
Received: 5 November 2020 Revised: 18 March 2021 Accepted: 26 May 2021

DOI: 10.1111/biom.13505

B IOMETRIC METH ODOLOGY

Design-based properties of the nearest neighbor spatial
interpolator and its bootstrap mean squared error estimator

Lorenzo Fattorini1 Marzia Marcheselli1 Caterina Pisani1 Luca Pratelli2

1 Department of Economics and Statistics,
University of Siena, Siena, Italy
2 Naval Academy, Livorno, Italy

Correspondence
MarziaMarcheselli,Department ofEco-
nomics andStatistics,University of Siena,
P.zza S. Francesco 8, 53100Siena, Italy.
Email:marzia.marcheselli@unisi.it

[Correction addedonMay 16, after first
online publication:CRUI-CARE funding
statementhas beenadded.]

Abstract
Nearest neighbor spatial interpolation for mapping continuous populations and
finite populations of areas or units is approached from a design-based perspec-
tive, that is, populations are fixed, and uncertainty stems from the sampling
scheme adopted to select locations. We derive conditions for design-based point-
wise and uniform consistency of the nearest neighbor interpolators. We prove
that consistency holds under certain schemes that are widely applied in environ-
mental and forest surveys. Furthermore, we propose a pseudopopulation boot-
strap estimator of the rootmean squared errors of the interpolated values. Finally,
a simulation study is performed to assess the theoretical results.
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1 INTRODUCTION

The nearest neighbor (NN) criterion is widely adopted in
several fields of statistical analysis. The criterion has the
appealing property of being nonparametric: it is simply
based on the supposition that data that are near in some
sense tend to be similar. Among other areas, the NN crite-
rion is adopted in pattern recognition and clustering prob-
lems, where an object of unknown category is classified
in the same category of its nearest observed object (e.g.,
Devroye et al., 1996; Bremner et al., 2005; Everitt et al.,
2011), in nonparametric regression, where the predicted
value of the variable of interest for a nonobserved unit is
that attached to the nearest unit in the covariate space (e.g.,
Stone, 1977; Altman, 1992; Terrell and Scott, 1992), and in
outlier and anomaly detection, where the larger the dis-
tance of an observation is to its NN, the more likely the
observation is to be an outlier (e.g., Campos et al., 2016).
The NN criterion has been adopted for spatial interpo-

lation for a long time. In the case of continuous surfaces,
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given a set of n sampled locations for which the surface
values have been recorded, the interpolated value at any
other location is the value observed at the nearest sampled
location. Practically speaking, the interpolated surface is a
piecewise constant function assigning the value recorded
at a sampled location to each location inside the Voronoi
cell around the sampled location. The NN criterion can be
extended to the interpolation of values in finite populations
of areas or units.
Owing to its simplicity, mapping by NN interpolation

constitutes a widely extended practice in many fields of
research such as, among others, environmental and eco-
logical surveys (e.g., Li and Heap, 2008), epidemiology and
air quality (e.g., Wong et al., 2004, and references therein),
atmospheric sciences (e.g., Chen et al., 2010), and high-
resolution imaging (e.g., Ashraf et al., 2017).
Despite its large use, the NN spatial interpolator has

been invariably adopted as a descriptive technique. From
a model-dependent perspective, Cressie (1993, section 5.9)
classified descriptive mapping techniques for which no
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stochastic model is assumed and, as such, no uncer-
tainty is associated, as “nonstochastic methods of spatial
prediction.”
However, in recent years, another nonstochasticmethod

of spatial prediction, that is, the widely applied inverse dis-
tance weighting (IDW) interpolator, has been approached
fromadesign-based perspective: the population to be inter-
polated is considered fixed, and uncertainty only stems
from the probabilistic sampling scheme adopted to select
locations. In IDW interpolation, the interpolated value is
achieved as a convex combination of the values observed
at sampled locations with weights decreasing with the dis-
tances to the location to be interpolated. Conditions ensur-
ing design-based asymptotic unbiasedness and consistency
of the IDW interpolator have been proven for continuous
populations (Fattorini et al., 2018a), finite populations of
areas partitioning a region (Fattorini et al., 2018b), and
finite populations of units located in a region (Fattorini
et al., 2019). For the three scenarios, design-based asymp-
totic unbiasedness and consistency are achieved at the cost
of supposing (i) some forms of smoothness of the survey
variable throughout the study region; (ii) asymptotically
balanced spatial sampling schemes; (iii) some mathemati-
cal properties of the distance functions adopted for weight-
ing sampled observations; and (iv) some sort of regulari-
ties, such as in the shape of areas or in the enlargement of
the populations of units, in the case of finite populations.
Regarding the distance function to adopt for weighting

sample observations, it has been proven that negative pow-
ers of type 𝜙(𝑑) = 𝑑−𝛼, where 𝑑 is a positive real number
representing a distance and 𝛼 is a positive real number, sat-
isfy asymptotic unbiasedness and consistency of the IDW
interpolator for𝛼 > 2 (Fattorini et al., 2018a; Fattorini et al.,
2018b; Fattorini et al., 2019). Therefore, NN interpolator
can be viewed as the limiting case of the IDW interpolator
withweights of type𝜙(𝑑) = 𝑑−𝛼 for𝛼 approaching infinity.
The purpose of this paper is to derive conditions suffi-

cient to extend the asymptotic properties proven for the
IDW interpolator to the NN interpolator. We do so in a
unifying approach that includes the three types of spa-
tial populations. Indeed, design-based asymptotic unbi-
asedness and consistency of NN interpolator cannot be
straightforwardly achieved from the inequalities regard-
ing the IDW interpolator under the three scenarios as
𝛼 approaches infinity. In this way, three different results
would be obtained. On the other hand, because the NN
interpolator only involves the nearest sample location,
asymptotic results are achieved in a more direct and less
cumbersome way and are jointly valid for the three types
of spatial populations.Moreover, a pseudopopulation boot-
strap approach is adopted to obtain a reliable, conservative
estimator of the accuracy of the NN interpolator, for which
no consistency result is presently available and uncertainty
assessment has been traditionally neglected or has not yet

gone beyond the simple application of leave-one-out or
cross-validation techniques (e.g., Chen et al., 2010) with-
out any theoretical investigation.
The paper is organized as follows. Notation and setting

are introduced in Section 2. Section 3 contains some finite
sample results useful for determining the asymptotic
properties of the NN interpolator, which are detailed
in Section 4. In Section 5, the asymptotic properties are
proven to hold under familiar spatial schemes, and in
Section 6, a pseudopopulation bootstrap estimator of the
precision of the NN interpolator is proposed. A simulation
study is described in Section 7, whereas the application
of the NN interpolator for providing the forest map in
a region in Casentino Valley is illustrated in Section 8.
Finally, concluding remarks are given in Section 9.
Supporting Information contains technical details and
proofs, tables, and figures referring to the simulation
study.

2 NOTATION AND SETTING

Denote by 𝜆 the Lebesgue measure on ℝ2 and by 𝐼(𝐸) the
indicator function of the event 𝐸. Let 𝑌 be a survey vari-
able, and consider a study region 𝐴 that is assumed to
be a compact set of ℝ2. Moreover, let 𝑓 be a measurable
function defined on a Borelian subset 𝐵 of 𝐴, with val-
ues on [0, 𝐿] and such that, for any Borelian subset 𝐶 of 𝐵,
∫
𝐶
𝑓(𝐩)𝜇(𝑑𝐩) yields the amount of𝑌 in the region𝐶, where

𝜇 is the Lebesguemeasure 𝜆 under continuous populations
and population of spatial areas, whereas it is the counting
measure under a population of units. Then, in accordance
with the features of spatial populations, there are the fol-
lowing three settings.

Continuous populations
𝐵 coincides with 𝐴, and 𝑓 is the density of 𝑌, that is,
∫
𝐶
𝑓(𝐩) 𝜆(𝑑𝐩) is the amount of 𝑌 in 𝐶. Therefore, mapping

necessitates the knowledge of𝑓(𝐩) for (almost) each𝐩 ∈ 𝐵.

Finite populations of spatial areas
𝐵 coincides with 𝐴, which is partitioned into 𝑁 areas
𝑎1, … , 𝑎𝑁 , and 𝑦𝑗 is the amount of the survey variable 𝑌
within𝑎𝑗 . Therefore,mapping requires knowledge of 𝑦𝑗 for
each 𝑗 = 1,… ,𝑁. As the area size 𝜆(𝑎𝑗) is usually known
for each 𝑗 = 1,… ,𝑁, mapping actually requires knowledge
of the density of 𝑌 within area 𝑗, 𝑦𝑗∕𝜆(𝑎𝑗), for each 𝑗 =

1,… ,𝑁, that is equivalent to the knowledge of the piece-
wise constant function

𝑓(𝐩) =

𝑁∑
𝑗=1

𝑦𝑗

𝜆(𝑎𝑗)
𝐼(𝐩 ∈ 𝑎𝑗)

for each𝐩 ∈ 𝐵. In particular, ∫
𝐵
𝑓(𝐩)𝜆(𝑑𝐩) = 𝑦1 +⋯+ 𝑦𝑁 .
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Finite populations of units
𝐵 is the set {𝐩1, … , 𝐩𝑁} of 𝑁 unit locations, and 𝑦𝑗 = 𝑓(𝐩𝑗)

is the value of the survey variable for the unit 𝑗. There-
fore, mapping requires the knowledge of 𝑓(𝐩𝑗) for each
𝑗 = 1,… ,𝑁. It is worth noting that ∫

𝐵
𝑓(𝐩)𝜇(𝑑𝐩) = 𝑦1 +

⋯+ 𝑦𝑁 , where 𝜇 is the counting measure that yields mass
1 at every 𝐩𝑗 for 𝑗 = 1,… ,𝑁.
Let 𝐏1, … , 𝐏𝑛 be 𝑛 random variables with values in

𝐵 that represent the 𝑛 locations selected from 𝐵 by
means of a probabilistic fixed-size sampling scheme. In the
case of continuous populations, 𝐏1, … , 𝐏𝑛 denote 𝑛 loca-
tions selected in the continuum 𝐵, and 𝑓(𝐏1), … , 𝑓(𝐏𝑛)

are the densities of 𝑌 recorded at those locations.
In the case of finite populations of areas, 𝐏1, … , 𝐏𝑛

denote the centroids identifying the 𝑛 sampled areas,
and 𝑓(𝐏1), … , 𝑓(𝐏𝑛) are the densities recorded within
the corresponding areas. Finally, in the case of finite
populations of units, 𝐏1, … , 𝐏𝑛 denote the locations of
𝑛 sampled units, and 𝑓(𝐏1), … , 𝑓(𝐏𝑛) are the values of
𝑌 for these units. The NN spatial interpolator 𝑓 of 𝑓
is

𝑓(𝐩) = 𝐼(𝑄𝐩)𝑓(𝐩) +
𝐼(𝑄𝑐

𝐩)

Card(𝐻𝐩)

∑
𝑖∈𝐻𝐩

𝑓(𝐏𝑖) , 𝐩 ∈ 𝐵, (1)

where 𝑄𝐩 =
⋃𝑛

𝑖=1
{𝐏𝑖 = 𝐩} and 𝐻𝐩 = {𝑖 ∶ ‖𝐏𝑖 − 𝐩‖ =

minℎ=1,…𝑛‖𝐏ℎ − 𝐩‖}.
In the continuous case, 𝑄𝐩 has probability 0 and

Card(𝐻𝐩) is equal to 1 almost surely, in such a way that (1)
reduces almost surely to

𝑓(𝐩) = 𝑓(𝐏𝑖) , 𝐩 ∈ 𝐵, (2)

where ‖𝐏𝑖 − 𝐩‖ = minℎ=1,…𝑛‖𝐏ℎ − 𝐩‖.
In the case of finite populations of areas, 𝑓(𝐩) = 𝑓(𝐛𝑗)

for each 𝐩 ∈ 𝑎𝑗 , where 𝐛𝑗 denotes the centroid of the 𝑗th
area, and

𝑓(𝐛𝑗) = 𝐼(𝑄𝐛𝑗
)𝑓(𝐛𝑗) +

𝐼(𝑄𝑐
𝐛𝑗
)

Card(𝐻𝐛𝑗
)

∑
𝑖∈𝐻𝐛𝑗

𝑓(𝐏𝑖) , 𝑗 = 1, … ,𝑁,

(3)

where Card(𝐻𝐛𝑗
)may be greater than 1, as, for example, in

the case of populations of regular polygons (e.g., pixels).
Finally, in the case of finite populations of units, the NN

interpolator is

𝑓(𝐩𝑗) = 𝐼(𝑄𝐩𝑗
)𝑓(𝐩𝑗) +

𝐼(𝑄𝑐
𝐩𝑗
)

Card(𝐻𝐩𝑗
)

∑
𝑖∈𝐻𝐩𝑗

𝑓(𝐏𝑖) , 𝑗 = 1, … ,𝑁,

(4)

where, if units are settled on regular grids (e.g., net nodes),
NNs may be more than 1.

Interpolator (1) is the limit of the IDW interpolator with
distance function 𝑑−𝛼

𝑓𝛼(𝐩) = 𝐼(𝑄𝐩)𝑓(𝐩) + 𝐼(𝑄𝑐
𝐩)

∑𝑛

𝑖=1
𝑓(𝐏𝑖)‖𝐏𝑖 − 𝐩‖−𝛼∑𝑛

𝑖=1
‖𝐏𝑖 − 𝐩‖−𝛼 ,

when 𝛼 approaches infinity.

3 SOME FINITE SAMPLE RESULTS

We derive some results for 𝑛 finite, to be subsequently
exploited for determining the asymptotic properties of the
NN interpolator.
Denote by ‖𝑓 − 𝑓‖∞ = sup𝐩∈𝐵|𝑓(𝐩) − 𝑓(𝐩)|. In the fol-

lowing, without loss of generality, we suppose that

‖𝑓 − 𝑓‖∞ = sup𝐩∈𝐷|𝑓(𝐩) − 𝑓(𝐩)| (5)

for a suitable countable subset 𝐷 ⊂ 𝐵. Indeed, (5) is true
when 𝑓 is continuous or 𝐵 is a countable set. For any 𝛿 > 0

and 𝐩 ∈ 𝐵, denote by

Δ(𝐩, 𝛿) = sup𝐩∈𝐵∶‖𝐩−𝐪‖≤𝛿|𝑓(𝐪) − 𝑓(𝐩)|
the largest jump of 𝑓 in the 𝛿-ball of 𝐩 and Δ(𝛿) =

sup𝐩∈𝐷Δ(𝐩, 𝛿) the largest jump on 𝐷.
Moreover, denote by𝐴𝑖(𝐩, 𝛿) = {‖𝐏𝑖 − 𝐩‖ > 𝛿} the event

that the 𝑖th sampled location is outside the 𝛿-ball of 𝐩, in
such a way that

𝐴(𝐩, 𝛿) =

𝑛⋂
𝑖=1

𝐴𝑖(𝐩, 𝛿) =

𝑛⋂
𝑖=1

{‖𝐏𝑖 − 𝐩‖ > 𝛿}

is the event that no sampled location is within the 𝛿-ball of
𝐩.

Theorem 1. For any 𝛿 > 0 and 𝐩 ∈ 𝐵

𝐸
{|𝑓(𝐩) − 𝑓(𝐩)|} ≤ Δ(𝐩, 𝛿) + 𝐿Pr{𝐴(𝐩, 𝛿)}. (6)

Moreover, under condition (5)

𝐸
{‖𝑓 − 𝑓‖∞} ≤ Δ(𝛿) + 𝐿Pr

{⋃
𝐩∈𝐷

𝐴(𝐩, 𝛿)

}
. (7)

Both the inequalities highlight that expectations of abso-
lute errors are bounded by the sum of two terms: the first
depending on the roughness of 𝑓 and the second depend-
ing on the sampling design. Therefore, precise interpola-
tion takes hold when both terms are small. If 𝑓 is contin-
uous at 𝐩 or on the whole 𝐵, then the first term on the
right-hand sides of (6) and (7) approaches zero with 𝛿, and
accordingly, the precision of the interpolation depends on
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FATTORINI et al. 1457

the features of the sampling design throughout the second
terms. Practically speaking, the sampling scheme should
be able to ensure a spatial balance, that is, to evenly spread
sampled locations in such a way that a location, in the case
of (6), or any location on the whole 𝐵, in the case of (7),
is likely to have neighboring locations sampled. In turn,
regarding the right-hand side of (6), the second term can
be bounded on the basis of the random variable 𝑍(𝐩, 𝛿) =∑𝑛

𝑖=1
𝐼{𝐴𝑐

𝑖
(𝐩, 𝛿)} representing the number of sampled loca-

tions falling in the 𝛿-ball of 𝐩.

Theorem 2. For any fixed 𝑛 and for any 𝛿 > 0 and 𝐩 ∈ 𝐵

Pr{𝐴(𝐩, 𝛿)} = Pr{𝑍(𝐩, 𝛿) = 0} ≤ 1∑𝑛

𝑖=1
Pr{𝐴𝑐

𝑖
(𝐩, 𝛿)}

+ supℎ≠𝑖=1,…,𝑛
[
Pr{𝐴𝑐

𝑖
(𝐩, 𝛿) ∩ 𝐴𝑐

ℎ
(𝐩, 𝛿)}

Pr{𝐴𝑐
𝑖
(𝐩, 𝛿)}Pr{𝐴𝑐

ℎ
(𝐩, 𝛿)}

− 1

]+

. (8)

The precision of the NN interpolator deteriorates where
discontinuities are present. However, the precision of the
whole map is preserved if these discontinuities, as usual in
practical situations, occur for sets of measure zero. Indeed,
in this case, the mean integrated absolute error

𝑀𝐼𝐴𝐸(𝑓) = ∫
𝐵

𝐸
{|𝑓(𝐩) − 𝑓(𝐩)|}𝜆(𝑑𝐩) (9)

strictly depends on ∫
𝐵
Pr{𝐴(𝐩, 𝛿)}𝜆(𝑑𝐩) that, in turn, will

be small if the second term of (6) is small due to the effec-
tiveness of the sampling design.
More compelling results are achieved if we suppose 𝑓

to be Lipschitz continuous at 𝐩, that is, if |𝑓(𝐪) − 𝑓(𝐩)| ≤
𝛽‖𝐩 − 𝐪‖ for each 𝐪 ∈ 𝐵, where 𝛽 > 0 is the Lipschitz con-
stant. In this case, taking 𝛿 = 𝑡𝑛−1∕2 for any 𝑡 > 0, from
inequalities (6) and (7), it follows that

𝐸
{|𝑓(𝐩) − 𝑓(𝐩)|} ≤ 𝛽𝑡𝑛−1∕2 + 𝐿Pr{𝐴(𝐩, 𝑡𝑛−1∕2)}, (10)

𝐸
(‖𝑓 − 𝑓‖∞) ≤ 𝛽𝑡𝑛−1∕2 + 𝐿Pr{

⋃
𝐩∈𝐷

𝐴(𝐩, 𝑡𝑛−1∕2)}, (11)

respectively. The previous inequalities will be useful in
investigating the asymptotic properties of interpolator (1)
under suitable spatial schemes.

4 ASYMPTOTIC RESULTS

To achieve design-based asymptotic unbiasedness and con-
sistency of (1), the following three asymptotic scenarios
are considered. All of them refer to the infill asymptotics

paradigm (Cressie, 1993) and have already been exploited
in Fattorini et al. (2018a), Fattorini et al. (2018b), and Fat-
torini et al. (2019).
In the case of continuous populations, a sequence of

fixed-size designs to select samples of increasing size on
the fixed subset 𝐵 is assumed. In particular, for any natu-
ral number 𝑘, a fixed-size design selecting a sample of 𝑛𝑘
locations 𝐏𝑘,1, … , 𝐏𝑘,𝑛𝑘

from 𝐵 is considered, with 𝑛𝑘 → ∞

as 𝑘 increases, and for each 𝐩 ∈ 𝐵, 𝑓𝑘(𝐩) is the NN inter-
polator (2) of 𝑓(𝐩).
In the case of finite populations of areas, 𝐵 is fixed,

and for any natural number 𝑘, 𝐵 is partitioned into 𝑁𝑘

units 𝑎𝑘,1, … , 𝑎𝑘,𝑁𝑘
with centroids 𝐛𝑘,1, … , 𝐛𝑘,𝑁𝑘

, where,
as 𝑘 increases, 𝑁𝑘 ↑ ∞ and all the units decrease in size
such that sup𝑗=1,…,𝑁𝑘

diam(𝑎𝑘,𝑗) → 0. Then, a sequence
of fixed-size designs is considered to select samples of
𝑛𝑘 < 𝑁𝑘 areas identified by their centroids 𝐏𝑘,1, … , 𝐏𝑘,𝑛𝑘

,
with 𝑛𝑘 → ∞. Therefore, referring to the 𝑘th parti-
tion, for each 𝐩 ∈ 𝑎𝑘,𝑗 and 𝑗 = 1,… ,𝑁𝑘, 𝑓𝑘(𝐩) = 𝑓𝑘(𝐛𝑘,𝑗)

is the NN interpolator (3) of the piecewise constant
function 𝑓𝑘(𝐩).
Finally, in the case of finite populations of units, as

is customary in the finite population asymptotic frame-
work (Särndal et al., 1992), let = {𝐩1, 𝐩2, … } be an infinite
sequence of points onto𝐴. A sequence {𝐵𝑘} of populations
is considered where 𝐵1 consists of the first 𝑁1 points from , 𝐵2 consists of the first 𝑁2 points from  with 𝑁2 > 𝑁1,
and so on, in such away that {𝐵𝑘} turns out to be a sequence
of nested populations of increasing sizes. Finally, suppose
a sequence of fixed-size designs to select a sample of size
𝑛𝑘 of units identified by the locations 𝐏𝑘,1, … , 𝐏𝑘,𝑛𝑘

from
𝐵𝑘 with 𝑛𝑘 → ∞. Therefore, referring to the 𝑘th popula-
tion, for each 𝐩𝑗 ∈ 𝐵𝑘, 𝑓𝑘(𝐩𝑗) is the NN interpolator (4) of
𝑓(𝐩𝑗).
A unique definition of design-based consistency can be

given for all the asymptotic scenarios. In particular, NN
interpolator (1) is pointwise design consistent at 𝐩 ∈ 𝐵𝑘 if
for any 𝜀 > 0

lim
𝑘→∞

Pr{|𝑓𝑘(𝐩) − 𝑓𝑘(𝐩)| > 𝜀} = 0,

and it is uniformly consistent if

lim
𝑘→∞

Pr{‖𝑓𝑘 − 𝑓𝑘‖∞ > 𝜀} = 0,

where for any 𝑘,𝐵𝑘 = 𝐵 in the cases of continuous and area
populations and𝑓𝑘 = 𝑓 in the cases of continuous and unit
populations. Because in all cases, the𝑓𝑘s are boundedwith
values in [0, 𝐿], pointwise or uniform design consistency
also entails pointwise or uniform design asymptotic unbi-
asedness.
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1458 FATTORINI et al.

From inequalities (6) and (7), taking 𝛿𝑘 = 𝑡𝑛
−1∕2

𝑘
for

any 𝑡 > 0, the first terms of (6) and (7) approach 0 with
𝛿𝑘. Therefore, pointwise and uniform consistency of (1)
is obviously achieved if the sequence of sampling designs
ensures that, for any 𝜖 > 0, there exist a real 𝑡 > 0 and an
integer 𝑘0 such that

Pr{𝐴𝑘(𝐩, 𝑡𝑛
−1∕2

𝑘
)} < 𝜖, ∀𝑘 > 𝑘0 (12)

or if

Pr

{ ⋃
𝐩∈𝐷𝑘

𝐴𝑘(𝐩, 𝑡𝑛
−1∕2

𝑘
)

}
< 𝜖, ∀𝑘 > 𝑘0, (13)

respectively, where 𝐴𝑘(𝐩, 𝛿) =
⋂𝑛𝑘

𝑖=1
{‖𝐏𝑘,𝑖 − 𝐩‖ > 𝛿} and

𝐷𝑘 is a suitable countable subset of 𝐵𝑘.

5 ASYMPTOTIC BEHAVIOR UNDER
FAMILIAR SPATIAL SCHEMES

Sampling locations from a continuous population can be
performed by uniform random sampling (URS), that is,
the random and independent selection of 𝑛 locations. We
prove that under URS, condition (12) invariably holds,
ensuring pointwise consistency of (1). URS is probably the
most straightforward scheme but may lead to uneven sur-
veying of 𝐵.
Many schemes are available for sampling spatial loca-

tions from a continuum that are able to achieve even
coverage of the study region, so-called spatial balance.
Spatial balance can be obtained by the use of quite com-
plex, explicitly tailored schemes (e.g., Stevens and Olsen,
2004; Lister and Scott, 2009). Alternatively, spatial balance
can be readily obtained by simple schemes involving the
tessellation of the study region into 𝑛 regular polygons
and the random or systematic selection of one location per
polygon. The two schemes are referred to as tessellation
stratified sampling (TSS) and systematic grid sampling
(SGS), respectively, and are widely applied in environ-
mental surveys, especially forest surveys at large scale
(e.g., Tomppo et al., 2010). Indeed, these schemes have the
appealing property that, for a suitable 𝑡 > 0, they ensure
Pr{

⋃
𝐩∈𝐷𝑘

𝐴𝑘(𝐩, 𝑡𝑛
−1∕2

𝑘
)} = 0 and therefore the uniform

consistency of the NN interpolator. Moreover, from (10) or
(11), under the Lipschitz condition at 𝐩 or for the whole 𝐵,
𝐸{|𝑓𝑘(𝐩) − 𝑓𝑘(𝐩)|} or 𝐸{‖𝑓𝑘 − 𝑓𝑘‖∞} are 𝑂(𝑛−1∕2

𝑘
), that is,

consistency occurs at a rate of 𝑛−1∕2
𝑘

.
Similarly, many schemes are available for sampling

finite populations of areas andunits that are able to achieve
spatial balance. Also, in these cases, spatial balance can
be obtained by the use of explicitly tailored schemes (see,

e.g., Grafström and Tillé, 2013, and references therein) or
by the use of simple schemes that involve the stratification
of the population into 𝑛 regular blocks of contiguous areas
or units and the random or systematic selection of one
area or one unit per block. The two schemes are referred
to as one-per-stratum stratified sampling (OPSS) and sys-
tematic sampling (SYS), respectively, and have long history
in the statistical literature (e.g., Breidt, 1995). Moreover, in
this case, the two schemes ensure that, for a suitable 𝑡 > 0,
Pr{

⋃
𝐩∈𝐷𝑘

𝐴𝑘(𝐩, 𝑡𝑛
−1∕2

𝑘
)} = 0. Therefore, they ensure uni-

form consistency and, under the Lipschitz condition, con-
sistency occurs at a rate of 𝑛−1∕2

𝑘
.

Regarding the concept of spatial balance in finite popu-
lations of spatial areas and units, Stevens and Olsen (2004)
link this concept to theNN structure, proposing to quantify
the spatial balance of a sample by the variance of the sums
of inclusion probabilities of those units lying in theVoronoi
polygons determined by the sample units (on the issue, see
also Grafström et al., 2014). However, it should be noted
that the asymptotical spatial balance involved by condition
(12) or (13) can be achieved even by schemes not explicitly
intended to achieve spatial balance. One of these schemes
is the so-called 3P sampling (from the acronym of proba-
bility proportional to prediction). Indeed, regarding popu-
lations of units, their mapping is precluded in the absence
of population lists and locations. Therefore, mapping is
unfeasible in forest and environmental surveys where pop-
ulations are communities scattered over large areas with-
out any possibility of having lists. Probably, the unique rel-
evant case in which the mapping of natural populations is
possible is under 3P sampling. The scheme is a variation
of Poisson sampling: all the units in the population are vis-
ited by a crew of experts (and hence listed and mapped), a
prediction 𝑥𝑗 for the value of the survey variable is given
for each unit 𝑗, and units are independently included in
the sample with probabilities 𝜋𝑗 = 𝑥𝑗∕𝐿

∗, where 𝐿∗ > 𝐿 is
chosen to ensure 𝜋𝑗 ≤ 1 for each j and adequate values of
expected sample size (e.g., Gregoire and Valentine, 2008).
Because prediction errors 𝑒𝑗 = 𝑦𝑗 − 𝑥𝑗 are known for each
sampled unit, Fattorini et al. (2019) suggest interpolating
the 𝑒𝑗s instead of the 𝑦𝑗s and then achieving the interpo-
lated 𝑌-values by means of 𝑦̂𝑗 = 𝑥𝑗 + 𝑒𝑗 for each 𝑗 ∈ 𝐵.
Even if prediction errors can take negative values, they are
bounded by 𝐿 in such a way that all the consistency results
continue to hold. The mapping improvement with respect
to the direct interpolation of the 𝑦𝑗s has been investigated
by Fattorini et al. (2020) andhas been proven to be relevant.
To prove the pointwise consistency of (1) under 3P sam-

pling, analogously to Fattorini et al. (2019), we further
assume the following condition: 𝑉 = {𝐩1, 𝐩2, …} is regu-
lar, that is, for any 𝐩𝑗 ∈ 𝑉 and for any natural number
𝑚, there exist a real number 𝑡 > 0 and an integer 𝑘0 such
that
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FATTORINI et al. 1459

Card{𝐵𝑗(𝑡𝑁
−1∕2

𝑘
) ∩ 𝐵𝑘} > 𝑚, ∀𝑘 > 𝑘0, (14)

where 𝐵𝑗(𝛿) is the set of units of 𝑉 in the 𝛿-ball of unit
𝑗. Condition (14) requires that the populations in the
sequence increase in such a way that, for a sufficiently
large k, any unit has many neighboring units around it.
Under this condition, we prove that 3P sampling ensures
the consistency of (1) when the inclusion probabilities 𝜋𝑗,𝑘

are invariably greater than a threshold 𝜋0 > 0 for any 𝑗 ∈
𝐵𝑘 and any 𝑘. A lower bound for 𝑌 is common in forest
and environmental surveys in which units with 𝑌-values
(e.g., tree height or basal area) smaller than a given thresh-
old 𝑙 > 0 are not considered in the population such that
𝜋0 = 𝑙∕𝐿∗.

6 PSEUDOPOPULATION BOOTSTRAP
ESTIMATION OF PRECISION

Mashreghi et al. (2016) provide extended surveys of the
bootstrap methods adopted for design-based inference.
Among them, the pseudopopulation bootstrap is based on
constructing a pseudopopulation likely to resemble the
true population fromwhich bootstrap samples are selected
using the same sampling scheme adopted in the survey. In
this setting, the key problem is to reconstruct pseudopop-
ulations able to mimic the characteristics of the unknown
populations in such a way that the bootstrap distribution
of a statistic resembles the true distribution with boot-
strap mean squared error approaching the true one (e.g.,
Quatemberg, 2016). Accordingly, to estimate the precision
of (1), we use the estimated maps as pseudopopulations
from which bootstrap samples are selected by means of
the same spatial scheme adopted to select the original sam-
ple. If estimated maps converge to true ones, the bootstrap
distributions of the NN interpolator achieved from resam-
pling from these maps should converge to the true distri-
butions, also providing reliable estimators of their mean
squared errors.
Let 𝑓(𝐵) = {𝑓(𝐩), 𝐩 ∈ 𝐵} be the estimated map based

on 𝑓(𝐏1), … , 𝑓(𝐏𝑛). For each 𝐩 ∈ 𝐵, the pseudopopulation
bootstrap estimator of the root mean squared error of 𝑓(𝐩)
is

̂𝑟𝑚𝑠𝑒
∗
𝑀(𝐩) =

[
1

𝑀

𝑀∑
𝑚=1

{𝑓∗
𝑚(𝐩) − 𝑓(𝐩)}

2

]1∕2

, (15)

where 𝑀 is the number of bootstrap samples and 𝑓∗
𝑚(𝐩)

is the bootstrapped value of the NN interpolator at 𝐩 ∈ 𝐵

based on 𝑓(𝐏∗
1,𝑚

), … , 𝑓(𝐏∗
𝑛,𝑚) (obtained from the estimated

map 𝑓(𝐵)), that is, for any 𝐩 ∈ 𝐵 and𝑚 = 1,… ,𝑀

𝑓∗
𝑚(𝐩) = 𝐼(𝑄∗

𝐩,𝑚)𝑓(𝐩) +
𝐼(𝑄∗𝑐

𝐩,𝑚)

Card(𝐻∗
𝐩,𝑚)

∑
𝑖∈𝐻∗

𝐩,𝑚

𝑓(𝐏∗
𝑖,𝑚

), (16)

where 𝐏∗
1,𝑚

, … , 𝐏∗
𝑛,𝑚 are the locations selected in the 𝑚th

bootstrap resampling, 𝑄∗
𝐩,𝑚 = ∪𝑛

𝑖=1
{𝐏∗

𝑖,𝑚
= 𝐩} and 𝐻∗

𝐩,𝑚 =

{𝑖 ∶ ‖𝐏∗
𝑖,𝑚

− 𝐩‖ = minℎ=1,…𝑛‖𝐏∗
ℎ,𝑚

− 𝐩‖}.
We obtain a finite sample result about (15) supposing two

further conditions: (i) for a given sample size 𝑛, the sam-
pling design ensures the existence of a 𝛿 > 0 such that

Pr{𝐴(𝐩, 𝛿)} = 0, (17)

(ii) there exist a vector 𝐚 ∈ ℝ2, 𝐚 ≠ 𝟎 and a function 𝐪 ↦

𝑜(‖𝐪 − 𝐩‖) negligible with respect to ‖𝐪 − 𝐩‖, such that
𝑓(𝐏𝑖) = 𝑓(𝐩) + ⟨𝐚, 𝐏𝑖 − 𝐩⟩ + 𝑜(‖𝐏𝑖 − 𝐩‖), 𝑖 = 1, … , 𝑛.

(18)

Theorem 3. For a given 𝑛, under conditions (17) and (18)
and for𝑀 large enough,

𝐸{ ̂𝑟𝑚𝑠𝑒
∗
𝑀(𝐩)}

𝐸[{𝑓(𝐩) − 𝑓(𝐩)}
2
]1∕2

≤ 3. (19)

The requirement of𝑀 being large enough can be readily
satisfied by increasing the computational effort. Condition
(17) is less restrictive than condition (12), and it holds
for all the sampling schemes discussed in Section 5 that
ensure the pointwise consistency of the NN interpolator.
On the other hand, condition (18) requires that in the
case of continuous populations and finite populations of
areas, 𝑓 is differentiable at 𝐩 with ∇𝑓(𝐩) ≠ 0, whereas
this requirement is not necessary for finite populations
of points. Practically speaking, Theorem 3 states that,
under suitable conditions, the pseudopopulation boot-
strap estimator (15) tends to be conservative, with its
expectation being at most three times greater than the true
root mean squared error. Even if the result may induce
one to suspect substantial overestimation that may mask
the effectiveness of interpolation, 3 is just a threshold
limiting possible overestimation. Finally, for 𝑛 → ∞ and
for 𝑀 sufficiently large, the consistency of (15) is obvious
from (19). Indeed, from (19), for any 𝑛, it holds that (15) is
bounded by three times the true root mean squared error.
However, owing to the consistency of the NN interpolator
under the required conditions, the true root mean squared
error tends to 0 as 𝑛 increases, so that (15) tends to 0 a
fortiori.
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1460 FATTORINI et al.

7 SIMULATION STUDIES

We consider three artificial surfaces on the unit square 𝐴
to generate continuous populations, finite populations of
areas, and finite populations of units, referred to as surface
1, surface 2, and surface 3, and, respectively, defined at any
location 𝐩 = (𝑝1, 𝑝2) as

𝑓(𝐩) =
𝐶1

2
(sin

2
𝑝1 + cos2𝑝2 + 𝑝1), 𝑓(𝐩) = 𝐶2(sin3𝑝1 sin

2
3𝑝2),

𝑓(𝐩) =

{
𝐶3𝑝1𝑝2 if min(𝑝1, 𝑝2) ≤ 1∕2

𝐶3(1 + 𝑝1)𝑝2 otherwise.

where the constants 𝐶1, 𝐶2, and 𝐶3 ensure amaximumvalue
𝐿 = 10. The three surfaces are represented in Web Figure 3
in the Supporting Information.
Regarding continuous populations, the three surfaces

were taken as population values on 𝐵 = 𝐴. Sampling was
performed selecting 𝑛 = 16, 36, 64, 100 locations on 𝐵 by
means of URS, TSS, and SGS. The last two schemes were
performed by partitioning 𝐵 into 4 × 4, 6 × 6, 8 × 8, and
10 × 10 grids of equal-sized quadrats and selecting a loca-
tion in each quadrat.
Regarding finite populations of areas, the three surfaces

were used to generate the 𝑌-values within the areas. For
each surface, four populations of 𝑁 = 100, 400, 900, 1600

areas were constructed by partitioning 𝐵 = 𝐴 into grids of
10 × 10, 20 × 20, 30 × 30, 40 × 40 quadrats and taking the
integrals of the surface within quadrats as population val-
ues from which densities are derived. Sampling was per-
formed by selecting 𝑛 = 0.1𝑁 quadrats by means of simple
random sampling without replacement (SRSWOR), OPSS,
and SYS. The last two schemes were performed by parti-
tioning grids into blocks of 2×5 contiguous quadrats and
selecting one quadrat per block. Regarding unit popula-
tions, three nested populations of 500, 1000, and 1500 units
were located on 𝐴 in accordance with four spatial pat-
terns referred to as regular, random, trended, and clustered
patterns. For the regular pattern, populations were con-
structed by independently generating the first 500 loca-
tions at random but discarding those having distances
smaller than 0.5 × 500−1∕2 to those previously generated,
then adding 500 further locations at randombut discarding
those with distances smaller than 0.5 × 1000−1∕2 to those
previously generated, and finally randomly adding a fur-
ther 500 locations but discarding those having distances
smaller than 0.5 × 1500−1∕2 to those previously generated.
For the random pattern, populations were constructed by
independently generating 1500 locations at random on 𝐴

and then assigning the first 500 to the smaller population,
the first 1000 to the second, and all of them to the largest.
For the trended pattern, populations were constructed by

independently generating 1500 pairs of random numbers
𝑢1, 𝑢2 uniformly distributed on [0,1], performing the trans-
formation (1 − 𝑢2

1
, 1 − 𝑢2

2
) to determine locations, and then

assigning the first 500 locations to the smallest population,
the first 1000 to the second, and all of them to the largest.
For the clustered pattern, populations were constructed by
independently generating 10 cluster centeres at random
on 𝐴 and assigning 50 locations to each cluster generated
from a spherical normal distribution centered at the clus-
ter center with variance 0.025, adding a further 50 loca-
tions to each cluster from the same distribution and finally
adding a further 50 locations to each cluster from the same
distribution. Points falling outside 𝐴 were discarded and
newly generated.
The three surfaces were used for assigning the 𝑌-values

in the populations. 3P sampling with 𝐿∗ = 50was adopted
to select units. Units with𝑌-values smaller than 𝑙 = 4were
discarded from the populations to ensure a lower bound
of 𝜋0 = 0.08 for the inclusion probabilities. Expert pre-
dictions for the 𝑦𝑗s were generated using the relationship
𝑥𝑗 = 𝑎 + 𝑏𝑦𝑗 with 𝑏 = 1 − 𝜌(𝐿 + 𝑙)∕(𝐿 − 𝑙) and 𝑎 = (1 +

𝜌)𝑙 − 𝑏𝑙 in accordance with Fattorini et al. (2020), assum-
ing that predictions increased linearly with 𝑌-values with
a maximum error rate 𝜌 = 0.10 occurring at the extremes.
The predictions, joined with the 𝑙 and 𝐿∗ choices, ensured
an expected sampling fraction of approximately 12% in
all cases.
For each combination of population, sampling scheme,

and sample size, sampling was replicated 𝑅 = 10, 000

times. At each simulation run 𝑟, the estimated map 𝑓𝑟(𝐩),
𝐩 ∈ 𝐵was obtained from (1), and𝑀 = 1000 bootstrap sam-
ples were independently selected from the estimated map
adopting the same scheme adopted to select the original
sample to compute the bootstrap root mean squared error
of 𝑓𝑟(𝐩) for each 𝐩 ∈ 𝐵 by means of Equation (15). In the
case of continuous populations, mapping was performed
by computing𝑓𝑟(𝐩) for a regular grid of 100 × 100 locations
on 𝐵.
Based on the Monte Carlo distributions, Web Tables 1–

9 of the Supporting Information report the minima, aver-
ages, and maxima of the absolute bias and root mean
squared error of (1) and of the ratio of the expectation of
bootstrap root mean squared error (15) to the true value of
root mean squared error. Web Figures 4–33 of the Support-
ing Information show the spatial patterns of these perfor-
mance indicators.
Simulation results confirm the theoretical findings.
For populations generated from the continuous surfaces

1 and 2, a sharp decrease in theminima, averages, andmax-
ima of absolute bias values and of mean squared errors
occurs as the sample size (continuous populations) or pop-
ulation and sample sizes (finite populations of areas and
units) increase.

 15410420, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13505 by U
niversity O

f Siena Sist B
ibliot D

i A
teneo, W

iley O
nline L

ibrary on [09/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FATTORINI et al. 1461

For continuous populations and finite populations of
areas generated from surface 3, with discontinuity at the
internal edges of the upper-right quadrant of the unit
square, decreases occur only for minima and averages,
whereas maxima decrease more slowly. However, as mean
squared error averages can be viewed as the empirical
counterparts ofmean integrated absolute error (9), the con-
sistency of maps is preserved overall, notwithstanding dis-
continuities. That is also apparent fromWeb Figures 10–12
and 19–21 of the Supporting Information.
For finite populations of units generated from surface 3,

the slow decrease in maxima disappears. In these cases,
maxima decrease as the minima and averages because
discontinuities in 𝑌-values are absorbed by the corre-
sponding predictions, providing negligible jumps in pre-
diction errors. On the whole, decreases that occurred in
finite populations of units are less marked than those
that occurred in continuous populations and finite popu-
lations of areas because the use of prediction errors pro-
vides formidable gains in precision even for small popula-
tion and sample sizes, leaving limited room for improve-
ment as sizes increase.
Regarding bootstrap rootmean squared errors, the ratios

of their expectations to the true root mean squared error
are, with very few exceptions, invariably greater than one
on average and tend to asymptotically increase toward 1.2–
1.5. Minima of this ratio evidence the presence of under-
estimation that tends to decline asymptotically, thus con-
firming the conservative nature of the bootstrap root mean
squared error estimator. That is apparent from the web fig-
ures, where the lighter zones, corresponding to underes-
timation, become continually decrease as population and
sample sizes increase. Maxima of this ratio evidence the
possibilities of large overestimation that occur in pres-
ence of discontinuities (surface 3) and especially under sys-
tematic schemes. In the other cases, the maxima rarely
exceed 2.

8 CASE STUDY

The NN interpolator was adopted to provide the forest
map in a region 𝐴 of 4900 ha located in Casentino Valley,
the Eastern part of the Tuscany Region (Central Italy). The
forest land is mainly characterized by mountainous beech
forest, coniferous forest, and thermophilous deciduous
forest. The climate is temperate-humid: mean annual
temperature is approximately 10oC, and total annual
rainfall is greater than 1000 mm, with an average of more
than 55 mm in the summer months (June–August). The
forest grows on sandy-loamy or loamy soils, rich in humus
on the surface horizons. Soil depth varies. The slopes are
generally steep or very steep. The area is characterized

F IGURE 1 (a) Estimated map of forest (not-white) and
not-forest (white) presence (left). (b) Map of estimated precision
(right). This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

by forest exploitation, and thus, the estimation of a map
for the dichotomous survey variable forest/not-forest land
is essential for analyzing the effects of human activities.
Specifically, the function 𝑓 related to the dichotomous
survey variable is such that, for each 𝐩 ∈ 𝐴, 𝑓(𝐩) is equal
to 1 if 𝐩 is in the forest and equal to 0 otherwise.
The survey was performed in 2013, and sample locations

were selected bymeans of TSS. The study region was parti-
tioned into 1225 quadrats of 200 m side, and a location was
randomly selected within each quadrat. Each sample loca-
tion was assigned a value of 1 if lying in the forest and a
value of 0 otherwise. Based on the 1225 sample locations,
the NN interpolator (2) was adopted to estimate 𝑓(𝐩) for
each location in the regular network of 1000 × 1000 nodes
within 𝐴. The large number of locations at which estima-
tionwas performed ensured a good resolution of the result-
ingmap displayed in Figure 1(a), which evidences themas-
sive presence of forested land in the study region, notwith-
standing the intensive management.
Moreover, at each location of the network, we also esti-

mated the root mean squared error based on 𝐵 = 1000

bootstrap samples of size 1225 selected from the pseu-
dopopulation of the interpolated values using the same
sampling scheme adopted to select the original sample.
The map of bootstrap root mean squared errors is reported
in Figure 1(b), which shows that uncertainty increases
when there is a change from forest to not-forest, as
expected owing to the theoretical findings. Indeed, when
the dichotomous variable forest/not-forest jumps from 1 to
0 along forest edges,𝑓 exhibits discontinuities, and the pre-
cision of the NN interpolator deteriorates.

9 CONCLUSIONS

Conditions for design-based consistency of maps achieved
from NN interpolation for continuous populations and
finite populations of areas or units are given. Beyond the
condition on the smoothness of surfaces generating pop-
ulations, consistency conditions only regard the features
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of the sampling schemes adopted to select points, areas,
or units. The use of TSS or SGS in continuous popula-
tions, the use of OPSS and SYS in finite populations of
areas and of 3P sampling in finite populations of units
ensures consistency. The focus on these schemes is not
incidental; they nearly cover the range of possibilities to be
adopted in forest and environmental surveys, as naturalists
tend to avoid complex schemes, preferring schemes that
are simple to be implemented and achieve spatial balance.
Therefore, the achieved consistency results add statistical
rigor to an interpolation technique widely used in environ-
mental surveys with descriptive aims without attempting
inference.
In addition, apart from when NN interpolation is

applied in finite populations of regular polygons or finite
populations of units located on a regular network, when
NNsmay bemore than one and the interpolator is the con-
vex combination of sample data recorded at these nearest
locations, in most cases, there is only a single neighbor.
Thus, the interpolated values have the same support as the
𝑌 variable, even when the support is discrete. This allows
the application of NN interpolation for constructing maps
of dichotomous 0–1 variables as in the case study, where
a map of forest/not-forest land is obtained. Relevantly,
the resulting surfaces are piecewise constant with dis-
continuities along borders of 0 measure, and as such are
Lipschitizian almost everywhere, thus providing consis-
tency at a rate of 𝑛−1∕2 under suitable stratified and SYS
schemes. This is of practical importance in certain appli-
cations such as land use and land cover mapping, a vital
issue in the present period of substantial deforestation and
urban sprawl. Indeed, the accuracy of land covermaps and
its reliable estimation, which has a long tradition in the
literature (e.g., Stehman and Czaplewski, 1998; Stehman,
2009; and references therein) can be straightforwardly
and rigorously addressed in a design-based approach
by means of NN interpolation and bootstrap estimation
of mean squared errors. Even if in this case, the survey
variable is of multivariate nature being equal to the 𝑘th
vector of the standard basis of ℝ𝐾 when the point is in the
𝑘th land category (𝑘 = 1,… , 𝐾), the consistency results
continue to hold marginally for each map of the 𝐾 land
categories.
Finally, when auxiliary variables are available for the

whole study region at little or no cost, as usually occurs
in forest inventories (e.g., Opsomer et al., 2007), NN inter-
polation can be performed in the auxiliary space, that is,
the interpolated value at a location is the value observed at
the sample location that is nearest in the auxiliary space.
This intriguing idea has been empirically investigated by
Grafström et al. (2014), achieving promising results that,
however, necessitate further theoretical investigations to
be fully confirmed.
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