
Citation: Gianibbi, B.; Visibelli, A.;

Spinsanti, G.; Spiga, O. Three-

Dimensional Quantitative Structure–

Activity Relationship Study of

Transient Receptor Potential Vanilloid

1 Channel Antagonists Reveals

Potential for Drug Design Purposes.

Int. J. Mol. Sci. 2024, 25, 7951. https://

doi.org/10.3390/ijms25147951

Academic Editors: Arpad Szallasi and

Ari-Pekka Koivisto

Received: 30 June 2024

Revised: 18 July 2024

Accepted: 19 July 2024

Published: 21 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Three-Dimensional Quantitative Structure–Activity Relationship
Study of Transient Receptor Potential Vanilloid 1 Channel
Antagonists Reveals Potential for Drug Design Purposes
Beatrice Gianibbi 1,† , Anna Visibelli 1,† , Giacomo Spinsanti 1,2 and Ottavia Spiga 1,2,3,*

1 Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
beatrice.gianibbi@student.unisi.it (B.G.); anna.visibelli2@unisi.it (A.V.); giacomo.spinsanti@unisi.it (G.S.)

2 Centro della Scienza e della Tecnica, Polo Universitario Grossetano, Via Ginori 41, 58100 Grosseto, Italy
3 Competence Center ARTES 4.0, 53100 Siena, Italy
* Correspondence: ottavia.spiga@unisi.it
† These authors contributed equally to this work.

Abstract: Transient receptor potential vanilloid 1 (TRPV1) was reported to be a putative target for
recovery from chronic pain, producing analgesic effects after its inhibition. A series of drug candidates
were previously developed, without the ability to ameliorate the therapeutic outcome. Starting from
previously designed compounds, derived from the hybridization of antagonist SB-705498 and partial
agonist MDR-652, we performed a virtual screening on a pharmacophore model built by exploiting
the Cryo-EM 3D structure of a nanomolar antagonist in complex with the human TRPV1 channel. The
pharmacophore model was described by three pharmacophoric features, taking advantage of both
the bioactive pose of the antagonist and the receptor exclusion spheres. The results of the screening
were implemented inside a 3D-QSAR model, correlating with the negative decadic logarithm of the
inhibition rate of the ligands. After the validation of the obtained 3D-QSAR model, we designed
a new series of compounds by introducing key modifications on the original scaffold. Again, we
determined the compounds’ binding poses after alignment to the pharmacophoric model, and we
predicted their inhibition rates with the validated 3D-QSAR model. The obtained values resulted in
being even more promising than parent compounds, demonstrating that ongoing research still leaves
much room for improvement.

Keywords: TRPV1; artificial intelligence; 3D-QSAR; pharmacophore modeling

1. Introduction

Chronic pain is a condition that causes subtle suffering, which seriously impacts the
quality of life of individuals with neuropathic pain, cancerogenic diseases, and muscu-
loskeletal injuries [1–3]. At present, several treatments are available, such as opioids and
anti-inflammatory non-steroidal drugs, according to the patient’s needs and perceived
pain intensity [4]. In the most serious cases, effective and potent opioids lack an optimal
pharmacodynamics profile, triggering dependence and tolerance phenomena that limit
drug usage over time or lead to abuse or addiction [5]. For these reasons, new therapeutic
options would be advisable for a better resolution of such pathological conditions. Recently,
transient receptor potential vanilloid 1 (TRPV1) was identified as a new putative target
for the inhibition of pain transmission by direct action within the central nervous system
(CNS) [6,7]. TRPV1 belongs to a large family of non-selective calcium-permeant cation
channels, and it is mostly expressed in nociceptive neurons in the CNS, but it is also widely
distributed in peripheral tissues, including vascular arteries, the liver, endometrium and
ovaries, and skin [8]. TRPV1 activation triggers membrane depolarization and an increase
in intracellular calcium levels, promoting a cascade of events with the involvement of
peripheral nociceptors. After this rapid firing phase, the calcium ion intake can render such

Int. J. Mol. Sci. 2024, 25, 7951. https://doi.org/10.3390/ijms25147951 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25147951
https://doi.org/10.3390/ijms25147951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4946-8398
https://orcid.org/0000-0001-9281-034X
https://orcid.org/0000-0002-0263-7107
https://doi.org/10.3390/ijms25147951
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25147951?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 7951 2 of 12

nociceptors insensitive to further stimuli, leading to a desensitization phase, responsible
for a transient analgesic effect. Several factors contribute to the activation of the TRPV1
channel or later desensitization, such as ion concentration, pH, temperature, and small
ligands [7]. Capsaicin falls into the latter category, together with a series of natural com-
pounds able to act as TRPV1 agonists, which first activate the channel, but ultimately lead
to desensitization and inhibition [9]. A variety of capsaicin derivatives have been designed
to obtain the desired pharmacological properties [10,11], but at present, no synthetic or
semisynthetic drug has been released to the market. Even widely used capsazepine is only
used as a biochemical tool to study TRPV ion channels [12]. One of the major reasons for
these limitations is linked to the onset of many adverse reactions as a consequence of low
target selectivity and poor pharmacokinetics profiles. On the other hand, the discovery of
TRPV1 antagonists has taken a few steps forward by introducing some competitive and
non-competitive ligands as drug candidates. One of the competitive antagonists, SB-705498,
was reported to be capable of penetrating the blood–brain barrier (BBB) [13]. Although
in clinical trials it did not provide substantial improvement compared to the placebo, it
never determined the onset of detrimental adverse reactions, such as hyperthermia, which
is frequently associated with TRPV1 antagonism [14]. Starting from these encouraging
results, the bioactive pyrrolidinyl-urea core was hybridized with the phenyl-thiazole moiety
of partial agonist MDR-652 [15], obtaining several new synthetic derivatives [16]. These
newly designed molecules were screened for TRPV1 inhibition by assessing their efficacy
in abolishing the capsaicin-activated receptor’s activity at 10 µM. Their values ranged
from 5 to 89%, where the maximum value reached overlapped with the one reported for
reference antagonist SB-705498.

Most recently, a nanomolar allosteric antagonist of the TRPV1 channel was reported,
namely SB-366791, which was capable of completely abolishing TRPV1 activity at 10 µM [17].
At the same time, the three-dimensional structure of the human TRPV1 channel in complex
with SB-366791 was determined through cryo-electron microscopy (Cryo-EM) techniques
at high resolution (2.3 Å) [18]. This result paved the way for the development of a rational
design strategy to obtain even more effective antagonists of the channel, which had not
been possible beforehand. Although the 2D similarity with SB-366791 is low compared to
the ligands from Qiao et al., we investigated whether the same binding site could be shared
by the hybridized series of compounds. In addition, the assessment of the efficacy of the
newly designed compounds was made possible with high accuracy by the generation of
three-dimensional descriptors within a quantitative structure–activity relationship model
(3D-QSAR). This advanced modeling approach allows researchers to capture the intricate
spatial and electronic features of molecules, providing a detailed understanding of how
structural variations influence biological activity. By integrating these three-dimensional
descriptors, 3D-QSAR models can more accurately predict the potency and efficacy of new
compounds, facilitating the identification of promising candidates for further development.
QSAR studies typically correlate observed activity with the structural properties of putative
binders by exploiting mathematical models. By identifying key structural features that
contribute to the activity, QSAR models enable the rational design of new compounds with
enhanced properties. While such studies are usually performed on IC50 values as the target
variable, we herein demonstrate that such an approach is exploitable for inhibition rates as
well. Several methods for feature and descriptor generation have been developed so far,
based on bi-dimensional and tri-dimensional fingerprints [19,20], whose combination led
to the most informative results [21]. In earlier research, more advanced descriptors such as
4D, 5D, and even 6D have been proposed [22–24], although their full potential has yet to be
fully realized in current research practices. Subsequently, the problem of feature selection
has been addressed as well, with several dimensionality reduction algorithms being used
to extract only the descriptors capable of capturing the key aspects of the training data.
Principal component analysis (PCA) and uniform manifold approximation and projection
(UMAP) are among the prominent methods employed for this purpose. PCA emphasizes
linear relationships among data points, while UMAP excels in capturing non-linear rela-



Int. J. Mol. Sci. 2024, 25, 7951 3 of 12

tionships [25]. After the process of feature selection is completed, a mathematical model is
employed to establish a correlation between the data and the target variable. A plethora
of instances are available to researchers, including random forest (RF), support vector
machine (SVM), Lasso regression, gradient boosting machine (GBM), k-nearest neighbors
(k-NN), and neural networks (NN). Each of these methods offers distinct advantages, and
combining them into an ensemble usually leads to greater chances of obtaining successful
results [26]. As the performance of the model is strictly related to the quality of the input
data, a useful strategy for feature generation is the Comparative Molecular Field Analysis
(CoMFA), capable of integrating 3D structural information of molecules into predicted
models, by generating grid-based molecular interaction fields (MIFs) [27]. Although the
final result of applying this model is generally successful, a significant drawback is that
such algorithms often depend on proprietary software, which is not always accessible to
academic researchers.

This approach aims to illustrate that high performance can be achieved without the
necessity for expensive, proprietary resources. By relying solely on freely available tools, we
demonstrate that significant and reliable results are achievable even with limited resources.

2. Results

Starting from the hybridized synthetic compounds from Qiao et al., we generated up to
100 conformations each, to be screened for fitting on the three-dimensional Cryo-EM struc-
ture of the TRPV1 channel (PDB: 8GFA) [18]. We hypothesized that such compounds would
be able to bind to the same allosteric pocket reported for the co-crystallized antagonist
SB-366791, thus triggering similar pharmacodynamic effects. We selected three pharma-
cophoric features (two aromatic groups and one hydrophobic group) on the SB-366791
scaffold (Figure 1A,B).
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pharmacophoric features, either involving one or multiple conformers, depending on the 

Figure 1. (A,B) Overview of the human TRPV1 channel in complex with inhibitor SB-366791 and the
pharmacophore model. (A) Enlarged view of the hTRPV1 channel. The three-dimensional structure
of the TRPV1 channel (green cartoon-like representation) harbors an allosteric binding site, occupied
by inhibitor SB-366791 (purple spheres). (B) Pharmacophore model. Three pharmacophoric features
are mapped on the SB-366791 bioactive pose (purple ball-and-stick representation): two aromatic
features (purple mesh grid) and one hydrophobic feature (green mesh grid).

Interestingly, both SB-705498 (used as reference) and the hybridized compounds
demonstrated the ability to occupy the selected binding pocket while respecting all three
pharmacophoric features, either involving one or multiple conformers, depending on the
steric clashes with the receptor sidechains and the reciprocal orientation of the aromatic moi-
eties. Some of the most active compounds of the set demonstrated extremely low root mean
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square deviations (RMSDs) compared to the SB-366791 bioactive pose. For instance, 3i was
reported to inhibit capsaicin-activated human TRPV1 channel activity of 83% and showed
an RMSD of 0.079 Å. Overall, the deviation of the coordinates ranged from 0.030 to 0.876 Å,
which was a surprising result given the variability across the 83 investigated molecules.

Such encouraging findings led to the development of a CoMFA-based 3D-QSAR re-
lationship model, based on the three-dimensional coordinates of the antagonists within
the evaluated binding site. The inhibition rate values were transformed into their negative
decadic logarithm and combined with the screened structures for the 3D-QSAR model
generation. In the 3D-QSAR study, MIFs were generated and analyzed for correlations with
activity using partial least squares (PLS) regression and the variable selection methods im-
plemented in Open3DQSAR software [28]. To assess the 3D-QSAR models’ performances,
we divided the compounds into 20 different training and validation sets using different
splitting schemes, always maintaining 90% of the data for training and 10% for validation.
From these runs, we obtained a coefficient of determination (R2) of 0.78 with a standard
deviation (SD) of 0.12, indicating consistent predictive accuracy across the different splits.
The results obtained for the best model in terms of R2 are shown in Figure 2. The plot
showcases how closely the predictions align with experimental data, highlighting the
efficacy of the PLS regression model in both the training and validation phases.
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Figure 2. Predicted inhibition rates by PLS regression (y-axis) versus experimental inhibition rates
taken from [16] (x-axis) for the training set (blue dots) and validation set (red dots).

After the validation of the 3D-QSAR model, we investigated whether we could design
potentially more effective antagonists of the human TRPV1 channel. Following the rationale
of most active ligands, we inserted key point modifications on the original scaffolds by
combining the most remarkable moieties, while accounting for shape complementarity
with the receptor pocket. The newly designed molecules that have been reported as
hit compounds after pharmacophore screening are reported in Table 1. The best-fitting
conformers of the hit compounds were analyzed with the newly generated 3D-QSAR model
to predict their inhibition rates. The results spanned across a range of 25%-96% (Figure 3).
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Table 1. Test set of compounds 8a,b, 9a,b, 10a,b, 11a,b, 12a–l, 13a–e. The numeric prefix in the names
of the series of compounds refers to diverse initially modified scaffolds.
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13e 5-(2-pyridonyl) m-iPr-phenyl S N

The most interesting compound, 11b, showed a predicted value of 96%, being even
more effective than previously reported antagonists. Intriguingly, it demonstrated the low-
est RMSD across the series, with a value of 0.249 Å compared to SB-366791’s experimentally
determined pose. Even though compound 11b was almost lying outside our distribu-
tion of results, exceeding the interval of values |µ ± 2σ| (mean = 40.96%; median = 38%;
SD = 15.27%), it should be noted that hit compounds of the 9x and 11x series demon-
strated a greater tendency of returning inhibitory values. Remarkably, simple phenyl and
m-F-phenyl substituents at R1 led to the best results, maintaining a pure hydrophobic
nature. On the other hand, the introduction of polar groups or heterocycles at the R2
moiety level promoted the achievement of higher inhibition rates, in concordance with
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the electrostatics-based molecular field. At the same time, a change in the core heterocycle
type into oxazole or thiazole with different connectivity and substitution at R2 with a polar
aromatic substituent led to higher inhibition rates (50% or higher) compared to those of
parent compounds (lower than 50%). One exception was observed for compound 13c,
which integrated a well-established m-F-phenyl moiety at position R1 while introducing a
3-(2-pyridonyl) group at R2, which can undergo tautomerism to generate aromatic 3-(2-
hydroxy-pyridine). Such a combination remarkably outperformed all other newly designed
compounds with pyridone rings.
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to the 3D-QSAR model. The red point represents the reference compound SB-366791, allowing for a
direct comparison of its inhibition rates against those of the newly designed compounds.

To reinforce our findings, we performed molecular docking simulations on the in-
vestigated binding pocket specifically for the most promising hit, compound 11b. Such
simulations not only validate our initial screening results but also provide a deeper under-
standing of the structural features critical for binding efficacy. While reference compound
SB-366791 showed a hydrogen bond with Tyr511 (within segment S3 of the channel), com-
pound 11b was unable to establish such interaction, thus forming only weak hydrophobic
interactions with this residue (Figure 4). Nevertheless, 11b established several hydrogen
bonds, employing the 2,4-dihydroxy-phenyl moiety as a hydrogen bond acceptor for the
Arg557 sidechain and the Glu570 nitrogen backbone atom and as a hydrogen bond donor
towards the Gln701 sidechain carbonyl atom. Extensive hydrophobic interactions were
identified, involving the opposite side of the molecule, described by the m-F-phenyl ring
and the thiazole heterocycle and segment S4 of the channel (Phe543, Ala546, Leu547, and
Thr550). Leu515 (within segment S3) was involved in the interaction with the central pyrro-
lidine group, which established hydrophobic contacts with Ile573 within the connection
segment S4-S5 on the other side of the cleft as well. Within the same connection segment,
Ala566 was responsible for the establishment of hydrophobic interactions with the 2,4-
dihydroxy-phenyl ring. Lastly, the hydrophobic sidechains of Ala666 and Leu670 residues,
belonging to segment S6 of the subsequent protein chain of the channel, interacted with
the opposite side of the aromatic m-F-phenyl and thiazole rings. Overall, SB-366791 and
compound 11b returned excellent docking scores, of −8.9 and −10.0 kcal/mol, respectively.
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Figure 4. Comparative binding poses of SB-366791 and 11b after molecular docking. The interaction
network of the two compounds within the hTRPV1 channel is shown in the picture. Interacting
residues are depicted in green ball-and-stick representation. SB-366791 (purple ball-and-stick rep-
resentation) forms a hydrogen bond with Tyr511 (orange dashed lines). 11b (pink ball-and-stick
representation) establishes three hydrogen bonds with Arg557, Gln701, and Glu570 (orange dashed
lines). Hydrophobic interactions are not explicitly marked for the sake of clarity.

3. Discussion

The main findings of the present study highlighted the possibility of designing novel
human TRPV1 channel antagonists, starting from previously developed compounds. The
insertion of key modifications on the original scaffolds led to the identification of a more
inhibitory compound, as predicted by our 3D-QSAR model. Our model, though relying on
classical molecular mechanics methods only, demonstrated good overall performance on
the validation sets (R2 = 0.78). In addition, it integrated MIFs as developed within a CoMFA
methodology, which is the gold-standard theory for 3D-QSAR model generation. Such
a procedure interpreted each atom on the molecular grid according to an electrostatics-
based force field, after alignment of the ligands to a common pharmacophore hypothesis.
Since three pharmacophoric features usually represent a good balance between molecular
description and adequate flexibility for small ligands, we successfully screened the training
and test sets, accounting for exclusion spheres belonging to the receptor as well. The
CoMFA strategy promoted the inclusion of the investigated binding site inside the 3D-
QSAR model, according to the evaluated binding poses. The same rationale was followed
when choosing the number of principal components to include in the PLS model, which
was reinforced by the attainment of optimum accuracy when this value was equal to five.
The implementation of a higher number of up to nine principal components led to an
evident loss in accuracy, while selecting a minor number led to insufficient capturing of the
sparsity of the data.

In the present molecular modeling approach, we evaluated an allosteric binding site
to inhibit human TRPV1 channel activity. Mutagenesis on Tyr511 and Thr550 residues
demonstrated that the modification of these causes reduced sensitivity to capsaicin in
both rat and human TRPV1 [29,30]. In addition, hydrophobic interactions established
with Leu515 and Leu547 residues were vital to observe antagonism for SB-366791 and
were successfully maintained for the top-rank 11b compound. The establishment of three
extra hydrogen bonds with Arg557, Gln701, and Glu570 remarkably improved the stability
of the binding pose of 11b, leading to a more favorable docking score (−10.0 kcal/mol),
if compared to reference inhibitor SB-366791 (−8.9 kcal/mol). Performing mutagenesis
experiments on these residues would provide valuable insights into understanding the
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mechanism of action more in detail. Intriguingly, compound 11b introduced two polar
hydroxy moieties on the side aromatic ring, being one of the most polar compounds of
the test set, while the substitution of the same groups with methoxy moieties led to the
abrogation of activity due to steric clashes with the receptor’s sidechains. For these reasons,
the original lipophilicity problem, overcome for the 7q ligand by Qiao et al., was again
encountered for the compounds of the test set, which would be unable to cross the BBB
and reach the CNS. To address this issue, we predicted that compound 7q and methoxy-
substituted 11b could be CNS-permeant, while 11b was not (or to a very low extent). Such
a finding was confirmed by two tools for the prediction of this pharmacokinetic property
(lightBBB [31] and cbligand [32] online servers), after demonstrating consensus results. The
former algorithm predicted 11b as having low permeance (score of 0.379), while methoxy-
substituted 11b and 7q compounds were predicted as being very permeant (scores of 4.613
and 4.488, respectively). The latter tool returned just a simple boolean result, classifying 11b
as non-permeant, but methoxy-substituted 11b and 7q compounds as permeant. Therefore,
we believe that BBB delivery through the introduction of small lipophilic substituents on
the two 11b hydroxy groups, to later undisclose them by active metabolism, could be
a useful strategy to overcome this issue. Nevertheless, the prodrug approach has been
widely used in medicinal chemistry to fine-tune the drug candidates’ formulation and
pharmacokinetics properties [33]. Taken together, our methodology demonstrated the
feasibility of conducting a chemical space search by rational design, relying exclusively on
open-access tools. This approach not only ensures cost-effectiveness and accessibility but
also promotes transparency and reproducibility in research. The MIFs generated during
our study proved to be highly reliable and outperformed the inclusion of both 2D and 3D
fingerprints, highlighting their superiority in capturing the essential features required for
accurate predictions.

4. Materials and Methods
4.1. Pharmacophore Modeling

TRPV1 antagonists ((S)-N-(3-isopropylphenyl)-2-(5-phenylthiazol-2-yl) pyrrolidine-
1-carboxamide derivatives, previously selected after systematic in vitro and in vivo bioas-
says [16]) were considered as the starting point of our study (Tables S1–S3). All the synthetic
compounds were manually sketched and converted into their three-dimensional coordi-
nates with openbabel 2.4.1 [34]. Antagonist SB-705498 was added as well as a reference
compound. The obtained ligands were expanded into a multi-conformational database
by generating up to 100 conformers for each compound with balloons according to the
electrostatics Merck force field (MMFF94) [35,36].

Before 3D-QSAR modeling, it was vital to align the compounds on the same phar-
macophore model, accounting for the best-scoring pose on the human TRPV1 receptor.
The pharmacophore hypothesis was generated within the Pharmit platform [37], starting
from the Cryo-EM model of the human TRPV1 channel in complex with the SB-366791
antagonist (PDB: 8GFA [18]) at 2.3 Å resolution. The SB-366791 antagonist was selected to
map the pharmacophoric features (Figure 1B), along with receptor exclusion spheres set at
1.5 Å tolerance to allow for slight shape adaptability. After screening the pharmacophore
with the Pharmit-compiled multi-conformational database, we selected the top-ranking
conformer for each compound, matching all the selected features and showing the lowest
RMSD compared to the SB-366791 ligand.

4.2. Three-Dimensional-QSAR Model Generation and Validation

The final 83 fitting conformers were used to generate the CoMFA-based 3D-QSAR
model within the Open3DQSAR open-access tool [28]. For this modeling, the box size
around the molecular ensemble and the grid step size (1.0 Å) were chosen as default
parameters, and MIFs were then calculated using the MMFF94 [38]. To build the 3D-QSAR
models, PLS regression was employed following the extraction of 5 top-in-rank principal
components. To evaluate the performance of the model, the coefficient of R2 was computed
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to measure how well the model explained the variance in the data relative to the mean of
the observed outcomes. Additionally, the SD was calculated to assess the dispersion of or
variability in the predicted values around the actual values, providing insights into the
consistency and precision of the model’s predictions. The formulas for R2 and SD are given
as follows:

R2 = 1 − ∑n
i=1(yi − ŷı)

2

∑n
i=1(yi − y)2 , (1)

SD =

√
∑n

i=1(yi − ŷı)
2

n − 1
(2)

where yi is the observed value, ŷı is the predicted value, y represents the mean of the
observed values, and n is the number of observations.

The same process was adopted for the generation of the features of the test set of
compounds, as detailed in Table 1. The compounds of the test set were designed and
manually sketched by applying point modifications on the original scaffolds in the training
set. A rational design approach was followed, considering the investigated binding site
shape, and returned the most active ligands of the training set. A multi-conformational
database was compiled as previously described and screened towards the previously built
pharmacophore hypothesis.

4.3. Molecular Docking

The three-dimensional structure of the human TRPV1 channel (PDB: 8GFA [18])
was uploaded to the CHARMM-GUI platform [39–41] to model missing loops, to assign
the correct protonation to sidechain residues at physiological pH, and to enclose the
receptor in a membrane of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) lipids
(by placing 120 and 108 entities in the upper and lower leaflets, respectively). N- and
C-termini were capped using the acetylation and carbamidomethylation modifications,
respectively. In addition, the system was placed in a cubic box of water (TIP3P) at a
neutralizing ionic concentration of 0.15 M NaCl. The final model, comprising 93,126 atoms,
was gradually minimized to release molecular strains and steric clashes with gromacs
2022.5 [42] according to the CHARMM36m force field [43]. We utilized the steepest descent
algorithm until convergence of the potential to 10 kJ/mol/nm. The energy-minimized
structure served as the protein receptor during the molecular docking simulation, after its
conversion into pdbqt format with openbabel as implemented inside ADFR suite 1.0 [44].
Flexibility was attributed to the Tyr511 residue of the channel during the molecular docking
simulation. Compound 11b and reference compound SB-366791 were converted into
their three-dimensional coordinates in pdbqt format and used as input for the subsequent
molecular docking simulation. A simulation box of 16 × 16 × 20 Å was generated by
selecting SB-366791 as its center. Autodock vinaXB (AutoDock Vina, The Scripps Research
Institute, 2023) was used to carry out the calculations, with exhaustiveness set to 32 from
the default 8, to increase accuracy [45]. A maximum of 10 poses were generated per input
structure. Interaction networks were identified with the PLIP web server [46]. Visualization
and figure generation were carried out within the Pymol v2.5.2 molecular graphics interface
(The PyMOL Molecular Graphics System, Version 3.0 Schrödinger, LLC).

4.4. BBB Permeability Prediction

The molecular structures of 11b, methoxy-substituted 11b, and reference 7q com-
pounds were provided as input to two different tools for the prediction of blood–brain
barrier permeability: lightBBB [31] and cbligand [32]. For lightBBB, only the 2D SMILES
representations of the molecules were used as input for the classification algorithm (ei-
ther BBB-permeant or non-permeant). In contrast, for the cbligand tool, 166-bit MACCS
keys were used as 2D fingerprints that were later subjected to an adaptive boosting meta-
algorithm as an instance classification model (AdaBoost).
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5. Conclusions

The present study has highlighted the potential of using previously developed com-
pounds for the design of novel antagonists targeting the human TRPV1 channel. Based on
our CoMFA-based 3D-QSAR model, we successfully identified a compound with a superior
inhibition rate and favorable binding characteristics. A key aspect of our methodology was
the exclusive use of open-access tools, which provided a significant advantage by enabling
us to achieve excellent performance with minimal resources. This approach accelerates the
research process and makes advanced computational techniques accessible to academic
and low-resource settings. However, it is important to recognize the limitations of relying
solely on in silico methods. While our findings offer valuable insights, they constitute only
the initial phase of a more comprehensive research process. The experimental validation of
the identified compounds is therefore necessary to confirm the predicted effects and ensure
the reliability of our results.

In the future, dynamics studies on the flexibility of the TRPV1 channel, when treated
with the compound, could be carried out to analyze the channel conformations and to
observe the molecular reorganization events starting from the occupation of the allosteric
binding pocket. These insights could provide a deeper understanding of the interaction
mechanisms at play and guide further refinement of the antagonists. Additionally, future
research will focus on optimizing BBB permeability and exploring prodrug strategies
to enhance the pharmacokinetic properties of these novel compounds. In addition, the
implementation of quantum-mechanical methods could lead to the improved accuracy
and predictability of the compounds’ features and binding properties. By integrating
these advanced techniques, we aim to refine the design and efficacy of TRPV1 antagonists,
ultimately contributing to the development of more effective therapeutic agents.
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