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Abstract— The upper limit on the directivity of self-resonant
antennas that fit within a minimum sphere is determined for a
given quality factor. This formulation is obtained by analytically
solving a rigorous convex problem and is expressed as a rapidly
converging analytical series. The total quality factor, the inverse
of the relative frequency bandwidth, is formulated by considering
the quality factors of individual spherical waves. From the exact
series, approximate closed-form formulas have been derived,
which exhibit high accuracy in complementary ranges of the
minimum circumscribed sphere’s radius. These ranges encom-
pass small antennas as well as intermediate to large antennas.
Special emphasis is given to small antennas, where the solution
is interpreted as a combination of dipolar and quadrupolar
Huygens’ source contributions with appropriate closed-form
coefficients. The solution in this range provides continuity to the
maximum directivity between 3 and 8 maintaining a constant Q.

Index Terms— Antennas, bandwidths, fundamental limits,
quality factor, spherical harmonics, super directivity.

I. INTRODUCTION

GIVEN the recent requirements for highly directive
electrically small radiators and scatterers in various

communication and sensor applications, there has been a
renewed interest in the concept of super directivity. Super
directivity refers to the ability to achieve exceptionally high
levels of directivity, beyond what is traditionally achievable
with conventional antenna designs. This renewed interest is
driven by the demand for improved performance in terms
of range, resolution, and sensitivity in communication and
sensing systems.

The definition of the maximum directivity for a given elec-
trical size of the minimum sphere circumscribing the antenna
requires a constraint to ensure a finite bound, as without it
the directivity could be in principle infinite. This constraint
can take the form of a lower limit on the efficiency or an
upper limit on the Q-factor (i.e., minimum relative frequency
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bandwidth), among other possibilities. Alternatively, it is also
possible to restrict the number of harmonics that can be excited
over the minimum sphere based on the degrees of freedom
(DoFs) of the field. In this article, our focus is on Q-bounded
maximum directivity.

The problem of maximum bound of directivity and super
directivity has been studied by many authoritative scien-
tists [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19]. In essence, the problem
is convex, and therefore, our formulation can be aligned within
the framework established in [1]. While the formulation in [1]
is applicable to general shapes, the one presented here is
focused on spherical source regions, with the advantage of
resulting in a concise analytical formula. This formula is even-
tually approximated by a simple and appealing closed-form
expression, which offers valuable physical insight, particularly
for small antennas. The issue of losses arising from realistic
conductivity is not treated here and will be addressed in [20].

Assuming sources fitting inside a minimum sphere of
radius rmin, the maximum directivity can be found as suggested
by Harrington [3], [4], [5]. His method is based on the
expansion of the radiated field in a finite number of spherical
waves (SWs), and on the maximization of the directivity with
respect to the coefficients of the expansion. This procedure
leads to

Dmax =

Nmax∑
n=1

(2n + 1) = (Nmax)
2
+ 2Nmax (1)

where Nmax ≥ 1 is the maximum polar index of the SWs
that contribute to the far field for the given minimum sphere.
Hence, the maximum directivity depends on the value set
for Nmax. It was suggested by Harrington that the maximum
polar index is the largest integer smaller than krmin, where
k is the free-space wavenumber, i.e., Nmax = ⌊krmin⌋ (where
⌊.⌋ is the entire part of the argument). This assumption invokes
the difficulty to excite SWs with polar index n > krmin
with a sufficiently high intensity over the minimum sphere to
significantly contribute to the far field; namely, as underlined
in [6], it relies on the finiteness of the number of DoFs of
the field in the far zone. To put it differently, Harrington’s
procedure is grounded in the understanding that the SWs are
below cutoff as long as the order of the spherical Hankel
function is larger than its argument. This is actually the same
concept invoked to establish the number of DoF of the field
radiated by sources inside a minimum sphere. We note that
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according to (1), when Nmax = 1, the maximum directivity is
equal to 3, and it is associated with Huygens’ source.

Since the formula in (1) is discontinuous, Harrington sug-
gested to give it continuity just posing Nmax = krmin, thus
leading to

Dmax = (krmin)
2
+ 2krmin. (2)

This extension, while in asymptotic agreement with the DoF
concept of truncation, is empirical and manifests its inaccu-
racy, especially in the range krmin between 1 and 2. In this
range, the truncation of the series in (1) leads to only two
potential outcomes for maximum directivity, namely, 3 (for
Nmax = 1) and 8 (for Nmax = 2). The interpolation in (2)
represents just one possible approach to transition from one
to the other with continuity. Other possible formulas have
been proposed for small antenna sizes. It was suggested in [6]
that the maximum directivity for nonsuper reactive antennas
can be heuristically defined as Dmax = (krmin)

2
+ 2krmin for

krmin > 1.5 and (krmin + 3) for krmin < 1.5; this heuristic
extension was compared with some available literature data
for very small antennas.

It is well-known that there exist antennas, sometimes called
“superdirective,” with directivity larger than the limit in (2)
even if with a small bandwidth. The possibility to exceed
the limit in (2) derives from the fact that its derivation does
not consider the possibility to excite, with sufficiently large
intensity over the minimum sphere, SWs with polar index
larger than krmin. As a matter of fact, increasing the number
of super reactive harmonics over the minimum sphere leads to
a diverging Q-factor, which is eventually useless for practical
antenna applications, since the bandwidth goes to zero. Vice
versa, allowing for a certain desired maximum Q may imply
a bound of directivity larger than the one derived in (2).
The main objective of this article is, therefore, to obtain the
maximum directivity for a given bandwidth and minimum
sphere, and a closed-form approximation for it.

Yaghjian [18] presented simplified formulas for sampling
the minimum sphere. He distinguished nonresonant antennas
from resonant antennas and provided a link between the
equivalent radius associated with the storage of reactive energy
and the maximum equivalent area of the antenna, therefore
establishing a link with the maximum directivity. Fante [17]
proposed a maximization of the product directivity–bandwidth
(note that although the title in [17] mentions “gain,” the
treatment there is relevant to directivity). The coefficients of
the SWs found by Fante [17] are different from the ones
found by Harrington, and the series is not truncated like in (1).
However, the D/Q bound obtained this way is always relevant
to small Q (large bandwidth) and moderate D, which is of
practical interest only for ultrawideband antennas. In [13], the
minimum Q-factor for a given directivity of a small antenna
of arbitrary shape is obtained by setting a convex problem and
solving it by a semidefinite relaxation technique. In this article,
instead, Q is fixed a priori, and the directivity is maximized.

This article is structured as follows. Section II derives the
limit for Q-bounded maximum directivity. Section III focuses
on small resonant antennas, where the maximum directivity
is obtained by the combination of dipolar and quadrupolar

Fig. 1. Application of the equivalence principle to the minimum sphere
surface: (a) original problem and (b) equivalent electric and magnetic surface
currents radiating in free space with zero field inside (Love formulation).

resonant sources. The Chu limit of bandwidth is extended to
the presence of quadrupoles and a closed-form formula for
small antennas is provided, which allows to have a continuous
description of maximum directivity from 3 to 8 for constant Q
and for any antenna size. Section IV presents a closed-form
approximation of the maximum directivity for intermediate to
moderately large antennas. Section V shows the maximum
directivity in terms of an equivalent radius that contains all the
reactive energy. Finally, Section VI gathers the conclusion.

II. Q-BOUNDED MAXIMUM DIRECTIVITY

Let us first refer to the problem in Fig. 1, where the
equivalence theorem is applied to the minimum spherical
surface including all the sources. The Love formulation of the
equivalence principle relates the equivalent electric (J) and
magnetic (M) currents to arbitrary magnetic (H) and elec-
tric (E) Maxwellian’s fields, though J = r̂ × H, M = E × r̂ ,
where r̂ is the normal to the surface. In Love’s formulation,
the field inside the minimum sphere is assumed to be zero,
and thus, it is not equivalent in terms of stored energy to the
initial problem. However, since the energy of the equivalent
problem is zero inside the sphere, any other source generating
the same external fields will lead to a higher Q. Therefore,
the bounds we will find here are more optimistic than the one
obtained by electric currents only over a sphere [2], in which
the energy can be stored even inside the sphere.

In the rest of this article, the currents will be expanded in
terms of SW harmonics, with coefficients Ci , adopting the
normalization of Hansen’s [21] book, for which the radiated
power is given by Pr = (1/2)

∑
i |Ci |

2.

A. Total Q-Factor

The Q-factor can be defined in two different ways depend-
ing on whether one assumes to have a self-resonant antenna
or an antenna that is made resonant by providing an external
reactive energy from a lossless tuning circuit. In the first case,
one has We = Wm, Q = 2ωWe/Pr = 2ωWm/Pr , where ω is
the angular frequency, Pr is the radiated power, and We and
Wm are the electric and magnetic stored energies, respectively.
For nonresonant antennas, one has Q = 2ωWe/Pr for capaci-
tive antennas and Q = 2ωWm/Pr for inductive antennas. This
definition assumes that an external energy has been added to
the system to get the resonance. In both cases, the Q-factor
can be interpreted as the reciprocal of the fractional bandwidth
BW = 1/Q when it is larger than 10 [15].

The calculation of the stored energies We,m of a general
SW expansion is an old and debated topic [3], [16], [22],
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Fig. 2. Fante’s Qn coefficients. The used log–log scale emphasizes the
different behavior of Qn with corner point at krmin ≈ n.

[23], [24], [25]. Essentially, the most used approaches are
the ones provided by Chu [26], Collin and Rothschild [15],
and Fante [22], and the latter generalized to the case of
arbitrary field internal to the minimum sphere in [23]. It turns
out [17] that the condition of maximum directivity implies
that transverse electric (TE) and transverse magnetic (TM)
spherical modes with the same indices have coefficients of
equal amplitude; under this condition, the Q of the antenna
reduces to

Q =

∑
n |Cn|

2 Qn∑
n |Cn|

2 (3)

where Qn are defined in Appendix A and Cn are the
field expansion coefficients for the maximum directivity. The
adoption of (3) inherently assumes self-balancing of reactive
energy. Consequently, the limit we obtain in the subsequent
analysis is relevant to self-resonant antennas, namely, antennas
characterized by achieving resonance without requiring the
provision of energy through an external circuit.

For the sake of convenience, the Fante’s Qn are plotted
in Fig. 2 as a function of krmin for some values of n. The
asymptotic behavior for small and large values of krmin is given
by [23]

Qn ∼


n
2

(
(2n)!

n!2n

)2 1
(krmin)2n+1 , for krmin → 0

an(krmin)
−1, for krmin → ∞

(4)

with an = (an−1 + n) and a0 = 1 by definition. It is seen that
Qn exhibits a drastic change of slope for krmin around n. It
is important to note that Fante’s Qn for n = 1 gives exactly
Q1 ≡ (1/2)(krmin)

−3
+ (krmin)

−1, which will be shown later
to be related to the Chu limit of bandwidth.

B. Analytical Form for Q-Bounded Maximum Directivity

The maximum directivity for a given quality factor Q is
formulated in terms of the minimization of a convex func-
tion. The optimization problem consists on finding the SW

coefficients that maximize U/Pr where Pr = (1/2)
∑

i |Ci |
2

and U = (1/4π)|
∑

i Ci Ki |
2 with

Ki =
√

2n + 1 ·


0, if |m| ̸= 1
−(− j)n, TE, m = ±1
−m(− j)n, TM, m = ±1

(5)

where the “polar” index n refers to the order of the Hankel
function and the index m refers to the azimuthal angular
wavenumber of the SW expansion. The index i = 2[n(n+1)+

m −1]+ s collects the three indexes n, m, s, where s assumes
values 1 and 2 for TE and TM polarizations, respectively.
We note that (5) is congruent with the normalization of
Hansen’s [21] book, for which the power radiated by an
individual harmonic is (1/2)|Ci |

2. The maximization of U/Pr

bounded by a certain value of Q is given by

max
Ci

∣∣∑
i Ci Ki

∣∣2∑
i |Ci |

2 ;

∑
n Qn|Cn|

2∑
n |Cn|

2 ≤ Q (6)

where Qn are Fante’s quality factors (Appendix A), and
Q is the maximum accepted Q-factor (minimum relative
bandwidth). It is important to observe that the inequality
in (6) is actually equivalent to an equality since it comes
out that any increase of the amplitude of the higher order
coefficients that provides larger directivity also implies an
increase of Q. Therefore, finding the maximum directivity
for a given maximum Q means in practice finding it for a
constant Q.

Since the constraint depends only on the amplitude of the
coefficients, the maximum in (6) is achieved by ̸ Ci = −̸ Ki

and Ci Ki = |Ci ||Ki | = |Cn|
√

2n + 1. From now on, we can,
therefore, use the polar index n only since the amplitude of
Ki does not depend on the indexes m and on the polarization.
Setting the radiated power so that

∑
n |Cn|

2
= 1, the problem

in (6) is equivalent to

max
|Cn |

(∑
n

|Cn|
√

2n + 1

)2

with
∑

n

|Cn|
2

= 1∑
n

Qn|Cn|
2

= Q. (7)

We can now reformulate (7) by using its dual problem obtained
by combining the constraints with a scalar parameter ξ ; i.e.,

min
ξ

max
Cn

(∑
n

|Cn|
√

2n + 1

)2

s.t.
∑

n

[ξ(Qn − Q) + 1]|Cn|
2

= 1. (8)

The solution of this problem for Q > Q1 is given in
Appendix B by the Lagrange multiplier method. The result
is

Dmax(Q, krmin) = min
ξ∈[0,ξmax]

∞∑
n=1

2n + 1
ξ(Qn − Q) + 1

(9)

where ξmax = 1/(Q − Q1). Equation (9) explicitly relates the
maximum directivity to the bandwidth for any given antenna
size. The value ξ̄ = ξ̄ (Q, krmin) that minimizes the series
in (9) is represented in Fig. 3 as a function of the krmin for
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Fig. 3. Parameter ξ that minimizes the summation in (9) (continuous line)
and its approximation in (10) (dashed line) truncated at Q = Q2, for various
values of Q (Q = 10, 12, 15, 20, 30, 40, 50, 60, 70, 80).

Fig. 4. Envelope of the maximum directivity summation terms in (9) for
three values of Q, namely, Q = 10, Q = 100, and Q = 1000, for two values
of krmin. The black dotted line represents the envelope of the corresponding
Harrington coefficients for maximum directivity.

some fixed values of Q. An excellent approximation of ξ̄ ,
valid for Q1 ≤ Q ≤ Q2, is given by

ξ̄ =
8

3(Q2 − Q)

(
−1 +

√
1 −

60(Q2 − Q)

256(Q1 − Q)

)
. (10)

We note that ξ̄ tends to diverge when Q = Q1. It can be easily
seen, however, that ξ(Q1 − Q) in the denominator of (9) goes
to zero, while all the other terms of the series are negligible,
due to the high values of ξ(Qn − Q) for n ̸= 1. Therefore,
Dmax tends to 3 for any Q that tends to Q1. This is expected
since, in the quasi-static limit, a sphere can contain only one
self-resonant source, which is Huygen’s dipole.

The envelope of the terms inside the summation in (9) is
plotted in Fig. 4. For low values of Q, the coefficients envelope
reaches a maximum close to n = krmin, while for large Q,
the maximum moves toward higher values, being defined by
Q = Qn. Let us define the quantity krn, as follows:

krn such as Q = Qn. (11)

Fig. 5. Envelope of the amplitude of the coefficients in (13) for various
values of krmin and two values of Q, namely, Q = 10 (continuous line) and
Q = 100 (dashed line). The arbitrary constant C0 has been set to unity.

For n > rn , the coefficients exhibit a fast decay, with a rate
that depends on krmin and Q. This behavior is due to the
change of the decay rate of Qn when crossing krn (see Fig. 2).
An approximation of krn for values of Q larger than 100,
krmin < 2 and n < 12, is

krn ≈
n

1.356Q1/(2n+1)
. (12)

The above formula is useful for the approximation that will
be presented in Section IV.

C. SW Coefficients for Maximum Directivity

The maximum directivity for constant Q is obtained with
field coefficients

C (Q)
i,max =

C0
√

2n + 1
ξ̄ (Qn − Q) + 1

·


0, if |m| ̸= 1
−( j)n, TE, m = ±1
−m( j)n, TM, m = ±1

(13)

where C0 is an arbitrary constant. Note that for ξ̄ (Qn −

Q) ≪ 1, the coefficients C (Q)
i,max recover the coefficients

obtained by Harrington for the case of the finite number of
SWs without imposing the Q-bound, and just invoking the
truncation of the series. It should be stressed that the set of SW
coefficients in (13) implies that electric and magnetic energies
are equal to each other for r > rmin for any polar index;
namely, the maximization is relevant to self-resonant antennas.
The envelope of the amplitude of the coefficients in (13) in
dB scale is given in Fig. 5 for two values of Q (Q = 10 and
Q = 100) and various values of krmin; the arbitrary constant
C0 is set to unity in the calculations.

D. Dmax Versus krmin for Constant Q

Fig. 6 shows the maximum directivity Dmax in a range of
krmin ∈ (0.1; 10) for various values of Q. The directivity
value is truncated at 3, which corresponds to the condition
Q = Q1. This situation is associated with the Chu limit,
as will be discussed next. For the sake of comparison, the
Harrington formula in (2) is also included, represented by the
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Fig. 6. Maximum directivity (log–log scale) for constant Q. The curves are
truncated at the corresponding Chu limit radius, where Dmax(Q, krmin) ≈ 3.
Comparisons of the exact formula (9) (continuous line) and the combination
between (23) and (28) (dotted lines) for Q = 10, Q = 100, 1000, 5000.

black dashed-dotted line. However, we should consider that
the latter does not provide the same Q for any value of the
minimum radius. The dotted lines correspond to a closed-form
approximation provided in Sections III-D and IV in their
respective fields of validity.

III. SMALL ANTENNAS: DIPOLAR AND
QUADRUPOLAR RESONANT SOURCES

From the previous analysis, it can be seen that the nth
spherical harmonics, either TE and TM with azimuthal index
m = ±1, have the same Qn and the same coefficients’
amplitude for providing maximum directivity. This is true
for both Harrington’s coefficients [conjugate of (5)] and the
Q-bounded ones derived in (13). For n = 1, the resulting
radiated field can be interpreted as the one produced outside
the minimum sphere by an elementary Huygens’ dipole (HD)
located at the origin [Fig. 7(a)]. The latter is constituted by
a couple of horizontal electric and magnetic dipoles with
momenta related by the free-space impedance ζ (i.e., I1ℓ =

M1ℓ/ζ ). By duality, the energy density of the HD is balanced
outside the minimum sphere aligning with the self-resonant
formulation we have adopted. Huygens’ source antennas
have been successfully implemented in practical applications,
ranging from electrically small packages [27], [28], [29] to
larger ones [30], [31]. Their significance as a research area
has been acknowledged, particularly for Internet-of-Things
(IoT) applications [32]. Furthermore, Huygens’ metasurfaces
have already demonstrated their effectiveness in antenna and
scattering problems [32], [33], [34], [35], [36].

The combination of the SW harmonics for n = 2 provides
the field of a Huygens’ quadrupole (HQ) combined with the
one of a dual vertical quadrupole (DVQ). Graphical represen-
tations of the HQ and DVQ are given in Fig. 7(b) and (c),
respectively. The HQ is composed by pairs of counterdirected
HDs separated by a vanishingly small electrical distance. The
HQs have been recently studied in the problem on needle
radiation from an array [37]. The DVQ is a combination of
close by counterdirected vertical magnetic and electric dipoles,
where the displacement of the electric dipoles is along x

Fig. 7. Graphical representation of a: (a) HD; (b) HQ; and (c) DVQ.
(d) Normalized radiation patterns of HD, HQ, and the combination of HD,
HQ, and DVQ for maximum directivity.

and the one of the magnetic dipoles is along y. Like the
HD, the HQ and DVQ provide balanced energy outside the
minimum sphere, due to duality. The normalized far-field
radiation pattern expressions of HD, HQ, and DVQ are given
by

hHD =
1
2
(cos θ + 1)p̂ (14)

hHQ =
1
2
(cos θ + 1) cos θ p̂ (15)

hDVQ = sin2 θ p̂ (16)

p̂ =
[
cos φθ̂ − sin φφ̂

]
(17)

where p̂ is the unit polarization vector. The individual directiv-
ity of isolated hHD and hHQ are 3 and 7.5, respectively. We note
that the condition of maximum directivity for n = 2 links the
coefficients of HQ and DVQ each other combining them as
follows:

h′

HQ = hHQ −
1
2

hDVQ =
1
2
(cos θ + cos 2θ)p̂. (18)

The normalized far-field radiation patterns of hHD, hHQ, and
hHQ’ are shown in Fig. 7(d). We note that the exact form of
Q1 and Q2 are given by

Q1 ≡
1

2(krmin)3 +
1

(krmin)
(19)

Q2 ≡
9

(krmin)5 +
9

2(krmin)3 +
3

krmin
. (20)

These two expressions can be interpreted as the quality factors
of isolated HD and HQ, respectively.

A. Minimum Q for Isolated HD (Chu Limit)

Before proceeding further, we should note that the condition
Q ≥ Q1 provides a lower bound for the Q-factor (upper
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bound for the maximum bandwidth) for small antennas; this
can be identified as the well-known Chu limit. However,
we note that Chu [26] defined the limit for omnidirectional
antennas by considering only the TM modes, thus providing
Q ≥ Q(T M)

Chu = 1/(krmin)
3
+ 1/(krmin). McLean [38] empha-

sizes that the limit changes when considering both TE and
TM modes, with special emphasis on circular polarization. The
latter corresponds to two vertical electric and magnetic dipoles
with balanced energy. In this case, the dominant quasi-static
term is weighted by a factor 2 at the denominator, which
identifies Q ≥ Q1 as the Chu limit. Indeed, Chu [26] and
McLean [38] did not consider the case of maximum directivity
but the case of antenna isotropic in the azimuthal plane. In the
case of maximum directivity and self-resonant antennas, the
present formulation naturally recovers an HD instead of two
vertical dipoles since the HD gives the maximum directivity.
With the above clarification, we will refer anyway to the
condition Q ≥ Q1 as the Chu limit.

B. Minimum Q for Isolated HQ

It is seen from (20) that the generalization of the Chu limit
to isolated HQ leads to Q ≥ Q2. This is much more restrictive
in terms of bandwidth than Q ≥ Q1; that is, it provides a
relative bandwidth 0.11(krmin)

5 in the dominant low-frequency
term; however, HQ gives a higher directivity with respect to
HD (7.5 versus 3). However, the maximum possible directivity
is obtained by a proper combination of dipolar and quadrupolar
contributions, as shown in the following.

C. Combination of Dipolar and Quadrupolar Contributions
for Maximum Directivity

Let us combine the dipolar and quadrupolar contributions
hHD and h′

HQ with arbitrary coefficients, namely, h = hHD +

γ h′

HQ, where γ is a real number. The directivity can be
calculated as D = 2/

∫ π

0 |h|
2/|h|

2
max sin θdθ , leading to

D = 3
(1 + γ )2

1 +
3
5γ 2

. (21)

This directivity exhibits a maximum at Dmax = 8 for
γ = 5/3. This result is in agreement with the results obtained
by Harrington’s coefficients and leads to a total Q equal to

Q(2)
=

3Q1 + 5Q2

8

=
45

8(krmin)5 +
3

(krmin)3 +
2

(krmin)
. (22)

The latter is the quality factor that can be obtained with dipolar
and quadrupolar contributions combined for maximum direc-
tivity. This result implies a relative bandwidth of 0.17(krmin)

5

at low frequency, which is larger than that of the HQ alone.
In Fig. 8, the points described by Q = Q1, Dmax = 3, and
Q = Q(2), Dmax = 8 are set in a diagram Dmax versus Q for
several values of krmin. The dots are connected with straight
dotted lines. For comparison, our solution in (9) is plotted in
Fig. 8. The latter covers with continuity the range from max
directivity 3–8 with minimum Q (continuous line).

Fig. 8. Maximum directivity as a function of the Q. Dots (con-
nected by dotted lines) are obtained by Q = Q(2)(Dmax = 8) and by
Q = Q1(Dmax = 3). Continuous lines are obtained through (9). Dash-dotted
lines are obtained by using (23), namely, setting Q constant for dipolar and
quadrupolar contributions. The solution minimally deviates around Q = Q(2)

with respect to (9) since the latter includes the contribution of order 3
(hexapoles).

D. Combination of Dipolar and Quadrupolar Contributions
With Q Bound

Imposing a bound to Q and truncating the series in (9) at
the first two terms lead to the combination h = hHD + γ h′

HQ,
resulting in Q = (Q1 + (3/5)γ 2 Q2)/(1 + (3/5)γ 2); deriving
γ from the latter leads to γ =

√
5(Q − Q1)/(3(Q2 − Q)),

which substituted in (21) yields

Dmax = 3

(√
Q2 − Q +

√
5
3 (Q − Q1)

)2

Q2 − Q1
; Q1 ≤ Q ≤ Q(2).

(23)

Note that, even if the above equation exists for Q1 ≤ Q ≤

Q2, the result is representative of the maximum achievable
directivity for Q bound only in the range Q1 ≤ Q ≤ Q(2).
In Q(2), the directivity assumes the maximum value equal
to 8, touching the Harrington point and then decreases (see
Fig. 8). Note that the same result can be obtained by truncating
the series in (9), setting to zero the derivative, and solving
the resulting second-order equation with the proper branch
in ξ . Therefore, it results that the combination of dipolar and
quadrupolar contributions that leads to the minimum Q and
maximum directivity for any antenna size is

h ≈ hH D +

√
5(Q − Q1)

3(Q2 − Q)
h′

H Q, Q1 ≤ Q ≤ Q(2). (24)

The accuracy of (23) when compared with the exact solution
is good in the range of maximum directivity 3 ≤ Dmax ≤ 8
(dashed-dotted line in Fig. 8, in comparison with the exact
solution). We stress that this range of directivity corresponds
to Q1 ≤ Q ≤ Q2, or in terms of antenna size

kr1 ≤ krmin ≤ kr (2)
≈ 0.9kr2 (25)

where kr1, kr2, and kr (2) are the values for which Q =

Q1, Q = Q2, and Q = Q(2), respectively. The values of



PASSALACQUA et al.: Q-BOUNDED MAXIMUM DIRECTIVITY OF SELF-RESONANT ANTENNAS 9555

Fig. 9. Bound of frequency bandwidth constrained maximum directivity
(log–log scale) for different values of Q, truncated at the corresponding
Chu limit radius, where Dmax(Q, krmin) = 3. Comparison between the exact
formula (9) (continuous line) and the approximate formula for small antennas
in (23) (dashed lines). The dashed curves are plotted for kr1 ≤ krmin ≤ 0.8kr2.

kr1, kr (2), and kr2 a function of Q are obtained by inverting
(19), (20), and (22) and can be approximated as

kr1 ≈ 0.4
(

1
Q

+
2

Q1/3

)
(26)

kr (2)
≈ 1.42

(
1
Q

+
1

Q1/5

)
= 0.9kr2. (27)

Comparison of the exact form (9) (continuous line) with the
two terms approximation in (23) (dashed lines) is shown in
Fig. 9 for several values of Q. The percentage relative error
of (23) with respect to the full expansion in the range kr1 ≤

krmin ≤ 0.8kr2 is less than 1% for 100 ≤ Q ≤ 1000 and
less than 4% for 10 ≤ Q ≤ 100, with maximum error always
obtained close to 0.8kr2.

E. Multipole Contributions Without and With Q Bounds

For completeness, Fig. 10 shows Dmax as a function of
Q for various values of krmin associated with a finite num-
ber Nmax of multipole orders. To this end, the expression
Dmax = (Nmax)

2
+ 2Nmax is evaluated as a function of

Q =
∑Nmax

n=1 Qn(2n + 1)/(N 2
max + 2Nmax). The latter expres-

sion corresponds to the finite number of harmonics weighted
by the Harrington coefficients [the latter given by the conjugate
of (5)]. The Fante’s Qn have been used in the calculations.
These plots can be obtained only by discrete points since Nmax
can assume only integer values. These points are connected by
straight lines in Fig. 10. The continuous curve is obtained by
the exact formula (9). It is seen that the discrete points are
reasonably close to the continuous curve obtained by (9), and
always below the continuous curve.

IV. CLOSED-FORM FORMULAS FOR 0.6kr2 < krmin < 10

It is seen from Fig. 3 that the value of ξ̄ is smoothly varying
for krmin ≤ kr2. Just adopting the value ξ̄ possesses in 0.6kr2
and maintaining it all-over the range 0.6kr2 < krmin < 10
provides a quite accurate solution for the directivity. This

Fig. 10. Maximum directivity as a function of Q from the Harrington’s
coefficients (dots, connected by dashed lines) derived from (9) (dash dotted
lines) for different values of krmin from 0.2 to 3. The vertical dotted lines
correspond to the Chu limit Q = Q1.

Fig. 11. Percentage error between the approximation in (28) and the
exact formula (9) for Q = 10, 100, 1000 in the range of antenna size
0.8kr2 ≤ krmin ≤ 20.

value, derived directly from (10), leads to ξ ≈ 0.16/Q, thus
providing the compact closed form

D(approx)
max ≃

∞∑
n=1

(2n + 1)

0.16
(

Qn
Q − 1

)
+ 1

. (28)

We observe that the summation can be truncated at
[krmin] + 10 without compromising the accuracy. Comparison
between the exact form in (9) and the one in (28) is given in
Fig. 6. It is seen that this formula is accurate for 0.8kr2 ≤

krmin ≤ 20 and 10 < Q < 5000. In particular, the percentage
error ε% = (D(approx)

max − Dmax)/Dmax in the above range for
various values of Q is presented in Fig. 11. It can be seen
that the percentage error is less than 5% for Q < 100 and less
than 7% for Q < 1000.

V. EQUIVALENT RADIUS CONTAINING
THE REACTIVE ENERGY

We can evaluate the ratio between the equivalent radius
obtained by Dmax = (kreq)

2 and the radius of the minimum
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Fig. 12. Ratio between req and rmin as a function of krmin for different values
of Q (the curves are truncated at a radius corresponding to the Chu limit). The
equivalent radius is obtained from the exact formula (9) (continuous lines) and
the approximated ones in (28) (colored dotted lines). The black dashed line
is obtained with the Harrington formula in (2), i.e., (krmin)

2
+ 2(krmin).

sphere; req may be interpreted as the equivalent radius at which
the reactive field becomes negligible [18].

Fig. 12 shows for different values of Q the comparison
of the results with the ones obtained from the directivity
estimated by Harrington.

VI. CONCLUSION

We have presented an exact analytical expression [see (9)]
for the maximum antenna directivity with a limit of bandwidth,
as a function of the antenna electrical size. The expression
has been obtained by solving a convex optimization problem
formulated in terms of an SW expansion of the radiated field,
and it is expressed in the form of a series that converges
rapidly in a large range of the parameters’ variation. The main
achievements connected with this expression are summarized
here.

1) The coefficients of the SW expansion providing the
maximum directivity are given in analytical form, thus
allowing for the derivation of the optimal radiation
pattern for any radius of the minimum sphere.

2) The maximum directivity limit goes to 3 for the values
of krmin that respect the Chu limit for dipolar Huygens’
sources. There, the exact formula predicts maximum
directivity equal to 3 independently of the value of Q.

3) For small antennas, the results are interpreted in terms
of a combination of the field radiated by dipolar
and quadrupolar Huygens’ sources outside the mini-
mum sphere. This interpretation leads to the simple
formula (23) which provides an accurate continuous
description of directivity in the range 3 ≤ Dmax ≤ 8 as a
function of the minimum Q for any fixed antenna size.

4) As an intermediate step of the solution for small-size
antennas, we have also found the relation Q > Q2 that
established the limit of bandwidth for HQs alone, which

is an extension of the Chu limit to isolated resonant
quadrupoles.

5) By using the exact formula, a simple analytical
closed-form expression has been derived, which com-
plements the expression in the quadrupole range for
electrical size till krmin = 20 and Q < 5000.

We should stress that being the limit obtained with zero field
inside the minimum sphere, this limit could be very difficult to
approach for large antenna sizes. For small- to intermediate-
size antennas, the simplicity of the final formulas together
with their interpretation renders this work useful for antenna
engineers. The extension of this work to account for losses
will be carried out in a dedicated article.

APPENDIX A
Q-FACTORS FOR SWS

The analytical expression of Fante’s Qn is Qn =

1/2(Q′
n + Q′′

n), where

Q′

n = x − |hn(x)|2
[

1
2

x3
+ x(n + 1)

]
−

1
2

x3
|hn+1(x)|2

+
1
2

x2(2n + 3)
[

jn(x) jn+1(x) + yn(x)yn+1(x)
]

(29)

Q′′

n = x −
1
2

x3[
|hn(x)|2 − jn−1(x) jn+1(x) − yn−1(x)yn+1(x)

]
(30)

where x = krmin and hn, jn , and yn are the spherical Hankel
of the second kind, Bessel, and Neumann functions of order n,
respectively.

APPENDIX B
SOLUTION OF (8)

We can solve the problem in (8) by using the Lagrange
multiplier method [39]. To this end, we define the Lagrangian
function

3(An, λ ) =

(∑
n

An|Kn|

)2

−λ

(∑
n

[ξ(Qn −Q)+1]A2
n −1

)
(31)

where An = |Cn| and |Kn| =
√

2n + 1. The problem is
formulated so that the minimum with respect to ξ of the
value λ which maximizes the Lagrangian represents the max-
imum directivity with a certain Q-bound. In order to find this
value, (31) is differentiated with respect to λ and to Am and
the derivative is set to zero

∂3(An, λ )

∂ Am
= 2|Km |

∑
n

An|Kn| − 2λ [ξ(Qm − Q) + 1]Am

= 0 (32)
∂3(An, λ )

∂λ
=

∑
n

[ξ(Qn − Q) + 1]A2
n − 1

= 0 (33)

while (33) ensures the respect of the bound in Q after
minimization, (32) is satisfied if and only if∑

n

An|Kn| = λ and |Km | = [ξ(Qm − Q) + 1]Am . (34)
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Substituting the second equality in the first equality of (34)
and using |Kn| =

√
2n + 1 leads to

λ =

∑
n

2n + 1
[ξ(Qn − Q) + 1]

(35)

from which the maximum directivity is obtained by mini-
mizing with respect to ξ . The range of variation of ξ is
determined by imposing that the constraint terms are nonneg-
ative, ξ(Qn − Q) + 1 ≥ 0 ∀n; i.e.,

Qn > Q, ξ ≥ max
{
−

1
(Qn − Q)

}
= 0

Qn < Q, ξ ≤ min
{

1
(Q − Qn)

}
=

1
(Q − Q1)

(36)

which leads to (9).
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