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Abstract: Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS)
due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction
pathways and cellular physiological processes, whereas ROS overproduction damages spermato-
zoa. Sperm manipulation and preparation protocols during assisted reproductive procedures—for
example, cryopreservation—can result in excessive ROS production, exposing these cells to oxidative
damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on
human spermatozoa as an in vitro model to study which antioxidants can be used to supplement
media. The review comprises a brief presentation of the human sperm structure, a general overview
of the main items of reduction–oxidation homeostasis and the ambivalent relationship between sper-
matozoa and ROS. The main body of the paper deals with studies in which human sperm have been
used as an in vitro model to test antioxidant compounds, including natural extracts. The presence
and the synergic effects of different antioxidant molecules could potentially lead to more effective
products in vitro and, in the future, in vivo.

Keywords: antioxidants; human sperm in vitro; natural extract; oxidative stress; pathological role of
ROS; physiological role of ROS; phytocomplexes; polyphenols

1. Introduction

Infertility is a global health issue. It is defined as the failure to achieve a pregnancy
after 12 months or more of regular, unprotected sexual intercourse [1]. It is estimated
that 8–12% of couples worldwide are infertile [2] and resort to fertility medical treatment.
Both of the partners of a couple can be responsible for non-conception. In at least 50%
of cases, a male infertility factor is involved, isolated or in combination with a female
factor [3,4]. There are numerous causes and risk factors contributing to the increasing
incidence of male infertility [2]. Many of them share oxidative stress (OS) as a common
pathway, including varicocele [5], genitourinary infection and inflammation [6,7]. In this
scenario, assisted fertilisation technologies (ART) represent the treatment of choice for many
couples facing infertility problems. The use of these techniques implies gamete handling
in the laboratory and the exposure of gametes to atmospheric oxygen. In addition, semen
laboratory processing such as centrifugation; cryopreservation; exposure to visible light;
and the variation in oxygen tension, pH and temperature [8,9] enhance the production of
reactive oxygen species (ROS).

Spermatozoa are highly differentiated cells that produce ROS as consequence of aer-
obic metabolism. Below a certain threshold, ROS play a key role in signal transduction
pathways and cellular physiological processes. In particular, spermatozoa ROS are neces-
sary for sperm motility, capacitation, the acrosome reaction and oocyte interaction [10,11].
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On the contrary, ROS overproduction in spermatozoa and the consequent antioxidant
imbalance can damage the cellular structure [12], including the membrane, particularly rich
in polyunsaturated fatty acids (PUFA), and molecules such as DNA and proteins [13–16].

Assuming that external laboratory conditions are optimal, a strategy to minimise OS
during sperm manipulation can include the treatment of the patients with antioxidants
even though the real efficacy of in vivo supplementation is still debated [16–18]. Another
very interesting strategy includes the supplementation of media with antioxidants. Many
in vitro studies have investigated the scavenging ability of antioxidant compounds against
OS induced in human sperm [9] and many other studies have successfully used antioxidants
to supplement media applied in semen cryopreservation [19,20].

Human spermatozoa represent a model for an in vitro study because they are motile,
and the motility is a parameter that is easy to evaluate; they are nearly transcriptionally and
translationally silenced; they do not have DNA-repair activity; and they lack intracellular
antioxidant protection. Thus, they depend on and are deeply influenced by the external
environment. This review focuses on human spermatozoa as an in vitro model to test the
effect of antioxidants, which could be potentially used in clinical practice during sperm
handling, on OS.

2. Structure of Human Spermatozoa

Human spermatozoa are highly differentiated and polarised cells made up of a head
and a flagellum joined by a connecting piece, all of which is enveloped by the plasma
membrane (Figure 1).
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Figure 1. Spermatozoon structure. The figure shows the various regions of a human spermatozoon.
Starting from the head region, it is possible to distinguish the acrosome and the nucleus. The
sperm flagellum contains the axoneme and periaxonemal structures such as outer dense fibres and a
fibrous sheath.

The head has an oval and flattened shape, and it comprises the acrosome and the
nucleus. The acrosome is a cap-like Golgi-derived vesicle delimited by inner and outer
acrosomal membranes and covers about 75% of the head. The acrosome contains lytic
enzymes such as hyaluronidase and acrosine, which are necessary for the fertilisation
process [21]. Only capacitated sperm can interact with the cumulus oophorous and the
zona pellucida of an oocyte, resulting in the acrosome reaction and allowing for sperm to
penetrate and fertilise an egg. Sperm can undergo a spontaneous acrosomal reaction before
reaching the egg, preventing successful fertilisation. Bowker et al. [22] demonstrated the
involvement of a mechanism based on protein acetylation that protects bovine spermatozoa
from a spontaneous acrosomal reaction.
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The region located at the posterior edge of the acrosome is named the equatorial
segment; it plays an important role in the fusion between sperm and egg membranes [23].
The head area underneath the acrosomal cap is called the post-acrosomal region. It is
particularly important because it contains the phospholipase Cζ (PLCζ), which is widely
considered to be the sperm oocyte activation factor through the stimulation of Ca2+ oscilla-
tions in the oocyte [24,25].

The core of the sperm head is the nucleus, which contains highly condensed chromatin.
During the sperm maturation process, about 85% of histones are replaced by protamines
(small proteins rich in arginine) characterised by disulphide bridges between the sulfhydryl
groups of cysteines [26,27]. The replacement of histones with protamines allows for dense
packaging of chromatin; this organisation plays a pivotal role in protecting the genetic
material devoted to the perpetuation of the species.

The head is linked to the tail by the connecting piece, a sort of neck made up of
nine striated columns closed by the capitulum, a protein structure that interacts with the
head [28]. This protein box encases the proximal centriole, under the nucleus, that shows
a typical barrel shape with nine triplets of microtubules and an atypical distal centriole
composed of splayed microtubules [29] and originates the axoneme, which forms the core
of the entire flagellum (Figure 1). The axonemal structure is regulated by hundreds of
microtubule-associated proteins and motor proteins, some of which form helical structures
within the microtubule lumen that have been hypothesised to be involved in controlling
the direction of sperm motion [30].

The midpiece is the flagellar region surrounded by a mitochondrial helix (Figure 1)
that envelopes the axoneme and the nine outer dense fibres (ODFs). Mitochondria play a
central role in sperm metabolism and are involved in energy production, redox balance,
calcium regulation and apoptotic pathways, all of which are necessary for flagellar motility,
capacitation, the acrosome reaction and fertilisation [31]. The midpiece ends with the
annulus, a septin-based ring structure located beneath the plasma membrane that connects
the midpiece and the principal piece of the mammalian sperm flagellum [32]. The annulus
is probably involved in the flagellar assembly during spermiogenesis and confines proteins
to define the different regions of the tail in mature sperm.

The principal piece, the longest part of the flagellum, contains the axoneme, ODFs and
the fibrous sheath (FS) that wraps the axoneme along the entire length of the segment. The
FS is a sperm-specific cytoskeletal structure that acts as a scaffold for enzymes involved in
signal transduction and glycolytic pathway [33]. Therefore, the human sperm tail shows a
complex anatomy, and every structure (proximal and distal centrioles, mitochondria, the
axoneme, ODFs and the FS) plays a significant role in motility. Testicular spermatozoa are
immature cells that are unable to fertilize an oocyte. After leaving the testis, spermatozoa
transit along the epididymis to acquire motility and fertilizing abilities. During post-
testicular maturation, many changes that regard a sperm membrane and sperm proteome
profile occur [34]. At this purpose, a peculiar role is played by the epididymosomes,
exosomes produced by epididymis that prime spermatozoa with a large amount of proteins
and RNAs [35].

3. Main Items of OS

One of the fundamental principles of biological processes is the concept of ‘homeosta-
sis’, which is currently defined as a self-regulating process by which a biological system
maintains stability while adjusting to changing external conditions. Thus, imbalance among
key factors/mechanisms involved in homeostatic regulation can affect health. Oxygen
homeostasis is one of the major regulatory mechanisms involved in disease physiology and
pathogenesis. In oxygen homeostasis, the oxygen supply needs to be adequate for tissue
requirements [36]. The reduced availability of oxygen causes cellular damage, adaptations
of biochemical processes with enhancement of the anaerobic pathways and ischaemic or in-
farct events. Conversely, an increased oxygen concentration can be the cause of pathologies
such as the so-called hyperoxic–hypoxic paradox (in ischaemia/reperfusion injury) [37].
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The detrimental effects of oxygen are mainly attributable to ROS generation. ROS are
oxidants, partially reduced metabolites of molecular oxygen, generated by several different
metabolic reactions and cellular processes [38,39]. Such molecular species have also been
proposed as second messengers in the activation of several signalling pathways [40,41]
and are intimately involved in reduction–oxidation (redox) signalling and macromolecular
redox regulation. Oxidants have physiological roles [39] and both oxidant and antioxidant
signalling have been proposed as the main features of redox homeostasis [42]. Because of
its biological relevance in controlling health conditions and diseases, homeostasis of the
redox status has been deeply investigated [42,43]. A fine redox architecture, based on
molecular interactions, regulates physiological functions and the balance between oxidants
and nucleophiles is preserved in redox homeostasis. In particular, the term oxidative
eustress indicates physiological OS involved in maintaining the steady-state set point of
redox reactions. Failure to maintain the redox steady-state reference point leads to homeo-
static disruption (homeostatic imbalance), which could affect health conditions and lead to
diseases of failed homeostasis.

Depending on the level of ROS generation, the efficiency of the antioxidant systems
and the interaction of ROS with cellular targets, a condition of oxidative distress may
arise as the result of redox imbalance. In particular, OS provokes the establishment of
a new radically altered redox steady state. Consequently, oxidative damage can occur
because of non-specific reactions between oxidative agents and biological macromolecules
(proteins, lipids, nucleic acids and carbohydrates). Initially, the term ‘oxidative stress’ was
applied to define a severe pro-oxidant/antioxidant imbalance, in favour of pro-oxidant
species, potentially able to cause biological damage [44]. In oxidative eustress conditions,
oxidants are present at low levels and react with specific targets for physiological redox
signalling. As major redox signalling agents, hydrogen peroxide (H2O2) and the superoxide
anion radical (O2

•−) are continuously produced via physiological cellular metabolism
by multiple enzymatic and non-enzymatic processes. H2O2 signalling primarily occurs
through the reversible oxidation of specific thiol groups of protein cysteine residues and
results in molecular signalling events involved in phosphorylation cascades, transcriptional
regulation, cytoskeletal rearrangements and cell replication [45,46].

Although mitochondria and members of the NADPH oxidase (NOX) family are
the best-characterised intracellular sources of ROS, they are also produced by several
cellular organelles, including the endoplasmic reticulum and the peroxisomes, as well as by
various enzymes, including oxidases and oxygenases, which generate ROS as part of their
enzymatic reaction cycles [45]. As general mechanisms of oxidant signalling, NOX enzymes
produce extracellular O2

•−, which can spontaneously dismutate to H2O2 that can diffuse,
mainly by aquaporin-dependent pathways, into the cell. Inside the cell, H2O2 modifies
redox activity of specific protein targets by altering cysteine residues. Cysteine residues are
thought to be the major redox-dependent switches. Nevertheless, redox reactions can also
involve other amino acids, such as methionine, in presence of more powerful oxidants [45].

Interestingly, redox homeostasis appears to greatly reflect the state of electrophile
production by lipid peroxidation, in addition to ROS cell flux. During lipid peroxidation,
which is a chain of reactions that produce lipid hydroperoxides and their degradation
products in membranes, electrophilic activation of the transcription factor nuclear factor
erythroid 2-related factor 2 (Nrf2) is the main signalling molecule. H2O2 is a less efficient
activator of Nrf2 compared with thiol-conjugating electrophiles [41]. Nrf2 is a key regulator
of the cellular antioxidant response as it controls the expression of genes that counteract
oxidative and electrophilic stresses. The relevance of Nrf2 has been discussed in many
pathological conditions linked to redox homeostasis imbalance [47]. Additionally, many
biomarkers of oxidative damage to proteins, lipids, nucleic acids and carbohydrates have
been studied. These evaluations have been joined by the ‘omics’ disciplines that evaluate
the genes involved in the modification of the redox homeostasis, paving the way for
redox medicine [39].
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4. Sperm and ROS: An Ambivalent Relationship

Spermatozoa represent a perfect example of the oxygen paradox [48,49]. Indeed,
oxygen homeostasis and the maintenance of a redox steady state are critical for spermatozoa.
Spermatozoa generate ROS because they need them for several physiological processes
(Figure 2). On the other hand, when ROS production overcomes the antioxidant defences,
there are detrimental effects to the sperm membrane, proteins and DNA (Figure 2), which
have a negative impact on male fertility [50].
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regulate the sperm mechanisms involved in capacitation, hyperactivation, the acrosome reaction and
fertilisation. On the contrary, some pathophysiological conditions can increase ROS levels over the
physiological threshold, generating a condition of oxidative stress that leads to lipid peroxidation,
DNA damage and protein oxidative damage. The stars represent ROS.

4.1. ROS and Sperm Physiology

ROS play an important role in sperm physiology because they regulate several intra-
cellular pathways, thus modulating the activation of different transcription factors [50–52].

First, ROS are responsible for the stability and compaction of sperm chromatin during
epididymal transit and storage. They act as oxidising agents and allow for the formation
of disulphide bonds between cysteine residues of protamines, arginine-rich proteins that
replace histones during spermiogenesis. Chromatin folding is a crucial event in protecting
the paternal genome as the spermatozoa travel through the female reproductive tract [27].

One of the most important roles of ROS in sperm physiology (Figure 2) concerns the
process of capacitation by which spermatozoa undergo dramatic changes in the membrane
composition and acquire hyperactivated motility, leading to the acrosome reaction and
fertilisation [53,54]. The molecular processes behind capacitation include an increase
in pH, Ca2+ and HCO3

− influx, efflux of cholesterol from the plasma membrane, an
increase in cyclic adenosine monophosphate (cAMP) concentration; and protein hyper-
phosphorylation [55,56]. During capacitation, the concentration of O2

•−, H2O2, nitric oxide
and peroxynitrite increase progressively. These ROS stimulate the activation of adenylate
cyclase that drives the increase in cAMP. This second messenger activates protein kinase
A (PKA) that triggers a massive tyrosine phosphorylation cascade, inhibiting tyrosine
phosphatase [57,58]. Redox signalling occurs alongside modification of thiol groups of
proteins of the plasma membrane and the inner sperm compartments [53]. As a part of
the capacitation process, the hyperactivated motility triggered by calcium signalling [59] is
characterised by a high amplitude and extremely asymmetrical beating pattern of sperm
flagellum, as well as lateral head displacement. These motility modifications are dependent
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on ROS-mediated tyrosine phosphorylation of flagellar protein and are needed to make
spermatozoa that can penetrate the cumulus oophorous and zona pellucida and fertilise
the oocyte [60,61]. In addition, the acrosome reaction, the universal requisite for sperm–egg
fusion, is influenced by ROS [62] that increase membrane fluidity. In fact, spermatozoa
exposed to H2O2 show an enhanced acrosome reaction and an increased ability to fuse with
oocyte [63]. Finally, the involvement of ROS in sperm function and physiology is supported
by the observations that antioxidants can alter sperm maturation and, in particular, catalase
or superoxide dismutase can inhibit sperm capacitation and the acrosome reaction [64].

4.2. ROS and Sperm Pathology

In recent decades, OS has emerged as a one of the main causes of altered sperm
function [65]. Spermatozoa represent an easy target for free radical attack due to the high
content of unsaturated fatty acids in their membranes, the limited ability to repair DNA
damage and the virtual lack of cytoplasm. Moreover, spermatozoa are poor in antioxidant
enzymes such as superoxide dismutase, catalase and glutathione peroxidase, as well as
peroxiredoxins [66] that protect most cells from oxidative damage. To compensate the
scarce presence of cellular antioxidants, the seminal plasma is rich in antioxidant enzymes
and radical scavengers, among them glutathione peroxidase, glutathione-S-transferase,
catalase and superoxide dismutase [67]. In addition, other hydrophilic compounds as uric
acid, hypotaurine, tyrosine, polyphenols, vitamin C, ergothioneine and glutathione, and
hydrophobic scavengers as trans-retinoic acids, trans-retinols, α-tocopherol, carotenoids
and coenzyme Q10 are present [68].

The antioxidant properties of seminal plasma are important to balance the presence
of ROS that are not just from the physiological production by spermatozoa. Human
semen contain various amounts of immature spermatozoa, germinal cells, leucocytes,
macrophages and epithelial cells. Among them, the main contributors to OS are leucocytes
and immature spermatozoa with large cytoplasmic residues, but in physiological conditions,
the redox balance is maintained by antioxidants contained in seminal plasma [69]. However,
leucocytospermia occurs when the peroxidase-positive leucocyte concentration exceeds
1 × 106/mL [1]. In this pathology, leucocytes produce a hundred times as much ROS as
what they would in physiological conditions and the antioxidant power of the seminal
plasma is not sufficient to counteract free radicals, leading to OS [70].

Immature spermatozoa fail to extrude the cytoplasm during maturation and the residual
cytoplasm allows for the production of NADPH from glucose-6-phosphate (G6PDH) via the
hexose monophosphate shunt [71,72]. NADPH generates ROS by using two different path-
ways: via NADPH oxidase, a membrane bound enzyme that produces the O2

•− by oxygen,
and via NADPH dehydrogenase, which is responsible for redox reactions in the mitochondria.
The enhanced ROS production triggered by immature spermatozoa is responsible for OS
propagation to maturing normal spermatozoa during epididymal transit [73].

During recent decades, a growing body of evidence has revealed the role of altered
redox balance in seminal plasma, sperm alterations and male infertility [12,72,74]. OS is
enhanced in situations when non-physiological ROS levels overwhelm the natural scav-
enger systems. These situations can be represented by primary pathologies affecting the male
reproductive system, including varicocele [75], bacterial and viral infections, inflammation
and leucocytospermia; chronic pathologies such as diabetes and cancer [72,76]; and envi-
ronmental and lifestyle factors such as use of drugs, smoking, pollution and radiation
(Figure 2). In these conditions, the unconjugated double bonds of PUFA in the sperm
membrane are attacked by ROS, producing lipid hydroperoxides and its secondary de-
composition product, aldehydes [71]. These highly reactive by-products produced by lipid
peroxidation react with proteins and DNA and alter the proteins of the electron transport
chain to induce mitochondrial dysfunction, enhancing the production of mitochondrial
ROS in a self-perpetrating mechanism [9,71,77]. The most evident effect of OS and lipid
peroxidation on spermatozoa is the loss of motility by inhibiting energy generation and
the decrease in vitality as observed when sperm are frozen and thawed, two processes
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that boost ROS production [71]. The relevance of lipid oxidative damage to sperm con-
ditions has been highlighted by the detection, quantification or immunolocalization of
the specific end products of lipid peroxidation (aldehydes and oxygenated metabolites of
PUFA) [78,79].

OS is a major cause of DNA damage in mammalian spermatozoa. Aitken and
De Iuliis [80] proposed a two-step mechanism for the origin of oxidative DNA damage in
spermatozoa. The first phase occurs during spermiogenesis and leads to defective protami-
nation and compaction of sperm chromatin, making DNA more vulnerable to ROS attack.
In normal conditions, chromatin compaction is mandatory to protect paternal DNA—this
stabilisation makes the spermatozoa resistant to oxidative damage. The second phase is
referred to a direct oxidative insult on the DNA due to increased ROS generation by sperm
and a loss of extracellular antioxidant protection. The evident ROS effects on sperm nuclear
DNA include DNA fragmentation, chromatin cross-linking, base-pair modifications and
chromosomal microdeletions [11].

In addition, paternal aging plays a negative effect on sperm parameters and induces a
ROS-related DNA fragmentation. These alterations negatively influence the reproductive
outcome and offspring health documented for cancer, genetic and congenital diseases,
chromosomal alterations and others [81].

5. Human Spermatozoa as a Model for In Vitro Studies

There are many reasons why human spermatozoa represent a model for in vitro studies
(Figure 3). First, the easy collection of spermatozoa from fertile men can guarantee abundant
cellular material. Spermatozoa are differentiated cells with features and specific functions
that enable them to reach the oocyte and to fertilise it. The first peculiar characteristic of
spermatozoa is their motility, which enables them to reach and fertilise the oocyte. This
motility is guaranteed by the ability to obtain energy by both mitochondrial oxidative
phosphorylation and glycolysis, the enzymes for which are located along the FS [33].
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motility, vitality, mitochondrial membrane potential, the acrosome status and DNA integrity can be
evaluated when human spermatozoa are used as an in vitro model to test effects of toxic compounds,
natural extracts and molecules.

Spermatozoa were supposed to be incapable of transcription and translation; however,
several types of coding and non-coding RNAs have been identified. These RNAs derive
from the testis, epididymis, but also by spermatozoa themselves, meaning that also the
sperm condensed chromatin can be partially transcribed [82].
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However, due to the low level of transcription, sperm are deeply influenced by the
external environment [83]. Human spermatozoa do not possess DNA-repair activity. When
fertilisation occurs, DNA-repair activity depends on the oocyte transcripts that had been
stored during maturation [84]. Finally, due to an intrinsic lack of intracellular antioxidant
protection, human spermatozoa have a limited capacity to repair oxidative damage [12].

These aforementioned characteristics make spermatozoa a general and ideal cell model
to test in vitro many compounds at different concentrations related and unrelated to the
reproductive field (Figure 3). Indeed, many antioxidants [85–91] have been tested using
this model. In addition, spermatozoa have been used as an in vitro monitor of toxicity
due to many compounds including natural substances that have potential contraceptive
activity; thus, this research has aimed to identify promising products that could be used as
vaginal contraceptive agents [92–95].

There is a broad group of studies dealing with human sperm as model for testing
the potential toxic effects of pollutants as heavy metals and phthalates [96–98], nanopar-
ticles [99–101], herbicides [102] and drugs [103–105]. When these protocols to study the
effects of spermatozoa exposure to compounds of interest are applied, it is important to
evaluate how the different sperm structures react to the treatment (Figure 3).

The functional status of the acrosome can be tested by assessing several molecular
biomarkers such as acrosin, equatorin, A disintegrin and metalloprotease 3 (ADAM3) and
others [106]. However, fluorescently labelled lectins, such as Arachis hypogaea agglutinin
(PNA, peanut agglutinin), Pisum sativum (PSA) and Canavalia ensiformis (Con A), represent
an easy and inexpensive method to visualise the morphology of the acrosome and the
acrosome reaction to determine the percentage of spermatozoa undergoing exocytosis upon
stimulation [107]. Lectins interact with specific carbohydrates and provide information
on the morphology of the acrosome rather than on the molecules that function during the
fertilisation process. The analysis can be performed with flow cytometry or by scoring cells
using a light microscope equipped with a fluorescence apparatus.

Another endpoint that can be evaluated after in vitro treatment of spermatozoa is DNA
integrity. The World Health Organization (WHO) guidelines [1] report the most common
tests to assess sperm DNA integrity. The direct techniques are terminal deoxynucleotidyl
transferase deoxyuridine triphosphate (dUTP) nick-end labelling (TUNEL) and a single-cell
gel electrophoresis assay (comet assay). TUNEL enables detecting DNA fragmentation by
labelling the 3′-OH generated by the breaks with fluorescent nucleotides. The comet assay is
a gel electrophoresis-based method that can be used to measure DNA damage in individual
spermatozoa. An indirect test based on acridine orange measures the susceptibility of the
DNA to denaturation under acidic conditions. The evaluation can be performed by flow
cytometry (sperm chromatin structure assay [SCSA]) or by fluorescence microscopy [108].

Mitochondria, the hallmark of the sperm tail midpiece, control motility, ROS production,
redox equilibrium and calcium regulation, represent an important indicator of the health
status of spermatozoa. An easy and fast way to measure the mitochondrial membrane po-
tential is the use of the fluorescent cationic dye 5,5,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimi-
dazoylcarbocyanine iodide (JC-1) that shows membrane potential-dependent accumulation
in the mitochondria [109]. JC-1 forms J-aggregates and fluoresces red when the mitochon-
drial membrane potential is high, while it remains in its monomeric state, emitting green
fluorescence, when the membrane mitochondrial potential is low.

Finally, sperm motility is one of the most important indices of cell function. A re-
duction in motility indicates the presence of damage caused by the compounds used
in in vitro studies. Analysis of sperm motility is easy and cheap: it requires a light mi-
croscope and a cell-counting chamber [1]. In addition, a sophisticated method such as
computer-assisted sperm analysis (CASA) systems represents a great tool that has the abil-
ity to provide the rapid, reliable and objective quantitative assessment of sperm kinematic
characteristics [110].

Vitality should be assessed concomitantly with motility, particularly when the in vitro
treatment reduces this parameter drastically. The evaluation of both motility and vitality
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allows for clarifying whether the immotile spermatozoa are dead or alive, and this is
important to understand whether the substance under study has an impact on sperm
motility or if it is able to kill the spermatozoa. Eosin-nigrosin stain and the hypoosmotic
swelling test are the most commonly applied assays. Eosin-nigrosin staining is based
on the integrity of the plasma membrane: dead spermatozoa are stained because the
membrane is disrupted. The hypoosmotic swelling test is based on the semi-permeable
properties of the plasma membrane: living spermatozoa with intact membranes swell in
hypotonic solutions [111].

6. Human Sperm as a Model to Assess the Antioxidant Activity of Different Compounds

The literature is quite rich with papers exploring the use of human sperm as in vitro
cellular model in testing antioxidant compounds. This field of research was born from
the need to protect spermatozoa from OS during semen handling and ART. The idea was
to engineer and supplement incubation media with antioxidants in order to preserve the
functional integrity of spermatozoa.

In humans and animals, sperm cryopreservation represents an important strategy to
store semen for different purposes. Human semen is conserved for assisted fertilisation—for
example, if a man must receive chemotherapy or for sperm banks. In animals, semen cryop-
reservation is important in order to use reproductive biotechnology (artificial insemination
and in vitro fertilisation), which is extensively applied to preserve genetic resources, enhance
male fertility and control diseases [112]. In both cases, even though the cryopreservation
protocols can supply many benefits, they impair spermatozoa function [113]. Within this wide
topic, we restrict our focus to human sperm treated in vitro with antioxidants.

Pentoxifylline (Table 1) was one of the first substances considered in this kind of
studies [114–122], particularly from 1990 to 2000. Pentoxifylline and the other compounds
reported in Table 1 showed a general positive effect on sperm motility, antioxidant activity
and in protecting human sperm from elevated OS generated during cryopreservation
protocols. Pentoxifylline is a methylxanthine derivative that may influence human sperm
respiration, motility and acrosome reaction by increasing the intracellular cAMP concentra-
tion and nitric oxide level that stimulate the guanylate cyclase (cGMP) pathway [123,124].

In addition, the antioxidant properties of pentoxifylline are due to the inhibition of
xanthine oxidase, of which causes a reduction in both the intracellular ROS level and lipid
peroxidation [117]. The effects of pentoxifylline on ART outcomes are available, but the
findings remain unclear [125–128].

Some authors reported that an indiscriminate use of pentoxifylline does not improve
in vitro fertilization performance due to a premature acrosomal reaction [122,125,126].

Quite surprisingly, pentoxifylline was used in the case of systematic sperm defects in
which motility was severely compromised by genetic mutations. It was described as a mild
positive effect of this compound on sperm motility in case of Kartagener syndrome [129,130];
however, we believe that the use of this compound in the presence of systematic defects is
not exactly appropriate.

Incubation with papaverine [131], zinc, aspartate and coenzyme Q [132], selenium [133]
and L-carnitine [134] protected sperm motility, whereas the effect of vitamin E [135–137] and
ascorbic acid [137,138] on sperm motility is debated (Table 1). Among these compounds,
zinc is able to inhibit in vitro superoxide anion generation [132,139,140]; Ajina et al. [141]
reported in vitro an antioxidant effect on the sperm parameters of infertile men, but no
effect on sperm lipid peroxidation. Coenzyme Q10 (CoQ10) is a lipophilic molecule present
in mitochondrial respiratory chain able to transfer electrons from complex I and II to
complex III. Exogenous CoQ10 may diffuse into the polyunsaturated lipid bilayer of the
plasma membrane, enhancing energy production and preventing ROS generation [142].
Boonsimma et al. [143] supplemented with CoQ10 semen samples of asthenozoospermic
men and observed a positive effect of on sperm motility, but OS was not reduced.
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Among the considered compounds, vitamin E [144–147] and its analogues [136] as
well as ascorbic acid have a relevant role in counterbalancing the negative effect of ROS
and membrane lipoperoxidation [138,148].

As mentioned above, lipid peroxidation is a process in which lipids are oxidized as
consequence of failed redox steady-state regulation. Membrane lipid peroxidation causes
a rapid progressing oxidative degradation of lipids by a chain reaction that proceeds in
three stages: initiation, propagation, and termination [149]. In the first stage, the first lipid
radical, initiating the peroxidative chain reaction, is formed; along the second stage, further
lipid radicals are formed by a chain reaction involving more and more lipid molecules;
finally, termination of the peroxidative chain reaction occurs by radical–radical interaction
or by the intervention of antioxidants, such as vitamin E (α-tocopherol). Vitamin E is a lipid-
soluble molecule able of blocking lipid oxidative chain, donating its hydrogen to a lipid
radical (making it inactive) and forming the vitamin E radical. Thus, vitamin E increases
and maintains membrane fluidity by protecting oxidizable lipids. Among the family of
vitamin E isoforms, α-tocopherol is the most largely investigated compound in different
human conditions, in that α-tocopherol appears to reverse human deficiency symptoms
and to be preferentially retained by the body [150,151]. Furthermore, vitamin E has been
reported to be involved with many enzyme activities, also including phospholipase A2
and lipoxygenases, which are involved in the biosynthesis of lipid mediators. Moreover,
vitamin E is involved in cellular signalling and is able to modulate the activity of protein
kinase C, a key regulator in signalling pathways.

Antioxidant properties have also been demonstrated for S-glutathione and hypotau-
rine [152], oleoylethanolamide [153], ethylenediaminetetraacetic acid and catalase [154],
curcumin [87] and lycopene [155,156] (Table 1).

Recently, the most commonly used substances in in vitro studies and applications
on freezing protocols have been inositol/myoinositol [157–165] and, in particular, mela-
tonin [166–172]. The effects of these compounds are reported in Table 1.

Inositol is a component of the vitamin B complex. Myoinositol is the most biologically
important form in nature and is involved in the mechanisms of signal transduction in the
plasma membrane as precursor of second messengers. Myoinositol increases cytosolic Ca2+

and, consequently, increases mitochondrial Ca2+ that stimulates the oxidative mechanism
and the ATP production, improving the mitochondrial function of spermatozoa, preventing
apoptosis and facilitating chromatin compactness [158].

After sperm thawing, it has been reported that myoinositol induces a significant
increase in oxygen consumption and a significant decrease in the level of carbonyl groups,
the main structural changes occurring in the conditions of OS [164].

Human seminal fluid contains melatonin, and melatonin receptors are expressed on
the sperm plasma membrane [173]. The vitality of human spermatozoa is significantly
improved via exposure to 1 mM melatonin for 30 min [174]. In addition, melatonin can
reduce OS and increase the expression of heat shock protein 90 (HSP90) in spermatozoa
that are subjected to cryopreservation [175]. Two research groups observed that melatonin
exerted anti-apoptotic activity in spermatozoa by reducing caspase-3 activation [176] and
DNA fragmentation [171].

Pentoxifylline [123,177–179], zinc [180,181], tocopherols [182–186], ascorbic acid [187–189],
N-acetylcysteine [190,191], L-carnitine [190,192–195], glutathione [196,197], hypotaurine [198],
catalase [188,199,200], coenzyme Q [194] and curcumin [201–203] have been used in freezing
protocols. Overall, they have had generally positive activity on human sperm quality (Table 1).
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Table 1. In vitro effects of compounds with antioxidant activity on human sperm. The table shows
the effects (negative effects are in bold) of the in vitro treatment of human spermatozoa with different
antioxidant compounds. Clinical studies were not considered. Regarding the column related to
freezing protocols, letter “b” means that the supplementation was given before freezing, letter “a”
means that the supplementation was given after thawing.

Investigated Compounds Effects Freezing Protocol

Pentoxifylline
Motility positive effect

[114,116,118–122] *
Antioxidant activity [115,117]

[123] b, [177] b,
[178] ab, [179] b

Papaverine Motility positive effect [131] [131] a

Zinc Motility positive effect [132]
Antioxidant activity [132,139–141] [180] b, [181] b

Selenium Motility positive effect [133]
Antioxidant activity [133]

Vitamin E (α tocopherol,
liposoluble)

Trolox (hydrosoluble)

Motility positive effect [135,136]
Motility negative effect [137]

Antioxidant activity [135,144–147]

[182] b, [183] b,
[184] b, [185] b,

[186] b

D-aspartate Motility positive effect [132]
Antioxidant activity [132]

Ascorbic acid
Motility positive effect [138]

Motility negative effect [137];
Antioxidant activity [138,144,148]

[187] b, [188] b,
[189] b

N-acetylcysteine [190] b, [191] b

S-glutathione Antioxidant activity [152] [196] ab, [197] b

Hypotaurine Antioxidant activity [152] [198] b

Oleoylethanolamide Motility positive effect [153]
Antioxidant activity [153]

Ethylenediaminetetraacetic
acid (EDTA)

Motility positive effect [154]
Antioxidant activity [154]

Catalase Motility positive effect [154]
Antioxidant activity [154]

[188] b, [199] b,
[200] b

Coenzyme Q Motility positive effect [132,143]
Antioxidant activity [132,144] [194] b

L-carnitine Motility positive effect [134]
[190] b, [192] b,
[193] b, [194] b,

[195] b

Phosphatidylcholine [195] b

Myoinositol/Inositol Motility positive effect [157–159,163]
[160] b, [161] b,
[162] b, [164] ab,

[165] b

Melatonin

Motility positive effect
[166,170–172,174,176]

Antioxidant activity [166,171,172]
Anti-apoptotic effect [171,176]

[167] b, [168] b,
[169] ab, [175] b

Curcumin Antioxidant activity [87] [201] b, [202] b,
[203] b

Lycopene Antioxidant activity [155,156]
* Pentoxifylline analogue.

In the last two decades, there has been growing interest in using polyphenols for
cryopreservation. Polyphenols, natural compounds synthesised exclusively by plants, are
an integral part of the human diet; they are present in fruits, vegetables, nuts, seeds, tree
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barks, and beverages such as wine, beer and tea. Polyphenols include the subclasses of
non-flavonoid polyphenols—for example, resveratrol—and flavonoid polyphenols such as
quercetin, epigallocatechin-3-gallate, genistein, naringenin and many others [204].

It is known that flavonoids can play a dual action on ROS homeostasis as they can
behave as antioxidants under normal conditions, but they can also have pro-oxidant
activity; this is the reason why they can trigger apoptotic processes in cancer cells [205].
Several mechanisms have been suggested to explain the biological activity of polyphenols
on animal cells. Polyphenols directly scavenge ROS and chelate metal ions due to the
presence of hydroxyl groups, and they can show specific actions strictly dependent on the
particular structural and chemical characteristics of the different molecules. These indirect
effects include the activation of antioxidant enzymes, suppression of pro-oxidant enzymes
and others [206].

Polyphenolic compounds have been used in in vitro studies with human sperm and in
cryopreservation protocols (Table 2). Due to the powerful antioxidant activity [207,208], these
substances show a general protective effect on sperm motility [85,209,210], vitality [88,211,212],
membrane and acrosome integrity [213,214] and the DNA status [145,208,215]. To the best of
our knowledge, quercetin, genistein and resveratrol have also shown protective effects on OS
triggered by the cryopreservation protocol [187,216–223].

However, Aitken et al. [224] demonstrated that many polyphenols could be harmful
for human spermatozoa and suppress motility by different mechanisms of action. In this
research, human spermatozoa were incubated for 24 h with several polyphenols (a concen-
tration range of 25–200 µM), including quercetin, catechin, gossypol, gallocatechin gallate,
catechin gallate, caffeic acid, pyrogallol, epigallocatechin gallate, resveratrol, epicatechin
gallate, genistein, baicalein and ellagic acid. In terms of toxicity, 50 µM of gossypol caused a
rapid loss of motility due to different mechanisms of action. Gossypol can bind the proteins
of the mitochondrial electron transport chain, causing a leakage of electrons that react with
oxygen producing superoxide anion, and, in particular, gossypol can covalently modify
axonemal proteins needed for motility. In addition, a rapid loss of the mitochondrial
membrane potential and a dramatic increase in ROS production were observed [224]. For
most compounds examined in this study [224], the loss of sperm motility was gradual and
correlated with an increase in lipid peroxidation, indicating the pro-oxidant activity of
polyphenols. Other polyphenols as genistein showed completely different behaviour, in-
ducing high levels of mitochondrial redox activity that was not concomitant with increased
lipid peroxidation. Genistein can interact with complex III (instead of complex I) of the
sperm mitochondrial transport chain, causing electron leakage; this process did not damage
spermatozoa. Of note, resveratrol and genistein at a concentration of <100 µM appeared
to be more tolerated by human spermatozoa (Table 2). There have also been conflicting
results regarding the ability of polyphenols to protect sperm from OS in other studies. In
one study, quercetin, rutin, naringenin and epicatechin exerted a dose-dependent effect
(20–400 µM) on sperm motility and vitality [213]. At a high concentration, quercetin was
toxic even though at 30 µM it was well tolerated by spermatozoa and exhibited antioxidant
activity. Khanduja et al. [225] also observed that quercetin exerted a dose-dependent effect
on sperm motility. Naringenin was not toxic for sperm up to a concentration of 200 µM;
however, at 400 µM, it caused sperm death. Epicatechin at 400 µM caused a decrease in pro-
gressive sperm motility and an increase in non-progressive sperm motility [213]. Recently,
Lv et al. [226] exposed in vitro human sperm to different concentrations of rosmarinic
acid (1, 10, 100 and 1000 µM) and observed a dose-dependent decrease in sperm motility,
capacitation and the spontaneous acrosome reaction.
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Table 2. Effects of flavonoids and polyphenols used in in vitro experiments on human spermatozoa.
The table shows the effects (negative effects are in bold) of the in vitro treatment of human spermato-
zoa with different flavonoids and polyphenols. Clinical studies were not considered. Regarding the
column related to freezing protocols, letter “b” means that the supplementation was given before
freezing, letter “a” means that the supplementation was given after thawing.

Investigated Flavonoids
and Polyphenols Effects Freezing Protocol

Rosmarinic acid Negative effect on motility and
acrosome reaction [226]

Quercetin

Negative effect on motility [225]
Positive effect on sperm motility

[210,213,214] *
Positive effects on membrane integrity,

sperm vitality, acrosome [213,214] *
Positive effect on DNA integrity [145]

Negative effect on DNA integrity [214] *
Antioxidant activity [85]

[219] b, [220] b,
[223] b

Genistein Positive effects on membrane
integrity [224] [217] a

Equol Positive effect on DNA integrity [215]

Rutin
Positive effect on sperm motility,

membrane integrity, sperm vitality [213]
Positive effect on DNA integrity [145]

Naringenin
Positive effect on sperm motility,

membrane integrity, sperm vitality [213]
Positive effect on DNA integrity [145]

Epigallocatechin-3-gallate Antioxidant activity [207]

Hydroxytyrosol
Positive effect on sperm motility, vitality,

DNA integrity [211]
Antioxidant activity [211]

Caffeic acid phenethyl ester Positive effect on DNA integrity [208]
Antioxidant activity [208]

Procyanidine Positive effect on sperm motility [209] [209] b

Ellagic acid Positive effect on sperm motility, vitality,
DNA integrity [212]

Resveratrol
Positive effect on sperm motility [85,218]

Positive effect on membrane integrity [224]
Antioxidant activity [85]

[187] b, [216] b,
[218] b, [221] b,

[222] b

Cholorogenic acid Positive effect on sperm motility, vitality,
DNA integrity [88] [88] b

* quercetin-loaded liposomes.

We cannot exclude that the modulation in positive and negative ways of the sperm
motility by flavonoids can involve oestrogen (ER) receptors that are present in human
spermatozoa; in particular, ERα is predominantly expressed in the midpiece and ERβ is
distributed along the tail [227]. Indeed, several flavonoids interact with ERs, although with
low affinity, and they behave both as oestrogen antagonists or oestrogen agonists; however,
the mechanisms underlying the contrasting effects are still poorly understood [228].

In addition, there was DNA damage when quercetin-loaded liposomes were incubated
in vitro with human spermatozoa, indicating possible toxic activity of this compound [214].
Quercetin seems to have weak mutagenic activity in in vitro experiments and its toxic effect
against cancer cells is well documented [229], depending on the dose at which it is used [230].
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The debated effects of polyphenols on human sperm in vitro could limit their clinical
application. Hence, there is a need for studies focused on the potential genotoxicity of
these compounds and on the exact mechanism of action before they can be used in gamete
handling procedures.

In the last decade, attention has shifted to natural extracts, including phytocomplexes
(Table 3). The rationale behind using a phytocomplex rather than its isolated constituents is
based on the synergic effects between the molecules and increased bioavailability in the
in vivo studies [231].

Table 3 reports the studies in which an aqueous [232–238] or alcoholic [91,239–242]
extract of plants or natural products was applied in vitro and during cryopreservation
protocols to test the protective/antioxidant effects on human spermatozoa. Because the
botanicals and herbal preparations for experimental or medical use contain different types
of bioactive compounds, chemical characterisation of the extract and evaluation of the
composition, antioxidant activity and toxicity are mandatory [91,218,235,236,241–245].

Other compounds such as Cissampelos capensis rhizome aqueous extract [246] and
unfermented rooibos [247] seem to induce sperm capacitation in vitro. Some researchers
have analysed the effects of phytocomplexes on sperm DNA [238,240,244,245,248]. The
authors have reported a general protective action on DNA.

Although the limited data on the use of these extracts during cryopreservation proce-
dures [218,249–252] showed positive results on sperm motility, vitality and DNA fragmen-
tation, it is impossible to compare the results even if they are related to the same botanical
species because of the different origin of the plants and extraction methods.

Table 3. Natural extracts that exert a positive effect on human sperm in vitro. The table shows
the papers that report the positive effects of the in vitro treatment of human spermatozoa with
different natural extracts. Regarding the column related to freezing protocols, letter “b” means that
the supplementation was given before freezing, letter “a” means that the supplementation was given
after thawing.

Natural Extract Extract Characterization and Effects
on Human Sperm

Freezing
Protocol

Propolfenol® Extract characterization, antioxidant activity [239]

Chilean propolis
ethanolic extract

Positive effect on DNA integrity,
antioxidant activity [240]

Withania somnifera
aqueous ethanol
extract

Extract characterization, positive effect on sperm
parameters, antioxidant activity [91]

Prunus japonica seed
ethanolic extract

Extract characterization, positive effect on
sperm parameters [242]

Moringa oleifera
aqueous extract

Positive effect on sperm parameters, DNA integrity,
antioxidant activity [238]

Capparis spinosa L.
hydroalcoholic extract

Extract characterization, positive effect on sperm
parameters, DNA integrity [245]

Origanum vulgare Positive effect on sperm parameter [237]
essential oil obtained by hydrodistillation

[251] b
aqueous extract

Castanea sativa Mill.
ethanolic extract

Extract characterization, positive effect on sperm
parameters, antioxidant activity [241]

Eruca sativa
aqueous extract

Extract characterization, positive effect on sperm
parameters, antioxidant activity [236]

Tribulus terrestris
aqueous extract Positive effect on sperm parameters [234] [249] ab

Terminalia arjuna bark
aqueous extract

Extract characterization, positive effect on sperm
parameters, antioxidant activity [235] [250] b
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Table 3. Cont.

Natural Extract Extract Characterization and Effects
on Human Sperm

Freezing
Protocol

Morinda officinalis Extract characterization, positive effect on DNA
integrity, antioxidant activity [244]

Date seed oil Positive effect on sperm parameters, DNA integrity,
antioxidant activity [248]

Mondia whitei
aqueous extract Positive effect on sperm parameters [233]

Aqueous extract of
herbal medicines Positive effect on sperm parameters [232] *

The red alga
Gelidiella acerosa

Extract characterization, positive effect on
sperm parameters [243]

Opuntia ficus-indica Extract characterization [218] [218] b, [252] a
* Astragalus membranaceus and Acanthopanacis senticosi.

7. Conclusions and Future Directions

OS can have a negative impact on gametes during the laboratory procedures that
occur in the presence of oxygen [9,12,16]. ROS generation during these procedures cannot
be completely avoided; hence, strategies minimising oxidative damage are advisable. One
of the most important approaches involves using antioxidants to supplement the media
used for gamete handling and to optimise gamete and embryo preservation [16,88,128].

Based on their intrinsic characteristics and the easy ability to collect, spermatozoa
represent a valuable in vitro cellular model to test the effect of antioxidants against OS.
The standardisation of this type of study would be important. When new molecules are
tested, the main endpoints of spermatozoa as motility, vitality, the status of the acrosome,
the membrane mitochondrial potential and, in particular, the DNA status and the potential
cytotoxicity should be considered and evaluated.

The finding of the best antioxidants and their optimal concentrations to be used
during the in vitro supplementation of media used for semen handling is an open area of
research. Regarding the use of antioxidants during freezing–thawing protocols, to date, the
supplementation during freezing appeared to be the most used method; however, some
research reported a supplementation after thawing or both during cryopreservation and
post-thawing (Tables 1–3).

Most of the studies in this field are essentially observational and new insights into
the mechanism of action of the various compounds are necessary. Many compounds with
antioxidant activity have been tested in vitro on human spermatozoa [147,154,159,171,213,224];
however, in the last decade, there has been increasing interest in phytochemicals and natural
extracts [91,218,232–252]. These extracts are obtained from waste materials that represent
a rich source of molecules with high antioxidant activity. This particular field of research
is worth implementing because the by-products can be utilised in the industrial, cosmetic,
nutraceutical fields and other areas, encouraging recycling and moving from a linear economy
to a circular, sustainable green economy [253].
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[147,154,159,171,213,224]; however, in the last decade, there has been increasing interest 
in phytochemicals and natural extracts [91,218,232–252]. These extracts are obtained from 
waste materials that represent a rich source of molecules with high antioxidant activity. 
This particular field of research is worth implementing because the by-products can be 
utilised in the industrial, cosmetic, nutraceutical fields and other areas, encouraging 
recycling and moving from a linear economy to a circular, sustainable green economy 
[253]. 
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