
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

SURVEY

Procaccini et al. Journal of Big Data          (2024) 11:163  
https://doi.org/10.1186/s40537-024-01022-4

Journal of Big Data

A survey of graph convolutional networks 
(GCNs) in FPGA‑based accelerators
Marco Procaccini1,3,4*, Amin Sahebi1,2 and Roberto Giorgi1,3* 

Abstract 

This survey overviews recent Graph Convolutional Networks (GCN) advancements, 
highlighting their growing significance across various tasks and applications. It under-
scores the need for efficient hardware architectures to support the widespread adop-
tion and development of GCNs, particularly focusing on platforms like FPGAs known 
for their performance and energy efficiency. This survey also outlines the challenges 
in deploying GCNs on hardware accelerators and discusses recent efforts to enhance 
efficiency. It encompasses a detailed review of the mathematical background of GCNs 
behind inference and training, a comprehensive review of recent works and architec-
tures, and a discussion on performance considerations and future directions.

Keywords:  Graph Convolutional Networks, Hardware acceleration, FPGA, 
Heterogeneous platform

Introduction
One of the most notable recent advancements of Deep Learning lies in the successful 
implementation of Graph Convolutional Networks (GCNs) [1–19]. The central idea 
behind GCNs [20] is the iterative aggregation of feature data from graph’s nodes neigh-
borhoods using neural networks, as shown in Fig.  1. With a single “convolution-like” 
operation, feature data is transformed and collected from a node’s immediate neigh-
borhood in the graph. By stacking multiple convolution layers, the flow of information 
can reach distant areas of the graph. Unlike deep models that rely solely on the content 
(e.g., recurrent neural networks [21]), GCNs use both the content data and the graph 
structure.

GCNs are demonstrating significant promise across a range of tasks [22–25]. Nota-
bly, major companies like Alibaba, Facebook, and Google have implemented GCNs in 
their data centers, underscoring the expanding significance and potential applications 
of this technology [26]. Given this growing landscape, there is a need for an efficient 
and high-performance architecture for solving critical real-life problems and foster-
ing more research on GCNs. Thus, based on the aforementioned context, we articulate 

*Correspondence:   
marco.procaccini@cnr.it; 
giorgi@unisi.it

1 Department of Information 
Engineering and Mathematics, 
University of Siena, Siena, Italy
2 Department of Information 
Engineering, University 
of Florence, Florence, Italy
3 Consorzio Interuniversitario 
Nazionale per l’Informatica, 
Rome, Italy
4 National Research Council, 
Pisa, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-01022-4&domain=pdf


Page 2 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

our motivation for surveying GCN implementations, in particular on platforms able to 
achieve good performance while keeping a good energy efficiency, such as the FPGAs 
[1].

GCNs extend the capabilities of Graph Neural Networks (GNNs) by incorporating 
graph convolutional operations inspired by traditional convolutional layers in convo-
lutional neural networks (CNNs). By employing graph convolutions, GCNs are capa-
ble of effectively extracting hierarchical features from graph-structured data, allowing 
for machine-learning tasks such as node classification, link prediction, and graph-level 
prediction. GCN algorithms generally incorporate processing nodes (vertices) and their 
connections (edges) in a graph, where each node has associated features. However, 
deploying GCNs efficiently on hardware accelerators like FPGAs poses challenges. One 
challenge is the heavy memory usage and irregular access patterns during the feature 
aggregation phase, in which the information is gather from the neighbors of a given 
node. Another issue is the uneven distribution of workloads among nodes, which can 
lead to inefficient resource utilization  [27, 28]. Additionally, within each layer of a GCN, 
there’s an imbalance in the workload between the memory-intensive aggregation phase 
and the computation-heavy transformation phase, which can slow down the process. 
While GCNs offer powerful capabilities for analyzing graph-structured data, optimizing 
their performance on hardware accelerators like FPGAs requires overcoming technical 
obstacles. To tackle these challenges, there are recent studies to try improving efficiency 
in memory usage, workload distribution, and computational tasks  [29–33].

This survey reviews the fundamental background of GCNs, covered in the problem 
statement in Section "Problem definition: background and mathematical foundations". 
It organizes and discusses recent works in the field, presented in Section Overview of 
existing solutions. The survey also reviews the most effective architectures for GCNs, 
detailed in Section  Proposed Solutions: Architecture Highlights of Selected FPGA-
based GCNs. Finally, it explores the performance-cost tradeoffs and highlights promis-
ing future directions in Section Elaboration.

Problem definition: background and mathematical foundations
GCNs aim to improve accuracy in learning arbitrary graph-structured data. The basic 
idea behind GCNs is applying a method for capturing nearby information similarly to 
Convolutional Neural Networks (CNNs) [34, 35] directly on a matrix representing the 
graph and the feature embeddings associated with each graph’s node.

The initial proposal was used in the semi-supervised classification of graph-structured 
data [20]. The main goal is to select the information embedded within the graph more 
accurately than with previous techniques.

The data are features that are represented by, e.g., a vector x ∈ R
c which is named 

embedding, associated with a node or edge of the graph, where c is the number of ele-
ments of the embedding or features in the inputs. The n embeddings can be organized 
in a matrix X = [x0, x1, . . . , xn−1]T ∈ R

n×c and the GCN produces a predicted set of f 
output classes or output labels as a matrix Ŷ ∈ R

n×f  so that:

(1)Ŷ = GCN (A,X)



Page 3 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

where A is a graph description, such as its adjacency matrix. In this way, GCNs can be 
naturally deployed in Machine Learning to address several classical tasks, such as:

•	 Node Classification For graphs where features and labels characterize nodes, the 
objective is to forecast the label of each node. For instance, in a social network sce-
nario, nodes may represent users, and the aim could involve predicting user attrib-
utes or interests.

•	 Link Prediction Given a graph, the goal is to anticipate either if an edge is present 
between two nodes or the probability of a potential edge forming between them. This 
task is often relevant in recommendation systems, where predicting connections 
between users or items can improve personalized recommendations.

•	 Graph Classification For a collection of graphs, one may want to classify or charac-
terize entire graphs. For example, in molecular biology, graphs may represent chemi-
cal compounds, and one may desire to predict the properties of the molecules or 
classify them into different classes based on their structure.

•	 Community Detection Given a graph, identify communities or node clusters that are 
densely connected internally but sparsely connected with nodes in other communi-
ties. Community detection is relevant in various fields, e.g., social network analysis, 
biology, and computer networks.

•	 Graph Generation Produce new graphs with structural properties similar to a given 
set of graphs. Graph generation has generative modeling, drug discovery, and net-
work synthesis applications.

Why GCNs attracted attention

The combination of flexibility [36], scalability [37], interpretability [38], and effective-
ness [39] in learning from graph-structured data has made GCNs a prominent area of 
research and a powerful tool to address real-world problems in diverse domains [26].

Li et al. [40] showed how GCN could outperform Fully-Connected Networks (FCNs) 
in terms of prediction accuracy, as demonstrated by the higher accuracy of a two-layers 
GCN in Table 1. The advantage of GCN is quite clear. The only difference between the 
layer-wise propagation rule of the FCNs and the GCNs is the consideration of the graph 
convolution matrix Gθ (see Equation 3), which only relates to the adjacency matrix, as it 
is shown in the following.

In the latest decade, GCN concepts and variants have been intensively developed and 
surveyed [26, 36, 41–43], following their promising performance and relatively simple 
implementation.

More in detail, the work of Ju et al. [26] provides a comprehensive survey of current 
deep graph representation learning algorithms, categorizing them by neural network 

Table 1  GCNs vs. Fully-Connected Networks [40] while performing the task of a semi-supervised 
classification (dataset: Cora citation network; labels: 20 for each class)

The bold value indicates the superior accuracy of the two-layers GCN over the Fully-Connected Networks (FCN)

Model FCN One-layer FCN Two-layers GCN One-layer GCN Two-layers

Accuracy 0.530860 0.559260 0.707940 0.798361



Page 4 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

architectures and advanced learning paradigms, including GCNs. However the analysis 
is only focusing on the mathematical aspects, not the computer architecture.

Li et  al. [36] review FPGA-based accelerators for graph convolutional networks 
(GCNs) until 2022, detailing challenges, design solutions, performance metrics, and 
future directions for improving algorithm-hardware co-design, scheduling efficiency, 
capacity of accommodating different algorithms, and speed of development.

However, this survey lacks to highlight the mathematical background necessary for 
inference and for training, which is hardly found in a single point as we offer in this 
survey, for an in-depth understanding of the possibilities in the FPGA implementa-
tions. Moreover, we added more recent works and a more extensive direct compari-
son of the architectural implementations.

Garg et al. [42] present a taxonomy for describing and comparing the diverse data-
flow and microarchitecture optimizations used in custom accelerators for Graph 
Neural Networks (GNNs), addressing the unique compute and memory features of 
GNNs compared to Deep Neural Networks (DNNs), but the review is more tailored 
to GPUs rather than to FPGAs.

The survey of Abadal et al. [44] reviews the area of Graph Neural Networks (GNNs) 
from a computing perspective, summarizing GNN fundamentals, algorithmic evolu-
tion, and operational phases, while providing a detailed analysis of recent software 
and hardware for accelerating computations, and proposing graph-aware solutions 
for GNN accelerators based on hardware-software codesign. However, there is no dis-
cussion of FPGA-based architecture and the mathematical background discussion is 
limited.

The survey of Zhou et al. [41] proposes a general design pipeline for Graph Neural 
Network (GNN) models in which GCN are only a limited part, discusses the variants 
of each component, indicates software-only implementations, categorizes their appli-
cations, and identifies some open problems for future research in the more general 
area of GNNs.

In the following Table 2, we highlight the major differences related to the focus of 
this survey and the other mentioned surveys.

Mathematical foundations of Graph Convolutional Networks (GCNs)

The mathematical foundations of GCNs originate from aggregating local information 
via the same filtering technique used in CNNs and DSP [45]. This idea works in prac-
tice quite well, although there is no direct mathematical derivation from CNNs: it can 

Table 2  Major highlights of this survey compared to other works that survey GCNs

FEATURE Our Work Ju et al. [26] Li et al. [36] Garg 
et al. 
[42]

Abadal et al. [44] Zhou 
et al. 
[41]

FPGA latency comparison 
(no. of works compared)

19 7 0 0 0 0

FPGA architecture discussion Y Y N N N N

Inference and training 
detailed math overview of 
classic GCNs

I+T N I N Limited I



Page 5 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

be seen as an example of the “Crossdisciplinarization” method for generating ideas 
(method “C” in [46]), in which something well-known is the Digital Signal Processing 
domain (DSP). i.e., the convolution filtering effect is applied to another well-known 
domain in Computer Science, i.e., graph theory, to solve Machine Learning tasks like 
classification (Fig. 1).

Graph convolution

In DSP, filtering a signal is obtained in the time domain via a convolution operation of an 
input signal with the filter’s representation. In the discrete case, given two signals 
x, y ∈ R

n , a discrete filter g ∈ R
n and the Fourier basis [φ0,φ1, . . . ,φn−1] := � where1. 

�ij := 1√
n
e
2π jik
n  , we can express the Discrete Fourier Transform (DFT) as 

x̂ := DFT (x) = �Tx , y := IDFT (ŷ) = �ŷ, ĝ := DFT (g) = �Tg , 
Ĝ = diag(ĝ) = diag(ĝ0, . . . , ĝn−1) and the convolution operation2 as:

Similarly, we can introduce the concept of graph convolution ∗G with

Where Gθ can be seen as a function of a well-defined matrix that characterizes the graph, 
such as the normalized graph Laplacian L or an appropriate smoothing of it [40, 48]. In 
the landmark GCN work of Kipf and Welling [20], Gθ = Â has the role of aggregating 
information from the neighborhood nodes, as outlined in the following.

Derivation of the aggregation matrix Â from the graph structure

Given a graph G = (V , E) , with V is the set of nodes and E is the set of edges, n = |V| 
is the number of nodes in the graph, the (combinatorial) graph Laplacian matrix L0 
is defined as L0 := D− A , where A is the adjacency matrix of the graph and D is the 
degree matrix of G . The adjacency matrix describes the connections of the graph so 
that Aij = 1 if there is an edge between node vi and vj and Aij = 0 otherwise3, where 
vi, vj ∈ R

n and L0,D,A ∈ R
n×n . The degree matrix D := diag(d0, . . . , dn−1) is a 

(2)y = g ∗ x = �ŷ = �(ĝ ⊙ x̂) = �Ĝx̂ = �Ĝ�Tx = Gx where G := �Ĝ�T

(3)y = gθ ∗G x = Gθx

Fig. 1  Conceptual operation of CNNs and GCNs (adapted from [47]). The GCNs aim to capture neighbor 
node features, similar to CNNs that capture, e.g., nearby pixels of an image

1 � := F
∗ where F := the Fourier matrix.

2  The symbol ⊙ denotes the Hadamard product.
3  Here, for the sake of simplicity, we assume undirected graphs, i.e., all edges are bidirectional, but generalizations to 
directed edges exist.



Page 6 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

diagonal matrix where di =
∑n−1

j=0 Aij expresses the number of connections of each 
node vi . The combinatorial Laplacian may contain big numbers in case of large graphs, 
so for numerical processing, it is preferred to use the normalized graph Laplacian 
L := D−1/2L0D

−1/2 = I−D−1/2AD−1/2 instead.
In GCN processing, another important concept is aggregating information from 

neighbor nodes. The adjacency matrix naturally does this, expressing for each row (or 
column) the 1-hop-far connections to each node. However, it is normally important to 
process the embedding related to each node along with its neighbor embeddings: an 
implicit self-loop is added to that purpose. In terms of mathematical notation, this is 
expressed by using Ã := A + I as an adjacency matrix, which induces a degree matrix 
D̃ := D+ I . By using Ã and D̃ , Kipf and Welling [20] propose to use as aggregation 
matrix Â := D̃−1/2ÃD̃−1/2 which can be seen as a “smoothed” Laplacian [48]. In other 
words, in Equation 3, the classical GCN assumes Gθ = Â.

To derive this representation of the aggregation function Gθ = Â , Kipf and Welling 
[20] make the following considerations. A contains only zeros and ones with an all-zeros 
diagonal. It may not permit its direct utilization as Gθ in the graph convolution since 
numerical convergence may not be possible when applying A multiple times. Therefore, 
the Laplacian L is preferred since (for undirected graphs) L is a symmetric matrix (i.e., 
LT = L ) and also definite positive (i.e., xTLx > 0, ∀x ). Therefore, an orthogonal diagonal-
ization always exists such that L = Q�LQ

T . With this in mind, we can see Gθ as a func-
tion f (L) and approximate f() with the Chebyshev Polynomial Series (CPS)4 such that 
f (L) = Qf (�L)Q

T . But L (and �L ) are known [45] to have eigenvalues in [0, 2], there-
fore we use f̃ (�̃L) with �̃L = �L − I to shift the eigenvalues into [− 1,1] and apply the 
CPS approximation f (�L) = f̃ (�̃L) =

∑t
k=0 θkTk(�̃L) =

∑t
k=0 θ

′
k�̃

k
L . With the trunca-

tion for t = 1 to avoid involving farther nodes5, and choosing θ ′0 = −θ ′1 = θ to reduce the 
number of (multiplication) operations, we obtain f (�L) ≈ θ(I− �̃L) = θ(2I−�L) so 
that:

Since this matrix also has [45] eigenvalues in [0,2], to avoid numerical instability when 
this matrix is applied multiple times, [20] introduces another “normalization trick” so 
that instead of θ(I+D−1/2AD−1/2) , the expression D̃−1/2ÃD̃−1/2 is used instead to have 
eigenvalues in [− 1,1]:

Each node vi in the graph is associated with a c-dimensional feature vector xi ∈ R
c 

for each node. The collection of all node features is represented by the feature matrix 
X = [x0, x1, . . . , xn−1]T , where X ∈ R

n×c . Therefore, the aggregation operation involves 
applying the linear function Â to the feature matrix X.

(4)f (L) = Qf (�L)Q
T ≈ θ(2I− L) = θ(I+D−1/2AD−1/2)

(5)Gθ = D̃−1/2ÃD̃−1/2 := Â

4  The choice of this type of approximation derives from the fact that it minimizes the maximum error of an approxima-
tion to a continuous function on the interval [-1,1]. The order-k Chebyshev polynomial can be defined recursively as 
Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x.
5  involving Ak or Lk implies considering nodes k-hop distant, thus possibly creating too much overfitting in the informa-
tion aggregation.



Page 7 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

or, for a generic layer l, the (hidden embeddings) feature matrix H̃(l) can be obtained 
from the embeddings of the layer l as (recalling that H0 := X):

Layer‑wise propagation

For a GCN constituted of L layers, the “combine” rule in the layer-wise forward propaga-
tion is defined as:

Where:

•	 Â is the aggregation matrix (defined in the previous subsection)
•	 H(l) is the current (hidden) feature vector for layer l.
•	 W(l) is the weight learnable matrix.
•	 σl is the activation function (e.g., ReLU or Softmax).

Initially, H(0) = X = [x0, x1, . . . , xn−1]T . The ReLU function is ReLU(x) := max(0, x) . 
It produces non-linearity by generating zero for negative values and not modifying 
positive values. In the classical GCN model, the ReLU function is an activation func-
tion in the input and hidden layers. The Softmax function is defined (for x ∈ R

d ) as 
Softmax(x) := exp(x/T ) with T :=

∑d−1
i=0 exp(xi) , where d is the dimension of x dur-

ing the several iterations of the inference. In the classical GCN model, the Softmax is 
typically used in the output layer for l = L− 1 (Fig. 2). By definition, Softmax has the 
property that the sum of all the vector components equals 1, making it a good choice to 
represent a probability distribution among the predicted classes. The output layer is also 
indicated as the READOUT layer:

(6)AGGREGATE
(0)
GCN (A,X) := ÂX

(7)H̃(l) := AGGREGATE
(l)
GCN (A,H(l)) := ÂH(l)

(8)
H(l+1) := COMBINE

(l)
GCN (H̃

(l)) := σl

(

H̃(l)W(l)
)

= σl

(

ÂH(l)W(l)
)

for l = 0, . . . , L− 1

Fig. 2  GCN propagation workflow: the feature vectors H(l) are transformed through the L− 2 layers and 
by the last (output) layer, which acts as classifier [49]. Here Â is the aggregation matrix, and W is the weight 
matrix



Page 8 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

By stacking multiple graph convolutional layers and possibly incorporating pooling 
layers or skip connections, GCNs can learn hierarchical representations of graph-struc-
tured data, enabling them to effectively perform node classification, link prediction, and 
graph classification tasks.

The goal of a GCN is to learn a function that maps the input node features X to a set of 
n predicted output representations (so-called “labels”) Ŷ = [ŷ0, ŷ1, ..., ŷn−1]T , where each 
ŷi ∈ R

f  is a refined representation of the feature vector for each of the f feature-maps (or 
output classes or output labels), that is Ŷ ∈ R

n×f  where f is the size of the feature vectors ŷi 
of the output layer L− 1.

Training a GCN involves optimizing the network’s parameters (weights and biases) to 
minimize a loss function, typically defined based on some related task (e.g., node classifica-
tion, link prediction, graph prediction). This optimization is often done using backpropaga-
tion and gradient descent techniques to update the learnable weight matrix W(l) ∈ R

hl×hl+1 
for l = 0, . . . , L− 1 where h0 = c and hL = f  . For completeness, a learnable bias vector 
(typically indicated as b(l) ) should be added to H̃(l)W(l) . However, for the sake of simplicity 
of the notation, we omit b in the following expressions.

The classical GCN model

Overall, GCNs leverage the graph structure to aggregate effectively and combine infor-
mation across nodes, enabling them to learn powerful representations for tasks on graph-
structured data. In the work of Kipf and Welling, the output-layer activation function, i.e., 
the READOUT function, is sigmaL−1() = Softmax() , while σl() = ReLU() for the input 
and hidden layers ( l = 0, . . . , L− 2 ). This can be summarized as follows and sketched in 
Fig. 2:

In the proposed semi-supervised classification case [20], two GCN-layers (and one input 
layer) are used so that Equation 10 for L = 2 becomes:

The GCN model offers both high accuracy and computational efficiency. Compared to 
previous models, it avoids the O(n3) complexity of dense-matrix multiplication, requir-
ing only O(|E |fhc) multiplications due to the sparsity of Â in Equation 11, where X may 
still be dense and h denotes the hidden layer size [20].

GCN backpropagation

The backpropagation phase, as illustrated in [37], necessitates a gradient matrix 
N(L−1) ∈ R

n×f  , computed as

(9)ŶGCN := READOUTGCN (H
(L−1)) := Softmax(ÂH(L−1)W(L−1))

(10)

H(0)
= X →

H̃(l)
= ÂH(l)

→ H̃(l+1)
= H̃(l)W(l)

→ H(l+1)
= ReLU(H̃(l+1)) for l = 0, ..., L− 2

→ ŶGCN := Softmax(ÂH(L−1)W(L−1))

(11)ŶGCN2 := Softmax(ÂReLU(ÂXW(0))W(1))

N(L−1) = ∇H(L−1) J ⊙ σ ′(H̃(L−1))



Page 9 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

where, given a loss function J, ∇H(L−1) J  is the matrix of its derivatives with respect to out-
put features in H(L−1) , and σ ′(·) represents the derivative of the activation function. Gra-
dient matrices for the preceding layers for l = L− 2, . . . , 0 are calculated recursively as

In Equation  12, the product Â and N(l) uses Sparse Matrix-Matrix multiplication 
(SpMM), and the result is multiplied by (W(l))T using Dense Matrix Multiplication 
(DMM). The gradient matrix N(l) ∈ R

n×hl is utilized to update weight matrix W(l) 
through the following formulas:

Here, �W(l) is the derivative matrix for the loss function J with respect to the weights in 
matrix W(l) i, while η is the learning rate. The loss function chosen in [20] is the Cross-
Entropy ( CE(Y, Ŷ)):

where V0 is the subset of the nodes V that was initially labeled, {yi} with i ∈ V0 are the 
known label.

GCN variants

After their introduction, intense research has been conducted to increase the predic-
tion accuracy, performance and efficiency of GCNs. For example, on the mathemati-
cal side, different functions have been proposed for the aggregation, combine, and 
readout functions (see Table 3).

Other concepts, like attention mechanisms, e.g., Graph Attention Networks (GAT) 
[50], sampling, e.g., GraphSAGE [24], simplifications, e.g., SGCN [49] and enhance-
ments, e.g., GraphSAINT [51] have been introduced to improve the accuracy. The 
many variants have been reviewed in several surveys [26, 36, 42, 44]. However, this 
survey focuses on implementations that aim to speed up inference and training 
while working with a limited energy budget, such as in mobile or energy-constrained 

(12)S(l) = ÂN(l)(W(l))T , N(l−1) = S(l) ⊙ σ ′(H̃(l−1))

�W(l) = (H(l−1))T ÂN(l)
, W(l) ← W(l) − η�W(l)

J = CE(Y, Ŷ) := −
∑

i∈V0

f−1
∑

k=0

Yik ln Ŷik

Table 3  Examples of variants proposed for the key GCN functions: AGGREGATE, COMBINE, 
READOUT. Ws :=self-weight matrix, Wn :=neighbor-wight matrix, and Ā is the sampled A matrix

Model  Aggregate function H̃ = a(A, H) Combine function 
H = c(H̃,W)

Readout function 
Ŷ = σL−1(A, H,W)

classic GCN [20] Â · H ReLU(H̃ ·W) Softmax(Â · H ·W)

GraphSAGE [24] (I|D−1
Ā) · H σ(H̃ · (Ws|Wn)) Unspecified

GraphSAINT [51] (I|D−1
A) · H σ(H̃ · (Ws|Wn)) Unspecified

FastGCN [52] Â · H σ(H̃ ·W) Unspecified

Cluster-GCN [53] (D̃−1
Ã+ � · diag(D̃−1

Ã)) · H σ(H̃W) Unspecified

Simplified GCN [49] Â · H H̃ ·W Softmax(Â · H ·W)



Page 10 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

systems. Typically, solutions for this category of systems rely on hardware implemen-
tations deployed on FPGAs. FPGAs offer the possibility of reusing the hardware for 
future non-trivial architecture enhancements while exploiting the basic hardware 
resources for maximum performance. More details about GCNs implementation suit-
able for FPGAs are presented in the next sections of this paper.

Typical architecture of a GCN‑based hardware accelerator

In contrast to traditional deep neural networks, graphs possess highly sparse structures, 
necessitating fundamentally distinct acceleration strategies.

In Fig. 3, a baseline reference architecture for a GCN accelerator is shown [39]. The 
systolic array in the combination engine is the main element for efficient dense matrix 
multiplication. The property buffer provides the current aggregated hidden state ( H̃ (l) ). 
In contrast, the weight reader provides the learnable matrix W(l) by feeding the systolic 
multiplier via the double buffering technique.

The aggregation engine performs a sparse matrix multiplication in which rows of H (l) 
corresponding to a given vertex are multiplied for the corresponding edge weights in Âi 
and the result is accumulated using SIMD cores. To exploit the sparsity of the Â matrix, 
e.g., the Compressed Sparse Row (CSR) format is used.

The “vertex-prefetch” unit provides the pointers to the “edge-prefetch” and the “fea-
ture-reader” units, while the edge-prefetch unit supplies CSR column indices to the 
feature-reader and the SIMD cores. As the feature-reader collects rows of H (l) for each 
edge, typical irregular access patterns are observed. Therefore, this phase is memory 
intensive and quite difficult to optimize.

One approach to alleviate this memory bottleneck is employing a large on-chip Global 
Cache (gray block in the middle of Fig. 3). Multiple engines share that cache. However, 
the wide feature matrix often surpasses the cache size, hindering locality exploitation. 
The Configuration Controller (green block in Fig. 3) collects statistics (e.g., number of 
feature accesses) from the feature reader and oversees the configuration for the vertex 
prefetch unit to define the chunk size to be processed.

Several works proposed and evaluated different architectures of a GCN-based accel-
erator. These works are analyzed in the next sections.

Fig. 3  A baseline reference architecture for a GCN accelerator: the Aggregate and Combine functions are 
mapped directly to their corresponding hardware engines [39]



Page 11 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

Overview of existing solutions
Graph Convolutional Networks (GCNs) have become a highly effective approach for 
handling graph-structured data across multiple domains, including natural language 
processing, social network analysis, and image processing [20].

Recent advances in hardware accelerators have shown promising results in accel-
erating the computation of Graph Convolutional Networks (GCNs) [8, 19, 54, 55]. 
However, GCNs can be computationally expensive, as they require a large number 
of matrix multiplications and other operations  [18]. Consequently, there has been 
increasing interest in creating hardware accelerators for GCNs. This computational 
burden can be mitigated through various acceleration approaches. One such strat-
egy involves hardware-software co-design (see Tables  4,  5), where specific tasks are 
offloaded to hardware accelerators such as Field-Programmable Gate Arrays (FPGAs). 
FPGAs, with their fine-grained computational capabilities, the high degree of par-
allelism and inherent programmability, offer a versatile platform to accelerate both 
GCN inference and training tasks.

Other approaches focus on executing the GCN computation on FPGAs-only accel-
erators, or specialized Application-Specific Integrated Circuits (ASICs) to improve 
performance and energy efficiency in different scenarios, such as real-time processing 
and resource-constrained edge-computing platforms (see Tables 6,  7,  9,  8).

This section explores studies in the literature that focus on Hardware-Software 
co-design FPGA-based GCN accelerators, FPGA-only implementations, and ASIC 
designs, providing insights into their design aspects and performance considerations.

Taxonomy

This survey reviews various approaches to accelerating GCNs using hardware accel-
erators. It highlights the computational challenges of GCNs due to their reliance on 
matrix multiplications and discusses how hardware can be leveraged to improve per-
formance and efficiency.

Our proposed taxonomy (Fig.  4) focuses on three main categories of hardware 
acceleration for GCNs:

Fig. 4  A taxonomy of the works reviewed in this survey. HW-SW Co-design relates to the techniques that 
require a combination of optimization both in the host (typically pre-processing) and in the FPGA. FPGA-Only 
refers to the works proposing a pure FPGA accelerator solution. ASIC Implementations refer to the systems 
synthesized at the RTL level via silicon compilation tools



Page 12 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

Table 4  Main contributions of works in literature that accelerate GCN using Hardware-Software 
co-design for FPGAs

Work Main contributions

ACE-GCN [8] Exploits subgraph similarity and feature exchangeability for faster inference

Boost-GCN [4] Centralized load balancing engine and phase-level balancing

GCoD [16] Efficiency aware and resource aware pipelines

GraphACT [19] Processing pipeline for balance load and efficient utilization

H-GCN [9] Heterogeneous processing elements for different graph subgraphs

HuGraph [15] FPGAs in a cluster for parallel GCN training with balanced workloads

I-GCN [5] Data locality improvement through “islandization” to reduce off-chip memory accesses

LW-GCN [11] Software preprocessing for data compression and workload balancing

Nair et al. [12] Dynamically reconfigurable compute core that can alternate between aggregation 
and transformation.

QEGCN [10] Quantization and data compression for efficient processing on edge devices

SkeletonGCN [14] Hardware-software co-design for efficient GCN training on FPGAs

Stream-GCN [56] Optimizes for small graphs with techniques like pipelining and workload distribution

Zhang et al. [18] Dense systolic array and non-linear activation module for combination phase

Table 5  Main characteristics of works in literature that accelerate GCN inference and training using 
Hardware-Software co-design for FPGAs

1 Inference: Inference task addressed; Training: Training task address I/T: both training and inference tasks addressed
2 Data Preprocessing technique adopted to optimize data
3 GCN model implemented
4 Hardware accelerator used for experiments and evaluation

Work Year Inference/
training1

Data 
preprocessing2

Supported 
algorithms3

Hardware4

ACE-GCN [8] 2021 Inference Jaccard Similarity GCN Stratix 10 SX

Boost-GCN [4] 2021 Inference – GCN Stratix 10 GX

GCoD [16] 2022 I+T Split-and-conquer 
strategy

GCN, GraphSAGE AMD Xilinx VCU128

GraphACT [19] 2020 Training Subgraph mini-
batch

GCN, GraphSAGE AMD Xilinx Alveo 
U200

H-GCN [9] 2022 Inference Graph Reordering GCN, Vanilla-GCN AMD Xilinx Versal 
VCK5000

HuGraph [15] 2022 Training Full process quan-
tization

GCN, GraphSAGE AMD Xilinx VCU128

I-GCN [5] 2021 Inference Islandization GCN,GraphSAGE, 
FIN

Stratix 10 SX

LW-GCN [11] 2022 Inference PCOO compression GCN, GraphSAGE AMD Xilinx Kintex-7 
K325T

Nair et al. [12] 2023 Inference Undirected graph 
matrix pruning

GCN, Vanilla-GCN Stratix 10 MX

SkeletonGCN [14] 2022 Training CPCOO compres-
sion

GCN AMD Xilinx Alveo 
U200

Stream-GCN [56] 2022 Inference Prune zeros GCN, SimGNN AMD Xilinx U50, 
U280

QEGCN [10] 2022 I+T Quantization and 
compression

GCN, SAGA-NN AMD Xilinx VCU128

Zhang et al. [18] 2020 Inference Graph partition-
ing, sparsification, 
reordering

GCN AMD Xilinx Alveo 
U200



Page 13 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

•	 Hardware-Software Co-Design (HW-SW Co-Design) for FPGAs. This approach 
combines software and hardware techniques to optimize GCN execution. It often 
involves preprocessing the graph data on the software side and designing specialized 
hardware architectures on FPGAs to handle specific GCN operations.

Table 6  Main contribution of works in literature that accelerate GCN inference and training using 
FPGA-only designs as hardware accelerators

Work Main contribution

AWB-GCN [1] Addresses sparsity with a dedicated matrix multiplication engine for zero-skipping

BlockGNN [6] Uses block-circulant weight matrices for efficient matrix-vector multiplication

FlowGNN [7] Generic and reconfigurable dataflow architecture for various GNN models

FP-GNN [2] Provides an adaptive accelerator framework for both aggregation and combination phases

Table 7  Main characteristics of works in literature that accelerate GCN inference and training using 
FPGA-only implementations

1 Inference: Inference task addressed; Training: Training task address I/T: both training and inference tasks addressed
2 Data Preprocessing technique adopted to optimize data
3 GCN model implemented
4 Hardware accelerator used for experiments and evaluation
5 nm: nanometers

Work Year FPGA/ASIC Inference/
Training1

Data 
preprocessing2

Supported 
algorithms3

Hardware4

AWB-GCN [1] 2020 FPGA Inference CSC compression GCN Stratix 10 SX

BlockGNN [6] 2021 FPGA Inference Block-circulant 
weight matrices

GCN, Graph-
SAGE, GAT​

AMD Xilinx ZC706

FlowGNN [7] 2023 FPGA Inference - GCN, GAT, PNA AMD Xilinx Alveo 
U50

FP-GNN [2] 2022 FPGA I+T Graph partition-
ing

GCN, GAT, 
GraphSAGE

AMD Xilinx 
VCU128

Table 8  Main contribution of works in literature that accelerate GCN inference and training using 
FPGA-ready ASIC evaluations

Work Main contribution

EnGN [57] Graph-aware and ring-edge-reducer (RER) dataflow implementation to handle vertices with vary-
ing dimensional properties

GCNAX [54] Cross-dataset analysis for optimized ASIC implementation

GRIP [58] Leverages a node-flow data structure for ASIC-based inference

HyGCN [3] Edge-centric aggregation that divides vertex workload into sub-workloads. Matrix-Vector Mul-
tiplication (MVM) and the dense systolic array are used in the combination phase. Grouping of 
Single Instruction Multiple Data (SIMD) cores and Processing Elements (PE)

SGCN [13] Utilizes BEICSR compression for efficient inference on an ASIC.

SnF [39] Dynamic tiling and automatic tile morphing

GROW [59] HDN cache for graph nodes with high degree and a “row-stationary” dataflow leveraging Gustav-
son’s algorithm

MEGA [60] Degree-Aware mixed-precision quantization with Adaptive-Package format and Condense-Edge 
scheduling for optimized storage and data locality



Page 14 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

•	 FPGA-only Implementations. This category utilizes FPGAs as hardware accelera-
tors without relying on software co-design. FPGAs offer fine-grained parallelism and 
programmability, making them suitable for accelerating GCN operations like sparse 
matrix multiplications.

•	 FPGA-ready ASIC Evaluations. This category includes the FPGA-synthesizable 
designs that have been evaluated with ASIC6 design tools such as Synopsis. ASICs 
evaluations could show higher performance and lower power consumption for GCN 
inference.

This section provides detailed explanations and comparisons of several research works 
within each category. Some key takeaways from the highlighted works are in Tables 4,  6, 
and 8.

Overall, hardware acceleration offers significant performance and efficiency improve-
ments for GCNs. The choice of approach depends on factors like cost, flexibility, power 
consumption, and the specific GCN application.

Hardware‑software co‑sesign for FPGAs

This subsection illustrates the works in literature that adopt Hardware-Software co-
design to improve the performance of GCN training and inference execution. The main 
characteristics of the works presented in this section are summarized in Tables 4 and 5.

ACE-GCN [8] investigates the characteristics of real-world graphs, which exhibit pro-
nounced power-law distributions and significant sparsity to enhance graph processing 

Table 9  Main characteristics of works in literature that accelerate GCN inference and training using 
FPGA-ready ASIC evaluations

1 Inference: Inference task addressed; Training: Training task address I/T: both training and inference tasks addressed
2 Data Preprocessing technique adopted to optimize data
3 GCN model implemented
4 Hardware accelerator used for experiments and evaluation
5 nm: nanometers

Work Year FPGA/ASIC Inference/
training1

Data 
preprocessing2

Supported 
algorithms3

Hardware4

EnGN [57] 2021 ASIC Inference – GCN RTL-Simulation

HyGCN [3] 2020 ASIC Inference – GCN Synopsys at 12nm5

GCNAX [54] 2021 ASIC Inference cross-dataset 
analysis

GCN Synopsys at 40nm5

GRIP [58] 2023 ASIC Inference node-flow data 
structure

GCN SystemVerilog 
28nm5 CMOS

SnF [39] 2022 ASIC Inference – GCN Verilog/Cadence at 
45nm5

SGCN [13] 2023 ASIC Inference BEICSR compres-
sion

GCN, GraphSAGE Synopsys at 45nm5

GROW [59] 2023 ASIC Inference – GCN Synopsys at 65nm

MEGA [60] 2024 ASIC Inference Adaptive-
Package storage 
format

GCN, GIN, Graph-
SAGE

Synopsys at 28nm

6  Application-Specific Integrated Circuits (ASICs) are custom-designed chips optimized for a specific task, however 
production costs is only convenient for very large number of devices and they less flexible than FPGA.



Page 15 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

speeds. The main objectives are to decrease the neural network’s computational load 
and speed up inference by leveraging subgraph similarity and feature interchangeabil-
ity. The similarity core is based on a vectorized Jaccard graph similarity coefficient, ena-
bling the accelerator to identify and exploit similar graph structures. This optimization 
enables ACE-GCN to tailor its operation according to resource availability and targeted 
specifications.

Boost-GCN [4] is a framework that aims to optimize GCN inference on FPGA. Boost-
GCN introduces three primary contributions: first, the “Hardware-aware Partition-
Centric Feature Aggregation” (PCFA) scheme, which utilizes a “3D partitioning” aligned 
with the vertex-centric computing approach, enhancing data reuse and reducing exter-
nal memory communication volume. It also address imbalanced workload with a cus-
tom load-balancing engine. Second, a new hardware design enables pipelined execution 
across two distinct computation phases in order to minimize pipeline stalls. Lastly, 
BoostGCN offers a full FPGA-based GCN acceleration framework, equipped with opti-
mized RTL templates that facilitate the generation of hardware designs customized for 
different GCN models. Furthermore, BoostGCN employs two types of Feature Update 
Modules (FUMs): Sparse-FUM for low-density feature matrices (less than 10%) and 
Dense-FUM for high-density matrices. Sparse-FUM processes batches of feature vec-
tors similar to FAM, while Dense-FUM utilizes a 2D systolic array for batch multiplica-
tion with weight matrices. The choice between Sparse-FUM and Dense-FUM depends 
on the density of the input feature matrix, determined by a threshold (Tth). Sparse-FUM 
is used when the density is below Tth, while Dense-FUM is applied for higher densities.

GCoD  [16] or “Graph Convolutional Network Acceleration” through “Dedicated 
Algorithm and Accelerator Co-Design”, enhances GCN inference by addressing the 
challenges posed by irregular and sparse graph datasets. This is accomplished using 
a split-and-conquer training approach, which divides the graphs into either denser or 
sparser local neighborhoods. This method generates adjacency matrices with balanced 
workloads and enhances communication between accelerators. In addition, the FPGA 
implements both efficiency-aware and resource-aware pipelines, offering advantages 
such as increased data reuse through direct reuse of intermediate results and reduced 
on-chip storage needs by storing only one column of aggregation outputs. GCoD ulti-
mately increases efficiency, minimizes data access, and reduces processing workloads, 
resulting in improved GCN performance during training up to 7.8x and 2.5x speedup 
compared to HyGCN and AWB-GCN, respectively.

GraphACT​  [19] tries to improve GCN training on heterogeneous CPU+FPGA plat-
forms by strategically assigning computational tasks and managing data storage. The 
CPU is responsible for graph sampling and loss gradient calculations, while the FPGA 
handles both forward and backward propagation along with the operations of combi-
nation and aggregation. GraphACT adopts a subgraph-based mini-batch algorithm to 
minimize CPU-FPGA communication, identifying and removing repetitive aggrega-
tion operations on shared node neighbors. GraphACT analyzes feature propagation by 
leveraging graph theory to identify frequently occurring node sets. These sets’ vector 
sums are pre-computed on the CPU to reduce on-chip operations and FPGA memory 
accesses. Additionally, GraphACT parallelizes key training steps with optimized on-chip 



Page 16 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

computation modules, integrating them into a processing pipeline for balanced load and 
efficient utilization of FPGA resources.

H-GCN [9] enhances GCN inference performance by partitioning the graph into three 
distinct subgroups: densely connected clusters, sparsely connected regions, and iso-
leted nodes. Each of these subgraphs is processed by specialized hardware of a hetero-
geneous accelerator platform (e.g., ”AMD Xilinx Versal Adaptive Compute Acceleration 
Platform“). Specifically, densely connected components are handled by dense Artificial 
Intelligence Engines (AIEs), while sparse AIEs manage components with looser con-
nections, and scattered nodes are addressed using programmable logic (PL). H-GCN 
capitalizes on the sparsity support of AIEs through a density-aware method, efficiently 
mapping sparse matrix-matrix multiplication (SpMM) tiles onto the systolic tensor 
array. Furthermore, H-GCN employs a combination of acceleration techniques, includ-
ing PL, AIEs, and systolic tensor arrays, to accelerate dense and sparse matrix operations 
within GNNs. This heterogeneous approach enables H-GCN to process diverse sub-
graph types efficiently, thus achieving high-performance GCN inference. H-GCN shows 
significant performance improvements compared to leading GCN accelerators and 
general-purpose processors. Compared to I-GCN, H-GCN achieves up to 2.3× speedup. 
Additionally, H-GCN exhibits 1.12× and 1.64× higher energy efficiency than I-GCN and 
AWB-GCN, respectively.

HuGraph [15] is a framework designed to implement GCN training across a cluster of 
heterogeneous FPGAs. In this system, FPGAs utilize a 1D ring topology with synchro-
nous data parallelism for efficient operation. HuGraph aims to improve the performance 
of GCN training with three main strategies. Firstly, HuGraph implements a quantiza-
tion process for data-parallel training using neighbor sampling, aimed at lowering both 
computational and memory demands. Secondly, it introduces an custom balanced sam-
pling technique to distribute tasks evenly across heterogeneous FPGAs, ensuring that 
less resourceful FPGAs do not hinder the overall performance of the cluster. Thirdly, the 
execution sequence of GCN training is organized by HuGraph to reduce time delays, 
focusing on executing the most impactful operations first. This is done by prioritizing 
the execution of operations with the greatest impact on performance. Experimental 
results show that HuGraph achieves speedups of up to 102.3x, 4.62x, and 11.1x com-
pared to the most advanced CPU, GPU, and FPGA platforms, respectively, with only a 
slight reduction in accuracy.

I-GCN methodology, as delineated in [5], introduces an approach to enhance the effi-
cacy of GCNs by increasing data locality through a technique called “islandization”. This 
method partitions a graph into smaller clusters, referred to as islands, interconnected 
via hub nodes. Using this configuration, I-GCN improves computation performance by 
increasing data locality and reducing off-chip access. This procedure is executed directly 
on the hardware, eliminating the necessity for prior graph data preprocessing. Addi-
tional details regarding the I-GCN architecture can be found in Section Proposed Solu-
tions: Architecture Highlights of Selected FPGA-based GCNs.

LW-GCN  [11] is an FPGA-based GCN accelerator specifically designed for high 
energy efficiency and low latency. It utilizes a co-optimization approach between soft-
ware and hardware to address challenges in mapping GCN algorithms onto hardware. 
A preprocessing software algorithm transforms the sparse matrix into a “Packet-level 



Page 17 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

Column-only coordinate list” (PCOO) format, thereby decreasing the needs for stor-
age and bandwidth. In addition, the algorithm optimizes GCN processing by balancing 
the workload on different processing elements (PE), reducing computation imbalance. 
At the hardware level, LW-GCN employs a multi-bank dense data memory architecture 
that incorporates data replication to minimize data collision incidents. Additionally, its 
microarchitecture utilizes a round-robin method to allocate non-zero elements to PEs, 
ensuring an even distribution of computational tasks. LW-GCN concatenates multiple 
rows before assigning them to a PE to manage scenarios where the count of non-zero 
elements within a row differs significantly from that of other rows.

Nair et al. [12] proposed a hardware-software co-design approach to address the chal-
lenges of accelerating GCNs with undirected graphs. Within the software layer, a pre-
processing stage reorganizes the edges and features to align with the custom dataflow 
architecture, improving the consistency of memory access and data reuse during the 
aggregation phase. Custom dataflow and reconfigurable compute cores are designed to 
exploit the inherent symmetry of the adjacency matrix in undirected graphs. In undi-
rected graphs, the upper triangle of the adjacency matrix mirrors the lower triangle’s 
transpose. Consequently, both triangles do not need to be computed separately. This 
method improves data transfers and reduces data usage. Additionally, Nair et al. imple-
ment a computing core that can alternate between aggregation and transformation, 
depending on the computational requirements, minimizing imbalances in GCN tasks.

QEGCN  [10] is a hardware accelerator architecture suited for GCN inference using 
edge-level parallelism on FPGA platforms. Indeed, QEGCN is the first GCN accelerator 
to employ quantization-aware training, which involves converting the network param-
eters and input feature vectors into lower precision formats. This approach reduces the 
model size and enhances inference speed while maintaining accuracy. Quantization is 
performed in the preprocessing phase, along with compression of the feature vector 
matrix and edge block partitioning, which enables independent handling of each block 
by distinct processing elements. Furthermore, the architecture boosts GCN perfor-
mance at the edge by optimizing the algorithm, integrating a pipeline framework specifi-
cally designed for edge computing, and employing atomic operations to ensure effective 
load distribution. In this work, the FPGA performs several crucial functions. It serves as 
the primary tool for processing data for the QEGCN model. It significantly accelerates 
the inference process by leveraging its parallel processing capabilities, thereby increas-
ing the speed of predictions made by the QEGCN model. Further details on the QEGCN 
architecture can be found in Section  Proposed Solutions: Architecture Highlights of 
Selected FPGA-based GCNs.

SkeletonGCN as detailed in [14], is an FPGA-based accelerator designed for efficient 
GCN training, integrating multiple strategies to optimize GCN efficiency and perfor-
mance on FPGA platforms. For example, a strategy quantizes the GCN features and 
adjacency matrices to SINT16, minimizing storage needs and computational over-
head. Moreover, a linear-time algorithm for compressing sparse matrices is utilized to 
reduce memory bandwidth demands while facilitating efficient hardware decompres-
sion. Sparse adjacency matrices are further compressed via the Compact PCOO format 
(CPCOO), which reduces memory consumption compared to the conventional Packed 
COO (PCOO) format. The CPCOO format segments sparse matrices into header and 



Page 18 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

body sections, tackling inefficient memory utilization of empty rows in extensive data-
sets. In comparison to PCOO, CPCOO achieves a reduction in memory usage ranging 
from 2.87× to 4.81× across different datasets. Finally, SkeletonGCN adopts a unified 
hardware architecture capable of handling multiple types of matrix multiplications on 
the same group of processing elements (PEs), thus maximizing DSP utilization on FPGA.

Stream-GCN [56] is introduced as a versatile architecture tailored to accelerate GCNs, 
focusing particularly on streaming small graphs. It integrates optimizations specifically 
tailored for small graphs, such as interlayer pipelining, in  situ sparsity utilization, and 
efficient workload distribution to enhance performance and area efficiency. Using the 
flexibility of FPGAs, StreamGCN achieves efficient and high-speed processing by imple-
menting deep pipelines with multiple nested levels of parallelization. StreamGCN inte-
grates specific hardware optimizations to minimize global memory accesses. It utilizes 
scratchpad memory to store matrices that require random local access, reducing the 
frequency of accessing global memory. Dedicated processing units are tailored for each 
step of the GCN algorithm, optimizing hardware and reducing global memory opera-
tions. An efficient workload distribution mechanism is used to mitigate load-imbalance 
issues, ensuring uniform distribution across processing units and reducing global mem-
ory accesses for data fetching.

Zhang et  al.  [18] introduces a combined software and hardware approach to accel-
erate GCNs. Their co-optimization approach for large-scale GCN inference on FPGA 
involves data partitioning, two-phase preprocessing, and generic FPGA architecture for 
pipelining aggregation and transformation kernel. The two-phase preprocessing algo-
rithm includes graph sparsification to reduce edge connections of high-degree nodes 
and node reordering to group adjacent nodes, further improving data locality and sig-
nificantly reducing external memory accesses. The processed graph is then passed to a 
FPGA based hardware accelerator, which performs data aggregation and combination 
with custom and optimized pipelined components. The aggregation module utilizes a 
sparse array structure, while the combination module employs a dense systolic array 
along with a non-linear activation component. To minimize latency, the aggregation 
module implements a technique that allows for simultaneous data processing. Fur-
thermore, the accelerator provides two operational modes that depend on the order of 
matrix multiplication, each requiring different pipelining approaches to interconnect the 
various components.

FPGA‑only implementations

This subsection discusses various studies that utilize Field Programmable Gate Arrays 
(FPGAs) as hardware accelerators to enhance the performance of GCNs. A summary of 
the key characteristics of these studies can be found in Tables 6 and  7.

AWB-GCN  [1] accelerator tackles the inherent sparsity in GCNs through the crea-
tion of a specialized matrix multiplication engine designed for effective zero-skipping. 
It utilizes a Task Distributor and Queue (TDQ) system to channel data from memory 
to processing elements (PEs) and accumulators, offering two configurations optimized 
for different levels of sparsity. AWB-GCN focuses on processing combinations before 
aggregation to minimize the number of operations. Through fine-grained pipelining, 
AWB-GCN concurrently handles both the combination and aggregation operations 



Page 19 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

within a single layer. Three workload balancing functions distribute workload among 
PEs, handle minor imbalances through dynamic redistribution, and address major 
imbalances by remapping non-zero elements. Hardware autotuning techniques, includ-
ing load distribution adjustment, remote toggling, and row reorganization, ensure a bal-
anced workload across PEs, maximizing utilization and minimizing synchronization 
overhead. Moreover, AWB-GCN exploits parallelism, data reuse, and reduced memory 
access latency by adopting pipelined Sparse Matrix-Matrix Multiplications (SpMMs) 
and interlayer data forwarding with matrix blocking. AWB-GCN achieves a significant 
performance speedup over CPUs, GPUs, and prior GCN accelerators, primarily due to 
its hardware-based autotuning framework. A detailed description on the AWB-GCN 
implementation can be found in Section Proposed Solutions: Architecture Highlights of 
Selected FPGA-based GCNs.

BlockGNN  [6] tries to improve the performance of real-time inference on resource-
constrained edge-computing platforms. BlockGNN introduces block-circulant weight 
matrices as a compression technique to reduce the computational complexity of graph 
neural networks (GNNs), including GCNs. This compression technique facilitates 
matrix-vector multiplications using the “Fast Fourier Transform” (FFT), which reduces 
latency and improves energy efficiency. In fact, block-circulant weight matrices reduce 
computational complexity from O(n) to O(nlogn) without compromising accuracy. Fur-
thermore, block-circulant matrices are computed using a pipelined “CirCore” archi-
tecture in FPGA to improve performance and efficiency further. BlockGNN shows 
improvements up to 8.3x compared to HyGCN.

FP-GNN  [2] introduces an adaptive FPGA accelerator, focusing on graph neural net-
works (GNNs) acceleration, with a specific emphasis on the aggregate and combination 
phases. This innovation responds to the growing demand for flexible and efficient GNN 
acceleration. Central to FP-GNN’s design is the Adaptive GNN Accelerator (AGA) frame-
work, which concurrently supports both Aggregation and Combination phases, enhancing 
flexibility and efficiency in GNN acceleration. AGA incorporates a key concept known as 
“Adaptive Graph Partition” (AGP). AGP effectively separates the relationship between the 
chip’s memory size and the graph’s partition size, enhancing the use of off-chip memory 
bandwidth. By employing hardware-aware edge leveling and interval interleaving for task 
scheduling, AGP preprocesses the data to optimize memory access and reduce the over-
head of graph repartitioning between GNN layers. When compared to leading solutions, 
FP-GNN demonstrates average performance efficiency gains of 25.9× , 1.64X, 1.59× , 1.18× , 
and 0.98× over HyGCN, BoostGCN, AWB-GCN, GCNAX, and I-GCN, respectively. Fur-
ther information about the FP-GNN architecture is provided in Section  Proposed Solu-
tions: Architecture Highlights of Selected FPGA-based GCNs.

FlowGNN [7] introduces a highly adaptable dataflow architecture designed to accelerate 
graph neural networks (GNN) on FPGAs. Unlike conventional accelerators, FlowGNN’s 
design is generic and reconfigurable, accommodating a wide array of GNN models with-
out extensive architectural modifications (e.g., GCNs). FlowGNN accomplishes this by har-
nessing an efficient dataflow architecture that maximizes parallelism and reduces idle time 
within processing units. Furthermore, its multilevel parallelism strategy, message-passing 
mechanism, and edge-embedding guarantees optimal utilization of hardware resources, 
thereby enhancing overall performance. Moreover, FlowGNN prioritizes real-time 



Page 20 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

processing, eliminating the need for preprocessing and enabling seamless on-the-fly com-
putation of streamed graph data. FlowGNN surpasses existing GNN accelerators such as 
I-GCN with a 1.26× speedup and 1.55× energy efficiency across different datasets. More 
details about the FlowGNN architecture are described in Section  Proposed Solutions: 
Architecture Highlights of Selected FPGA-based GCNs.

FPGA‑ready ASIC evaluations

This subsection discusses various studies that attempt to further improve GCN process-
ing performance and energy consumption by designing ASIC-based solutions. A sum-
mary of the key characteristics of these studies can be found in Tables 8 and 9.

EnGN [57] stands out among previous graph processors and neural network acceler-
ators due to their unified architecture, capable of efficiently supporting diverse graph 
neural networks (GNN) models such as GCNs. This versatility is achieved by abstracting 
typical GNN algorithms into three stages: vertex feature extraction, feature aggregation, 
and graph update. Its graph-aware and ring-edge-reducer (RER) dataflow implementa-
tions efficiently handle vertices with varying dimensional properties and ensure high 
throughput GNN operations. Moreover, graph tiling and scheduling techniques opti-
mize data locality and minimize memory accesses, enhancing overall performance and 
energy efficiency. The EnGN unified architecture makes it suitable for processing large-
scale GNNs. Indeed, it optimizes memory space management with a specialized on-
chip memory hierarchy tailored to the non-uniform distribution of graph vertices. The 
reconfigurable architecture of EnGN and the interconnects adapt dynamically to varying 
workload dimensions, maximizing hardware and memory bandwidth utilization. Lever-
aging FPGA technology, EnGN performs significantly better than similar GCN accelera-
tors like HyGCN [3] (see Fig. 10).

GCNAX Li et al. identify various inefficiencies in existing accelerators, including load 
imbalance, execution order issues, and loop optimization inefficiencies. To address 
these challenges, GCNAX [54] is proposed as a flexible accelerator with reconfigurable 
dataflow, allowing adjustments in loop order and fusion strategy. Additionally, GCNAX 
optimizes tile sizes based on cross-dataset analysis to enhance resource utilization and 
minimize data movement, thus improving performance. Through design space explo-
ration, GCNAX adapts its dataflow to match the characteristics of each dataset dur-
ing inference. Furthermore, GCNAX employs the outer product method to address 
the imbalanced presence of zeros, a common issue in graph-related computations. This 
method is particularly suitable for Sparse Matrix Multiplication (SpMM), which effec-
tively reduces unnecessary computations and mitigates workload imbalance. As a result 
of these techniques, GCNAX demonstrated significant performance improvements 
compared to other accelerators. It achieves approximately a 6x speedup over HyGCN [3] 
(see Fig. 10) and a 1.6x improvement in efficiency compared to AWB-GCN [1].

GRIP [58] accelerator is based on the gather/reduce/ transform/activate (GReTA) [61] 
design to create a versatile accelerator capable of handling GCNs. The GRIP architecture 
is designed with separate and customizable units and accumulators for edges, includ-
ing gather and reduce, as well as for vertices, which involve transform and activate. This 
design enables user-defined functions to handle updates for both edges and nodes. A 
control unit manages data movements between these units and their respective buffers. 



Page 21 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

Moreover, GRIP addresses the challenge of high latency penalty GCNs into a node flow 
data structure, enabling high locality access to graph data and reducing the latency pen-
alty associated with random accesses. Additionally, GRIP achieves low-latency inference 
through architectural features such as vertex-tiling, which improves weight locality in 
the combined phase, and specialized execution units for each phase of GCN inference. 
The GRIP approach significantly reduces latency compared to CPU and GPU implemen-
tations while operating with minimal power consumption (almost 5W).

HyGCN  [3] introduces a combined architecture for GCNs, consisting of dedicated 
components for the aggregation and combination stages that are regulated by a control 
mechanism. The aggregation stage features a sample, edge scheduler, and sparsity elimi-
nator to handle sparsity efficiency. The combination stage employs a dense systolic array 
approach. HyGCN utilizes edge and “Matrix-Vector Multiplication” (MVM) approaches 
to take advantage of the GCNs parallelism. The aggregation phase of this model is based 
on the edge-centric approach, while the MVMs is used for the combination step. This 
helps the hardware design to support parallel processing. On the other hand, MVM 
operations in the combination phase are executed in parallel using a modified systolic 
array design, capitalizing on data reuse and computational parallelism. Multiple systolic 
modules are integrated for different granular sizes. Furthermore, the architecture adapts 
to varying workloads by allowing flexible grouping of single instruction multiple data 
(SIMD) cores and processing elements (PEs).

SGCN [13] aims to improve the GCN execution performance by focusing on the pre-
processing phase. Indeed, SGCN compresses the data using the BEICSR format (Bitmap 
index embedded in place CSR), which decreases the sparsity in intermediate feature 
matrices of deep GCNs. The BEICSR format is based on bitmaps, in which data and their 
indices are placed in the same row to improve data locality and reduce off-chip memory 
traffic. Additionally, BEICSR features in-place compression technology, enabling paral-
lel writing and random access capabilities during GCN operations. The Sparse Aggre-
gation Unit performs the aggregation phase in GCNs using sparse features. It contains 
SIMD MAC cores that process the accumulation of features from multiple vertices and 
a parallel prefix sum unit that converts bitmap indices to reversed indices with non-zero 
values. The combination phase is performed in conjunction with a compressor unit. The 
compressor writes bitmap indices non-zero values to the memory in an in-place manner, 
eliminating the need for extra memory traffic.

SnF [39], optimizes the computational patterns found within GCNs by leveraging fea-
ture-slicing dataflow as a primary loop. This approach creates a predictable and repeti-
tive access pattern to process random graphs. Furthermore, the feature-slice approach 
increases the number of slices instead of enlarging the vertex tiles. This improves the 
operational efficiency of SnF. Moreover, through a mechanism named “automatic tile 
morphing”, SnF dynamically adjusts its tile size based on this repetitive pattern. Near-
optimal configurations can be achieved in a few iterations, eliminating the need for 
extensive offline analysis. Compared with the state-of-the-art, SnF achieves speedups of 
up to 1.7x and 1.4x compared to HyGCN and AWB-GCN, respectively.

GROW [59] proposes a novel GCN accelerator designed to efficiently handle the 
memory-intensive operations involved in graph convolutional neural networks. GROW 
employs a dataflow architecture that maintains “row-stationarity”, utilizing principles 



Page 22 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

derived from Gustavson’s algorithm [62]. Furthermore, GROW employs an HDN 
(“High-Degree Node”) cache to capture high-locality dense matrix rows to store the IDs 
of the top-N high-degree nodes. This approach minimizes memory traffic and boosts 
performance by efficiently managing accesses to the sparse data. This approach mini-
mizes memory traffic, significantly improving performance and energy efficiency com-
pared to existing accelerators. GROW further enhances locality and parallelism through 
graph partitioning and run-ahead execution, leading to substantial speedups, particu-
larly for large-scale graph datasets.

MEGA [60] proposes a new approach for speeding up and reducing the energy con-
sumption of graph neural networks (GNNs). The paper describes a new accelerator 
called MEGA, which employs a novel method called “Degree-Aware” mixed-precision 
quantization to compress the GNN model and reduce memory requirements. The 
accelerator is designed to exploit the sparsity of GNNs, which is a common challenge 
for existing GNN accelerators. By implementing the “Adaptive-Package” storage for-
mat and a “Condense-Edge” scheduling strategy, the accelerator reduces the amount of 
data that needs to be transferred to and from DRAM, thus improving performance and 
energy efficiency. MEGA outperforms cutting-edge GNN accelerators such as HyGCN, 
GCNAX, GROW, and SGCN with an average speedup of 38.3× , 7.1× , 4.0× , 3.6× , 
respectively.

Proposed solutions: architecture highlights of selected FPGA‑based GCNs
Several solutions propose novel hardware architectures to address challenges such as 
poor data locality and redundant computation in GCN inference on FPGAs, as dis-
cussed in Section Overview of existing solutions. We have selected some advanced rep-
resenting works including I-GCN [5], AWB-GCN [1], FP-GCN [2], FlowGNN [7] and 
QEGCN  [10] based on their reported performance and popularity among studies of 
implementing GCN on FPGA hardware.

FlowGNN addresses the GCN implementation challenges by offering a generic and 
flexible architecture that supports a wide range of GNN models without requiring graph 
preprocessing or graph-specific optimizations. It features a dataflow architecture that 
overlaps node transformation and message passing stages, together with different level 
of parallelism such as node, edge, scatter, and apply. This architecture allows for efficient 
processing of small graphs with relatively low latency. Figure  5 shows the conceptual 
workflow of the FlowGNN’s architecture.

Fig. 5  The dataflow architecture of FlowGNN. [7]



Page 23 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

This architecture consists of two key processing parts : the Node Transformation (NT) 
unit (shown in yellow color, referred to as “combine engine” in Section  Problem defi-
nition: background and mathematical foundations) and the Message Passing (MP) unit 
(shown in blue color, referred to as “aggregate engine” in Section  Problem definition: 
background and mathematical foundations). These units are responsible for processing 
nodes and edges, respectively in the graph. The workflow includes data buffers for node 
embeddings and messages, allowing for efficient graph data processing. Additionally, a 
node queue facilitates pipelined NT and MP operations, enabling parallel processing 
and reducing idle cycles.

FlowGNN introduces significant improvements over the baseline architecture by 
incorporating multiple levels of parallelism, as illustrated in Fig. 5. This includes parallel 
NT and MP units, each handling a subset of nodes or edges, and an NT-to-MP adapter 
facilitating on-the-fly multicasting. The architecture also partitions node embeddings 
and message buffers into multiple banks to enable parallel access (see   Fig.  5). These 
enhancements allow concurrent processing of nodes and edges, leading to improved 
performance and efficiency.

The NT unit is responsible for managing node-level calculations essential for GNNs, 
including the application of fully connected layers and activation functions. It employs 
embedding-level parallelism to process node embeddings efficiently. The MP unit, on 
the other hand, manages edge-level computations, including message aggregation and 
scattering. FlowGNN supports both NT-to-MP and MP-to-NT dataflow configurations, 
allowing flexibility in processing orders based on the requirements of different GNN 
models.

I-GCN At the core of I-GCN, there is an innovative online graph restructuring algo-
rithm known as islandization. An island refers to a cluster of nodes within a graph that 
are densely connected to one another, while having fewer connections to nodes outside 

Fig. 6  The overview of the I-GCN. The HUB Locator (HL) identifies hubs, forwarded to TP-BFS Task Generator 
(TP-BFS-TG). TP-BFS conducts Threshold-based and Parallel BFS. PR-INT denotes to Island Node Table



Page 24 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

the cluster and hubs are nodes with high fan (in or out degrees), which act as the points 
of contact for islands. This algorithm systematically identifies hubs and islands within 
the graph, leveraging their inherent structural properties to enhance data locality and 
streamline computation. By seamlessly integrating islandization into its architecture, 
I-GCN offers a transformative approach to accelerating GCNs, promising significant 
advancements in performance and efficiency for real-world applications. Fig.  6 shows 
the overview of I-GCN architecture design.

In Fig. 6, an Island Locator hardware module searches for the islands (as well as the 
hubs and nodes) simultaneously. The Island Locator scans the neighbor nodes of each 
hub it finds, using varying thresholds to identify hubs and subsequently shaping the 
island.

Concurrently, the adjacency information of each newly constructed island is sent 
to the “Island Consumer” module. Afterward, “Island Consumer” treats the island as 
a compact yet dense sub-graph, retrieves its node features, and carries out the neces-
sary aggregation and combination. The “Island Consumer” are capable of processing an 
island immediately upon its formation, without needing to synchronize at the conclu-
sion of each round; they do not have to delay processing until every island in the islandi-
zation round has been established.

FP-GNN Introduces a strategy called “Adaptive Graph Partition” (AGP), which com-
bines several techniques to speedup the Graph processing such as “Hardware-aware 
Edge Leveling”, “Interval Interleaving” for task scheduling, and source node caching. This 
approach aims to reduce memory bottlenecks and remove the need for graph reparti-
tioning overhead across GNN layers, while fostering both feature-level and node-level 
parallelism throughout the “Aggregation” and “Combination” stages.

Fig. 7  The architecture overview of the FP-GCN



Page 25 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

Fig.  7 depicts the overall architecture design of the FP-GNN. The memory system 
includes “High-Bandwidth Memory” (HBM) and “Multi-Channel DRAM” (MCDRAM) 
to ensure fast data access for the accelerator. Moreover, On-chip buffers like Edge Buffer 
(EB), Source Node Cache (SNC), Node Buffer (NB), Address Index Buffer (AIB), Weight 
Buffer (WB), Coefficient Buffer (CB), and Output Buffer (OB) store different kinds of 
data temporarily. The arrows show the different flows in which orange ones are control 
flow and the other ones are data flow.

These buffers help with various tasks, such as storing edge information, preventing 
duplicate data requests, storing node features, managing data addresses, storing weights 
and coefficients, and holding intermediate or final results.

Data movement between the on-chip buffers and off-chip memory is regulated by the 
Memory Controller in conjunction with the DMA Controller, which handles requests 
for Direct Memory Access (DMA).

AWB-GCN introduces an innovative and efficient architecture aimed at enhancing the 
performance of GCNs and Sparse Matrix Multiplication (SpMM) kernels for matrices 
exhibiting a power-law distribution. It also features a hardware-based framework for 
autotuning workload distribution, specifically designed to manage significant workload 
imbalances.

Figure 8 illustrates the architecture of AWB-GCN. Below, we provide a brief overview 
of its components. The figure depicts a single “Super-PE” alongside four “Labor-PEs”. 
The “Labor-PE” is an adaptation of the normal PE, distinguished by its connection to 
an adder tree for aggregating results. A caching mechanism aggregates the result of “evil 

Fig. 8  Overall architecture design of AWB-GCN describing the SpMM engine and other AWB-GCN 
techniques such as remote switching, evil row remapping and smoothing. In blue color, the Super-PE 
(Master-PE) is highlighted. In red color, one of the Labor-PE is highlighted



Page 26 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

rows”. On the other hand, the “Super-PE” is significantly larger than the other PEs, as it is 
tasked with profiling the evil rows.

The “Super-PE” includes two additional modules: a non-zero counter (consisting of a 
local buffer) that counts the number of non-zeroes in each row and a parallel sorting 
circuit that keeps track of the rows with the greatest number of non-zeroes. Specifically, 
the “Super-PE” includes additional modules to effectively sort and count specific kinds 
of data items. The allocation of tasks between the “Labor-PEs” and the “Super-PE” is 
managed by an autotuning system, which can modify this division according to the type 
of data being processed.

Fig. 9  The overall overview of the QEGCN architecture (a) and the detail of Accelerator PE block in (b)

Fig. 10  Inference latency speedup comparison among GCN architectures when using the Cora dataset, 
considering HyGCN as baseline. FPGA-ready designs that are evaluated by using ASIC tools are marked with 
an asterisk



Page 27 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

The autotuner in AWB-GCN dynamically distributes jobs between “Super-PE” and 
“Labor-PEs”, according to workload and data patterns to ensure efficient processing. It 
evaluates, decides, and modifies job distribution to ensure peak performance.

The overall goal of AWB-GCN is to accelerate SpMM calculation by effectively allocat-
ing jobs among various processing units according to the properties of the data being 
processed.

QEGCN propose the feasibility of training quantized GCNs, allowing for the use of 
low-precision integer arithmetic during the inference phase. Fig.  9 shows the overall 
architecture of the QEGCN in Fig. 9(a) and in Fig. 9(b) show the detailed design of the 
PE block used in this architecture.

In Fig. 9(a), the FPGA memory system (BRAM and HBM memory) is exploited to 
optimize the memory usage. The 16 PE blocks of QEGCN are mapped onto the cor-
responding 16 AXI channels of the HBM memory, in order to facilitate the parallel 
processing of GCNs at the edge-level. As shown in Fig. 9(b), the structure of each PE 
block includes applying and gathering modules connected through interface FIFOs. 
As stated earlier, the architecture of PE follows the baseline model discussed in Sec-
tion  Typical architecture of a GCN-based hardware accelerator. To elaborate more, 
this model demonstrates the baseline architecture in Fig. 3 as considering gather as 
handling aggregation, and apply as performing the combination or transformation on 
the aggregated node features. The number of these blocks can vary based on which 
datatype is used in the design, which can be integers 32, 16, or 8, corresponding to 
creating 11, 17, and 23 numbers of “apply and gather” blocks, respectively.

Elaboration
This section is structured in three parts: (i) Methodological Considerations, Perfor-
mance and Energy; (ii) discussion on limitations; (iii) overall future directions.

Comparing the performance and energy efficiency of GCN accelerators

Methodological considerations, performance and efficiency

Before proceeding with a performance comparison, some observations regarding the 
literature review presented in Section  Overview of existing solutions are necessary. 
Firstly, conducting a numerical comparison among the analyzed GCN implemen-
tations is challenging due to the absence of a standardized baseline implementa-
tion and the lack of a well-defined GCN benchmark suite. In addition, GCN models 
and datasets may involve various settings and configurations, making it difficult to 
use a common baseline for a fair comparison. Therefore we developed the following 
methodology.

As baseline for comparing the inference performance, we have selected the Cora 
dataset, which is widely used in the literature. Additionally, we have chosen the 
HyGCN as a baseline model for the speedup comparison, as done in most of the 
works, since HyGCN is one of the first successful hardware implementations.

There are also other hyperparameters that are tuned in the implementations. For 
example, HyGCN did not use the original number of h of hidden layers ( h = 32 as in 
[20]), but use h = 128 . In AWB-GCN [1], this is observed and the two configurations 
of h = 32 and h = 128 are compared, thus providing interesting insights related to the 



Page 28 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

performance and energy efficiency in the two cases. In particular, when h = 32 AWB 
obtains a latency of 2.3 µ s and energy efficiency 3080 graphs/J compared to the case of 
h = 128 in which AWB obtains a latency of 17 mus (speedup 1.24 versus HyGCN) and 
energy efficiency 439 graph/J. A similar situation is observed in I-GCN [5], therefore 
we empirically derived this difference in the latency of a factor of about 7 between the 
case of Boost-GCN, FlowGNN, FP-GNN, H-GCN in order to extend the comparison 
to cases where h = 128 . In the case of GCoD the speedup is derived, from fig. 9 of the 
original paper [16] and in other cases the numbers of inference speedup or latency are 
derived either directly from re-implementations carried by other works.

Inference latency speedup

Considering those works that are performing better than HyGCN in Fig.  10, the 
reasons of the better results can be explained as follows. AWB-GCN is one of the 
first works that systematically consider the problem of localizing and balancing the 
computations of real-world graphs, i.e. those graphs that have few nodes with many 
connections and many nodes with few connections (see also [28, 63] for specific dis-
cussion and FPGA optimizations about such graphs that are following the power-law). 
I-GCN achieves notable speedups by enhancing data locality and minimizing off-chip 
memory access through the innovative “islandization” technique. Other approaches, 
such as SnF, EnGN, GRIP, and GCNAX leverage-optimized ASIC designs to enhance 
performance. In particular, SGCN outperforms all other studies by integrating data 
compression techniques.

FlowGNN proposes a innovative dataflow architecture and it parallelizes the opera-
tions at the edge- and node-level and internally to the aggregation engine (see Fig. 5). 
The node information is multicast across the data processing queues.

The best performing FPGA implementation in the set that we analyzed is reached by 
GCoD. The strategy of GCoD consists in pre-subdividing the graph partitions in denser 
and sparser, while the hardware processes them with appropriate specialized engines. 
On average the authors claim a speedup of 7.8x compared to HyGCN on-average, 

Fig. 11  Energy Efficiency comparison among GCN architectures when using the Cora dataset. FPGA-ready 
designs that are evaluated by using ASIC tools are marked with an asterisk



Page 29 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

although with smaller dataset such as Core can reach about 24x. Sparsification and 
quantization are also providing part of this speedup.

It should also be noticed that the SnF, EnGN, GRIP, GCNAX, SGCN, GROW, MEGA 
implementations, while can be accommodated in an FPGA, have been evaluated by 
using ASIC development tools with quite aggressive technology node. This means that 
their superiority must be weighted compared to purely FPGA based evaluations such as 
FlowGNN and GCoD.

MEGA and GROW achieve the best speedup among this last category. Both design 
address the problem of the bottleneck of communication between the computational 
part and the DRAM connected to the hardware implementation. GROW is focusing 
on memory traffic reduction techniques of the aggregation phase. MEGA combines an 
adaptive quantization with a tailored scheduling of the irregular access to memory also 
in the aggregation phase, when a sparse-matrix multiplication is typically performed.

Inference energy efficiency

In Fig. 11, we analyze the Energy Efficiency of the GCN implementations for the data 
available in the literature. To allow a a more readable comparison the same color and 
position for each GCN architecture is maintained. The Energy Efficiency here is 
expressed as graphs per per Joule in most of the works. Most of the works do not pro-
vide a clear estimation of the Energy Efficiency and some of them, e.g., EnGN present 
the operations per Watt (power efficiency).

From Fig. 11, it is interesting to note that while some implementations may perform 
worse than HyGCN, like ACE-GCN, they may also provide a higher energy efficiency.

When energy efficiency is more important, therefore this implementation may 
results more useful. In particular, ACE-GCN opportunistically exploit a novel method 
called “k-largest node selection”, which simplifies graph learning by finding and prop-
agating the largest features embeddings. This is achieved by a special hardware classi-
fier that identifies centroid in the graphs. More centroids are identified and processed 
in parallel and better performance can be achieved.

Limitations

A major challenge hindering the stacking of multiple layers in GCNs is the over-
smoothing phenomenon. Removing the ReLU function from the given expression 
leads to the condition limk→1 Â

kH(0) = H(∞) , indicating that each row of H(∞) is 
solely determined by the degree of the corresponding node (cf. Section Problem Defi-
nition: background and mathematical foundations), under the assumptions of graph 
irreducibility and aperiodicity. This demonstrates that, when too many layers are 
used, the model begins to lose discriminative information provided by the node fea-
tures [64].

The effectiveness of GCNs diminishes significantly when there’s a severe scarcity of 
labeled data and when the node features become increasingly difficult to differenti-
ate with the addition of more layers. This often leads to overfitting and over-smooth-
ing issues [65]. Overfitting happens when the model is excessively customized to the 
training data, capturing noise rather than the underlying distribution, which results 



Page 30 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

in poor generalization to new data. Over-smoothing, on the other hand, results in the 
features of nodes in the graph becoming indistinguishable, thus losing the ability to 
effectively differentiate between nodes.

Another limitation is the scalability of GCNs with the graph size. In case of larger 
graphs, the computational and memory requirements grow exponentially. This is par-
ticularly problematic for large-scale graphs that are typical in real-world applications like 
social networks or graphs describing molecules. Efficiently scaling GCNs to handle large 
graphs without sacrificing performance or accuracy remains a significant challenge.

Several overly aggressive GCN optimizations may lead to issues such as anisotropy, 
low expressiveness, over-smoothing, and over-squashing [66]. Anisotropy refers to the 
uneven distribution of information across different directions in the graph, which can 
lead to biased or incomplete representations. Low expressiveness denotes the model’s 
inability to recognize complex patterns and connections within the graph embeddings. 
Over-squashing occurs when too much information is condensed into a small number of 
layers or nodes, reducing the model’s capacity to learn detailed representations.

Furthermore, GCNs often struggle with handling dynamic graphs where the struc-
ture changes over time. Most current GCN models assume a static graph structure, 
which limits their applicability in scenarios where the graph is continuously evolving, 
such as in real-time recommendation systems or evolving social networks.

Addressing these limitations requires innovative approaches in both algorithm 
design and hardware implementation. Research efforts are being directed towards 
developing more robust and scalable GCN models, exploring new regularization 
techniques to mitigate overfitting and over-smoothing, and designing specialized 
hardware accelerators to efficiently process large-scale and dynamic graphs.

Future research directions

FPGA‑optimizations and tools for GCNs

FPGA-based accelerators offer significant potential for enhancing the performance 
(i.e. graphs/s) and energy efficiency (i.e. graphs/J) of GCNs, particularly in the case of 
edge computing. Future research directions could focus on several key areas:

•	 Optimizing FPGA Architectures for GCN Models:

–	 Tailoring FPGA architectures to specific GCN models can significantly reduce 
computational latency and reduce energy consumption.

–	 Developing methods to exploit dynamic partial reconfiguration (DPR) can per-
mit real-time adjustments to different graph sizes.

•	 High-Level Synthesis (HLS) Tools:

–	 Leveraging HLS tools can streamline the creation and deployment of GCN 
accelerators on FPGAs, increasing accessibility for developers and researchers.



Page 31 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

Quantization techniques for GCNs

Quantization methods are crucial for drastically reduce the demand of resources 
in GCN implementations, especially for embedded systems. Future research could 
explore:

•	 Combining Scalar and Vector Quantization:

–	 Merging the computational efficiency of integer arithmetic with the superior 
compression capability of vector quantization to develop efficient reduced mod-
els can allow more aggressive hardware implementations.

•	 Aggressive low-bit representations:

–	 Investigating methods that use low-bit representations (such as 4-bit and 2-bit) 
to maintain high accuracy while integrating large GCN models into embedded 
devices.

•	 Fully quantized GCN models:

–	 Designing fully quantized GCN models tailored for embedded systems to achieve 
scalable and efficient solutions.

FPGA applications for embedded systems

Despite the advantages, there is a noticeable gap in research on GCN accelerators imple-
mented on FPGAs and used in embedded systems. Addressing this gap involves:

•	 Accelerating the training phase:

–	 Focus on accelerating the training phase of GCNs, in particular dynamic graphs, 
to meet the needs of real-time applications.

•	 Adopting Additional Techniques:

–	 Beyond quantization, exploring additional techniques such as knowledge dis-
tillation, reordering, sampling, and simplification to enhance the efficiency of 
hardware-based applications.

Algorithm‑hardware co‑design

Future research should emphasize a co-design approach where algorithms are devel-
oped in tandem with hardware to ensure optimal performance:

•	 Acceleration beyond classic GCNs:

–	 Developing hardware accelerators that can efficiently handle GNN models 
beyond GCNs, such as Graph Attention Networks (GATs) [50], which has dis-
tinct computational requirements. Similarly, Graph Isomorphism Networks 
(GINs) [67] are designed to be more powerful and discriminative in distin-
guishing non-isomorphic graphs. However, while these techniques may pro-



Page 32 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

vide a little accuracy improvement, they may require a substantially complex 
architecture.

•	 Large-scale GCNs:

–	 Creating solutions for large-scale graph processing, essential for industrial 
applications, where single-machine processing is impractical.

•	 Emerging Devices and Architectures to be integrated with FPGAs:

–	 Exploring emerging devices, such as ReRAM crossbars and processing-in-
memory (PIM) architectures can also improve performance and energy sav-
ings.

–	 Investigating other novel architectures and emerging devices beyond ReRAM for 
better performance.

Heuristic‑hardware co‑operation

Incorporating heuristics into hardware design can lead to more efficient GCN 
accelerators:

•	 Heuristic-based acceleration:

–	 Utilizing heuristics to develop hardware-aware networks that optimize opera-
tions based on prior knowledge, thereby enhancing energy efficiency and pro-
cessing speed.

•	 Broadening heuristic applications:

–	 Expanding the use of heuristic-based approaches to a wider range of devices 
beyond the current focus on ReRAM crossbars.

Directional graph networks (DGNs)

Directional Graph Networks (DGNs) [66] aim to generalize the directional features 
of Convolutional Neural Networks (CNNs) while mitigating their limitations. FPGA 
implementations of DGNs, such as those on the Alveo U50, show a potential for up to 
45x improvement in performance over GPUs like the RTX A6000 [68].

Augmented message passing

GCNs are part of the broader research area of Graph Neural Networks (GNNs). The 
promising evolution of “augmented message passing” techniques [69] for GNNs high-
lights the potential for improved models. The message-passing computation para-
digm provides a general framework for GNN models, facilitating the development of 
more efficient and powerful neural network architectures [68].

By addressing these areas, future research can improve the deployment of GCNs 
significantly and consequently the quality of real-world applications.



Page 33 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

However, at the current state of technology, GCN implementations for FPGA con-
tinue to provide more and more optimized performance [70–72].

Conclusions
Graph Convolutional Networks (GCNs) have been recognized as a powerful method 
for processing graphs, demonstrating significant promise across several domains 
from social networks and biological networks to financial applications and recom-
mendation systems. This survey has provided a comprehensive overview of GCNs, 
discussing their fundamental concepts, algorithmic implementations, and the chal-
lenges associated with their deployment on different hardware platforms.

Our survey highlighted the substantial advancements in GCN architectures and the 
ongoing efforts to optimize their performance and energy efficiency. Through detailed 
discussions on performance-cost tradeoffs, we examined the key metrics for evaluat-
ing GCN performance, including inference latency and energy efficiency. The com-
parative analysis of different FPGA-based implementations (including those case in 
which ASIC tools are deployed for the evaluations) underscored the varying tradeoffs 
between performance and the needed energy, emphasizing the need for careful con-
sideration when selecting a deployment platform.

Despite these advancements, GCNs face several limitations that hinder their wide-
spread adoption. Over-smoothing, scalability issues, the scarcity of labeled data, and 
the challenges of handling dynamic graphs remain significant obstacles. Our explora-
tion of these limitations underscored the need for innovative approaches to address 
these challenges, including improved algorithm designs and specialized hardware 
accelerators.

To mitigate these limitations and further enhance the performance of GCNs, we 
identified several promising research directions. Parallelization techniques, incorpo-
rating edge and graph-level features, the development of Directional Graph Networks 
(DGNs), augmented message passing, and optimized FPGA implementations repre-
sent key areas for future exploration. These approaches have the potential to unlock 
new capabilities in GCNs, making them more robust, scalable, and efficient.

In conclusion, while GCNs have already made significant strides in various applica-
tions, continued research and development are essential to overcome existing limi-
tations and fully realize their potential. By advancing both algorithmic innovations 
and hardware optimizations, we can enable more effective and efficient processing of 
graph-structured data, opening the door for broader adoption and new applications 
in diverse fields.
Acknowledgements
We found useful references in Bankovic et al. [73] for the preparation of this work. We want to thank the Xilinx/AMD 
Heterogeneous Accelerated Compute Clusters (HACC) for their generous accelerator card donations and for providing 
us with the necessary resources and support to conduct our research. Additionally, we would like to thank NVIDIA for its 
continuous support and donation of hardware devices to our research laboratory. These contributions have been invalu-
able in allowing us to conduct cutting-edge research in large-scale computing.

Author contributions
The Authors equally contributed to this paper.

Funding
The European Commission partly supported this work under the AXIOM H2020 (id. 645496), TERAFLUX (id. 249013), and 
HiPEAC (id. 101069836) projects. This work is partly funded by the European Union - NextGenerationEU - via the PNRR 



Page 34 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

M4C2-Inv1.4 Italian Research Center on High-Performance Computing, Big-Data and Quantum Computing, cascade 
funding project EDGE-ME, MUR-ID: CN0000013.

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding authors upon reasonable 
request.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 3 May 2024   Accepted: 13 October 2024

References
	1.	 Geng T, Li A, Shi R, Wu C, Wang T, Li Y, Haghi P, Tumeo A, Che S, Reinhardt S, Herbordt M C. Awb-gcn: A graph 

convolutional network accelerator with runtime workload rebalancing. In: 2020 53rd Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO). IEEE, 2020.

	2.	 Tian T, Zhao L, Wang X, Qizhe W, Yuan W, Jin X. Fp-gnn: adaptive fpga accelerator for graph neural networks. Future 
Gener Comput Syst. 2022;136:294–310.

	3.	 Yan M, Deng L, Hu X, Liang L, Feng Y, Ye X, Zhang Z, Fan D, Xie Y. Hygcn: a gcn accelerator with hybrid architecture. 
In: 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2020.

	4.	 Zhang B, Kannan R, Prasanna V. Boostgcn: A framework for optimizing gcn inference on fpga. In: 2021 IEEE 29th 
Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2021.

	5.	 Geng T, Wu C, Zhang Y, Tan C, Xie C, You H, Herbordt M, Lin Y, Li A. I-gcn: a graph convolutional network accelera-
tor with runtime locality enhancement through islandization. In: MICRO-54: 54th Annual IEEE/ACM international 
symposium on microarchitecture, MICRO ’21. ACM, 2021.

	6.	 Zhou Z, Shi B, Zhang Z, Guan Y, Sun G, Luo G. Blockgnn: towards efficient gnn acceleration using block-circulant 
weight matrices. In: 2021 58th ACM/IEEE design automation conference (DAC). IEEE, 2021.

	7.	 Sarkar R, Abi-Karam S, He Y, Sathidevi L, Hao C. Flowgnn: a dataflow architecture for real-time workload-agnostic 
graph neural network inference. In: 2023 IEEE international symposium on high-performance computer architec-
ture (HPCA). IEEE, 2023.

	8.	 José Romero H, Chao L, Pengyu W, Chuanming S, Jinyang G, Jing W, Guoyong S. Ace-gcn: a fast data-driven fpga 
accelerator for gcn embedding. ACM Trans Reconfigurable Technol Syst. 2021;14(4):1–23.

	9.	 Zhang C, Geng T, Guo A, Tian J, Herbordt M, Li A, Tao D. H-gcn: a graph convolutional network accelerator on versal 
acap architecture. In: 2022 32nd International Conference on Field-Programmable Logic and Applications (FPL). 
IEEE, 2022.

	10.	 Yuan W, Tian T, Qizhe W, Jin X. Qegcn: an fpga-based accelerator for quantized gcns with edge-level parallelism. J 
Syst Archit. 2022;129: 102596.

	11.	 Tao Z, Chen W, Liang Y, Wang K, He L. Lw-gcn: a lightweight fpga-based graph convolutional network accelerator. 
ACM Trans Reconfigurable Technol Syst. 2022;16(1):1–19.

	12.	 Nair GR, Suh HS, Halappanavar M, Liu F, Seo JS, Cao Y. Fpga acceleration of gcn in light of the symmetry of graph adja-
cency matrix. Design. Automation Test in Europe Conference Exhibition (DATE). 2023; 4:2023.

	13.	 Yoo M, Song J, Lee J, Kim N, Kim Y, Lee J. Sgcn: exploiting compressed-sparse features in deep graph convolutional 
network accelerators. In: 2023 IEEE international symposium on high-performance computer architecture (HPCA). IEEE, 
2023.

	14.	 Wu C, Tao Z, Wang K, He L. Skeletongcn: A simple yet effective accelerator for gcn training. In: 2022 32nd international 
conference on field-programmable logic and applications (FPL). IEEE, 2022.

	15.	 Zhao L, Wu Q, Wang X, Tian T, Wu W, Jin X. Hugraph: Acceleration of gcn training on heterogeneous fpga clusters with 
quantization. In: 2022 IEEE high performance extreme computing conference (HPEC). IEEE, 2022.

	16.	 You H, Geng T, Zhang Y, Li A, Lin Y. Gcod: graph convolutional network acceleration via dedicated algorithm and accel-
erator co-design. In: 2022 IEEE international symposium on high-performance computer architecture (HPCA). IEEE, 2022.

	17.	 Auten A, Tomei M, Kumar R. Hardware acceleration of graph neural networks. In: 2020 57th ACM/IEEE design automa-
tion conference (DAC), 2020. pp 1–6.

	18.	 Zhang B, Zeng H, Prasanna V. Hardware acceleration of large scale gcn inference. In: 2020 IEEE 31st international confer-
ence on application-specific systems, architectures and processors (ASAP). IEEE, 2020.

	19.	 Zeng H, Prasanna V. Graphact: Accelerating gcn training on cpu-fpga heterogeneous platforms. In: Proceedings of the 
2020 ACM/sigda international symposium on field-programmable gate arrays, FPGA ’20. ACM, 2020.

	20.	 Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: 5th International Conference 
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.
net, 2017.

	21.	 Gori M. Machine learning: a constraint-based approach. Amsterdam: Elsevier Science; 2017.
	22.	 Zonghan W, Pan S, Chen F, Long G, Zhang C, Philip S. A comprehensive survey on graph neural networks. IEEE Trans 

Neural Netw Learn Syst. 2021;32(1):4–24.



Page 35 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 	

	23.	 Zhou J, Cui G, Shengding H, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M. Graph neural networks: a review of methods 
and applications. AI Open. 2020;1:57–81.

	24.	 Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, NIPS’17, pp 1025-1035, Red Hook, NY, USA, 2017. Curran 
Associates Inc.

	25.	 Fout A, Byrd J, Shariat B, Ben-Hur A. Protein interface prediction using Graph convolutional networks. In: I. Guyon, U. Von 
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information 
Processing Systems, volume 30. Curran Associates, Inc., 2017.

	26.	 Wei J, Fang Z, Yiyang G, Liu Z, Long Q, Qiao Z, Qin Y, Shen J, Sun F, Xiao Z, Yang J, Yuan J, Zhao Y, Wang Y, Luo X, Zhang M. 
A comprehensive survey on deep graph representation learning. Neural Netw. 2024;173:106207.

	27.	 Lin YC, Zhang B, Prasanna V. Hp-gnn: generating high throughput gnn training implementation on cpu-fpga heteroge-
neous platform. In: Proceedings of the 2022 ACM/SIGDA international symposium on field-programmable gate arrays, 
FPGA ’22. ACM, 2022.

	28.	 Amin S, Marco B, Marco P, Wayne L, Georgi G, Roberto G. Distributed large-scale graph processing on fpgas. J Big Data. 
2023;10(1):95.

	29.	 Sun G, Yan M, Wang D, Li H, Li W, Ye X, Fan D, Xie Y. Multi-node acceleration for large-scale gcns. IEEE Trans Comput. 
2022;71:1–12.

	30.	 Dai Y, Zhang Y, Tang X. Cegma: coordinated elastic graph matching acceleration for graph matching networks. In: 2023 
IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2023.

	31.	 Cai Z, Yan X, Wu Y, Ma K, Cheng J, Yu F. Dgcl. Proceedings of the Sixteenth European Conference on Computer Systems, 
2021;4.

	32.	 Zhou H, Zhang B, Kannan R, Prasanna V, Busart Carl. Model-architecture co-design for high performance temporal gnn 
inference on fpga. In: 2022 IEEE international parallel and distributed processing symposium (IPDPS). IEEE, 2022.

	33.	 Zhang B, Zeng H, Prasanna V. Accelerating large scale gcn inference on fpga. In: 2020 IEEE 28th annual international 
symposium on field-programmable custom computing machines (FCCM). IEEE, 2020.

	34.	 Lecun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Handwritten digit recognition with a back-
propagation network. In: Touretzky DS, editor. Advances in neural information processing systems 2. Burlington: Morgan 
Kaufmann; 1990. p. 396–404.

	35.	 Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the 
IEEE, 1998;86.

	36.	 Li S, Tao Y, Tang E, Xie T, Chen R. A survey of field programmable gate array (fpga)-based graph convolutional neural 
network accelerators: challenges and opportunities. PeerJ Comput Sci. 2022;8:e1166.

	37.	 Demirci GV, Haldar A, Ferhatosmanoglu H. Scalable graph convolutional network training on distributed-memory 
systems. Proc VLDB Endow. 2022;16(4):711–24.

	38.	 Kazi A, Farghadani S. and Nassir Navab. Ia-gcn: Interpretable attention based graph convolutional network for disease 
prediction. arXiv preprint; 2021.

	39.	 Yoo M, Song J, Lee H, Lee J, Kim N, Kim Y, Lee J. Slice-and-forge: Making better use of caches for graph convolutional net-
work accelerators. In: Proceedings of the international conference on parallel architectures and compilation techniques, 
PACT ’22, page 40-53, New York, NY, USA, 2023. Association for Computing Machinery.

	40.	 Li Q, Han Z, Wu XM. Deeper insights into graph convolutional networks for semi-supervised learning. arXiv, 2018.
	41.	 Zhou J, Cui G, Shengding H, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M. Graph neural networks: a review of methods 

and applications. AI Open. 2020;1:57–81.
	42.	 Garg R, Qin E, Martinez F M, Guirado R, Jain A, Abadal S, Abellan J L, Acacio M E, Alarcon E, Rajamanickam S, Krishna T. A 

taxonomy for classification and comparison of dataflows for gnn accelerators. Technical Report SANDIA, 2021;3.
	43.	 Abadal S, Jain A, Guirado R, López-Alonso J, Alarcón E. Computing graph neural networks: a survey from algorithms to 

accelerators. ACM Comput Surv. 2021;54(9):1–38.
	44.	 Abadal S, Jain A, Guirado R, López-Alonso J, Alarcón E. Computing graph neural networks: a survey from algorithms to 

accelerators. ACM Comput Surv. 2021;54(9):1–38.
	45.	 Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on graphs: 

extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process Mag. 
2013;30(3):83–98.

	46.	 Blagojević V, Bojić D, Bojović M, Cvetanović M, Đorđević J, Đurđević Đ, Furlan B, Gajin S, Jovanović Z, Milićev D, 
Milutinović V, Nikolić B, Protić J, Punt M, Radivojević Z, Stanisavljević Ž, Stojanović S, Tartalja I, Tomašević M, Vuletić P. A 
systematic approach to generation of new ideas for PhD research in computing. Amsterdam: Elsevier; 2017. p. 1–31.

	47.	 Li G, Muller M, Thabet A, Ghanem B. Deepgcns: can gcns go as deep as cnns? In: The IEEE international conference on 
computer vision (ICCV), 2019.

	48.	 Yimeng M, Frederik W, Guy W. Scattering gcn: overcoming oversmoothness in graph convolutional networks. In: Laro-
chelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors. Advances in neural information processing systems. Glasgow: 
Curran Associates Inc; 2020. p. 14498–508.

	49.	 Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K. Simplifying graph convolutional networks. In: Kamalika Chaudhuri 
and Ruslan Salakhutdinov, editors, Proceedings of the 36th international conference on machine learning, volume 97 of 
Proceedings of Machine Learning Research, pages 6861–6871. PMLR, 2019;09–15.

	50.	 Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. In: International Conference 
on Learning Representations, 2018.

	51.	 Zeng H, Zhou H, Srivastava A, Kannan R, Prasanna V. Graphsaint: graph sampling based inductive learning method. In: 
international conference on learning representations, 2020.

	52.	 Chen J, Ma T, Xiao C. FastGCN: fast learning with graph convolutional networks via importance sampling. In: interna-
tional conference on learning representations, 2018.

	53.	 Chiang WL, Liu X, Si S, Li Y, Bengio S, Hsieh CJ. Cluster-gcn: An efficient algorithm for training deep and large graph 
convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & 
Data Mining, KDD ’19, page 257-266, New York, NY, USA, 2019. Association for Computing Machinery.



Page 36 of 36Procaccini et al. Journal of Big Data          (2024) 11:163 

	54.	 Li J, Louri A, Karanth A, Bunescu R. Gcnax: a flexible and energy-efficient accelerator for graph convolutional neural 
networks. In: 2021 IEEE international symposium on high-performance computer architecture (hpca). ieee, 2021.

	55.	 Zhang B, Zeng H, Prasanna VK. Graphagile: an fpga-based overlay accelerator for low-latency gnn inference. IEEE Trans 
Parallel Distrib Syst. 2023;34(9):2580–97.

	56.	 Sohrabizadeh A, Chi Y, Cong J. Streamgcn: accelerating graph convolutional networks with streaming processing. In: 
2022 IEEE custom integrated circuits conference (CICC). IEEE, 2022.

	57.	 Liang S, Wang Y, Liu C, He L, Li H, Dawen X, Li X. Engn: a high-throughput and energy-efficient accelerator for large 
graph neural networks. IEEE Trans Comput. 2021;70(9):1511–25.

	58.	 Kiningham K, Levis P, Ré C. Grip: a graph neural network accelerator architecture. IEEE Trans Comput. 2023;72(4):914–25.
	59.	 Hwang R, Kang M, Lee J, Kam D, Lee Y, Rhu. Minsoo Grow: A row-stationary sparse-dense gemm accelerator for 

memory-efficient graph convolutional neural networks. In: 2023 IEEE international symposium on high-performance 
computer architecture (HPCA). IEEE, 2023.

	60.	 Zhu Z, Li F, Li G, Liu Z, Mo Z, Hu Q, Liang X, Cheng J. Mega: a memory-efficient gnn accelerator exploiting degree-aware 
mixed-precision quantization. In: 2024 IEEE international symposium on high-performance computer architecture 
(HPCA). IEEE, 2024.

	61.	 Kiningham K, Levis P, Ré Christopher. Greta: Hardware optimized graph processing for gnns. In: Proceedings of the 
Workshop on Resource-Constrained Machine Learning (ReCoML 2020), 2020.

	62.	 Gustavson FG. Two fast algorithms for sparse matrices: multiplication and permuted transposition. ACM Trans Math 
Softw. 1978;4:9.

	63.	 Sahebi A, Procaccini M, Giorgi R. Hashgrid: an optimized architecture for accelerating graph computing on fpgas. Future 
Gener Comput Syst. 2025;162:107497.

	64.	 Chien E, Peng J, Li P, Milenkovic O. Adaptive universal generalized pagerank graph neural network. In: International 
conference on learning representations, 2021.

	65.	 Yang X, Wei K, Deng C. Csc-gcn: contrastive semantic calibration for graph convolution network. J Inf Intell. 
2023;1(4):295–307.

	66.	 Beaini D, Passaro S, Létourneau Vincent, Hamilton W, Corso G, Lió Pietro. Directional graph networks. In: Marina M, 
Tong Z, editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of 
Machine Learning Research, pages 748–758. PMLR, 2021;18–24.

	67.	 Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural networks? In: International conference on learning 
representations, 2019.

	68.	 Sarkar R, Hao C. A generic fpga accelerator framework for ultra-fast gnn inference.
	69.	 Cković Petar V. Message passing all the way up. In: ICLR 2022 Workshop on Geometrical and Topological Representation 

Learning, 2022.
	70.	 Zhao C, Faber C J, Chamberlain R D, Zhang X. Hlperf: demystifying the performance of hls-based graph neural networks 

with dataflow architectures. ACM transactions on reconfigurable technology and systems, 2024.
	71.	 Wang R, Li S, Tang E, Lan S, Liu Y, Yang J, Huang S, Hailong H. Sh-gat: software-hardware co-design for accelerating graph 

attention networks on fpga. Electron Res Arch. 2024;32(4):2310–22.
	72.	 Que Z, Fan H, Loo M, Li H, Blott M, Pierini M, Tapper A, Luk W. Ll-gnn: low latency graph neural networks on fpgas for 

high energy physics. ACM Trans Embed Comput Syst. 2024;23(2):1–28.
	73.	 ...Milan Banković, Vladimir Filipović, Jelena Graovac, Jelena Hadži-Purić, Hurson Ali R, Aleksandar Kartelj, Jovana 

Kovačević, Nenad Korolija, Miloš Kotlar, Krdžavac Nenad B, Filip Marić, Saša Malkov, Veljko Milutinović, Nenad Mitić, 
Stefan Mišković, Mladen Nikolić, Gordana Pavlović-Lažetić, Danijela Simić, Djurdjević Stojanović, Stanković Staša Vujičić, 
Janičić Milena Vujošević, Sana Miodrag Živković. Teaching graduate students how to review research articles and 
respond to reviewer comments. Amsterdam: Elsevier; 2020. p. 1–63.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	A survey of graph convolutional networks (GCNs) in FPGA-based accelerators
	Abstract 
	Introduction
	Problem definition: background and mathematical foundations
	Why GCNs attracted attention
	Mathematical foundations of Graph Convolutional Networks (GCNs)
	Graph convolution
	Derivation of the aggregation matrix  from the graph structure
	Layer-wise propagation
	The classical GCN model
	GCN backpropagation
	GCN variants

	Typical architecture of a GCN-based hardware accelerator

	Overview of existing solutions
	Taxonomy
	Hardware-software co-sesign for FPGAs
	FPGA-only implementations
	FPGA-ready ASIC evaluations

	Proposed solutions: architecture highlights of selected FPGA-based GCNs
	Elaboration
	Comparing the performance and energy efficiency of GCN accelerators
	Methodological considerations, performance and efficiency
	Inference latency speedup
	Inference energy efficiency

	Limitations
	Future research directions
	FPGA-optimizations and tools for GCNs
	Quantization techniques for GCNs
	FPGA applications for embedded systems
	Algorithm-hardware co-design
	Heuristic-hardware co-operation
	Directional graph networks (DGNs)
	Augmented message passing


	Conclusions
	Acknowledgements
	References


