrian Arc (e.g., Spina et al., 2011; Zecchin et al., 2015; Tripodi 319 

et al., 2018). 320 

- The Vulcano-Syracuse fault system activates (e.g., Finetti and del Ben, 1986; Del Ben et al., 2008; 321 

Sulli et al., 2013). 322 

- The Sciacca fault system becomes a sinistral shear zone and is affected by magmatic activity (e.g., 323 

Lodolo et al., 2012; Civile et al., 2018, Fedorik et al., 2018). 324 

  325 

 The present kinematic pattern in the Italian region is fairly well defined by the analyisis of 326 

geodetic data observed in more than 700 permanent GPS stations in the period running from 327 

January 1, 2001 to December 31, 2018. The horizontal velocity field derived by such data (Fig. 7) 328 

with respect to a fixed Eurasian frame (Euler pole at 54.23˚N, 98.83˚W, ω = 0.257˚/Myr, Altamimi 329 

et al., 2016) shows that the outer sector of the Apennine belt, including the buried thrusts and folds 330 

under the Po Plain, moves considerably faster (4-5 mm/y) and with a greater eastward component 331 

with respect to the inner belt (1-2 mm/y). In the Padanian zone that lies west of the Giudicarie fault 332 

system velocity values show a significant decrease and a different trend, with respect to the outer 333 
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Apennine belt. In southern Italy, the geodetic field confirms the long-term roughly NE ward motion 334 

trend of Calabria and the NNW ward motion trend of the Hyblean zone.  335 

 336 

 To interpret the drastic change of tectonic style that occurred in the Apennine belt around the 337 

middle Pleistocene as an effect of slab-pull forces, one should explain why the effect of such deep 338 

driving mechanism on shallow structures has considerably changed at that time. An attempt in this 339 

sense has been made by some authors (e.g., Faccenna et al., 2014b), who suggest that the 340 

Pleistocene deformation pattern in the Apennine belt has been controlled by changes of deep seated 341 

dynamic processes (mantle convection) connected with the development of windows in the western 342 

subducted margin of Adria located beneath the Central and Southern Apennines (e.g., Wortel and 343 

Spakman, 2000; Piromallo and Morelli, 2003; Faccenna et al., 2007). However, this interpretation 344 

cannot easily be reconciled with some major features of the observed deformation pattern, as 345 

discussed in the following:  346 

- Pleistocene uplift is recognized in the whole belt, from the Northern Apennines to Calabria, 347 

although this effect would only be expected in the belt sectors (Central and Southern Apennines) 348 

located above the supposed slab windows.  349 

- The velocity field derived from GPS measurements in the Italian region (Fig. 8) indicates that the 350 

outer sector of the Apennine belt is moving faster (4-5 mm/y NEward ) than the inner sector (1-2 351 

mm/y N to NWward). This almost homogeneous kinematic pattern all along the whole belt can 352 

hardly be imputed to mantle upwelling above slab windows in the Central and Southern Apennines.  353 

- The Hyblean wedge, confined by tectonic zones (Sicily channel, Syracuse fault and Maghrebian 354 

belt) is moving roughly North to NW ward, while the Calabrian wedge is moving roughly ENE 355 

ward (Fig. 8). Explaining such microplate kinematics as an effect of mantle upwelling in the 356 

Southern and Central Apennines appears to be a rather difficult task.  357 

 358 

3. Proposed geodynamic interpretation  359 
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 360 

Main concepts  361 

 The observed deformation pattern in the Mediterranean region has been driven by the 362 

convergence of the Africa/Adriatic and Eurasia plates and by the roughly westward motion of the 363 

Anatolian-Aegean-Pelagonian belt, induced by the indentation of Arabia (e.g., Mantovani et al., 364 

2006, 2009, 2014; Viti et al., 2009). The shortening of the interposed Mediterranean structures, 365 

constituted by orogenic belts, oceanic zones and the Adriatic continental and thinned continental 366 

domains, has been accommodated by a variety of tectonic processes, whose spatio-temporal 367 

distribution has been controlled by the well know least-action principle, aimed at minimizing the 368 

resistance of gravity, fault friction and mantle viscosity. 369 

 It is known that in a buoyancy-controlled context the most efficient way to gain space in a 370 

constricted area is the subduction of lithosphere and that such process is mainly favored when 371 

oceanic domains are involved (e.g., Cloos, 1993; Stern, 2004). However, one must take into account 372 

that the consumption of such domains cannot simply be determined by horizontal compression 373 

exerted by plate convergence. This consideration is mainly suggested by the fact that during the 374 

long collisional phase between the Africa-Adriatic plate and Eurasia, the Ionian oceanic domain did 375 

not undergo any subduction beneath the African and Adriatic continental domains. The fact that 376 

during such phase the push of Africa was very efficiently transmitted by the Ionian zone to the 377 

continental Adriatic domain is testified by the compressional deformations that took place along the 378 

northern boundary of that promontory (e.g., Castellarin and Cantelli, 2000; Ceriani and Schmid, 379 

2004; Rosemberg and Kissling, 2013; Handy et al., 2015). The physical plausibility of the above 380 

evidence is confirmed by the computation of rheological profiles (e.g., Viti et al., 1997), which 381 

indicates that in long-term (geological) time intervals the horizontal compressional strength of the 382 

oceanic lithosphere is not lower than the one of a continental domain. That old and cold oceanic 383 

lithosphere can effectively transmit horizontal compression is also suggested by the persistence of 384 

continental collision at the Himalayan-Tibet boundary, without any new subduction zone in the 385 
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central Indian Ocean (e.g. Stern, 2004; Copley et al., 2010). Another example is the Black Sea 386 

oceanic lithosphere, which has transmitted compression from northern Anatolia to central-southern 387 

Eurasia since Eocene (e.g., Hippolyte et al., 2018). 388 

 To understand why the consumption of oceanic domains has often occurred in the 389 

Mediterranean region since the Oligocene, it is necessary to take into account that the lateral escape 390 

of orogenic wedges may have created the conditions which can make that process feasible. When 391 

the margin of an oceanic domain is overthrust by extruding orogenic material, it undergoes 392 

downward flexure, due to isostasy. This deformation perturbs the previous equilibrium between 393 

horizontal forces, triggering the sink of the denser lithosphere, under the action of plate 394 

convergence (see e.g. the mechanism of subduction initiation given by Hall, 2018). 395 

   Laboratory experiments (Driehaus et al., 2013) show that the extrusion of a continental belt over 396 

an adjacent oceanic domain (driven by belt-parallel compression) may induce subduction when the 397 

density ratio between the oceanic and continental plates is larger than 1.4.  398 

   The above considerations can explain why the consumption of most Tethyan zones has often 399 

occurred since the Oligocene, when most extrusion processes have developed in the study area (e.g., 400 

Mantovani et al., 2006, 2009, 2014; Viti et al., 2009). 401 

 Another type of tectonic reorganization that may allow the activation of more convenient 402 

shortening processes in a constricted context, involves a change of plate mosaic, through the 403 

activation of major decoupling faults. In the new plate configuration, the kinematic pattern of 404 

buoyant blocks (microplates and orogenic wedges) is reorganized in order to address most intense 405 

stresses towards the less buoyant domains. Two major examples of this kind of tectonic 406 

reorganization have occurred in the middle Miocene and late Miocene in the central Mediterranean 407 

area, as discussed in the next sections.  408 

 Laboratory (e.g., Ratschbacher et al., 1991; Davy et al., 1995; Faccenna et al., 1996; Driehaus 409 

et al., 2013; Boutelier et al., 2018) and numerical (e.g., Mantovani et al., 2000, 2001b, 2007b) 410 

experiments suggest that in constricted buoyant structures the lateral escape of wedges (arcs) 411 
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is the most convenient shortening process and that in the internal side of an extruding/migrating 412 

arc crustal extension may develop. Extension occurs when the divergence between the migrating arc 413 

and the stable foreland is faster than the shortening induced by plate convergence. 414 

 415 

Balearic basin 416 

 The development of the Balearic ATBA system (Fig.2) was triggered by the collision between 417 

the northern margin of the African continent and the southernmost edge of the Al-Ka-Pe-Ca belt 418 

(the Atlas compressional phase, e.g. Benaouali-Mebarek et al., 2006; Tesòn and Teixell, 2008; 419 

Frizon de Lamotte et al., 2009). After the remarkable increase of resistance induced by that 420 

collision, the prosecution of the Africa-Eurasia convergence was allowed by a peculiar shortening 421 

process, given by the eastward bowing/extrusion of the Al-Ka-Pe-Ca-Corsica-Sardinia arc, at the 422 

expense of the adjacent Tethyan domain (Fig. 2). Crustal extension developed in the wake of the 423 

migrating arc, leading to the formation of the Balearic and Algerian basins, while thrustings 424 

developed in the trench zones (Apennines and Maghrebides). A detailed description of the proposed 425 

geodynamic interpretation and of how it can account for the observed deformation pattern in the 426 

Western Mediterranean region is given by Viti et al. (2009).  427 

 428 

Northern Tyrrhenian basin (9-6 My) 429 

 The conditions that led to the formation of the Northern Tyrrhenian basin were created by the 430 

reactivation of a major old discontinuity in the Northwestern part of the Adriatic promontory (the 431 

Giudicarie fault system, Fig. 9a,b). This decoupling allowed to overcome the critical situation that 432 

had gradually developed along the collision zone between the Adriatic promontory and the 433 

European plate. In the Oligocene-Lower Miocene, such collision caused the accumulation of a huge 434 

amount of light crustal material in the trench zone (e.g., Schmid et al., 2004; Finetti, 2005b). Thus, 435 

the resistance of gravity against any further underthrusting was getting higher and higher.  436 
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 The possibility of mitigating such critical situation was offered to the Adriatic promontory by 437 

the development, in the early-middle Miocene of a weak lateral boundary zone, constituted by the 438 

Carpatho-Pannonian ATBA system (e.g., Royden et al. 1983; Tari and Pamic, 1998; Horvath et al, 439 

2015, Rèka et al., 2018; Mantovani et al., 2006, 2009). The presence of that tectonized structure 440 

allowed the eastward extrusion of buoyant crustal wedges from the Eastern Alps (a process also 441 

revealed by the formation of the Tauern window in the wake of the extruding wedges, Fig.4b, e.g., 442 

Ratschbacher et al., 1991; Robl and Stuwe, 2005; Wolfler et al., 2011), which favoured the 443 

NNEward displacement of the Adriatic domain (Peresson and Decker, 1997; Frisch et al., 2000). 444 

However, this displacement could only occur after the decoupling of the main Adriatic domain from 445 

its northwestern protuberance, which at that time was deeply stacked beneath the Western Alps. 446 

Such decoupling was allowed by the reactivation, around the Tortonian (Martin et al. 1998; 447 

Castellarin and Cantelli, 2000; Viola et al., 2001; Fellin et al., 2002), of an old discontinuity in the 448 

northern Adriatic foreland, the Giudicarie fault system (Fig. 9b), where sinistral transpressional 449 

activity is recognized until the early Messinian (e.g., Favaro et al., 2017). The NNE ward 450 

displacement, with clockwise rotation, of the northern Adriatic domain that followed such 451 

decoupling allowed that promontory to release the internal elastic deformation that such indenter 452 

had accumulated during its oblique collision with the European domain.  453 

 The sinistral motion between the decoupled Adriatic domain and its northwestern Padanian 454 

protuberance (by then closely connected with the Western Alps) is testified by the fact that since 455 

then thrusting activity in the Alps mostly occurred in the sector lying east of the Giudicarie fault 456 

(e.g., Frisch et al., 2000, Viola et al., 2001; Zampieri et al., 2003; Castellarin et al., 2004). 457 

 The consequent divergence between the mobile Adriatic domain and the Corsica-Sardinia 458 

block (stable since the middle Miocene, Gattacceca et al., 2007 and references therein) caused 459 

crustal extension in the interposed zone, constituted by a sector of the Alpine-Apennine orogenic 460 

belt lying north of the Selli fault, leading to the formation of the Northern Tyrrhenian basin 461 

(Fig.9b). This hypothesis can explain why crustal extension affected the zone comprised between 462 
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the Adriatic promontory and the Corsica-Sardinia block, why such activity started around the 463 

middle Tortonian (about 9 My), just after the reactivation of the Giudicarie fault system, and why 464 

the extended area was confined to the South by the Selli fault. 465 

 466 

Central Tyrrhenian basin and other major coeval tectonic events  467 

 Since the late Miocene, tectonic activity in the Mediterranean region was significantly 468 

influenced by the westward displacement of the Anatolian-Aegean-Pelagonian belt (Fig.1). In the 469 

previous evolution, this last kinematic boundary condition did not have significant effects in the 470 

Central Mediterranean area, because the convergence between the Africa-Adriatic plate and the 471 

above belt was mainly accommodated by the consumption of the interposed thinned domain (the 472 

Ionian zone in figure 9a, e.g., Robertson and Shallo, 2000). The resistance against this convergence 473 

considerably increased in the upper Miocene, when more buoyant domains reached that consuming 474 

boundary (Mercier et al., 1987; Sorel et al., 1992). This critical situation, with progressive 475 

slowdown of accretionary activity, lasted up to the late Miocene-early Pliocene, when a drastic 476 

change of plate mosaic and kinematic pattern allowed other less resisted shortening processes to 477 

occur. This reorganization started by decoupling a large portion of the Adriatic promontory (Adria 478 

plate in figure 9c) from Africa, through the activation of a long fracture, the Sicily Channel-479 

Medina-Victor Hensen transtensional fault system. Prior to this tectonic phase, the Hyblean-480 

Adventure promontory was part of the undeformed African foreland (Pelagian zone, e.g. Finetti and 481 

Del Ben, 1986, 2005b; Hieke et al., 2003, 2006; Lentini et al., 2006; Fedorik et al., 2018). The new 482 

motion trend of Adria required another major decouplig (at least partial) in the northern Adriatic 483 

zone, which was achieved by the reactivation of an old weak zone, the Schio-Vicenza sinistral fault 484 

system (Fig. 9c). After that decoupling, the northern Adria domain moved roughly NNW ward, as 485 

indicated by a change in the orientation of the compressional axis from SW-NE to SSE-NNW in the 486 

eastern Southern Alps (e.g., Castellarin and Cantelli, 2000) and by the reactivation of many thrust 487 

zones as right lateral strike-slip faults in the Northern Dinarides (Placer et al., 2010). The 488 
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decoupling of the Adria plate from Africa and the  new kinematics of that plate (Fig. 9c) avoided an 489 

highly resisted collision with the Anatolian-Aegean-Pelagonian belt. 490 

 The E-W convergence between southern Adria and the northern African promontory (the 491 

present Algeria-Tunisia zone) required the roughly Northward expulsion of an African fragment 492 

(the Adventure block), guided by the Egadi and Sciacca fault systems (Fig. 9c,d), and the E-W 493 

shortening of the Hyblean domain. The extrusion of the Adventure block in the early Pliocene may 494 

explain the thrusting recognized at the outer front of that wedge (in the Maghrebian belt, Pepe et al., 495 

2005), the formation of the Pantelleria trough at the inner side of the same block (Civile et al., 2010, 496 

2018) and the dextral shear recognized in the Sciacca fault system (Civile et al., 2018). The E-W 497 

shortening of the Hyblean domain, constituted by thick and thin zones (Fig. 9c,d), was 498 

accommodated by the southward bending of the Sicilian Apennines, with the consequent formation 499 

of the Gela nappe (at the expense of the thinned Hyblean domain), and by fracturation and 500 

redistribution of small ridge fragments in the Sicily channel zone (see i.e. Finetti and Del Ben, 501 

1986). The occurrence of local extension between diverging fragments caused the formation of the 502 

Malta and Linosa troughs, as tentatively reconstructed in figure 10.  503 

 504 

 The roughly northward displacement of Pelagian blocks is also suggested by the fact that the 505 

sector of the Alpine (Kabylo-Calabrides)-Maghrebian belt which lies in front of them (e.g., Ben 506 

Avraham et al., 1990; Lentini et al., 1994; Sulli, 2000; Gueguen et al., 2002) shows a northward 507 

shift with respect to the lateral North African and Calabrian sectors (see fig. 10 of Mantovani et al., 508 

2007b and references therein). 509 

 The complex evolution of the Sicily channel tectonic zone may have favored the ambiguity that 510 

still surrounds the shear sense in that transcurrent fault system (e.g., Grasso and Pedley, 1985; 511 

Boccaletti et al., 1987; Cello, 1987; Reuther et al., 1993; Kim et al., 2003; Finetti and Del Ben, 512 

1986, 2005b; Catalano et al., 2009). Since the break of the thick continental African domain is a 513 

major tectonic event in the evolution of the central Mediterranean region, any hypothesis advanced 514 
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about the nature (dextral or sinistral strike slip or pure passive rifting) and the genetic mechanism of 515 

that discontinuity should also provide a geodynamic justification for the coeval deformations 516 

observed in the surrounding zones. For instance, one should consider that a dextral movement at the 517 

Sicily Channel fault system would imply a SE ward motion of the Hyblean domain with respect to 518 

Africa. However, the deformation predicted by such kinematics in the surrounding zones 519 

(shortening in the Ionian zone facing the Hyblean block and extension in the zone lying between the 520 

Hyblean promontory and Sardinia) are not compatible with the observed features. No evidence of 521 

shortening is recognized in the Ionian area, especially at the Syracuse escarpment, as shown by 522 

CROP seismic sections (e.g., Finetti and Del Ben, 2005c) and a considerable shortening, instead of 523 

the expected extension, is evidenced by the CROP section crossing the Sardinia and Sicily Channels 524 

(Finetti et al., 2005c). We would like to remark that the geodynamic framework we propose as 525 

responsible for the formation of the Sicily Channel tectonic zone may provide plausible 526 

explanations for the major coeval late Miocene-Pliocene tectonic events in the central 527 

Mediterranean region (as discussed in the text), whereas this result cannot be achieved with the very 528 

general alternative interpretations so far proposed. 529 

 We suppose that the occurrence of crustal extension in the Sicily Channel tectonic zone may be 530 

an effect of pull-apart troughs at step-overs of the main transcurrent faults (as suggested by Reuther 531 

et al., 1993). This hypothesis is compatible with the occurrence of volcanic activity. In fact, the 532 

most plausible genetic mechanism of magma uprise through the crust is generally considered the 533 

one involved by pull-apart troughs (e.g., Tamburelli et al., 2000; Gudmundsson, 2001; Acocella and 534 

Funiciello, 2006). The normal faults generated by a pure extensional regime (in diverging plate 535 

boundaries, for instance) are stressed by a very high compression, which does not allow uprising of 536 

magmas. 537 

 The northward displacement of the Adventure block played an important role in the formation 538 

of the Central and Southern Tyrrhenian basins and in the subsequent evolution of the Apennine belt, 539 

since the indentation of that continental fragment onto the Alpine-Apenninic orogenic material 540 
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which lay south of the Selli fault caused the lateral escape of wedges, at the expense of the Ionian 541 

Tethys and the thinned margin of the Adriatic domain (Fig. 9c,d). This process may explain why 542 

since the late Miocene intense accretionary activity occurred in the Apennine belt, in front of the 543 

extruding wedges (Viti et al., 2006 and references therein), and crustal extension developed in the 544 

wake of those wedges, with the formation of the central Tyrrhenian basin. The relatively high 545 

velocity (up to 5-8 cm/y) of the consequent trench retreat recognized at the related consuming 546 

boundary, during the Pliocene (Patacca and Scandone, 1989; Finetti et al., 2005b; Guillaume et al., 547 

2010), might be due to the contemporaneous actions of two opposite kinematic boundary 548 

conditions, i.e. the roughly NW ward motion of southern Adria and the roughly ESE ward 549 

migration of the Alpine-Apennines wedges (Fig.9c,d). 550 

 During this phase, belt-parallel compression also stressed the central-northern Apennines, 551 

causing the formation of arcs, with in-sequence thrusting at external fronts (e.g., Calamita et al., 552 

1994; Costa, 2003, Ghielmi et al., 2013; Brancolini et al., 2019), out-of-sequence thrust 553 

reactivations (e.g., Boccaletti et al., 1999) and extensional to transtensional tectonics in the internal 554 

side of the arcs, accompanied by regional uplift (e.g., Martini and Sagri, 1993; Bossio et al., 1998). 555 

The formation of arcs is also suggested by the fact that during this phase the geometry of foredeeps 556 

in the Northern Apennines changed from continuous, cylindrical, to highly fragmented, non 557 

cylindrical (e.g., Amadori et al., 2019). The hypothesis that in the Pliocene the belt underwent a 558 

compressional regime is also suggested by the shortening evidenced by CROP seismic sections 559 

(e.g., Finetti et al., 2005a). 560 

 The geodynamic interpretation here proposed may explain why the coeval occurrence of 561 

compression in the outer belt and extension in the inner side of the northern Apennines has 562 

developed since the late Miocene (e.g., Elter et al., 1975; Bossio et al., 1993). The fact that the 563 

above deformation pattern was accompanied by anatectic magmatism (e.g., Peccerillo, 2003) could 564 

be explained by considering that the most physically plausible genetic mechanism of the crustal 565 

pathways that allow magmas to uprise through the upper crust is the transtensional regime that is 566 
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expected to occur at the inner side of extruding wedges (e.g., Tamburelli et al., 2000; 567 

Gudmundsson, 2001; Acocella and Funiciello, 2006). 568 

 The fact that lateral escape of wedges may have contemporaneously involved belt-parallel 569 

shortening and perpendicular extension in the northern Apennines could explain why both types of 570 

strain styles are recognized in that zone (e.g., Bonini et al., 2014; Brogi et al., 2013; Liotta et al., 571 

2015). Anyway, the geodynamics here proposed provides that extensional deformation in the above 572 

Apennine sector is the dominant deformation, as indicated by most structural and morphological 573 

evidence (e.g., Brogi et al., 2013). 574 

 During the Late Miocene-Pleistocene interval, a complex system of elongated foredeeps 575 

developed in the eastern sector of the Po Plain and in the northern Adriatic area and severe tectonic 576 

activity affected the northern Apennines and the Padanian area (Ghielmi et al., 2013). 577 

 The peculiar fact that the Apennine belt has contemporaneously undergone thrusting, uplift 578 

and transtensional deformations is compatible with the strain pattern expected from belt-parallel 579 

compression, as suggested by the results of numerical experiments (Viti et al., 2004; Mantovani et 580 

al., 2007b), which show that the deformation pattern observed in the Tyrrhenian-Apennines system 581 

since the latest Miocene can be reproduced as an effect of the kinematic boundary conditions 582 

shown in Fig. 9c,d. 583 

 584 

Southern Tyrrhenian basin (Early Pleistocene) 585 

 When the extruding Southern Apennine wedge reached the continental Adriatic domain, the 586 

resistance against such consuming process underwent a significant increase, which led to the 587 

progressive stop of that wedge, revealed by the end of thrusting at its outer front and of crustal 588 

stretching in the Central Tyrrhenian basin, at the inner side of the wedge. 589 

 After that trench suture, the convergence of the confining plates was mainly accommodated by the 590 

fast lateral escape of the Calabria-Peloritani (CP) wedge, i.e. the only sector of the belt that was 591 

still facing an oceanic domain (the Ionian Tethys, Fig. 9d).  592 
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 The acceleration of the CP wedge is mainly testified by the strengthening of accretionary 593 

activity along its outer front, which built up the External Calabrian Arc, and by the occurrence of 594 

crustal stretching in the wake of that wedge, which has generated the Marsili basin. In this regard, it 595 

can be noted that the width of this basin is comparable with the internal (Tyrrhenian) side of the CP 596 

wedge (Fig.9d). The lateral guides of the above extrusion process were constituted by the Taormina 597 

and Palinuro transcurrent fault systems, as suggested by acceleration of tectonic and volcanic 598 

activity along those faults. 599 

 Nicolosi et al. (2006) suggest that the spreading of the Marsili basin has mainly developed 600 

from 2.1 to 1.6 Ma (with a very high rate, 19 cm/y) and that since 0.78 Ma spreading has 601 

undergone a considerable slow down. The initial high spreading rate could be due to the fact that 602 

such wedge had to extrude through a very narrow corridor between lateral continental domains 603 

(Africa and Adria). The subsequent slowdown of the CP wedge could be due to the collision of 604 

northern Calabria with the continental Adria domain (e.g., Del Ben et al., 2008, Zecchin et al., 605 

2004, 2011, 2015; Mantovani et al., 2019 and references therein). 606 

 The strong belt-parallel compressional regime that stressed the CP wedge during its extrusion 607 

can explain the fast uplift, the horizontal bowing and the strong fragmentation of that structure, 608 

with the formation of transpressional fault systems, troughs and sphenocasms (e.g. Ghisetti and 609 

Vezzani, 1981; Van Dijk and Schepeers, 1995; Monaco and Tortorici, 2000; Tansi et al., 2007; Del 610 

Ben et al., 2008; Zecchin et al., 2004, 2010, 2011, 2015; Roda-Boluda and Whittaker, 2017 and 611 

references therein). 612 

 The fast uplift of the CP wedge has been alternatively explained as an effect of isostatic 613 

rebound in response to breakings of the underlying Ionian slab (e.g., Westaway, 1993; Wortel and 614 

Spackman, 2000) or as due to the decoupling of the Calabrian arc from the underlying slab by 615 

convective removal of the deep root (e.g., Gvirtzman and Nur, 2001). However, these 616 

interpretations cannot easily account for the reconstruction of the Apennine-Maghrebian slab 617 

geometry based on several studies (e.g., Massari and Prosser, 2013 and references therein), which 618 
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suggests that since about 10 My two large slab windows have developed beneath that belt, one in 619 

the sector running from Tunisia to eastern Sicily and the other beneath the central and southern 620 

Apennines. If this reconstruction is reliable, one can hardly understand why the most intense uplift 621 

expected from isostatic rebound has affected the Calabrian Arc. 622 

 Since the suture of the Southern Apennines consuming boundary, in the Late Pliocene-Early 623 

Pleistocene, the strong compressional regime induced by the surrounding plates in the southern 624 

Adria domain, being not anymore absorbed by the consumption of thinned domains, was 625 

accommodated by upward flexure, which accelerated the formation of the Apulian swell. The uplift 626 

of southern Adria could have induced an opposite vertical effect in the northern edge of that plate, 627 

which might explain the subsidence that affected such zone in the Early Pleistocene (Ghielmi et al., 628 

2013; Zecchin et al., 2017; Brancolini et al., 2019).  629 

 630 

Recent present tectonic setting in the Apennine belt (Middle-Late Pleistocene) 631 

 Since the middle Pleistocene, the gravitational energy accumulated by the southern Adria 632 

domain in the previous Early Pleistocene phase favored the northward displacement of that plate 633 

(Fig. 9e), as suggested by the resumption of thrusting and strike-slip tectonics in the eastern 634 

(Dinarides) and northern (Eastern Alps) boundaries of Adria (Viti et al., 2006 and references 635 

therein). A more complex effect of Adria’s acceleration has developed along its western boundary, 636 

the Apennine belt. Since the external (eastern) sector of that chain was more closely connected with 637 

the underlying Adriatic domain, it underwent a more efficent drag from Adria, with respect to the 638 

inner belt (which was overlying a much deeper Adriatic lithosphere). This drag has resulted in a 639 

greater mobility, stronger deformation and uplift of the outer belt, which has progressively 640 

separated from the inner belt, forming the series of troughs located in the axial chain. This 641 

mechanism may explain why since the middle Pleistocene the compressional tectonic style in the 642 

Apennines was replaced by a dominant left lateral transcurrent regime (Viti et al., 2006 and 643 

references therein). The compressional features previously developed in the two main Pliocenic 644 
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extruding wedges, the Molise-Sannio (MS) and the Romagna-Marche-Umbria (RMU), were cut by 645 

a series of longitudinal trastensional fault sytems, as the Irpinia-Benevento-Matese (e.g., Pantosti 646 

and Valensise, 1990; Cinque et al., 2000; Ascione et al., 2007) in the MS wedge and the Norcia-647 

Colfiorito-Val Tiberina (Calamita et al., 2002; Pizzi and Galadini, 2009) in the RMU wedge, 648 

connected by longitudinal transtensional fault systems (Aquila and Fucino) in the Lazio-Abruzzi 649 

platform (Fig. 10, Viti et al., 2006 and references therein). This dynamics also induced belt-parallel 650 

shortening in the outer belt, accommodated by the formation of arcs (e.g., Maiella, Gran Sasso, 651 

Laga Mt.) and a generalized uplift (e.g., Pizzi and Galadini, 2009; Elter et al., 2012; Blumetti et al., 652 

2013).  653 

 In the northernmost belt (Romagna-Emilia Apennines), shortening has been accommodated by 654 

the formation of various arcs, also involving the buried folds beneath the Po valley, and progressive 655 

outward migration of thrust fronts (Cerrina Feroni et al., 2001; Costa, 2003; Vannoli et al., 2004, 656 

2015; Boccaletti et al., 2011; Ghielmi  et al., 2013; Chicco et al., 2019).  657 

 The relative motion between the southernmost sector of the mobile outer belt (MS wedge) and 658 

Calabria has been accommodated by a system of transcurrent faults in the Lucanian Apennines (Fig. 659 

11, Viti et al., 2006 and references therein). 660 

 The recent/present kinematic pattern of the Apennine belt inferred from Pleistocene 661 

deformation pattern, involving a faster motion of the outer Apennine belt with respect to the inner 662 

belt (Fig.11), fairly well agrees with the velocity field derived by geodetic observations (Fig. 7). 663 

 It can be noted as well that the motion trend of Adria indicated by several GPS velocity vectors 664 

in the Apulia zone and in the Venetian plain (Fig.7) is compatible with the NNEward Africa-665 

Eurasia convergence trend suggested by Mantovani et al. (2007a), which can explain the absence of 666 

major decoupling zones inside the Adriatic domain. If conversely, one adopts the roughly NNW 667 

ward convergence trend provided by global kinematic models (e.g., Calais et al., 2003) it becomes 668 

necessary to identify major tectonic discontinuities able to decouple the Adria plate from Africa. 669 

However, the very different solutions so far suggested by the numerous attempts in this sense (see 670 
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Babbucci et al., 2004 and references therein) clearly indicate the scarce significance of the available 671 

evidence about possible decoupling zones inside the Adria plate. 672 

 The lower GPS velocities of the northern Adriatic zone (2-3 mm/y) with respect to the southern 673 

Adriatic domain (5-6 mm/y) could be connected with a non rigid behaviour of the Adria plate, due 674 

to the non uniform time distribution of decoupling earthquakes along the circum Adriatic 675 

boundaries (Mantovani et al., 2015a). In this regard, one could suppose that the Pleistocene 676 

compressional deformations recognized in the inner part of Adria (such as the Middle Adriatic 677 

Ridge, Fig. 6, e.g., Scisciani and Calamita, 2009) may have developed during such transitory 678 

phases, characterized by an accelerated motion of southern Adria and a low mobility of the northern 679 

Adria ( Mantovani et al., 2016).  680 

 681 

 The belt-parallel compression and the sinistral shear that affected the Apennine belt during the 682 

last evolutionary phase may have emphasized transtensional stresses in the inner side of the two 683 

main Pliocenic wedges, the Molise-Sannio and the Romagna-Marche Umbria (Fig.11), favouring 684 

the uprise of magmas in the Roman and Campanian magmatic provinces (e.g., Argnani and Savelli, 685 

1999; Tamburelli et al., 2000; Peccerillo, 2005; Finetti, 2006; Tibaldi et al., 2010). This could 686 

provide a possible explanation for the two major features, i.e. the location and timing, of the most 687 

intense Quaternary volcanic episodes that has developed in the Apennine belt during this 688 

evolutionary phase. 689 

 Around the middle Pleistocene, a major reorganization of the tectonic setting has been caused 690 

by the collision of southern Calabria with the continental Adriatic domain (Fig. 9e). Such obstacle 691 

was overcome by the activation of the Sibari fault system (e.g., Volpi et al., 2017) which has 692 

allowed the Calabrian wedge to gain a new extrusion trend, more parallel to the Adriatic border 693 

(Fig. 9e). This change also had major effects in the interaction zone with the Hyblean domain, 694 

favoring the activation of the Vulcano-Syracuse fault system, which has become the main 695 

decoupling zone between the Calabrian wedge and the Hyblean block, that were moving in almost 696 
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opposite directions. After the activation of such decoupling, the Hyblean block may have 697 

accelerated its northward motion, as suggested by the fact that the border with the Ventura block 698 

(Sciacca fault) has become a sinistral shear zone (Civile et al., 2018). The fact that magmatic 699 

activity in the Sciacca fault system has mainly developed in the Pleistocene could suggest that the 700 

inversion of the strike slip sense at that fault may have favoured the development of pull-apart 701 

mechanisms. The hypothesis that the Syracuse fault is an active decoupling zone is supported by 702 

the occurrence of great damages in the eastern side of Sicily (e.g., 1169 and 1683, Rovida et al., 703 

2016). 704 

 The reliability of the evolution here proposed may also be supported by the fact that major 705 

features of the spatio-temporal distribution of main earthquakes in the periAdriatic regions are 706 

compatible with the short-term implications of the present tectonic setting, as discussed in a 707 

number of papers (Mantovani et al., 2010, 2012, 2015b, 2016, Viti et al., 2006, 2012, 2013, 708 

2015a,b, 2016). 709 

 710 

4. Conclusions  711 

 712 

 Discussions about Mediterranean geodynamics mainly concern the driving mechanism of the 713 

ATBA systems. To overcome the apparent difficulty raised by the occurrence of crustal extension 714 

in zones of plate convergence, some authors suggest that such tectonic process may be produced by 715 

deep seated forces, mainly induced by gravitational sinking of subducted lithosphere. However, the 716 

implications of that genetic mechanism can hardly be reconciled with the observed deformation 717 

pattern. In particular, the development of the northern, central and southern Tyrrhenian basins in 718 

three well distict phases, would require a discontinuos, very peculiar and scarcely plausible action 719 

of gravity on the Adriatic subducted margin. This and other major problems discussed in the text 720 

suggest that slab-pull forces can hardly be invoked to explain the surface deformation pattern. 721 
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 So far, many laboratory and numerical experiments, both 2D and 3D, have investigated the 722 

dynamics of slab-pull. However, the parameters adopted in various experiments vary over wide 723 

ranges, making it difficult to compare among results provided by different works. For instance, one 724 

may consider the density difference between the slab and surrounding mantle (∆ρ), which crucially 725 

affects the magnitude of the slab-pull force. Capitanio et al. (2010) use the values ∆ρ = 30, 60 and 726 

90 kg m-3 for their numerical experiments. Schellart and Moresi (2013) instead adopt the value ∆ρ = 727 

80 kg m-3. Meyer and Schellart (2013) consider the significantly larger value ∆ρ = 103 kg m-3, 728 

which obviously provides a larger slab-pull force. Furthermore, some attempts disregard basic 729 

features of the subduction systems, in particular the role of the upper/overriding plate (e.g., 730 

Funiciello et al., 2003a,b, 2004, 2006; Schellart, 2010; Schellart et al., 2011). On the other hand, the 731 

upper plate may effectively resist slab retreat and back-arc extension (Shemenda, 1993; Hassani et 732 

al., 1997; Capitanio et al., 2010). Thus, the conclusions drawn by the above works cannot be 733 

considered as definitive ones, because they depend on questionable experimental settings or on still 734 

poorly constrained subduction parameters.  735 

 Furthermore, one should consider that the geodynamic interpretations based on the slab-pull 736 

genetic mechanism, advanced to explain the development of ATBA systems, can hardly account for 737 

the occurrence of other coeval major tectonic events in the central Mediterranean area, such as the 738 

activation of important fractures in the African foreland (the Sicily Channel-Medina-Victor Hensen 739 

fault system) and in the northern Adriatic region (the Giudicarie and the Schio-Vicenza fault 740 

systems), along with some peculiar variations of tectonic style in the periAdriatic belts.  741 

 In this and previous papers (Mantovani et al., 2006, 2009, 2019; Viti et al., 2006, 2009) it is 742 

suggested that the observed deformation pattern in the central-western Mediterranean has been 743 

driven the convergence of the confining plates (Africa, Eurasia and Anatolian-Aegean-Pelagonian 744 

system). The migration of arcs and the consequent occurrence of crustal extension in their wake can 745 

plausibly be explained as effects of extrusion processes, that develop where orogenic belts lying 746 

aside oceanic domains are stressed by plate convergence (Fig. 8). Some considerations about why 747 
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the proposed geodynamic interpretation may better explain the evolution of the study area are given 748 

in the following.  749 

- It takes into account a very large set of tectonic features, more complete than the ones considered 750 

in other attempts. 751 

- All deformations considered are tentatively explained as effects of a unique driving mechanism 752 

(the convergence of the confining plates). In particular, it is taken into account the influence of an 753 

important kinematic boundary condition, the westward motion of the Anatolian-Aegean-Pelagonian 754 

belt, that has been often neglected by other attempts. 755 

- It is based on clear tectonic concepts, related to the well known least-action principle, which 756 

allows finding plausible explanations for coeval tectonic events, even if located very far from each 757 

other. For instance, this scheme may allow to understand which was the possible connection 758 

between the activation of the Sicily Channel-Medina-Victor Hensen fault system in the 759 

Pelagian/Ionian zone and the reactivation of the Schio-Vicenza fault in the northern Adriatic 760 

domain. 761 

- The present tectonic setting resulting from the proposed evolutionary reconstruction allows 762 

identifying plausible explanations for major features of the spatio-temporal distribution of major 763 

earthquakes in the last centuries. 764 

 In literature, many works concerning the Mediterranean region start by citing the various 765 

geodynamic interpretations so far proposed for this area, underlying the considerable ambiguity that 766 

still surrounds this problem. This uncertainty involves many negative implications, even concerning 767 

important social problems, as for instance the mitigation of seismic hazard. In fact, it is well known 768 

that a reliable attempt at recognizing the zones most prone to next strong shocks can only be made 769 

if one can rely on a deep knowledge of the ongoing tectonic processes. Exploiting this knowledge 770 

and the seismic history of the zone considered, one could try to recognize the perturbation of the 771 

strain/stress fields that may be caused by major earthquakes and how this effect may influence the 772 

subsequent spatio-temporal distribution of seismicity (Mantovani et al., 2015b, 2016, 2017; Viti et 773 
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al., 2015a, 2016). However, since the reliability of the above results is heavily conditioned by the 774 

reliability of the adopted tectonic model, it is crucially important to exploit the information now 775 

available on the past deformations in order to recognize which driving mechanisms are actually 776 

stressing the Italian region. Thus, the Scientific Community should make all efforts to overcome the 777 

presumed ambiguity about this problem. This work aims at providing a contribution in this 778 

direction, by analyzing the plausibility of the geodynamic interpretations so far proposed, first 779 

focusing attention on the models most often cited in literature.  780 

 781 
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Figure captions 1496 

 1497 

Fig. 1. Comparison between the presumed Oligocene (A) and Present (B) tectonic settings in the 1498 

Mediterranean area. Al-Ka-Pe-Ca=tentative assemblage of the Alboran, Kabylides, Peloritani and 1499 

Calabrian fragments of the Alpine belt. 1, 2) Continental and thinned continental Eurasian domains 1500 

3, 4) Continental and thinned continental African and Adriatic domains 5) Old oceanic domains 6) 1501 

Alpine belt 7) Other orogenic belts 8,9) Tectonically thinned and oceanized zones 10) Outer fronts 1502 
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of belts 11, 12, 13) Compressional, extensional and transcurrent features. BP, CS=Balearic 1503 

Promontory and Corsica-Sardinia fragments of the Iberian foreland. VH=Victor-Hensen fault. Blue 1504 

arrows indicate the kinematics of the Africa/Adriatic domain and the Anatolian-Aegean-Pelagonian 1505 

belt with respect to Eurasia (Mantovani et al., 2007a; Viti et al., 2009, 2011).  1506 

 1507 

Fig. 2. A) Late Oligocene-Early Miocene. The outward migration of the Norhern Al-Ka-Pe-Ca 1508 

Arc (NA) and the Corsica-Sardinia block (CS), at the expense of the Tethyan domain, builds up the 1509 

Apennine accretionary belt, while crustal extension occurs in the wake of the Arc, forming the 1510 

Balearic basin (BB). A more limited rotation is undergone by the Southern Al-Ka-Pe-Ca arc (SA) 1511 

and the Balearic Promontory (BP), generating the relatively small Valencia trough (VT). The 1512 

relative motion between NA and SA is accommodated by the North Balearic fault (NBF). B) 1513 

Middle Miocene. The NA stops rotating after its collision with the continental Adriatic domain, 1514 

causing the end of crustal extension in the Balearic basin, while the SA continues its migration at 1515 

the expense of the Tethyan domain, until reaching the continental African domain. Back-Arc 1516 

extension develops in the wake of SA, generating the Eastern Algerian basin (EAB). (From Viti et 1517 

al., 2009, modified). Colours and symbols as in figure 1. 1518 

 1519 

Fig. 3. Formation of the Northern Tyrrhenian basin (NTB), from the middle-upper Miocene (A) to 1520 

the late Miocene (B). ESA=Eastern Southern Alps, Gi= Giudicarie fault system, NAp=Northern 1521 

Apennines, SAp=Southern Apennines, TW=Tauern window, WPa= Western Padanian 1522 

protuberance. Colours and symbols as in figure 1. 1523 

 1524 

Fig. 4. A) Late Miocene-Early Pliocene (about 5 My). Crustal stretching occurs in the Alpine-1525 

Apennine sector lying south of the Selli fault (SF), generating the Central Tyrrhenian basin (CT). 1526 

See text for the description of the other major coeval tectonic events. AB=Adventure block, 1527 

Eg=Egadi fault, HB=Hyblean domain, Me=Medina fault, Pd=Padanian, Pl=Pantelleria trough, 1528 
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Sci=Sciacca- fault, SV=Schio-Vicenza fault, VH=Victor-Hensen fault. B) Late Pliocene (2 My). 1529 

Ge=Gela nappe, Li=Linosa trough, Ma=Malta trough Ta=Taormina fault. Colours, symbols and 1530 

other abbreviations as in figures 1 and 3.  1531 

 1532 

Fig. 5. Formation of the Southernmost Tyrrhenian basin (ST) in the early Pleistocene. AS=Apulian 1533 

Swell, CP=Calabria-Peloritani wedge, ECA=External Calabrian Arc, Pa=Palinuro fault, 1534 

SAp=Southern Apennines wedge. Colours, symbols and other abbreviations as in figures 1, 3 and 1535 

4.  1536 

 1537 

Fig. 6. Present tectonic setting. 1) Africa-Adriatic continental domains, 2) Quaternary magmatism, 1538 

Ca=Catanzaro trough, Cam=Campanian magmatic province, Cr=Crati trough, CV=Capo Vaticano 1539 

fault, LuAp=Lucanian Apennines, MAR= Middle Adriatic Ridge, Me=Mesima trough, NAp, CAp, 1540 

and SAp=Northern, Central and Southern Apennines, Rom=Roman magmatic province, Si=Sibari 1541 

fault, Sy=Syracuse fault, Vu=Vulcano fault. Other colours, symbols and abbreviations as in figures 1542 

1-5. 1543 

 1544 

Fig. 7. Horizontal velocity field (vectors) with respect to a fixed Eurasian frame in the ITRF2014 1545 

reference frame (Altamimi et al., 2016), obtained by GPS measurements. Scale in the bottom. 1546 

Colours of GPS sites indicate velocities, in agreement with the chromatic scale given on the left. 1547 

See Cenni et al. (2012, 2013) for details about the network and data analysis. 1548 

 1549 

Fig. 8. Sketch of the tectonic process that is supposed to generate a Arc-Trench-Back Arc system. 1550 

A) An orogenic belt, flanked by an oceanic domain, is longitudinally stressed by a continental 1551 

indenter. B) The stressed belt undergoes uplift and bowing, through the lateral escape of crustal 1552 

wedges, at the expense (subduction) of the adjacent oceanic domain. C) The separation of the 1553 

migrating Arc from the stable plate induces crustal extension in the interposed zone (Back Arc 1554 
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basin). See Driehaus et al. (2013) and Boutelier et al. (2018) for laboratory modeling of the above 1555 

process. 1556 

 1557 

Fig. 9. Proposed evolutionary reconstruction. A) Middle-Upper Miocene (15-9 My). Blue arrows 1558 

indicate the the proposed kinematic pattern (Mantovani et al., 2007a, 2009, 2015a; Viti et al., 2009, 1559 

2011) B) Upper Miocene (9-6 My). After the reactivation of the Giudicarie fault system, the 1560 

northern Adriatic promontory undergoes a NE ward motion and clockwise rotation, releasing its 1561 

previous internal deformation. The divergence between that promontory and the stable Corsica-1562 

Sardinia block induces crustal extension in the interposed Alpine-Apennine belt, with the formation 1563 

of the Northern Tyrrhenian basin. C) Pliocene (5-2 My). A large part of the Adriatic promontory 1564 

decouples from Africa, by the activation of major discontinuities in the Pelagian and Ionian zones, 1565 

the Sicily Channel-Medina (Me)-Victor Hensen (VH) fault systems and from its Padanian sector 1566 

(Pd), by the reactivation of an old fracture in the northern Adriatic domain (the Schio-Vicenza fault 1567 

system=SV). The E-W compression induced by the convergence between the southernmost Adria 1568 

block and the northern African foreland (Tunisia) causes the roughly NW ward extrusion of a 1569 

continental fragment, the Adventure block (AB), guided by the Egadi (Eg) and the Sciacca (Sci) 1570 

fault systems. The northward indentation of such block causes eastward escape of wedges from the 1571 

Alpine-Apennine belt lying south of the Selli fault, at the expense of the Tethyan domain and the 1572 

thinned Adriatic western margin. Thrusting develops in front of the extruding wedges (Southern 1573 

Apennines). Crustal stretching takes place in the wake of such wedges, forming the central 1574 

Tyrrhenian basin (CT). D) Early Pleistocene. After the stop of the Southern Apennines wedge 1575 

against the continental Adriatic domain, the convergence of the confining plates is accommodated 1576 

by the outward extrusion of the CP wedge, at the expense of the Ionian domain, and the upward 1577 

flexure of the southern Adriatic platform, forming the Apulian Swell (AS). Thrusting at the outer 1578 

front of the Calabrian wedge forms the External Calabrian Arc (ECA), while extension at the inner 1579 

side forms the Southern Tyrrhenian basin (ST). The Calabrian wedge undergoes strong uplift, 1580 
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bowing and fragmentation. E) Middle-Upper Pleistocene. The potential gravitational energy 1581 

accumulated by the southern Adriatic favors the northward displacement of that plate, which 1582 

induces a longitudinal compression in the outer sector of the Apennine belt. Such regime is 1583 

accommodated by the outward extrusion of wedges, which separate from the inner belt. After the 1584 

contact with the Adriatic continental domain, the extrusion of the Calabrian wedge is guided by new 1585 

lateral guides, the Sibari (Si) and Vulcano-Syracuse (Vu-Sy) faults. Colours, symbols and other 1586 

abbreviations as in figures 1-6. 1587 

 1588 

Fig. 10. Tentative reconstruction of the E-W shortening processes in the Hyblean-Adventure 1589 

domain  that determined the formation of troughs in the Sicily Channel. A) Late Miocene. 1590 

Configuration of the Hyblean-Adventure domain just after the activation of the Victor-Hensen-1591 

Medina-Sicily Channel discontinuity, when the shortening of that zone, induced by the E-W 1592 

convergence between the decoupled Adria plate and the Tunisian protuberance (Fig.9c) started to 1593 

develop. Present geographical contours are reported for reference. B) Present tectonic setting 1594 

(modified after Finetti and Del Ben, 1986). The Adventure block, decoupled from the Hybelan 1595 

domain by the Sciacca fault system, has undergone a roughly NNWward escape, forming the 1596 

Pantelleria trough. Contemporaneously, the heterogeneous Hyblean domain has undergone E-W 1597 

shortening, at the expense of its thinned central part. In the northern side, the Maghrebian belt has 1598 

been forced to bend southward, forming the Gela nappe. In the southern side, the original NW-SE 1599 

plateau, in the Sicily channel zone, has undergone a considerable fragmentation, in order to 1600 

accommodate E-W shortening. Local crustal extensions, induced by the divergence between 1601 

fragments, have formed the Malta and Linosa grabens and other minor troughs. Toothed lines 1602 

indicate the fronts of belts. Geological-geophysical data from Finetti and Del Ben, 1986, 2005b; 1603 

BenAvraham et al., 1990; Lentini et al., 1994). Lit, Mat, Plt =Linosa, Malta and Pantelleria troughs 1604 

Em, Gi, Li, Ma, Se, Ur =Empedocle, Girgenti, Linosa, Malta, Selinunte, Urialo plateau fragments. 1605 

 1606 
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Fig. 11. Outer mobile sector of the Apennine belt (green), stressed by the Adria plate. 1607 

Ben=Benevento, Ca=Calabria, Ir=Irpinia, LA=Lazio-Abruzzi wedge, Lu=Lucania Apennines, Ma= 1608 

Matese, MS=Molise-Sannio, No-Cf=Norcia-Colfiorito fault system, OA=Olevano-Antrodoco thrust 1609 

front, RMU=Romagna-Marche-Umbria wedge, SVo= Sangro-Volturno thrust front, TE=Toscana-1610 

Emilia wedge. The buried external folds in the Northern Apennines are light green. Red arrows 1611 

indicate the kinematic pattern, compatible with the Pleistocene deformation pattern and geodetic 1612 

data (Fig. 7). Other symbols and abbreviations as in figures 1-6. 1613 

 1614 

























The observed deformation pattern in the study area is not compatible with slab pull forces, whereas 
it can be coherently and plausibly interpreted as an effect of plate convergence 

Crustal extension can develop in the framework of extrusion processes 

The subduction of oceanic lithosphere at convergent boundaries  may require the triggering 
favoured by an extrusion process 
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