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Abstract: A specific topology of Digital Nonlinear Oscillators (DNOs) has been implemented by
using commercial off-the-shelf digital components to experimentally verify and demonstrate the
capability of these circuits to support complex dynamics, independently from their implementation
technology. In detail, a direct experimental evidence of the DNO dynamical behavior is presented at
the analog level with a bifurcation diagram analysis, investigation of periodic and chaotic attractors,
and dynamical stability. The autonomous circuit has been investigated as a source of entropy,
adopting different figures of merit, including the Lempel–Ziv Complexity, to evaluate the dynamics
measured under different operating conditions.

Keywords: digital nonlinear oscillators; nonlinear dynamical systems; chaotic circuits; complex
dynamics

1. Introduction

A new class of circuits named Digital Nonlinear Oscillators (DNOs) has been re-
cently proposed for the design of fully digital True Random Number Generators (TRNGs).
As defined in [1], DNOs are networks of electronic digital circuits designed to behave
as asynchronous logic gates, implementing autonomous nonlinear dynamical systems
exhibiting oscillations in the time-continuous domain.

Different full-digital oscillating asynchronous circuits presented in the literature can
be viewed as DNOs. These range from the well-known ring oscillator to the more com-
plex Fibonacci and Galois ring oscillators proposed by Golíc in 2006 [2]. Inspired by the
circuit topologies of synchronous Linear Feedback Shift Registers (LFSRs), in the structures
proposed by Golíc, the synchronous registers are substituted with digital inverters, act as
delay elements, and obtain networks of inverting gates with multiple XOR-ed feedbacks.
A number of full-digital random number generators have been investigated in the literature,
exploiting entropy sources based on these asynchronous circuits [3–15].

In [1], it has been suggested that proper combinations of low-complexity digital
primitives can define dynamical system models supporting structurally stable chaotic dy-
namics. More in detail, in previous works, the authors investigated DNOs by means of
low-complexity nonlinear dynamical models, circuit simulations, and experimentally, by
implementing low-complexity architectures in FPGAs [1,3,5,14]. In the latter experiment,
evidence about time-continuous complex dynamics could be presented resorting to indirect
measurements and investigating binary sequences obtained through one-bit sampling at
different sampling rates, depending on the FPGA master clock. However, this setup did
not allow tracking and monitoring of the electrical dynamics at an analog level, making
it impossible to investigate numerous aspects related to the dynamics of the nonlinear
circuit, such as the analysis of experimental bifurcation diagrams, the support of periodic
or chaotic attractors, and dynamical stability.
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In this work, we aim to overcome this limitation in implementing a specific DNO
topology (case study) by using off-the-shelf digital components to verify and demonstrate
experimentally the capability of DNOs to support complex dynamics. We qualitatively
confirm both analysis and numerical simulations based on low-complexity models [1,3,5,14].

This work is organized as in the following. In Section 2, we introduce the proposed
DNO case study within the theoretical framework of coupled oscillators. In Sections 3 and 4,
we discuss the characterization of the dynamical behavior of the implemented circuit
with experiments. The conclusion and references close the paper.

2. Case Study DNO: Design and Implementation

In many cases, as holds for the proposed case study, presented in the following
section, DNOs can be viewed as networks of coupled oscillators. The dynamics of coupled
oscillators has been studied for centuries, starting from the well-known synchronization
of weakly coupled mechanical pendulums. This phenomenon is known as phase-locking
and is generally present in dissipative systems with competing frequencies. Depending on
both the system parameters and the coupling strength, different kinds of dynamics can be
observed, ranging from periodic-locked and quasi-periodic (i.e., the ratio between the two
oscillator frequencies is irrational) to chaotic. To have chaotic dynamics, a fundamental
role is played by the nonlinear nature of both the oscillators and the coupling between
them [16–20].

A special case of coupled oscillators is obtained when an autonomous dynamical
system x is used to generate a driving signal, exciting a second dynamical system y. In this
situation, referring to a wide theoretical framework, the overall system can be described by
the generic system of nonlinear differential equations{

ẋ = f(x),
ẏ = g(x, y),

(1)

with x : R → RN , y : R → RM being real-valued functions of time t, and f, g being
nonlinear smooth real-valued functions of x and y, respectively. If ẋ = f(x) and ẏ = g(0, y)
define two periodic dynamical systems, we may call y in (1) the forced oscillator, with x
being the forcing periodic driver, as shown in Figure 1.

Periodic

Driver

Forced

Oscillator

Autonomous Dynamical System

Figure 1. The architecture of the investigated nonlinear dynamical system.

In this work, by investigating a DNO in the analog domain, we investigate the imple-
mentation of the generic architecture shown in Figure 1 by properly combining commercial
off-the-shelf components from the CD4000 series of CMOS logic chips. Standard 4000-series
CMOS gates represent an established technology that has been available in the industry
for decades. They are designed for power supply voltages ranging between 3 V and 18 V,
used in a variety of electronic applications where low power consumption, have high noise
immunity, and reliable operation over a wide range of operating conditions is required.
Our proposal makes use of CD4049UB, CD4050B, CD4070B, and CD4077B by Texas Instru-
ments functioning as inverting buffers, non-inverting buffers, XOR gates and XNOR gates,
respectively. The circuit complexity of these digital gates has to be assessed by inspecting
their schematics, as reported in Figure 2.
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Figure 2. Schematic diagrams of the commercial off-the-shelf components used in this work from the
CD4000 Series of CMOS logic chips by Texas Instruments. They function as inverting buffers
(CD4049UB), non-inverting buffers (CD4050B), XOR gates (CD4070B), and XNOR gates (CD4077B).

As it can be appreciated from the figure, the inverting and non-inverting buffers are
made of CMOS inverters, whereas in the XOR and NXOR gates, a network of CMOS invert-
ers is completed by mixing tri-state and pass-transistor based glue logic. The complexity of
the digital gates plays a relevant role in determining the mathematical dimension of the
overall dynamical system. The distribution of parasitic capacitances, including a number
of nonlinear capacitors related to the physical silicon MOSFETs are examined. From a theo-
retical point of view, the distributed charge in parasitic capacitors (that is related to node
voltages by means of linear or non-linear relations) sets the state of the dynamical system
(x and y in (1)) and evolves in the time-domain to determine different kinds of dynamics.
Accordingly, it is clear from these considerations that dynamical systems associated to
physical DNOs can have dimension in the order of tens or hundreds (i.e., N + M ≈ 10÷ 100
in (1)), even considering low-complexity solutions.

The test bench designed to carry out the experiments presented in this work included a
digital multimeter (Agilent 34410A), an oscilloscope (LeCroy WR44MXI), an arbitrary wave-
form generator (Agilent 33220A), and a programmable power supply (Agilent E3634A).
All measurements were collected and analyzed using National Instruments LabVIEW and
Mathworks MATLAB software tools.
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As discussed in the following sections, the authors investigated the complete DNO
architecture given in Figure 1. In detail, in Section 3, the implementation and analysis
of the forced oscillator, which determines the chief characteristics of the DNO dynamical
behavior, is first presented. In Section 4, the whole circuit, including the periodic driver,
is discussed.

3. Forced Oscillator: Implementation and Analysis

The topology of the forced oscillator is shown in Figure 3, defining VA, VB and VC the
voltages at the nets to be A, B, C, respectively. The key elements of this circuit are the two
ring oscillators obtained by combining an xor (nxor) gate and n delay elements (buffers) in
a loop. The second input of the xor (nxor) gate is used to enable the oscillation, setting the
operation of the xor (nxor) gate as an inverter if VA is high (low). An xor gate is used to
mix the state voltages of the two ring oscillators (voltages at the nodes B and C in Figure 3)
and the driving excitation, providing the feedback mixing signal VA.

CD

4070B

CD

4070B

CD

4077B

CD

4050B

x6

CD

4050B

x6

DRIVING EXCITATIONA

B

C

Enable

Enable MIXING GATE

RING OSCILLATOR WITH INVERTED ENABLE

MIXING FEEDBACK LOOP

RING OSCILLATOR WITH ENABLE

Figure 3. The low-complexity architecture of the forced oscillator.

Turned-Off Excitation: Dynamical Behavior

The operation of the two ring oscillators is shown in Figure 4, assuming the mixing
feedback loop open and the enabling voltage VA to be externally driven by a square wave
obtained from a signal generator. The oscillation of the sub-circuits is assured when the
number of CMOS stages involved in the loop is greater than two [14]. Accordingly, the min-
imum number of off-the-shelf components to trigger oscillations depends on their CMOS
internal architecture. To slow down the dynamics in this work, we used six CD4050B
buffers. The choice allowed for the empirical rough tuning of the oscillation frequencies
of the two loops. The loops are slightly asymmetric due to the differences in the internal
architecture of the xor and nxor gates (Figure 2). According to the measurement results,
the oscillation frequency of the two ring oscillators resulted in fRO ≈ 3.6 MHz at room
temperature (22 ◦C) for a power supply voltage of Vdd = 6 V and Vss = 0 V. The oscil-
lation frequencies of the two circuits resulted in slightly different (in the order of tens
of kHz) due to several aspects including differences in the internal architectures of the
CD4077B and CD4070B gates, process variability, and residual parasitic unbalance in the
implemented connectivity among elements. On average, considering the number of stages
(i.e., seven in each loop), the corresponding theoretical mean propagation delay resulted in
tp ≈ 106/(2× 7× 3.6) ≈ 19.8 ns for each gate [21,22].

It is worth recalling that in this kind of oscillator, the oscillation frequency weakly
depends on the temperature and strongly depends on the power supply voltage, depending
on both the technology and the hardware implementation [23–25]. In more detail, it is
well known from the literature that the propagation delay of CMOS logic gates increases
with temperature. This affects transistor threshold voltages, charge carrier mobilities, and
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saturation velocities, among other features [23–25]. As a result, the combined effect of a
temperature increase on a CMOS digital gate operated at its nominal power supply voltage
is a reduction of its output current and causes circuit speed degradation.
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Figure 4. The operation of the two ring oscillators in Figure 3, assuming an open mixing feedback
loop and that the enabling voltage VA is externally driven by a waveform generator as a square wave.

For the sake of our study, we investigated the dependency of the oscillation frequency
with the power supply voltage at a constant room temperature (22 ◦C), viewing the circuits
as Voltage-Controlled Oscillators (VCOs).

From this point of view, since propagation delays in CMOS logic gates decrease with
increments of Vdd −Vss [23–25], the oscillation frequency increases with the power supply
voltage, as expected from ring oscillator modeling [21,22], as shown in Figure 5. Referring
to the experimental results reported in this figure, the theoretical mean propagation delay
per gate varies between tp ≈ 8.1 ns and 79.3 ns for supply voltages Vdd −Vss = 3 V and
18 V, respectively [21,22].

4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

measured

polyn. fitting

16 18

Figure 5. The measured oscillation frequency of the ring oscillators in Figure 3, as a function of Vdd,
and a corresponding polynomial fitting fRO(Vdd) ≈ αV2

dd + βVdd + γ, where α = −0.0298 Hz/V2,
β = 1.147 Hz/V, γ = −2.283 Hz.
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Furthermore, it is worth noting that a change in the power supply voltage affects
both the static and dynamical properties of the circuit, as shown in Figure 6. We stress an
important consequence of this fact: differently from digital circuits implementing boolean
functions independent from the power supply voltage, in DNOs, the power supply voltage
plays a relevant role in determining the dynamical behavior of the nonlinear circuit (this
aspect is made more clear in the next section).
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Figure 6. The dynamical behavior of the ring oscillator for different supply voltages.

As expected from low-complexity numerical modeling [1], when the driver excitation
is turned off, the implemented dynamical system ẏ = g(0, y) in Figure 3 resulted in a
periodic oscillator with a strongly attractive limit cycle, as shown in Figure 7 for Vdd = 6 V.
The support of the limit cycle in the normalized phase space (VA/Vdd, VB/Vdd, VC/Vdd)
resulted in weakly dependent on Vdd, confirming the structural periodic stability of the
system dynamical behavior when the excitation is turned off.
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Figure 7. The strongly attractive limit cycle of the oscillator in Figure 3 when the driving excitation
is turned off (Vdd = 6 V, 20 cycles reported). The periodic trajectory had a measured frequency
f0 ≈ 1.87 MHz).
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We investigated the dynamical behavior of the forced oscillator when a periodic
excitation is applied to its input: namely, a square wave with levels 0 V and Vdd at different
frequencies (e.g., a clock signal). The experiments were conducted considering different
supply voltage levels for excitation frequencies ranging between 500 kHz and 5 MHz.

As expected from numerical modeling of DNOs [1], experiments confirmed that by
smoothly changing the excitation frequency, the system exhibits multiple attracting sets,
triggers different dynamics, and partitions the phase state in disjoint basins of attraction
dependent on both the supply voltage and the excitation frequency. Typical measurement
results are summarized in the bifurcation diagram shown in sub-plot a in Figure 8. Ex-
citation frequencies range between 1 MHz and 2 MHz and are obtained as described in
the following text.
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Excitation Frequency [MHz]
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Figure 8. Sub-plot (a): Bifurcation diagram for the dynamical system in Figure 3 reporting the
measured voltages (2) for excitation frequencies ranging between 1 MHz and 2 MHz (100 Hz
sweep step) and a supply voltage of 3.3 V. The two vertical marker lines at fexc = 1.1975 MHz and
fexc = 1.1982 MHz delimit the sub-domain magnified in Figure 9. Sub-plot (b): The average Lempel–
Ziv complexity computed for the symbolic sequences (3).

For each tested frequency (100 Hz sweep step), the excitation signal and the voltages
at the nodes A, B, and C in Figure 3 have been acquired with a four-channel oscilloscope
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recording 100 excitation cycles. To investigate the synchronization between the forced
oscillator and the periodic driver, we computed the set of k = 100 voltages from the sig-
nal acquisitions {

VA

(
t =

k
fexc

)
, k ∈ N

}
(2)

for each tested excitation frequency fexc, assuming t = 0 as the first acquisition time at
which the excitation signal crosses the reference threshold level Vdd/2.

1.18 1.19 1.2 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28

Excitation Frequency [MHz]

0

0.5

1

1.5

2

2.5

3

3.5

Figure 9. Magnification of the bifurcation diagram shown in Figure 8. The red vertical markers
highlight one of the several small detected periodic windows in the investigated frequency range.

Both chaotic and periodic behaviors were confirmed independently from the time
phase (i.e., the reference threshold level setting the acquisition time t = 0) and obtained
similar results for different supply voltages (3 V ≤ Vdd ≤ 18 V) and excitation frequencies
(500 kHz–5 MHz). In detail, to assess the complexity of the dynamics, for each test frequency
fexc in the bifurcation diagram range, we processed the sequence of voltages (2) to build
symbolic sequences S = {s0, s1, . . . , sk}, defined as

sk =

⌊
1 + VA(kTexc)

Vdd + 2
· 8
⌋

, sk ∈ {0, 1, . . . , 7}, (3)

i.e., the levels VA(kTexc) have been properly shifted, scaled and three-bit quantized (eight
levels). Once the symbolic sequence S was obtained, we evaluated its Lempel–Ziv complex-
ity [26]. The process was repeated 100 times for each tested excitation frequency, collecting
symbolic sequences of 1000 symbols (k = 0, . . . , 999). The means of the measured Lempel–
Ziv complexity have been reported in sub-plot b in Figure 8. The two vertical marker
lines at fexc = 1.1975 MHz and fexc = 1.1982 MHz delimit the sub-domain magnified in
Figure 9.

Further investigations were carried out analyzing the signal autocorrelation function,
inspecting the acquisition trajectories in four-dimensions (excitation and A, B, and C
node voltages) and Fourier analyses. As examples, we report two different periodic
dynamical behavior and a chaotic dynamical behavior detected at excitation frequencies of
1,351,400 Hz, 1,390,100 Hz, and 1,377,600 Hz, respectively, for a nominal power supply of
6 V in Figure 10. On the left side of this figure, the evolution for a time interval equal to
100 excitation periods of the acquired signals is shown as trajectories in the voltage phase
space (VA, VB, VC). On the right side, the autocorrelation function Rxx(

t
Texc

) for the voltage
signal VA is reported.
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Figure 10. Two periodic dynamics (with periods Texc and 6Texc) and a chaotic dynamics detected at
nominal excitation frequencies 1,351,400 Hz, 1,390,100 Hz, and 1,377,600 Hz, respectively, for a power
supply of 6 V. The autocorrelation function refers to the voltage signal VA.

As shown by the autocorrelation function, in the first periodic case ( fexc = 1,351,400 Hz),
the limit cycle of the forced oscillator has period Texc, whereas in the second periodic case
( fexc = 1,390,100 Hz), it is equal to 6Texc, exhibiting a quite complex, stable support. In the
last case ( fexc = 1,377,600 Hz), the dynamics is fully chaotic. Several chaotic windows can
be spotted in the bifurcation diagrams shown in Figures 8 and 9 in an interval associated
to complex dynamics (high entropy). At closer inspection, chaotic regions are interleaved
with (more or less complex) periodic windows as expected from the simulation of low-
complexity DNOs dynamical models [1].

4. Overall DNO Circuit Analysis

The complete architecture shown in Figure 1 has been investigated driving the forced
oscillator with an autonomous ring oscillator, as shown in Figure 11.
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Figure 11. The implemented architecture of the complete DNO.

To slow down and roughly tune the oscillation frequency around the previously
investigated excitation frequency ranges, the periodic driver was implemented using
5 inverting gates (CD4049UB) and 18 buffers (CD4050B). Considering the schematics
shown in Figure 2, the implemented solution counts 41 CMOS inverters. As it happens
for the oscillating sub-circuits in Figure 3, the oscillation frequency of the periodic driver
depends on the power supply voltage, following a trend similar to the one shown in
Figure 5. In this case, the oscillation frequency ranged between 320 kHz (Vdd = 3.3 V) and
2.785 MHz (Vdd = 18 V).

Adopting the investigation approach discussed in Section 3, we derived a bifurcation
diagram referring to the power supply voltage as the bifurcation parameter, as shown
in Figure 12. In more detail, for each tested power supply voltage (2 mV sweep step),
the excitation signal and the voltages at nodes A, B, C, and E in Figure 11 have been
acquired with a four-channel oscilloscope, recording 100 excitation cycles. To investigate
the synchronization between the forced oscillator and the periodic driver, we computed a
set of k = 100 voltages from the signal acquisition for each tested power supply voltage
Vdd. Since Vdd also affects the amplitude of the dynamics, the acquired voltages have been
properly normalized, i.e., {

xA(k) =
VA(tk)

Vdd
, k ∈ N

}
, (4)

where {tk} is the sequence of times at which the periodic excitation voltage VE crosses the
threshold Vdd/2 with a rising edge.

3.5 4 4.5 5 5.5 6 6.5 7

Power Supply Voltage [V]

0

0.2

0.4

0.6

0.8

1

Figure 12. Bifurcation diagram for the dynamical system in Figure 11 reporting the measured
normalized voltages (4) for power supply voltage ranging between 3.3 V and 7 V (2 mV sweep step).
The vertical marker lines at Vdd = 4.7 V and Vdd = 6.2 V identify the power supply voltages set for
the experiments presented in Figure 13 and Section 4.1.
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The bifurcation diagram highlights the presence of chaotic and periodic windows as a
function of the applied supply voltage. For example, in Figure 13, it is possible to observe
how a voltage Vdd = 4.7 V, corresponding to an excitation frequency fexc ≈ 691 kHz, reveals
periodic dynamics with period equal to 6Texc, while a voltage Vdd = 6.2 V, corresponding
to an excitation frequency fexc ≈ 1038 kHz, leads to chaotic dynamics.

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

a

b

Figure 13. Two acquired VA signals for different supply voltages. Sub-plot (a): Vdd = 4.7 V, cor-
responding to an excitation frequency fexc ≈ 691 kHz, revealing periodic dynamics with period
equal to 6Texc (highlighted). Sub-plot (b): Vdd = 6.2 V, corresponding to an excitation frequency
fexc ≈ 1038 kHz, revealing chaotic dynamics.

The corresponding Lempel–Ziv complexity is shown in Figure 14. Interestingly,
the entropy of the dynamical system resulted higher than in the previous case (i.e., when
the forced oscillator was driven by a signal generator). This is mainly because the periodic
driver is itself a well known source of information, considering the jitter introduced by
electronic noise, boosting the complexity of the dynamics. This is beneficial for most
applications that focus on the design of entropy sources for cryptographic applications.
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Figure 14. The average Lempel–Ziv complexity computed for the symbolic sequences (3), for the
dynamical system in Figure 11, and a power supply voltage ranging between 3.3 V and 7 V (2 mV
sweep step). The vertical marker lines at Vdd = 4.7 V and Vdd = 6.2 V identify the power supply
voltages set for the experiments presented in Figure 13 and Section 4.1.

4.1. Randomness and Statistical Tests

As a final confirmation to assess the capability of the investigated DNO to generate
complex signals, we used the circuit shown in Figure 11 as an entropy source to design a
true random number generator passing the NIST 800.22 standard tests for cryptographic
randomness [27]. Accordingly, the power supply voltage has been set to 6.2 V; that is, a
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value that is among the power supply voltages corresponding to chaotic dynamics in the
bifurcation diagram and the highest Lempel–Ziv complexity in Figures 12 and 14. At this
value of Vdd, the oscillation of the driver results in ≈ 1.038 MHz. In this setup, the signal
VA has been uniformly sampled and one-bit quantized according to a sampling frequency
of 100 kHz. It is worth noting that such a low throughput is coherent with the dynamics of
the circuit, which, in this demonstrator, has been intentionally reduced 100÷ 1000 times
with respect to what is typically achieved in integrated circuits [1].

Consistent with NIST recommendations and to mitigate the residual statistical defects
of the random binary sequences and pass the tests, the random stream has been post-
processed with a low-complexity stream cipher, performing the bit-by-bit XORing of the
collected raw bits with an eight-bit pseudo-random generator (a Fibonacci LFSR based on
the primitive polynomial x8 + x4 + x3 + x2 + 1). In Table 1, the obtained results for the
NIST tests are reported on the basis of 100 binary sequences of 106 collected bits.

Table 1. NIST 800.22 rev.1a Statistical Tests Results.

Test Name p-Value Proportion Result

Frequency 0.897763 1.00 pass
BlockFrequency 0.719747 0.97 pass

CumulativeSums a 0.637119 0.99 pass
Runs 0.514124 0.96 pass

LongestRun 0.455937 0.99 pass
Rank 0.042808 1.00 pass
FFT 0.657933 0.97 pass

NonOverlappingTemplate a 0.739918 0.96 pass
OverlappingTemplate 0.851383 0.99 pass

Universal 0.595549 0.97 pass
ApproximateEntropy 0.030806 0.99 pass
RandomExcursions a 0.051391 0.97 pass

RandomExcursionsVariant a 0.116519 0.98 pass
Serial a 0.275709 0.99 pass

LinearComplexity 0.102526 0.99 pass
a Worst case reported for tests with multiple outcomes.

5. Conclusions

A specific topology of Digital Nonlinear Oscillators (DNOs) has been implemented by
using commercial off-the-shelf digital components to experimentally verify and demon-
strate the capability of these circuits to support complex dynamics, independently from
their implementation technology. The implemented test bench made it possible to mon-
itor the electrical dynamics of the DNO at an analog level, allowing for investigation of
numerous aspects related to the complex dynamics of the nonlinear system, such as the
analysis of bifurcation diagrams, the support of periodic or chaotic attractors, and dynami-
cal stability. The autonomous circuit has been investigated as a source of entropy, adopting
different figures of merit, including the Lempel–Ziv complexity, to evaluate the dynamics
measured under different operating conditions. Furthermore, the entropy source has been
also assessed for the possible design of low-complexity TRNGs and is capable of passing
the NIST 800.22 tests, confirming the applicability of this class of circuits in the context of
lightweight cryptography.

The obtained results demonstrate that DNOs can support complex dynamics and
exhibit periodic and chaotic dynamical behaviors, depending on different design aspects
such as the power supply voltage. At the same time, focusing on the cryptographic
reliability of this kind of solutions, experimental results pose the problem of the control of
the system entropy, taking into account its manifested sensitivity with respect to different
implementation aspects under the weak control of the designer. The authors are currently
investigating the possible use of feedback strategies to gain control of the circuit entropy.
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