S

S,

UNIVERSITA DI SIENA 1240 U

Uy

, s
Pyt

Geodynamics of the central-western Mediterranean region: plausible and non-
plausible driving forces

This is a pre print version of the following article:
Original:

Mantovani, E., Viti, M., Babbucci, D., Tamburelli, C., Cenni, N. (2020). Geodynamics of the central-western
Mediterranean region: plausible and non-plausible driving forces. MARINE AND PETROLEUM GEOLOGY,
113[10.1016/j.marpetgeo0.2019.104121].

Availability:
This version is availablehttp://hdl.handle.net/11365/1085376 since 2019-11-13T19:04:48Z

Published:
DOI:10.1016/j.marpetgeo.2019.104121
Terms of use:

Open Access

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. Works made available under a Creative Commons license can be used according to the terms and
conditions of said license.

For all terms of use and more information see the publisher's website.

(Article begins on next page)

22 November 2024




Journal Pre-proof

Geodynamics of the central-western Mediterranean region: Plausible and non-
plausible driving forces

E. Mantovani, M. Viti, D. Babbucci, C. Tamburelli, N. Cenni

PII: S0264-8172(19)30570-7
DOI: https://doi.org/10.1016/j.marpetgeo0.2019.104121
Reference: JMPG 104121

To appearin:  Marine and Petroleum Geology

Received Date: 10 July 2019
Revised Date: 30 October 2019
Accepted Date: 31 October 2019

Please cite this article as: Mantovani, E., Viti, M., Babbucci, D., Tamburelli, C., Cenni, N., Geodynamics
of the central-western Mediterranean region: Plausible and non-plausible driving forces, Marine and
Petroleum Geology (2019), doi: https://doi.org/10.1016/j.marpetgeo.2019.104121.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published

in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.


https://doi.org/10.1016/j.marpetgeo.2019.104121
https://doi.org/10.1016/j.marpetgeo.2019.104121

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Geodynamics of the central-western M editerranean region:

plausible and non-plausible driving for ces

Mantovani EXZ Viti M., Babbucci D', Tamburelli Ct, Cenni N?

!Dipartimento di Scienze Fisiche, della Terra e ‘detibiente, Universita di Siena, Italy

“Dipartimento di GeoScienze, Universita di Padovalyl

" Corresponding author (enzo.mantovani@unisi.it)

Corresponding author

Enzo Mantovani

Dipartimento di Scienze Fisiche, della Terra e’deatbiente., Universita di Siena
Via Laterina, 8 - 53100 Siena (I)

e-mail: enzo.mantovani@unisi.it

Abstract. The observed deformation pattern in the centratevadVediterranean area, in particular

the development of the Northern, Central and SontAgrrhenian basins in three well distinct

phases, can hardly be explained as an effect ajrthatational sinking of subducted lithosphere, an
hypothesis often advanced in literature. A moraugilale and coherent explanation of the spatio-
temporal distribution of major tectonic events imetstudy area can instead be achieved by
supposing that tectonic activity has mainly beemedr by the convergence of Africa and Eurasia
and the roughly westward displacement of the AmateAegean-Pelagonian belt. The development
of Arc-Trench-Back Arc systems is interpreted aseffect of extrusion processes, that in some
constricted contexts have represented the mostecogvt shortening process for accommodating

plate convergence.
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1. Introduction

In the last 30-35 My the Mediterranean area hagergone a drastic change (Fig. 1), as
suggested by several authors (e.g., Dercourt et1886; Meulenkamp and Sissingh, 2003;
Mantovani, 2005, Mantovani et al., 2006, 2009; itial., 2009 and references therein). The pre-
existing Alpine orogenic belt has undergone consiole distortions and long migrations of even
several hundreds of Km. Some zones, mainly locatélde internal side of the migrating arcs, have
undergone crustal extension and consequent thinmiitiy the formation of large basins (Balearic,
Tyrrhenian, Aegean and Pannonian). The oceanidlanded continental zones which surrounded
the African/Adriatic promontory have been almosimptetely consumed by subduction. Since
extensional deformations are generally considesedcarcely compatible with the compressional
context induced by plate convergence, some autiars tentatively advanced the hypothesis that
other types of forces acted in the Mediterraneagiore In particular, the most often cited
interpretation suggests that the migration of and the related back-arc extension have been
driven by the gravitational sinking of subductetidisphere, as originally proposed by Malinverno
and Ryan (1986) and Royden (1998)this work, we argue that the main implicatioshe above
interpretation can hardly be reconciled with thesesed features and that a more plausibile and
coherent explanation of the evolutionary historm ¢e achieved by supposing that Arc-Trench-
Back Arc systems (ATBA) have developed in the freumix of extrusion processes, driven by the
convergence of the confining plates. With respegrevious attempts (e.g., Mantovani et al., 2009,
2014; Viti et al., 2009), this work reports new @gamce and arguments about the compatibility of

the interpretations here discussed with the obsetleéormations.



53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

2. Balearic and Tyrrhenian basins interpreted as effects of the slab-pull genetic mechanism:

main problems

Balearic basin

In the Oligocene, the western Alpine belt, tentl reconstructed by the Al-Ka-Pe-Ca system,
and the Corsica-Sardinia block (Fig.1la) detacheammfrthe European-lberian foreland and
underwent a fairly long eastward migration and regrdoowing (Fig.2), while crustal extension
occurred in the wake of the migrating arc, formihg Balearic basin (e.g., Maillard and Mauffret,
1999; Gaspar-Escribano et al., 2004; Gattacceed.,e2007; Lustrino et al., 2009; Etheve et al.,

2016)

Several authors (e.g., Royden and Burchfiel, 18831mid et al., 1996, 2004; Stampfli et al.,
1998; Finetti et al., 2005a; Handy et al., 2015)gast that the western Alpine belt built up as an
effect of the subduction of the Valais and Piemdgtirian oceanic domains and the European
thinned continental margin, which generated a seattl verging slab. In the Oligocene, such
process underwent slowdown/cessation, when coréherust entered the trench zone. Then, along
the Alpine sector lying aside the Iberian domaingther opposite verging (North to NW ward)
subduction process started, involving the conswnptif the Tethyan oceanic domain under the
migrating Al-Ka-Pe-Ca belt (Gaspar-Escribano et 2004; Lustrino et al., 2009; Schettino and
Turco, 2006; Handy et al., 2015; Etheve et al.,60This implies that when the ATBA system
began to migrate, in the Oligocene, the northwappidg slab did not exist or was scarcely
developed, being thus unable to induce a sufficgaib-pull force. To this regard, it should be
considered that laboratory and numerical modelswggyest that a minimum slab length (150-300
km) is required in order to initiate back-arc exden driven by slab-pull (e.g., Hassani et al., 7:99

Faccenna et al., 1999; Schellart, 2005).
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Other authors instead, suggest that prior to ¢dhedtion of the Liguro-Provencal basin (30-25
My) there was a well developed northward dippirapsit least 150 km long (Jolivet and Faccenna,
2000, Carminati et al.,, 2012/an Hinsbergen et al., 2014, Faccenna et al., 304daeath the
Alpine belt. However, no clear information is proed about the correspondence between the
dimension and age of the present Alpine-Apennirednel the orogenic material that the presumed
subduction process would have accumulated in énelrzone.

The fact that during the formation of the Baleabasin the Northern Al-Ka-Pe-Ca arc
underwent an evident sinistral NE-SW shift withpest to the Western Alps (Fig.2), leading to the
formation of the Ligurian basin (e.g., Makris et 4999; Mosca et al., 2010), suggests that such ar
was stressed by belt-parallel push. This kind dsst field is also suggested by the kinematics of
the strike-slip faults and lateral escape of blocksthe Sardinia-Corsica microplate (e.g.,
Carmignani et al., 1994, 2004; Oggiano et al., 26089 references therein). The Oligocene-
Aquitanian age of this tectonic regime has beemliyaonstrained by the analysis of the infilling
succession of transtensive basins. The above esgademot compatible with the roughly eastward
orientation of the trench suction force that woliétve been induced by a slab-pull mechanism.

Another major feature of the Balearic ATBA systémat cannot easily be explained as an
effect of slab-pull forces is the strong bowingtttiee Arc underwent during its migration (Fig. 2b).
Numerical modelings of a slab-pull mechanism (eSghellart et al., 2007) could justify a curvature
of the migrating arc, but the resulting effect iaah smaller than the one that really occurred & th
western Mediterranean area (Mantovani et al., 20BA@2; Viti et al., 2009 and references theyein
Moreover, the horizontal bowing predicted by madgt would need more than 16 My to develop
(e.g., Schellart et al., 2007). Other laboratorpeziments suggest insteadiaear shape of the
retreating subduction boundary, withaignificant arc bowing (Becker et al., 1999).

It is not demonstrated that the trench-suctiomddanduced by gravitational sinking of a slab
can break the upper plate. The results of somerdadmy and numerical experiments (e.g.,

Shemenda, 1993assani et al., 1997; Capitanio et al., 2010) a@i¢hat slab-pull cannot produce
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significant deformation in the upper plate unldssas not previously weakened by other tectonic
or magmatic processes. Even in this last casdreheh suction force would be unable to produce

extension in the overriding plate until the slak heached a length of about 150-300 km.

Northern Tyrrhenian basin (9-6 My)

From about 9 to 6 My, the sector of the Alpine-Apme belt that lay aside the Corsica-
Sardinia block (Fig. 3a) underwent roughly E-W tal€xtension and consequent thinning (e.g.,
Mauffret et al., 1999; Sartori et al., 2001; Carnagi et al., 2004; Finetti et al., 2005a; Pecazrill
2005; Sartori, 2005; Moeller et al., 2013; Cornamiust al., 2014). This process formed the
Northern Tyrrhenian basin (Fig.3b), a roughly tgalar zone confined to the South by the Selli
fault, which divided the extending Tyrrhenian arf@am an orogenic Alpine-Apennine body

(Sartori et al., 2001, 2004).

Explaining the main features of such extensiowaine as an effect of slab-pull forces (e.qg.,
Malinverno and Ryan, 1986; Royden, 1993) involversosis difficulties.

Most authors suggest that the stop of the nortAditda-Pe-Ca Arc and the Corsica-Sardinia
block occurred when the Adriatic continental domaimered the trench zone, around 15 My
(Speranza et al., 2002; Finetti et al., 2005a; d8atica et al., 2007; Molli 2008, Malusa et al.,
2016). In that context, any further developmentsialb roll-back would have encountered very
strong resistance from buoyancy forces (e.g., Biamcet al., 2019). In fact, in the subsequent
period (from about 15 to 9 My) no possible effeat$rench retreat (such as crustal extension) has
developed in the zone overlying the slab (Faccenra, 2001, 2014a; Finetti et al., 2005a). Thus,
the hypothesis that the subducted Adriatic margs imdergone gravitational sinking from about 9
to 6 My, forming the Northern Tyrrhenian basin, gegts some questions:

- Why slab-roll back did not occur for about 6 Mydawhy it would have resumed at 9 My ?
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- Why from 9 to 6 My gravitational sinking would e only affected the northern sector of a long
slab lying beneath the whole Apennine belt ? itesthat the slab sector lying under the Central-
Southern Apennines and Calabria was certainly rdeveloped.

- Why was there no accretionary activity in the thern Apennine belt during the formation of the
Northern Tyrrhenian basin ? If crustal extensiosupposed to be an effect of slab-pull forces, one
could expect to observe as well the other majoeceffof that driving mechanism, i.e. the
development of accretionary activity along the frohthe migrating Arc, as indeed occurred in the
previous period, during the formation of the Baleaasin.

- Why was the zone affected by crustal extensianficed by the Selli fault, which is obliquely
oriented with respect to the eastward orientatifosiab roll-back (and of crustal extension) ?

- Why in the Messinian (6-5 My) gravitational singiof the slab would have ceased beneath the
Northern Apennines and started beneath the Souiggnnines ?

The attempts at interpreting the evolution leé Northern Tyrrhenian-Apennine system as an
effect of slab-pull forces are encouraged by soomaographic studies (Lucente et al.,, 1999;
Piromallo and Morelli, 2003; Spakman and Wortelp20which suggest the presence of a well
developed lithospheric body (hundreds of Km longndath that belt. However, these
interpretations cannot easily be reconciled with thRsults of other tomographic investigations
(Scafidi et al., 2009; Scafidi and Solarino, 2028 CROP seismic soundings (e.g., Finetti et al.,
2001, 2005a), which do not evidence any well deyadblithospheric slab beneath the Apennine-
Tyrrhenian system. The occurrence of some subdmrestdnquakes beneath the Northern Apennines
cannot be used to confirm the results of tomogragpimge focal depths are mainly lower that 70 km
(e.g., Chiarabba et al., 2005) and the magnitudesery low (ISIDe Working Group, 2016). It is
worth noting that the distribution of subcrustattbquakes is compatible with the geometry of the
crustal slivers suggested by CROP sections (Fiee#i., 2005a).

Some authors have tried to identify possible exgians for episodic effects of gravity on

subducted lithosphere. For instance, Faccenna.e2@01, 2014a) recognize the problem of
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episodic slab retreat, stating that it could belarpd by the interaction of the subducted
lithosphere with the 670 km-depth mantle discontind he inability of the slab to penetrate across
such discontinuity would cause a sudden decreaseecfubduction rate and trench retreat. Only
after the slab has folded over the mantle discaityinsubduction and trench migration may resume
again, leading to a new phase of back-arc exter{siaccenna et al., 2004, 2007). However, it must
be considered that the above results have beemebdthy experiments where the upper plate is not
present at all, a quite irrealistic condition. Qtleperiments have shown that the presence of a
sufficiently strong upper plate can prevent sldblrack (see figure 11 by Capitanio et al., 2016 an

Shemenda, 1993; Hassani et al., 1997).

Central Tyrrhenian basin (about 5-2 My)

In the late Miocene-Early Pliocene crustal extensteased in the Northern Tyrrhenian and
began to develop in the Alpine-Apennine sector tledaouth of the Selli fault, generating oceanic
crust in the central Tyrrhenian area (Magnaghi dadilov basins, Fig.4, e.g., Finetti and Del Ben,
1986, 2005a; Mascle and Rehault, 1990; SartoriD19005; Sartori et al., 2004; Guillaume et al.,
2010).

Such extension was accompanied by other coevabrntactonic events in the central

Mediterranean region, as listed in the following.

- Thrusting and folding underwent a significant élecation in the Apennine belt (e.g., Patacca et
al., 1990; Coward et al., 1999; Catalano et alQ42QCerrina Feroni et al., 2004; Parotto and
Praturlon, 2004; Patacca and Scandone, 2007; Gra¢lah, 2013).

- In the Northern Apennines, the foredeep geometryerwent a major change during the Late
Pliocene, passing from a continuous (cylindrical)highly fragmented (non-cylindrical) pattern

(Amadori et al., 2019).
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- Seismic soundings (Finetti et al. 2001, Finettale 2005b) indicate that since the latest Mi@cen
the Adriatic lithosphere has undergone strong sharyy, accommodated by major thrust faults
cutting the entire crust and that significant seoitg (several tens of Km) also affected the
migrating arc.

- Since the late Messinian, a major transtensiémdt system (Sicily Channel, Medina and Victor
Hensen, Fig. 4) developed in the Pelagian and tonies (e.g., Finetti and Del Ben, 1986, 2005b;
Boccaletti et al., 1987; Cello, 1987; Reuther et B993; Hieke et gl 2003, 2006 and references
therein).

- During the Lower Pliocene, the western bordethefthinned Hyblean domain (Sciacca fault) was
activated as a dextral shear zone (Civile et a182 while compressional deformation is
recognized in the Maghrebian sector lying northihef Adventure block (Pepe et al., 2005) and an
extensional regime formed the Pantelleria trougivilE€et al., 2014, 2018, Finetti and Del Ben,
2005b).

- The Malta and Linosa troughs started develop@atdlano et al., 1994; Furlani et al., 2013).

- The Sicilian Apennines underwent a southward epdattributed to E-W shortening (e.g.,
Ghisetti et al., 2009), forming the Gela nappe.

- Dextral transpressional deformation, associated & system of NW-SE faults, is recognized in
the Maghrebian belt lying north of the Hyblean-Aditee promontory (Fig. 4, e.g., Catalano et al.,
1994, 1996; Sulli, 2000; Guarnieri, 2004; Finettak, 2005c).

- An old NW-SE discontinuity in the northern Adi@mforeland reactivated with a sinistral strike-
slip regime (the Schio-Vicenza fault system, Fige 4., Castellarin and Cantelli, 2000; Zampieri et
al., 2003; Massironi et al., 2006; Pola et al.,201

- Since the late Miocene, NW-SE to N-S thrustinghie Southern Alps mostly affected the sector
lying east of the Schio-Vicenza fault (e.g., Bressa al., 1998; Galadini et al., 2005), while such

activity almost ceased west of that discontinuity.
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- In the Northern Dinarides several thrust faudaativated as dextral strike-slip faults (Placealgt

2010).

Any attempt at explaining the formation of the €ahTyrrhenian basin as an effect of slab-
pull forces should provide plausible answers toesad@manding questions:
- Why in the Pliocene would gravitational sinkingvie only affected the sector of the slab located
beneath the Southern Apennines ? (although attitnat the slab was well developed under the
Calabrian Arc).
- Why would such sinking have only begun in thesatMiocene ? notwithstanding the slab under
the Apennines was already well developed in thedileiMiocene.
- Why would the effects of slab-pull forces beneidud southern Apennines have ceased in the late

Pliocene-early Pleistocene ? i.e. when crustatgdtmg ended in the Central Tyrrhenian basin.

Other major problems for slab-pull supporters aseussed in the following:

The subsidence predicted by the slab-pull mechammsthe trench zone (Shemenda, 1993;
Hassani et al., 1997; Buiter et al., 2001; Hampel Bfiffner, 2006; Husson, 2006) is just opposite
to the uplift that most of the Apennines belt aralaBrian Arc have undergone in the Pliocene and
Quaternary (e.g., Westaway, 1993; Pizzi, 2003; @&tdrella et al., 2003; Rusciadelli, 2005,
Ghielmi et al., 2013).

Belt-parallel shortening of the whole Apennineiohavidenced by the formation of major and
minor arcs and transversal thrust fronts, as tlev&lo-Antrodoco and Sangro-Volturno (e.g., Pizzi
and Galadini, 2009; Di Domenica et al., 2012; Ghiett al., 2013; Amadori et al., 2019), is not
compatible with the trench suction forces impligdstab roll-back.

The Northern Adriatic foredeep does not show anglence of tilting after the early Pliocene,
suggesting that tectonic activity in the Apenniredt ltan hardly be imputed to slab-pull forces

(Brancolini et al., 2019).



231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

10

Since the activation of major fault systems in thelagian zone (Sicily Channel) and the
northern Adriatic foreland (Schio-Vicenza) can harde explained as effects of slab-pull forces
beneath the Southern Apennines, there remains ribtdem of identifying which other driving
mechanisms were active in the central Mediterrareare during the Pliocene. In this regard,
Faccenna et al. (2004, 2007) suggest that transterigleformation in the Sicily Channel could be
related to the breaking that would have affectesl tfost curved sector of the wide slab formed
during the Balearic phase. Such deep break woultt l@used the Late Miocene alkaline
volcanism in northern Tunisia and Sardinia and aeé&tion in the Sicily Channel zone. However,
slab breaking and related magmatism (e.g., Lustand Wilson, 2007) do not necessarily
presuppose passive lithosphere sinking. Moreovsg, must consider that tectonic activity in the
Sicily Channel relates to transcurrent fault systemith some sectors of pull-apart extension,

which cannot simply be generated by uprising of mag

Southernmost Tyrrhenian (Pleistocene)

In the earlyPleistocene, crustal stretching ended in the Clerftyarhenian and started
developing in the southernmost Tyrrhenian area ¢Marasin, e.g., Finetti and Del Ben, 1986;
Sartori, 1990; Savelli, 2002). This extension (Fy.was accompanied by other major tectonic
events in the surrounding regions:

- In the late Pliocene-Early Pleistocene thrustimglerwent slowdown/cessation in the Southern
Apennines (e.g., Cello and Mazzoli, 1999; Catalahal., 2004; Patacca and Scandone, 2004,
2007).

- Tectonic activity considerably strengthened ia @alabria-Peloritani wedge, with development of
major troughs, transversal discontinuities andtingdablock rotations, accompanied by fast uplift
(e.g., Westaway, 1993; Van Dijk and Scheepers, 19@6chin et al., 2004, 2010, 2011, 2015;
Finetti, 2005a; Tansi et al., 2007; Del Ben et 2D08; Spina et al., 2011; Roda-Boluda and

Whittaker, 2017; Tripodi et al., 2018).
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- Thrusting and folding increased along the extefmant of the Calabrian wedge, with the
formation of the External Calabrian Arc complexg(ePatacca et all990; Del Ben, 1993; Finetti,
2005a).

-Tectonic and volcanic activity increased at theridna and Palinuro fault systems (e.g., Finetti
and Del Ben, 1986; Finetti et al., 1996; Venturalet1999; Savelli, 2002; Peccerillo, 2005).

- Thrusting at the front of the Adventure block andension in the Pantelleria graben slowed down
with respect to the Pliocene (Pepe et al., 200&GjeCet al., 2010, 2018).

- The southern Adriatic plate underwent upward dlex with the formation of the Apulian swell
(e.g., Finetti and Del Ben, 1986; Tropeano et28lQ2; Santangelo et al., 2012).

- In the Early Pleistocene, the northern Adriaticefand and the surrounding foredeeps were

affected by intense subsidence (Ghielmi et al. 32@&cchin et al., 2017).

Explaining the formation of the southernmost Tenian basin and the coeval tectonic events
cited above (Fig. 5) as an effect of slab-pull &rénvolves some major problems, as discussed in
the following.

-The uplift that the Calabrian Arc underwent in tRkistocene cannot be reconciled with the
subsidence predicted by gravitational sinking @& timderlying slab (Shemenda, 1993; Hassani et
al., 1997: Buiter et al., 2001; Hampel and Pfiffr@006; Husson, 2006; Faccenna et al., 2014b).

- The strong deformation that the Calabria-Peloriteedge has undergone since the late Pliocene,
with the formation of several longitudinal trougdrsd transversal sphenocasms and the bowing and
uplift of that arc, is compatible with belt-pardlieompression, which can hardly be taken as an
effect of slab roll-back.

- The upward flexure of the southern Adriatic dom@ipulian swell) cannot easily be explained as
an effect of slab roll back.

- The very small width of the Marsili basin (abd&@t Km, Fig.5) would imply the roll-back of a

corresponding narrow slab. However, such slab shapeld require the presence of major
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decoupling tear faults between the sinking lith@sphand the lateral (not sinking) sectors. When

and why did such tears develop ?

Recent/present tectonic setting in the Apennini bel

Around the middle Pleistocene (Fig.6), the defdromapattern in the Apennines underwent an
important change, recognized by most authors (édgppolyte et al.,, 1994; Galadini, 1999;
Bartolini, 2003; Piccardi et al., 2006):
- Strike-slip tectonics has developed in the sautin@st (Lucanian) sector of the Southern
Apennines, with the formation of a system of NW-Skistral strike-slip faults, accompanied by
compressional and tensional features at restraamugreleasing stepovers respectively (e.g. Cello
et al., 2003; Catalano et @004; Maschio et al., 2005; Ferranti et al., 2009)
- In the northern sector of the Southern Apennifresn the Irpinia to Matese zones, a system of
normal faults roughly trending NW-SE has developethe axial part of the belt (e.g., Ascione et
al., 2003, 2007; Brozzetti, 2011).
- In the Central Apennines, sinistral transtensgemecognized in the system of NW-SE normal-
oblique faults located in the axial belt (e.g. @alg 1999; Piccardi et al1999; Galadini and
Messina, 2004; Elter et al., 2012).
- In the Northern Apennines, sinistral transtenaldiaulting in the axial belt (e.g., Cello et al.,
1998, 2000; Boncio and Lavecchia, 2000; Tondi aredloC 2003; Piccardi et al.,, 2006) and
thrusting at the outer border (e.g., Boncio andcBn&, 2009; Scisciani and Calamita, 2009;
Boccaletti et al., 2011) have occurred. The midgiper Pleistocene evolution of this belt sector
indicates a predominance of vertical motion, wighifttand widening of the Northern Apennine
range (Ghielmi et al., 2013).
- Uplift has affected the axial and outer sectdrshe whole Apennine belt (e.g., Argnani et al.,

2003; Bartolini, 2003; Schiattarella et al., 2083¢ione et al., 2008).
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- Compressional features have developed in theripag of Adria, such as the Middle Adriatic
Ridge (Fig. 6, e.g., Scisciani and Calamita, 2009).

- Two major volcanic episodes (Roman and Campapraxinces, Fig.6) occurred in the western
side of the Apennine belt (Peccerillo, 2005; Alagstaal., 2010). The emplacement of such
volcanism has been related to transtensional fel{Milia and Torrente, 2003; Acocella and
Funiciello, 2006).

- Around the middle-late Pleistocene, the northpemt of the Calabrian wedge reaches the
continental Adriatic domain and a new major faylstem (Sibari), almost parallel to the Adria
border develops (Fig. 6, e.g., Guarnieri, 2006; Beh et al., 2008; Ferranti et al., 2014; Zecchin e
al., 2015, Volpi et al., 2017).

- The Crati and Mesima longitudinal troughs and @etanzaro and CapoVaticano transversal
troughs/faults develope in the Calabrian Arc (eSpina et al., 2011; Zecchin et al., 2015; Tripodi
et al., 2018).

- The Vulcano-Syracuse fault system activates,(Eigetti and del Ben, 1986; Del Ben et al., 2008;
Sulli et al., 2013).

- The Sciacca fault system becomes a sinistralr stogge and is affected by magmatic activity (e.g.,

Lodolo et al., 2012; Civile et al., 2018, Fedorilag, 2018).

The present kinematic pattern in the Italian rag® fairly well defined by the analyisis of
geodetic data observed in more than 700 perman®8 §ations in the period running from
January 1, 2001 to December 31, 2018. The horikeatacity field derived by such data (Fig. 7)
with respect to a fixed Eurasian frame (Euler @il&4.23°N, 98.83°Wyp = 0.257°/Myr, Altamimi
et al., 2016) shows that the outer sector of theryme belt, including the buried thrusts and folds
under the Po Plain, moves considerably faster ifdaby) and with a greater eastward component
with respect to the inner belt (1-2 mm/y). In thedBnian zone that lies west of the Giudicarie fault

system velocity values show a significant decreassk a different trend, with respect to the outer
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Apennine belt. In southern Italy, the geodeticdiebnfirms the long-term roughly NE ward motion

trend of Calabria and the NNW ward motion trendhef Hyblean zone.

To interpret the drastic change of tectonic sthil#t occurred in the Apennine belt around the
middle Pleistocene as an effect of slab-pull force® should explain why the effect of such deep
driving mechanism on shallow structures has considg changed at that time. An attempt in this
sense has been made by some authors (e.g., Faceerala 2014b), who suggest that the
Pleistocene deformation pattern in the Apenninélieed been controlled by changes of deep seated
dynamic processes (mantle convection) connectdd tivit development of windows in the western
subducted margin of Adria located beneath the @eatrd Southern Apennines (e.g., Wortel and
Spakman, 2000; Piromallo and Morelli, 2003; Faceeanal., 2007)However, this interpretation
cannot easily be reconciled with some major featwt the observed deformation pattern, as
discussed in the following:

- Pleistocene uplift is recognized in the wholetbélom the Northern Apennines to Calabria,

although this effect would only be expected in bie#t sectors (Central and Southern Apennines)
located above the supposed slab windows.

- The velocity field derived from GPS measuremantthe Italian region (Fig. 8) indicates that the

outer sector of the Apennine belt is moving fagteb mm/y NEward ) than the inner sector (1-2
mm/y N to NWward). This almost homogeneous kinemp#ttern all along the whole belt can

hardly be imputed to mantle upwelling above slabdews in the Central and Southern Apennines.
- The Hyblean wedge, confined by tectonic zonesil{&channel, Syracuse fault and Maghrebian
belt) is moving roughly North to NW ward, while tl&alabrian wedge is moving roughly ENE

ward (Fig. 8). Explaining such microplate kinemstias an effect of mantle upwelling in the

Southern and Central Apennines appears to be errdifficult task.

3. Proposed geodynamic inter pretation
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Main concepts

The observed deformation pattern in the Medite&yaan region has been driven by the
convergence of the Africa/Adriatic and Eurasia gdaand by the roughly westward motion of the
Anatolian-Aegean-Pelagonian belt, induced by thdemiation of Arabia (e.g., Mantovani et al.,
2006, 2009, 2014; Viti et al., 2009). The shortgnof the interposed Mediterranean structures,
constituted by orogenic belts, oceanic zones ardAffiriatic continental and thinned continental
domains, has been accommodated by a variety obrtectprocesses, whose spatio-temporal
distribution has been controlled by the well knaadt-action principle, aimed at minimizing the
resistance of gravity, fault friction and mantlscosity.

It is known that in a buoyancy-controlled contéix¢ most efficient way to gain space in a
constricted area is the subduction of lithospheré that such process is mainly favored when
oceanic domains are involved (e.g., Cloos, 199&;:r$52004). However, one must take into account
that the consumption of such domains cannot sinbelydetermined by horizontal compression
exerted by plate convergence. This consideratiomasly suggested by the fact that during the
long collisional phase between the Africa-Adrigilate and Eurasia, the lonian oceanic domain did
not undergo any subduction beneath the African Atdatic continental domains. The fact that
during such phase the push of Africa was very ieffity transmitted by the lonian zone to the
continental Adriatic domain is testified by the quessional deformations that took place along the
northern boundary of that promontory (e.g., Caatelland Cantelli, 2000; Ceriani and Schmid,
2004; Rosemberg and Kissling, 2013; Handy et @152 The physical plausibility of the above
evidence is confirmed by the computation of rhewalgprofiles (e.g., Viti et al., 1997), which
indicates that in long-term (geological) time in&s the horizontal compressional strength of the
oceanic lithosphere is not lower than the one obmitinental domain. That old and cold oceanic
lithosphere can effectively transmit horizontal goession is also suggested by the persistence of

continental collision at the Himalayan-Tibet boundawithout any new subduction zone in the
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central Indian Ocean (e.g. Stern, 2004; Copleyl.et2810). Another example is the Black Sea
oceanic lithosphere, which has transmitted compredsom northern Anatolia to central-southern
Eurasia since Eocene (e.g., Hippolyte et al., 2018)

To understand why the consumption of oceanic dosndias often occurred in the
Mediterranean region since the Oligocene, it iseasary to take into account that the lateral escape
of orogenic wedges may have created the conditidnsh can make that process feasible. When
the margin of an oceanic domain is overthrust byruelkng orogenic material, it undergoes
downward flexure, due to isostasy. This deformafgenturbs the previous equilibrium between
horizontal forces, triggering the sink of the dendg¢hosphere, under the action of plate
convergence (see e.g. the mechanism of subdudiitattion given by Hall, 2018).

Laboratory experiments (Driehaus et al., 20X®)wsthat the extrusion of a continental belt over
an adjacent oceanic domain (driven by belt-paralb@hpression) may induce subduction when the
density ratio between the oceanic and contineaé¢pis larger than 1.4.

The above considerations can explain why theswmption of most Tethyan zones has often
occurred since the Oligocene, when most extrusiongsses have developedhe study area (e.g.,
Mantovani et al., 2006, 2009, 2014; Viti et al.02D

Another type of tectonic reorganization that mdlpva the activation of more convenient
shortening processes in a constricted context,\niegoa change of plate mosaic, through the
activation of major decoupling faults. In the nevwatp configuration, the kinematic pattern of
buoyant blocks (microplates and orogenic wedgesgasganized in order to address most intense
stresses towards the less buoyant domains. Two rnmejamples of this kind of tectonic
reorganization have occurred in the middle Miocané late Miocene in the central Mediterranean
area, as discussed in the next sections.

Laboratory (e.g., Ratschbacher et al., 1991; Detvgl., 1995; Faccenna et al., 1996; Driehaus
et al.,, 2013; Boutelier et al., 2018) and numerigl., Mantovani et al., 2000, 2001b, 2007hb)

experiments suggest that in constricted buoyanictires the lateral escape of wedges (arcs)
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is the most convenient shortening process andinhtite internal side of an extruding/migrating
arc crustal extension may develop. Extension oostien the divergence between the migrating arc

and the stable foreland is faster than the shorgeimduced by plate convergence.

Balearic basin

The development of the Balearic ATBA system (Bigv2s triggered by the collision between
the northern margin of the African continent and southernmost edge of the Al-Ka-Pe-Ca belt
(the Atlas compressional phase, e.g. Benaouali-k&gbat al., 2006; Teson and Teixell, 2008;
Frizon de Lamotte et al., 2009). After the remal&aimcrease of resistance induced by that
collision, the prosecution of the Africa-Eurasianeergence was allowed by a peculiar shortening
process, given by the eastward bowing/extrusiothefAl-Ka-Pe-Ca-Corsica-Sardinia arc, at the
expense of the adjacent Tethyan domain (Fig. 2)st@l extension developed in the wake of the
migrating arc, leading to the formation of the Baie and Algerian basins, while thrustings
developed in the trench zones (Apennines and Magles). A detailed description of the proposed
geodynamic interpretation and of how it can accdantthe observed deformation pattern in the

Western Mediterranean region is given by Viti et(2009).

Northern Tyrrhenian basin (9-6 My)

The conditions that led to the formation of thertNern Tyrrhenian basin were created by the
reactivation of a major old discontinuity in the fifavestern part of the Adriatic promontory (the
Giudicarie fault system, Fig. 9a,b). This decougplallowed to overcome the critical situation that
had gradually developed along the collision zonéwvben the Adriatic promontory and the
European plate. In the Oligocene-Lower Miocenehstgadlision caused the accumulation of a huge
amount of light crustal material in the trench zd¢eg., Schmid et al., 2004; Finetti, 2005b). Thus,

the resistance of gravity against any further uthdesting was getting higher and higher.
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The possibility of mitigating such critical siti@t was offered to the Adriatic promontory by
the development, in the early-middle Miocene ofealvlateral boundary zone, constituted by the
Carpatho-Pannonian ATBA system (e.g., Royden €t983; Tari and Pamic, 1998; Horvath et al,
2015, Réka et al., 2018; Mantovani et al., 200®)920The presence of that tectonized structure
allowed the eastward extrusion of buoyant crustadiges from the Eastern Alps (a process also
revealed by the formation of the Tauern windowha tvake of the extruding wedges, Fig.4b, e.g.,
Ratschbacher et al., 1991; Robl and Stuwe, 2005tfl&/cet al., 2011), which favoured the
NNEward displacement of the Adriatic domain (Pevasand Decker, 1997; Frisch et al., 2000).
However, this displacement could only occur afier decoupling of the main Adriatic domain from
its northwestern protuberance, which at that tinees weeply stacked beneath the Western Alps.
Such decoupling was allowed by the reactivatiomuad the Tortonian (Martin et al. 1998;
Castellarin and Cantelli, 2000; Viola et al., 206&]lin et al., 2002), of an old discontinuity imet
northern Adriatic foreland, the Giudicarie faultsssm (Fig. 9b), where sinistral transpressional
activity is recognized until the early Messiniang(e Favaro et al., 2017). The NNE ward
displacement, with clockwise rotation, of the nerth Adriatic domain that followed such
decoupling allowed that promontory to release titernal elastic deformation that such indenter
had accumulated during its oblique collision whie European domain.

The sinistral motion between the decoupled Adrigibmain and its northwestern Padanian
protuberance (by then closely connected with thestédfa Alps) is testified by the fact that since
then thrusting activity in the Alps mostly occurredthe sector lying east of the Giudicarie fault
(e.q., Frisch et al., 2000, Viola et al., 2001; D& et al., 2003; Castellarin et al., 2004).

The consequent divergence between the mobile #drdomain and the Corsica-Sardinia
block (stable since the middle Miocene, Gattacoefcal., 2007 and references therein) caused
crustal extension in the interposed zone, conetitiity a sector of the Alpine-Apennine orogenic
belt lying north of the Selli fault, leading to tHermation of the Northern Tyrrhenian basin

(Fig.9b). This hypothesis can explain why crustdkension affected the zone comprised between
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463 the Adriatic promontory and the Corsica-Sardiniackl why such activity started around the
464  middle Tortonian (about 9 My), just after the rezation of the Giudicarie fault system, and why
465 the extended area was confined to the South bgehefault.

466

467  Central Tyrrhenian basin and other major coevakoeec events

468 Since the late Miocene, tectonic activity in the dilerranean region was significantly
469 influenced by the westward displacement of the Almat-Aegean-Pelagonian belt (Fig.1). In the
470  previous evolution, this last kinematic boundarydition did not have significant effects in the
471  Central Mediterranean area, because the converdmeztoesen the Africa-Adriatic plate and the
472  above belt was mainly accommodated by the consomuti the interposed thinned domain (the
473  lonian zone in figure 9a, e.g., Robertson and $ha2000). The resistance against this convergence
474  considerably increased in the upper Miocene, whererhuoyant domains reached that consuming
475  boundary (Mercier et al.,, 1987; Sorel et al., 199Phis critical situation, with progressive
476  slowdown of accretionary activity, lasted up to tage Miocene-early Pliocene, when a drastic
477  change of plate mosaic and kinematic pattern alloother less resisted shortening processes to
478  occur. This reorganization started by decouplifgrge portion of the Adriatic promontory (Adria
479  plate in figure 9c) from Africa, through the acties of a long fracture, the Sicily Channel-
480 Medina-Victor Hensen transtensional fault systemorPto this tectonic phase, the Hyblean-
481  Adventure promontory was part of the undeformedcafn foreland (Pelagian zone, e.g. Finetti and
482  Del Ben, 1986, 2005b; Hieke et al., 2003, 2006;ticeet al., 2006; Fedorik et al., 2018). The new
483  motion trend of Adria required another major dedmufat least partial) in the northern Adriatic
484  zone, which was achieved by the reactivation obldnveak zone, the Schio-Vicenza sinistral fault
485  system (Fig. 9c). After that decoupling, the nomthAdria domain moved roughly NNW ward, as
486 indicated by a change in the orientation of the ma@ssional axis from SW-NE to SSE-NNW in the
487  eastern Southern Alps (e.g., Castellarin and dgr2€l00) and by the reactivation of many thrust

488 zones as right lateral strike-slip faults in thertdern Dinarides (Placer et al., 2010)he



489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

20

decoupling of the Adria plate from Africa and timew kinematics of that plate (Fig. 9c) avoided an
highly resisted collision with the Anatolian-AegeBelagonian belt.

The E-W convergence between southern Adria andntiréhern African promontory (the
present Algeria-Tunisia zone) required the rouglbtrthward expulsion of an African fragment
(the Adventure block), guided by the Egadi and &mafault systems (Fig. 9c¢,d), and the E-W
shortening of the Hyblean domain. The extrusiothef Adventure block in the early Pliocene may
explain the thrusting recognized at the outer fafrthat wedge (in the Maghrebian belt, Pepe et al.
2005), the formation of the Pantelleria troughhat inner side of the same block (Civile et al.,201
2018) and the dextral shear recognized in the 8aifault system (Civile et al., 2018). The E-W
shortening of the Hyblean domain, constituted byckthand thin zones (Fig. 9c,d), was
accommodated by the southward bending of the &cipennines, with the consequent formation
of the Gela nappe (at the expense of the thinneblddyp domain), and by fracturation and
redistribution of small ridge fragments in the 8iothannel zone (see i.e. Finetti and Del Ben,
1986). The occurrence of local extension betwegarding fragments caused the formation of the

Malta and Linosa troughs, as tentatively recons¢dian figure 10.

The roughly northward displacement of Pelagiarckdos also suggested by the fact that the
sector of the Alpine (Kabylo-Calabrides)-Maghreblaglt which lies in front of them (e.g., Ben
Avraham et al., 1990; Lentini et al., 1994; SUl)00; Gueguen et al., 2002) shows a northward
shift with respect to the lateral North African a@dlabrian sectors (see fig. 10 of Mantovani et al.
2007b and references therein).

The complex evolution of the Sicily channel tectomone may have favored the ambiguity that
still surrounds the shear sense in that transcufeart system (e.g., Grasso and Pedley, 1985;
Boccaletti et al., 1987; Cello, 1987; Reuther et #093; Kim et al., 2003; Finetti and Del Ben,
1986, 2005b; Catalano et al., 2009). Since thekboédhe thick continental African domain is a

major tectonic event in the evolution of the celnMaditerranean region, any hypothesis advanced
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about the nature (dextral or sinistral strike sligpure passive rifting) and the genetic mecharmém
that discontinuity should also provide a geodynaifuistification for the coeval deformations
observed in the surrounding zones. For instanagsbould consider that a dextral movement at the
Sicily Channel fault system would imply a SE wardtion of the Hyblean domain with respect to
Africa. However, the deformation predicted by sukimematics in the surrounding zones
(shortening in the lonian zone facing the Hybleltk and extension in the zone lying between the
Hyblean promontory and Sardinia) are not compatiite the observed features. No evidence of
shortening is recognized in the lonian area, esfigcat the Syracuse escarpment, as shown by
CROP seismic sections (e.g., Finetti and Del BO052) and a considerable shortening, instead of
the expected extension, is evidenced by the CRO#bBecrossing the Sardinia and Sicily Channels
(Finetti et al., 2005c). We would like to remarkaththe geodynamic framework we propose as
responsible for the formation of the Sicily Chanrtektonic zone may provide plausible
explanations for the major coeval late Miocene¢die tectonic events in the central
Mediterranean region (as discussed in the textgreds this result cannot be achieved with the very
general alternative interpretations so far proposed

We suppose that the occurrence of crustal extemsithe Sicily Channel tectonic zone may be
an effect of pull-apart troughs at step-overs efrtiain transcurrent faults (as suggested by Reuther
et al., 1993). This hypothesis is compatible whlk bccurrence of volcanic activity. In fact, the
most plausible genetic mechanism of magma uprisgugiin the crust is generally considered the
one involved by pull-apart troughs (e.g., Tambuetdlial., 2000; Gudmundsson, 2001; Acocella and
Funiciello, 2006). The normal faults generated bguse extensional regime (in diverging plate
boundaries, for instance) are stressed by a vgty dompression, which does not allow uprising of
magmas.

The northward displacement of the Adventure blolelygd an important role in the formation
of the Central and Southern Tyrrhenian basins artkda subsequent evolution of the Apennine belt,

since the indentation of that continental fragmento the Alpine-Apenninic orogenic material
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which lay south of the Selli fault caused the lat&scape of wedges, at the expense of the lonian
Tethys and the thinned margin of the Adriatic damgig. 9c,d). This process may explain why
since the late Miocene intense accretionary agtiodcurred in the Apennine belt, in front of the
extruding wedges (Viti et al., 2006 and referentbesein), and crustal extension developed in the
wake of those wedges, with the formation of thetra@nlyrrhenian basin. The relatively high
velocity (up to 5-8 cmly) of the consequent tremetreat recognized at the related consuming
boundary, during the Pliocene (Patacca and Scandd88; Finetti et al., 2005b; Guillaume et al.,
2010), might be due to the contemporaneous actmn$wo opposite kinematic boundary
conditions, i.e. the roughly NW ward motion of doern Adria and the roughly ESE ward
migration of the Alpine-Apennines wedges (Fig.9c,d)

During this phase, belt-parallel compression atessed the central-northern Apennines,
causing the formation of arcs, with in-sequencedting at external fronts (e.g., Calamita et al.,
1994; Costa, 2003, Ghielmi et al., 2013; Brancoleti al., 2019), out-of-sequence thrust
reactivations (e.g., Boccaletti et al., 1999) axtdmesional to transtensional tectonics in the maér
side of the arcs, accompanied by regional uplify.(éMartini and Sagri, 1993; Bossio et al., 1998).
The formation of arcs is also suggested by thetfettduring this phase the geometry of foredeeps
in the Northern Apennines changed from continuamdindrical, to highly fragmented, non
cylindrical (e.g., Amadori et al., 2019Jhe hypothesis that in the Pliocene the belt undetva
compressional regime is also suggested by the estinog evidenced by CROP seismic sections
(e.g., Finetti et al., 2005a).

The geodynamic interpretation here proposed matagx why the coeval occurrence of
compression in the outer belt and extension initimer side of the northern Apennines has
developed since the late Miocene (e.g., Elter gtl&8l75; Bossio et al., 1993). The fact that the
above deformation pattern was accompanied by amateagmatism (e.g., Peccerillo, 2003) could
be explained by considering that the most physicalihusible genetic mechanism of the crustal

pathways that allow magmas to uprise through theeuprust is the transtensional regime that is
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expected to occur at the inner side of extrudingdges (e.g., Tamburelli et al.,, 2000;
Gudmundsson, 2001; Acocella and Funiciello, 2006).

The fact that lateral escape of wedges may hawmeogporaneously involved belt-parallel
shortening and perpendicular extension in the eontpennines could explain why both types of
strain styles are recognized in that zone (e.gnimdcet al., 2014; Brogi et al., 2013; Liotta et, al
2015). Anyway, the geodynamics here proposed pesvidat extensional deformation in the above
Apennine sector is the dominant deformation, ascatdd by most structural and morphological
evidence (e.g., Brogi et al., 2013).

During the Late Miocene-Pleistocene interval, anplex system of elongated foredeeps
developed in the eastern sector of the Po Plainratite northern Adriatic area and severe tectonic
activity affected the northern Apennines and theadgn area (Ghielmi et al., 2013).

The peculiar fact that the Apennine belt has aopteaneously undergone thrusting, uplift
and transtensional deformations is compatible whth strain pattern expected from belt-parallel
compression, as suggested by the results of nuahexperiments (Viti et al., 2004; Mantovani et
al., 2007b), which show th#te deformation pattern observed in the Tyrrhefipennines system
since the latest Miocene can be reproduced as fant eff the kinematic boundary conditions

shown in Fig. 9¢,d.

Southern Tyrrhenian basin (Early Pleistocene)

When the extruding Southern Apennine wedge reathecdontinental Adriatic domain, the
resistance against such consuming process undem@veignificant increase, which led to the
progressive stop of that wedge, revealed by theddrttirusting at its outer front and of crustal
stretching in the Central Tyrrhenian basin, atitimer side of the wedge.

After that trench suture, the convergence of th&fining plates was mainly accommodated by the
fast lateral escape of the Calabria-Peloritani (@Bgige, i.e. the only sector of the belt that was

still facing an oceanic domain (the lonian TetHig, 9d).
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The acceleration of the CP wedge is mainly testifby the strengthening of accretionary
activity along its outer front, which built up tiexternal Calabrian Arc, and by the occurrence of
crustal stretching in the wake of that wedge, wliiak generated the Marsili basin. In this regard, i
can be noted that the width of this basin is complarwith the internal (Tyrrhenian) side of the CP
wedge (Fig.9d). The lateral guides of the aboveuskin process were constituted by the Taormina
and Palinuro transcurrent fault systems, as sugdedsy acceleration of tectonic and volcanic
activity along those faults.

Nicolosi et al. (2006) suggest that the spreadihghe Marsili basin has mainly developed
from 2.1 to 1.6 Ma (with a very high rate, 19 cmand that since 0.78 Ma spreading has
undergone a considerable slow down. The initiahtsgreading rate could be due to the fact that
such wedge had to extrude through a very narrowidmor between lateral continental domains
(Africa and Adria). The subsequent slowdown of @R wedge could be due to the collision of
northern Calabria with the continental Adria doméng., Del Ben et al., 2008, Zecchin et al.,
2004, 2011, 2015; Mantovani et al., 2019 and refazs therein).

The strong belt-parallel compressional regime #tia@ssed the CP wedge during its extrusion
can explain the fast uplift, the horizontal bowiagd the strong fragmentation of that structure,
with the formation of transpressional fault systetnsughs and sphenocasms (e.g. Ghisetti and
Vezzani, 1981; Van Dijk and Schepeers, 1995; Moraawb Tortorici, 2000; Tansi et al., 2007; Del
Ben et al., 2008; Zecchin et al., 2004, 2010, 2@D15; Roda-Boluda and Whittaker, 2017 and
references therein).

The fast uplift of the CP wedge has been alterabtiexplained as an effect of isostatic
rebound in response to breakings of the underliongan slab (e.g., Westaway, 1993; Wortel and
Spackman, 2000) or as due to the decoupling ofCi@brian arc from the underlying slab by
convective removal of the deep root (e.g., Gvirtumand Nur, 2001). However, these
interpretations cannot easily account for the retroction of the Apennine-Maghrebian slab

geometry based on several studies (e.g., MassarPearsser, 2013 and references therein), which
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suggests that since about 10 My two large slab evuisdhave developed beneath that belt, one in
the sector running from Tunisia to eastern Sicitgl ahe other beneath the central and southern
Apennines. If this reconstruction is reliable, @a® hardly understand why the most intense uplift
expected from isostatic rebound has affected thab@an Arc.

Since the suture of the Southern Apennines conmsyimoundary, in the Late Pliocene-Early
Pleistocene, the strong compressional regime irtibgethe surrounding plates in the southern
Adria domain, being not anymore absorbed by theswamption of thinned domains, was
accommodated by upward flexure, which accelerdteddrmation of the Apulian swell. The uplift
of southern Adria could have induced an oppositéicag effect in the northern edge of that plate,
which might explain the subsidence that affectethsaone in the Early Pleistocene (Ghielmi et al.,

2013; Zecchin et al., 2017; Brancolini et al., 2019

Recent present tectonic setting in the Apennine(bididle-Late Pleistocene)

Since the middle Pleistocene, the gravitationalrggneaccumulated by the southern Adria
domain in the previous Early Pleistocene phaseré/éhe northward displacement of that plate
(Fig. 9e), as suggested by the resumption of timyisand strike-slip tectonics in the eastern
(Dinarides) and northern (Eastern Alps) boundao&sAdria (Viti et al., 2006 and references
therein). A more complex effect of Adria’s accetema has developed along its western boundary,
the Apennine belt. Since the external (easterrtpset that chain was more closely connected with
the underlying Adriatic domain, it underwent a mefécent drag from Adria, with respect to the
inner belt (which was overlying a much deeper Atridithosphere). This drag has resulted in a
greater mobility, stronger deformation and uplift the outer belt, which has progressively
separated from the inner belt, forming the seriedraughs located in the axial chain. This
mechanism may explain why since the middle Plegstecthe compressional tectonic style in the
Apennines was replaced by a dominant left laterahscurrent regime (Viti et al., 2006 and

references therein). The compressional featuregiquay developed in the two main Pliocenic
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extruding wedges, the Molise-Sannio (MS) and thenBgna-Marche-Umbria (RMU), were cut by
a series of longitudinal trastensional fault syteass the Irpinia-Benevento-Matese (e.g., Pantosti
and Valensise, 1990; Cinque et al., 2000; Ascidnal.e2007) in the MS wedge and the Norcia-
Colfiorito-Val Tiberina (Calamita et al.,, 2002; Rizand Galadini, 2009) in the RMU wedge,
connected by longitudinal transtensional fault eys (Aquila and Fucino) in the Lazio-Abruzzi
platform (Fig. 10, Viti et al., 2006 and referentlesrein). This dynamics also induced belt-parallel
shortening in the outer belt, accommodated by tmmétion of arcs (e.g., Maiella, Gran Sasso,
Laga Mt.) and a generalized uplift (e.g., Pizzi &waladini, 2009; Elter et al., 2012; Blumetti et al
2013).

In the northernmost belt (Romagna-Emilia Apenninskortening has been accommodated by
the formation of various arcs, also involving theibd folds beneath the Po valley, and progressive
outward migration of thrust fronts (Cerrina Fereial., 2001; Costa, 2003; Vannoli et al., 2004,
2015; Boccaletti et al., 2011; Ghielmi et al., 20Chicco et al., 2019).

The relative motion between the southernmost s@ftthe mobile outer belt (MS wedge) and
Calabria has been accommodated by a system ottnaiast faults in the Lucanian Apennines (Fig.
11, Viti et al., 2006 and references therein).

The recent/present kinematic pattern of the Apsmnbelt inferred from Pleistocene
deformation pattern, involving a faster motion loé touter Apennine belt with respect to the inner
belt (Fig.11), fairly well agrees with the velocfigld derived by geodetic observations (Fig. 7).

It can be noted as well that the motion trend dfid indicated by several GPS velocity vectors
in the Apulia zone and in the Venetian plain (Fjgi¥ compatible with the NNEward Africa-
Eurasia convergence trend suggested by Mantovahi €2007a), which can explain the absence of
major decoupling zones inside the Adriatic doméiirconversely, one adopts the roughly NNW
ward convergence trend provided by global kinematociels (e.g., Calais et al., 2003) it becomes
necessary to identify major tectonic discontingitable to decouple the Adria plate from Africa.

However, the very different solutions so far sugggsdy the numerous attempts in this sense (see
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Babbucci et al., 2004 and references therein) lgl@adticate the scarce significance of the avadabl
evidence about possible decoupling zones insidAdnia plate.

The lower GPS velocities of the northern Adriatome (2-3 mm/y) with respect to the southern
Adriatic domain (5-6 mm/y) could be connected vathon rigid behaviour of the Adria plate, due
to the non uniform time distribution of decouplirgarthquakes along the circum Adriatic
boundaries (Mantovani et al., 2015a). In this rdgane could suppose that the Pleistocene
compressional deformations recognized in the irpaat of Adria (such as the Middle Adriatic
Ridge, Fig. 6, e.g., Scisciani and Calamita, 200@)y have developed during such transitory
phases, characterized by an accelerated moticouttiern Adria and a low mobility of the northern

Adria ( Mantovani et al., 2016).

The belt-parallel compression and the sinistrabslthat affected the Apennine belt during the
last evolutionary phase may have emphasized tmsisteal stresses in the inner side of the two
main Pliocenic wedges, the Molise-Sannio and then&ma-Marche Umbria (Fig.11favouring
the uprise of magmas in the Roman and Campaniamatagprovinces (e.g., Argnani and Savelli,
1999; Tamburelli et al., 2000; Peccerillo, 2005n€ki, 2006;Tibaldi et al., 201p This could
provide a possible explanation for the two maj@tdees, i.e. the location and timing, of the most
intense Quaternary volcanic episodes that has oeeél in the Apennine belt during this
evolutionary phase.

Around the middle Pleistocene, a major reorgarmnadf the tectonic setting has been caused
by the collision of southern Calabria with the éoental Adriatic domain (Fig. 9e). Such obstacle
was overcome by the activation of the Sibari faystem (e.g., Volpi et al., 2017) which has
allowed the Calabrian wedge to gain a new extrusiend, more parallel to the Adriatic border
(Fig. 9e). This change also had major effects m itlteraction zone with the Hyblean domain,
favoring the activation of the Vulcano-Syracuse Itfasystem, which has become the main

decoupling zone between the Calabrian wedge anHyb&an block, that were moving in almost
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opposite directions. After the activation of suckcaoupling, the Hyblean block may have
accelerated its northward motion, as suggestedéyect that the border with the Ventura block
(Sciacca fault) has become a sinistral shear zGnalg et al., 2018). The fact that magmatic
activity in the Sciacca fault system has mainlyaleped in the Pleistocene could suggest that the
inversion of the strike slip sense at that faultynrhave favoured the development of pull-apart
mechanisms. The hypothesis that the Syracuseifaal active decoupling zone is supported by
the occurrence of great damages in the easternosi8eily (e.g., 1169 and 1683, Rovida et al.,
2016).

The reliability of the evolution here proposed nmedgo be supported by the fact that major
features of the spatio-temporal distribution of maiarthquakes in the periAdriatic regions are
compatible with the short-term implications of tpeesent tectonic setting, as discussed in a
number of papers (Mantovani et al., 2010, 2012,5B02016, Viti et al., 2006, 2012, 2013,

2015a,b, 2016).

4. Conclusions

Discussions about Mediterranean geodynamics maimhgern the driving mechanism of the
ATBA systems. To overcome the apparent difficuliised by the occurrence of crustal extension
in zones of plate convergence, some authors sutfgastuch tectonic process may be produced by
deep seated forces, mainly induced by gravitatismding of subducted lithosphere. However, the
implications of that genetic mechanism can harddyréconciled with the observed deformation
pattern. In particular, the development of the Imem, central and southern Tyrrhenian basins in
three well distict phases, would require a diseurds, very peculiar and scarcely plausible action
of gravity on the Adriatic subducted margin. Thigdlaother major problems discussed in the text

suggest that slab-pull forces can hardly be invakeskplain the surface deformation pattern.



722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

29

So far, many laboratory and numerical experimelntsh 2D and 3D, have investigated the
dynamics of slab-pull. However, the parameters tatbjin various experiments vary over wide
ranges, making it difficult to compare among respitovided by different works. For instance, one
may consider the density difference between the a@hal surrounding mantlég), which crucially
affects the magnitude of the slab-pull force. Capit et al. (2010) use the valuis = 30, 60 and
90 kg m® for their numerical experiments. Schellart and &0(2013) instead adopt the valie =
80 kg m®. Meyer and Schellart (2013) consider the signifibalarger valueAp = 103 kg ¥,
which obviously provides a larger slab-pull foré¢aurthermore, some attempts disregard basic
features of the subduction systems, in particuber tole of the upper/overriding plate (e.g.,
Funiciello et al., 2003a,b, 2004, 2006; Schel2dt0; Schellart et al., 2011). On the other hamel, t
upper plate may effectively resist slab retreat back-arc extension (Shemenda, 1993; Hassani et
al., 1997; Capitanio et al., 2010). Thus, the casions drawn by the above works cannot be
considered as definitive ones, because they depemgiestionable experimental settings or on still
poorly constrained subduction parameters.

Furthermore, one should consider that the geodimarterpretations based on the slab-pull
genetic mechanism, advanced to explain the devedopof ATBA systems, can hardly account for
the occurrence of other coeval major tectonic eventhe central Mediterranean area, such as the
activation of important fractures in the Africarrdtand (the Sicily Channel-Medina-Victor Hensen
fault system) and in the northern Adriatic regidhe( Giudicarie and the Schio-Vicenza fault
systems), along with some peculiar variations oficieic style in the periAdriatic belts.

In this and previous papers (Mantovani et al.,6&2@®D09, 2019; Viti et al., 2006, 2009) it is
suggested that the observed deformation pattenieancentral-western Mediterranean has been
driven the convergence of the confining plates i¢afr Eurasia and Anatolian-Aegean-Pelagonian
system). The migration of arcs and the consequaniroence of crustal extension in their wake can
plausibly be explained as effects of extrusion psses, that develop where orogenic belts lying

aside oceanic domains are stressed by plate canardFig. 8). Some considerations about why
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the proposed geodynamic interpretation may betglaen the evolution of the study area are given
in the following.

- It takes into account a very large set of tectdaatures, more complete than the ones considered
in other attempts.

- All deformations considered are tentatively expd as effects of a unique driving mechanism
(the convergence of the confining plates). In gatér, it is taken into account the influence of an
important kinematic boundary condition, the westivanotion of the Anatolian-Aegean-Pelagonian
belt, that has been often neglected by other ateemp

- It is based on clear tectonic concepts, relatethe well known least-action principle, which
allows finding plausible explanations for coevalttaic events, even if located very far from each
other. For instance, this scheme may allow to wstded which was the possible connection
between the activation of the Sicily Channel-Meedietor Hensen fault system in the
Pelagian/lonian zone and the reactivation of thai®¥icenza fault in the northern Adriatic
domain.

- The present tectonic setting resulting from thieppsed evolutionary reconstruction allows
identifying plausible explanations for major feasirof the spatio-temporal distribution of major
earthquakes in the last centuries.

In literature, many works concerning the Meditegan region start by citing the various
geodynamic interpretations so far proposed fordhes, underlying the considerable ambiguity that
still surrounds this problem. This uncertainty ilwes many negative implications, even concerning
important social problems, as for instance thegaiton of seismic hazard. In fact, it is well known
that a reliable attempt at recognizing the zonestrpmne to next strong shocks can only be made
if one can rely on a deep knowledge of the ongd@agonic processes. Exploiting this knowledge
and the seismic history of the zone considered,coudd try to recognize the perturbation of the
strain/stress fields that may be caused by majahgaakes and how this effect may influence the

subsequent spatio-temporal distribution of seiggi@antovani et al., 2015b, 2016, 2017; Viti et
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al., 2015a, 2016). However, since the reliabilityttee above results is heavily conditioned by the
reliability of the adopted tectonic model, it iucially important to exploit the information now
available on the past deformations in order to gace which driving mechanisms are actually
stressing the Italian region. Thus, the Scien@@nmunity should make all efforts to overcome the
presumed ambiguity about this problem. This worksaiat providing a contribution in this
direction, by analyzing the plausibility of the ggoamic interpretations so far proposed, first

focusing attention on the models most often citelitérature.
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Figure captions

Fig. 1. Comparison between the presumed Oligocene (A) aeseRt (B) tectonic settings in the
Mediterranean area. Al-Ka-Pe-Ca=tentative asserabtdghe Alboran, Kabylides, Peloritani and
Calabrian fragments of the Alpine belt. 1, 2) Coaetital and thinned continental Eurasian domains
3, 4) Continental and thinned continental Africand adriatic domains 5) Old oceanic domains 6)

Alpine belt 7) Other orogenic belts 8,9) Tectorigc#hinned and oceanized zones 10) Outer fronts
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of belts 11, 12, 13) Compressional, extensional &atscurrent features. BP, CS=Balearic
Promontory and Corsica-Sardinia fragments of tlegidim foreland. VH=Victor-Hensen fault. Blue
arrows indicate the kinematics of the Africa/Adicadomain and the Anatolian-Aegean-Pelagonian

belt with respect to Eurasia (Mantovani et al., 20Viti et al., 2009, 2011).

Fig. 2. A) Late Oligocene-Early Miocene. The outward migration of the Norhern Al-Ka-Pe-Ca
Arc (NA) and the Corsica-Sardinia block (CS), & #xpense of the Tethyan domain, builds up the
Apennine accretionary belt, while crustal extensomeurs in the wake of the Arc, forming the
Balearic basin (BB). A more limited rotation is @ngone by the Southern Al-Ka-Pe-Ca arc (SA)
and the Balearic Promontory (BP), generating tHatively small Valencia trough (VT). The
relative motion between NA and SA is accommodatgdhe North Balearic fault (NBF)B)
Middle Miocene. The NA stops rotating after its collision with tkkentinental Adriatic domain,
causing the end of crustal extension in the Baldaaisin, while the SA continues its migration at
the expense of the Tethyan domain, until reachhmg dontinental African domain. Back-Arc
extension develops in the wake of SA, generatiegBastern Algerian basin (EAB). (From Viti et

al., 2009, modified). Colours and symbols as inrfeyl.

Fig. 3. Formation of the Northern Tyrrhenian basin (NTB»m the middle-upper Miocen&\] to
the late MioceneR). ESA=Eastern Southern Alp&§i= Giudicarie fault system, NAp=Northern
Apennines, SAp=Southern Apennines, TW=Tauern windoWPa= Western Padanian

protuberance. Colours and symbagsin figure 1.

Fig. 4. A) Late Miocene-Early Pliocene (about 5 My). Crustal stretching occurs in the iAdp
Apennine sector lying south of the Selli fault (S§¢nerating the Central Tyrrhenian basin (CT).
See text for the description of the other majorvebeectonic events. AB=Adventure block,

Eg=Egadi fault, HB=Hyblean domain, Me=Medina fauftgd=Padanian, Pl=Pantelleria trough,
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Sci=Sciacca- fault, SV=Schio-Vicenza fault, VH=\actHensen faultB) Late Pliocene (2 My).
Ge=Gela nappe, Li=Linosa trough, Ma=Malta trough=Taormina fault. Colours, symbols and

other abbreviations as in figures 1 and 3

Fig. 5. Formation of the Southernmost Tyrrhenian basin (8The early Pleistocene. AS=Apulian
Swell, CP=Calabria-Peloritani wedge, ECA=Externaklabrian Arc, Pa=Palinuro fault,
SAp=Southern Apennines wedge. Colours, symbolsatinel abbreviations as in figures 1, 3 and

4.

Fig. 6. Present tectonic setting. 1) Africa-Adriatic doenhtal domains, 2) Quaternary magmatism,
Ca=Catanzaro trough, Cam=Campanian magmatic preyvi@c=Crati trough, CV=Capo Vaticano
fault, LuAp=Lucanian Apennines, MAR= Middle AdriatRidge,Me=Mesima trough, NAp, CAp,
and SAp=Northern, Central and Southern ApenninesnHRoman magmatic province, Si=Sibari
fault, Sy=Syracuse fault, Vu=Vulcano fault. Othetcurs, symbols and abbreviations as in figures

1-5.

Fig. 7. Horizontal velocity field (vectors) with respect #ofixed Eurasian frame in the ITRF2014
reference frame (Altamimi et al., 2016), obtaingd ®PS measurements. Scale in the bottom.
Colours of GPS sites indicate velocities, in agrenwith the chromatic scale given on the left.

See Cenni et al. (2012, 2013) for details aboun#terork and data analysis.

Fig. 8. Sketch of the tectonic process that is supposegtnerate a Arc-Trench-Back Arc system.
A) An orogenic belt, flanked by an oceanic domainloiggitudinally stressed by a continental
indenter.B) The stressed belt undergoes uplift and bowingyuih the lateral escape of crustal
wedges, at the expense (subduction) of the adjamegdnic domainC) The separation of the

migrating Arc from the stable plate induces crusteiension in the interposed zone (Back Arc
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basin). See Driehaus et al. (2013) and Boutelied.g2018) for laboratory modeling of the above

process.

Fig. 9. Proposed evolutionary reconstructi@y). Middle-Upper Miocene (15-9 My). Blue arrows
indicate the the proposed kinematic pattern (Maamoet al., 2007a, 2009, 2015a; Viti et al., 2009,
2011) B) Upper Miocene (9-6 My). After the reactivation of the Giudicarie faulgsgem, the
northern Adriatic promontory undergoes a NE wardiomoand clockwise rotation, releasing its
previous internal deformatiorhe divergence between that promontory and theest@brsica-
Sardinia block induces crustal extension in therpased Alpine-Apennine belt, with the formation
of the Northern Tyrrhenian basi@) Pliocene (5-2 My). A large part of the Adriatic promontory
decouples from Africa, by the activation of majasabntinuities in the Pelagian and lonian zones,
the Sicily Channel-Medina (Me)-Victor Hensen (VHjuft systems and from its Padanian sector
(Pd), by the reactivation of an old fracture in tiethern Adriatic domain (the Schio-Vicenza fault
system=SV). The E-W compression induced by the eqence between the southernmost Adria
block and the northern African foreland (Tunisi@uses the roughly NW ward extrusion of a
continental fragment, the Adventure block (AB), dgpd by the Egadi (Eg) and the Sciacca (Sci)
fault systems. The northward indentation of sudtklcauses eastward escape of wedges from the
Alpine-Apennine belt lying south of the Selli faudtt the expense of the Tethyan domain and the
thinned Adriatic western margin. Thrusting develapdront of the extruding wedges (Southern
Apennines). Crustal stretching takes place in thekewof such wedges, forming the central
Tyrrhenian basin (CT)D) Early Pleistocene. After the stop of the Southern Apennines wedge
against the continental Adriatic domain, the cogeece of the confining plates is accommodated
by the outward extrusion of the CP wedge, at thgerge of the lonian domain, and the upward
flexure of the southern Adriatic platform, formitige Apulian Swell (AS). Thrusting at the outer
front of the Calabrian wedge forms the ExternalaBahn Arc (ECA), while extension at the inner

side forms the Southern Tyrrhenian basin (ST). Tadabrian wedge undergoes strong uplift,
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bowing and fragmentationE) Middle-Upper Pleistocene. The potential gravitational energy

accumulated by the southern Adriatic favors thethweard displacement of that plate, which
induces a longitudinal compression in the outertaseof the Apennine belt. Such regime is
accommodated by the outward extrusion of wedgeghwveparate from the inner belt. After the
contact with the Adriatic continental domain, theresion of the Calabrian wedge is guided by new
lateral guides, the Sibari (Si) and Vulcano-Syrac(Mu-Sy) faults. Colours, symbols and other

abbreviations as in figures 1-6.

Fig. 10. Tentative reconstruction of the E-W shorteningcpsses in the Hyblean-Adventure
domain that determined the formation of troughsthe Sicily ChannelA) Late Miocene.
Configuration of the Hyblean-Adventure domain jadter the activation of the Victor-Hensen-
Medina-Sicily Channel discontinuity, when the skaihg of that zone, induced by the E-W
convergence between the decoupled Adria plate lmad tinisian protuberance (Fig.9c) started to
develop. Present geographical contours are repddedeference.B) Present tectonic setting
(modified after Finetti and Del Ben, 1986). The A&dture block, decoupled from the Hybelan
domain by the Sciacca fault system, has undergoneughly NNWward escape, forming the
Pantelleria trough. Contemporaneously, the hetexemes Hyblean domain has undergone E-W
shortening, at the expense of its thinned centdl n the northern side, the Maghrebian belt has
been forced to bend southward, forming the Gelgp@ajm the southern side, the original NW-SE
plateau, in the Sicily channel zone, has underganeonsiderable fragmentation, in order to
accommodate E-W shortening. Local crustal extessionduced by the divergence between
fragments, have formed the Malta and Linosa grataevts other minor troughs. Toothed lines
indicate the fronts of belts. Geological-geophyisitata from Finetti and Del Ben, 1986, 2005b;
BenAvraham et al., 1990; Lentini et al., 1994), Mat, Plt =Linosa, Malta and Pantelleria troughs

Em, Gi, Li, Ma, Se, Ur =Empedocle, Girgenti, Linpbtalta, Selinunte, Urialo plateau fragments.
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Fig. 11. Outer mobile sector of the Apennine belt (greerjessed by the Adria plate
Ben=Benevento, Ca=Calabria, Ir=Irpinia, LA=LaziotAbzi wedge, Lu=Lucania Apennines, Ma=
Matese, MS=Molise-Sannio, No-Cf=Norcia-Colfioritault system, OA=0levano-Antrodoco thrust
front, RMU=Romagna-Marche-Umbria wedge, SVo= Sangptiurno thrust front, TE=Toscana-
Emilia wedge. The buried external folds in the Kerh Apennines are light green. Red arrows
indicate the kinematic pattern, compatible with #leistocene deformation pattern and geodetic

data (Fig. 7). Other symbols and abbreviationsdgures 1-6.
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The observed deformation pattern in the study areais not compatible with slab pull forces, whereas
it can be coherently and plausibly interpreted as an effect of plate convergence

Crustal extension can develop in the framework of extrusion processes

The subduction of oceanic lithosphere at convergent boundaries may require the triggering
favoured by an extrusion process
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