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Abstract. In this paper we thoroughly investigate several kinds of residuated

ordered structures, connected with propositional logics. In particular we give

ternary deduction terms for several classes of algebras, that are the equivalent

algebraic semantics of deductive systems, coming from logics not necessarily

satisfying the structural rules.

0. Introduction

This paper can be viewed as a sequel to [7]; in the latter the authors in-

vestigate a large class of varieties with definable principal congruences that have

a ternary deduction term (TD-term), a natural generalization (to non semisimple

varieties) of the ternary discriminator term. The existence of such a term appears

to be the characteristic feature of many varieties of algebras that arise naturally

in algebraic logic. That paper, together with its sequel [8], are part of a program

to develop a unified theory for the algebras arising from logic, within a context

of universal algebra. The specific purpose of [7] is to explore to what extent the

existence of a TD-term of a particular kind might serve as one of the basic concepts

on which such theory can be based. For this purpose it is desirable to consider as

wide a class as possible of algebras that are known to arise from logic: in [7] the

variety of hoops with compatible operators is chosen for this purpose. Since the

authors in [7] did not claim in any way that the chosen class is the most general,

one cannot help wondering if the same theory can be exported to wider classes

of varieties. This is exactly the purpose of this paper; armed with the additional

insight afforded by the recent amount of work on substructural logic we extend the
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398 P. AGLIANO

theory to a much wider (and perhaps more natural) class of algebras than hoops.

More specifically we consider varieties of semilattice-ordered residuated commuta-

tive monoids (possibly with compatible operations). These algebras arise naturally

from the algebrization of linear logic and generalize hoops in two different ways:

first the ordering of hoops (the so-called inverse divisibility ordering) is replaced by

an arbitrary semilattice ordering; secondly we do not require the integrality of the

monoid, which in metalogical terms amounts to abandoning the structural rule of

weakening. It turns out that almost the whole theory of TD-terms, and the filter

theory on which is based, extends without much problems to these structures.

This paper is divided into four sections. In Section 1 we collect the basic

definitions and the main results we are going to use in the paper. In Section 2

we investigate several classes residuated semilattices and monoids and we start

developing a theory of filters for them. Section 3 is devoted to the main theorems

about TD-terms. In Section 4 we discuss the relationships that our investigations

have with a more general topic: the algebrization of logical systems in the Blok-

Pigozzi’s fashion [5].

Finally two words on general notation. Our usage is more or less the standard

one for general algebra (see [22]) and abstract algebraic logic (see [6]), possibly

with two exceptions. If A is an algebra and X ⊆ A, then we denote by ϑA(X) the

congruence of A generated by all the pairs of elements from X . Likewise SubA(X)

denotes the subalgebra of A generated by X . If X = {a, b} then we will write

ϑA(a, b) and SubA(a, b).

1. Preliminaries

In their sequence of papers [4],[3],[7] and [8], Blok and Pigozzi studied varieties

with equationally definable principal congruences. These are varieties in which the

principal congruences of any algebra are uniformly definable via a finite set of

equations. In such varieties the compact congruences of any algebra form a (dual)

Brouwerian semilattice, hence the variety mirrors in its congruence structure a

significant fragment of intuitionistic logic. The connection can be made stricter is

several cases; what follows is a brief account of the case we interested in.

A ternary deduction term (TD-term) for a class K of algebras is a ternary

term such that, for any A ∈ K and a, b, c, d ∈ A

p(a, a, b) = b,

p(a, b, c) = p(a, b, d) if (c, d) ∈ ϑ(a, b).
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Ternary deduction terms in residuated structures 399

Any variety having a ternary deduction term has equationally definable principal

congruences:

(c, d) ∈ ϑ(a, b) iff p(a, b, c) = p(a, b, d).

In fact one implication is part of the definition and if p(a, b, c) = p(a, b, d), then

c = p(a, a, c) ϑ(a, b) p(a, b, c) = p(a, b, d) ϑ(a, b) p(a, a, d) = d.

We will use the following sufficient condition for the existence of TD-term (the

proof can be found in [7] pp. 26–27):

Theorem 1.1. Let V be a variety; p(x, y, z) is a TD-term for V if and only if

1. p(x, x, y) ≈ y hold in V;

2. for any A ∈ V, a, b ∈ A and any unary polynomial q(x) of A

p(a, b, q(a)) = p(a, b, q(b)).

A TD-term is commutative if for any a, b, c, a′, b′ ∈ A

p(a, b, p(a′, b′, c)) = p(a′, b′, p(a, b, c));

it is regular with respect to a constant 1 if

p(p(a, b, 1), 1, a) = p(p(a, b, 1), 1, b).

A commutative, regular TD-term for V can be used to construct operations that

reflect faithfully the conjunction and the (dual) relative pseudocomplementation

of the Brouwerian semilattice of compact congruences of algebras in V (see [3] and

[7]).

In order to justify our choice of names for the structures we are going to

consider in Section 2 we anticipate here part of the discussion about the relation-

ships of our investigation with the algebrization of logical systems. Let L be a

propositional language containing a binary connective →. Among the possible ax-

ioms involving only → some have received a particular attention (here p, q, r are

propositional variables):

p→ p (reflexivity)(I)

(q → r)→ ((p→ q)→ (p→ r)) (transitivity)(B)

(p→ (q → r))→ (q → (p→ r)) (exchange)(C)

p→ (q → p) (weakening)(K)

(p→ (p→ q))→ (p→ q) (contraction),(W)
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400 P. AGLIANO

The names (I),(B),(S),(W) and (K) are taken from combinatory logic; they some-

times contrast with their “long” names but they are very traditional. If a logic on

L has at least modus ponens as inference rule, then these axioms are well-known

not to be independent. Any logic over L can be classified according to the ax-

ioms satisfied by →. For instance classical and intuitionistic propositional logics

are KS-logics, Relevance Logic is a (distributive) BCW-logic, some of the logics

studied by Ono and Komori in [23] are BCK-logics; Linear Logic is a BCI-logic. In

contrast with this usage a logic satisfying (B), (K) and (I) is traditionally called a

BCC-logic. The axioms (C),(W) and (K) (exchange, contraction and weakening)

are usually called structural rules (for →) and any logic lacking at least one of

them is usually called a substructural logic. The motivations for abandoning the

structural rules for → are usually extralogical. Their nature can be set-theoretic

(as for BCC and BCK-logics), philosophical (as for Relevance Logic and Compar-

ative Logics) or even proof-theoretical (as for Linear Logic). When an (at least)

BI-logic is algebraized in the Blok–Pigozzi style [5], the implication induces on the

algebraic structure a partial order; if more connectives are present in the language

this may become a semilattice or a lattice order. In many interesting substruc-

tural logics two more binary connectives · and ∧ stand in the forefront and the

resulting structures are semilattice ordered residuated semigroups. If the logic has

a constant ⊤, meaning universal truth, then the resulting structures are monoids; if

exchange is present then the monoids are commutative and if weakening is present

the monoids are integral, i.e. ⊤ is the largest element in the order. In classical and

intuitionistic logic the two connectives · and ∧ turn out to be equal and the resulting

structures are in fact relatively pseudocomplemented semilattices, i.e. Brouwerian

semilattices; these semilattices turn out to be distributive in the usual sense. The

metalogical point of this paper is that many varieties of algebras that arise from

the algebrization of BCI-logics have in fact regular, commutative TD-terms.

The idea of conducting such an investigation came to the author he was

working on the algebraic semantics for Linear Logic [2]; he wishes to thank A.

Ursini for drawing his attention to the subject.

2. Filters in residuated structures

2.1. Semilattices. The idea behind the structures in this subsection is to consider

“residuals without residuation”. Similar structures appear in [25] (Sec. 10) and es-

pecially in [14] under various names. Our choice of names is designed to emphasize

the properties of the “implication” involved.
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Ternary deduction terms in residuated structures 401

A BI-semilattice is a structure 〈A,→,∧, 1〉 such that 〈A,∧〉 is a semilattice

and for any a, b, c ∈ A the following hold:

1→ a = a(2.1)

a→ a ≥ 1(2.2)

(a→ b) ∧ (a→ c) = a→ (b ∧ c)(2.3)

a→ b ≤ (c→ a)→ (c→ b)(2.4)

a→ b ≥ 1 implies a ≤ b(2.5)

a ≤ b implies b→ c ≤ a→ c.(2.6)

It is clear from the presentation that the class of BI-semilattices is a quasivariety

(and we suspect it is a proper quasivariety). First we note that in a BI-semilattice

(2.7) a ≤ b iff a→ b ≥ 1.

In fact, if a ≤ b then a ∧ b = a and by (2.3)

(a→ a) ∧ (a→ b) = a→ (a ∧ b) = a→ a;

hence a→ b ≥ a→ a ≥ 1 by (2.2). For any BI-semilattice A set ∇A = {a : a ≥ 1}.

An (implicative) filter of a BI-semilattice is a semilattice filter F containing 1 (hence

∇A ⊆ F ) and closed under modus ponens: if a, a→ b ∈ F , then b ∈ F .

An enriched BI-semilattice is an algebra A of the right type, whose {→,∧, 1}-

reduct Ā is a BI-semilattice. By a filter of an enriched BI-semilattice we will always

mean a filter of the underlying BI-semilattice structure.

If A is an (enriched) BI-semilattice and θ ∈ Con(A), then

Fθ = ∇A/θ =
⋃
{a/θ : a ≥ 1}

is always a filter. In fact 1 ∈ Fθ; if u ∈ Fθ and u ≤ v, then u → v ≥ 1. But u θ a

for some a ≥ 1 and so u ∧ 1 θ a ∧ 1 = 1; therefore

v = 1→ v θ u ∧ 1→ v

and

1 ≤ u→ v ≤ u ∧ 1→ v,

implying v ∈ Fθ. Moreover if u, u → v ∈ Fθ, then again u ∧ 1 θ 1 and u → v ≤

(u ∧ 1)→ v ∈ Fθ. Hence

v = 1→ v θ (u ∧ 1)→ v

and v ∈ Fθ. A filter F of A that is Fθ for some θ ∈ Con(A), will be called a

congruence filter; it is easily seen that the congruence filters form a complete lattice

under inclusion, which will be denoted by CFil(A). For B ⊆ A the congruence filter

generated by B will be denoted by CFA(B).
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402 P. AGLIANO

Theorem 2.1. Let A be an enriched BI-semilattice such that Ā/α is a BI-

semilattice for any α ∈ Con(A). Then CFil(A) and Con(A) are isomorphic via

the mapping

F 7−→ θF = {(a, b) : a→ b, b→ a ∈ F}

and the inverse mapping is

θ 7−→ Fθ = ∇A/θ.

Proof. First suppose that F ∈ CFil(A), i.e. F = Fα for some α ∈ Con(A). If

a → b, b → a ∈ Fα, then a → b α u with u ≥ 1. Then (a → b) ∧ 1 α 1 and

hence (2.7) gives a/α = b/α, i.e. (a, b) ∈ α. On the other hand if (a, b) ∈ α, then

a → b, b → a α a → a ≥ 1 hence a → b, b → a ∈ Fα. We have thus proved that

θFα
= α and hence the mapping is well defined and onto.

Assume now θF ∈ Con(A) for a filter F ; we will show that F = FθF
, thus

proving that the mapping is one-to-one. If a ∈ FθF
, then there is a u ≥ 1 such that

a → u, u → a ∈ F ; but u ∈ F and by modus ponens a ∈ F . Suppose now that

a ∈ F ; then 1→ a ∧ 1 = a ∧ 1 ∈ F and by (2.6), 1 = 1 → 1 ≤ a ∧ 1 → 1 ∈ F . So

(a ∧ 1, 1) ∈ θF and so (a ∧ 1→ a, a) ∈ θF . Since (2.6) gives

1 ≤ a→ a ≤ a ∧ 1→ a.

we get a ∈ FθF
and so F = FθF

. An obvious modification of the above gives the

fact that the mapping and its inverse are order preserving. But it is folklore that

this implies that the map is a complete lattice isomorphism.

Corollary 2.2. Let A be an enriched BI-semilattice satisfying the hypothesis of

Theorem 2.1. Then for any c, d ∈ A and B ⊆ A, (c, d) ∈ ϑ(B) iff c ↔ d ∈

CFA({a↔ b : a, b,∈ B}), where as usual x↔ y := (x→ y) ∧ (y → x).

In particular (c, d) ∈ ϑ(a, b) iff c↔ d ∈ CFA(a↔ b)

Proof. By Theorem 2.1, (c, d) ∈ ϑ(B) iff c↔ d ∈ Fϑ(B); moreover

Fϑ(B) = F⋂{α∈Con(A):(a,b)∈α, a,b∈B}

=
⋂
{Fα : (a, b) ∈ α, a, b ∈ B}

=
⋂
{F : a↔ b ∈ F, a, b ∈ B}

= CFA({a↔ b : a, b ∈ B})

Throughout this paper section we deal with many kinds of enriched BI-

semilattices. In each case the key question is always: what are the congruence

filters? Let us answer this question first for varieties of BI-semilattices.
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Ternary deduction terms in residuated structures 403

Proposition 2.3. Let V be a variety of BI-semilattices and A ∈ V. A filter F of

A is a congruence filter iff

(∗) a→ b, b→ a, c→ d, d→ c ∈ F implies (a→ c)→ (b→ d) ∈ F.

Proof. A satisfies the hypothesis of Theorem 2.1. Hence for any filter F of A, if

θF is a congruence, then F = FθF
and so it is a congruence filter. Assume now

that (∗) holds for a filter F . We show that θF is a congruence. It is symmetric by

definition, reflexive since 1 ∈ F and a → a ≥ 1, and transitive by (2.4). The fact

that is compatible with→ is just (∗) while compatibility with ∧ is a straightforward

exercise using (2.3) and (2.7).

Conversely if F = Fα for some α ∈ Con(A) and a → b, b → a, c → d, d →

a ∈ Fα, then by Theorem 2.1 (a, b), (c, d) ∈ α. Hence (a → c, b → d) ∈ α and so

(a→ c)→ (b→ d) ∈ Fα.

In view of the previous proposition it is natural to ask whether there are “in-

teresting” varieties of BI-semilattices. Of course the answer is yes and we proceed

to introduce one of them.

A BCI-semilattice is a BI-semilattice satisfying the equations

x→ (y → z) = y → (x→ z)(2.8)

x ≤ ((x→ y) ∧ 1)→ y.(2.9)

Proposition 2.4. The class of BCI-semilattices is a variety, axiomatized by (2.1)–

(2.4), (2.8) and (2.9).

Proof. Any BCI-semilattice must satisfy those equations. Let A be an algebra (of

the right type) satisfying (2.1)–(2.4), (2.8) and (2.9). It is sufficient to show that

it satisfies (2.5) and (2.6). Let a, b ∈ A with a→ b ≥ 1. Then by (2.9)

a ≤ ((a→ b) ∧ 1)→ b = 1→ b = b

hence (2.5) holds. Now observe that A must satisfy also (2.7), that is a consequence

of (2.2), (2.3) and (2.5). Also observe that (2.4), (2.7) and (2.8) imply the equation

x→ y ≤ (y → z)→ (x→ z).

Hence if a, b, c ∈ A and a ≤ b then

1 ≤ a→ b ≤ (b→ c)→ (a→ c)
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404 P. AGLIANO

and so b→ c ≤ a→ c.

Note that if A is an enriched BCI-semilattice, then A satisfies the hypotheses

of Theorem 2.1, hence CFil(A) and Con(A) are isomorphic. In BCI-semilattices

congruence filters are very friendly.

Proposition 2.5. In a BCI-semilattice every filter is a congruence filter.

Proof. Let A a BCI-semilattice and let F be a filter. In view of Proposition 2.3 it

is enough to show that (∗) holds for F . Let then a → b, b→ a, c → d, d → c ∈ F .

Then by (2.4)

c→ d ≤ (a→ c)→ (a→ d) ∈ F

and by (2.4), (2.7) and (2.8)

b→ a ≤ (a→ d)→ (b→ d) ∈ F.

By the same token

(a→ c)→ (a→ d) ≤ ((a→ d)→ (b→ d))→ ((a→ c)→ (b→ d)) ∈ F

and by modus ponens we get

(a→ c)→ (b→ d) ∈ F.

Congruences also behave well in BCI-semilattices.

Proposition 2.6. The variety of BCI-semilattices is congruence permutable with

Mal’cev term

m(x, y, z) = [((x→ y) ∧ 1)→ z] ∧ [((z → y) ∧ 1)→ x]

Proof. Recall (2.9) and compute

m(x, y, y) = [((x→ y) ∧ 1)→ y] ∧ [((y → y) ∧ 1)→ x]

= [((x→ y) ∧ 1)→ y] ∧ x = x

and similarly m(x, x, y) = y.

A BI-monoid is a semilattice ordered left-residuated monoid i.e. an algebra

〈A,→,∧, ·, 1〉 where

1. 〈A,∧〉 is a semilattice;

2. 〈A, ·, 1〉 is a monoid;

3. a ≤ b implies ac ≤ bc and ca ≤ ca, i.e. the multiplication respects the meet

ordering;

4. a ≤ b→ c iff ab ≤ c , i.e. → is a left residuation w.r.t. the meet ordering.

Acta Sci. Math. (Szeged),64:3−4(1998)
All rights reserved c© Bolyai Institute, University of Szeged



Ternary deduction terms in residuated structures 405

Proposition 2.7. In a BI-monoid the following hold:

1. x ≤ y iff x→ y ≥ 1;

2. 1→ x = x;

3. (y ∧ z)x ≤ yx ∧ zx;

4. x(y ∧ z) ≤ xy ∧ xz;

5. x→ y ≤ (z → x)→ (z → y);

6. x ≤ y implies z → x ≤ z → y and y → z ≤ x→ z.

Proof. 1. is obvious by left residuation and the fact that 1 is a two-sided unit. For

2. from x ≤ x we get x ≤ 1 → x and from 1 → x ≤ 1 → x we get 1 → x ≤ x. 3.

and 4. hold, since the multiplication respects the meet ordering. For 5. we have

(x→ y)(z → x)z ≤ (x→ y)x ≤ y

and left residuation does the trick.

Finally to prove 6., assume x ≤ y. Then from z → x ≤ z → x one gets

(z → x)z ≤ x by left residuation, hence (z → x)z ≤ y and so z → x ≤ z → y. On

the other hand from x→ y ≥ 1 and 4.

y → z ≤ (y → z)(x→ y) ≤ x→ z.

The class of BI-monoids is in fact a variety, as the following proposition shows.

Proposition 2.8. The class of BI-monoids is a variety L. 〈A,→,∧, ·, 1〉 ∈ L iff

1. 〈A,∧〉 is a semilattice;

2. 〈A, ·, 1〉 is a monoid;

3. the following hold in A :

x→ x ≥ 1(2.10)

xy → z = x→ (y → z)(2.11)

(x→ y) ∧ (x→ z) = x→ (y ∧ z)(2.12)

(x→ y)x ≤ y(2.13)

(y ∧ z)x ≤ yx ∧ zx(2.14)

x→ y ≤ (z → x)→ (z → y).(2.15)
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Proof. First we show that (2.10)–(2.15) hold in a BI-monoid. In Proposition 2.7

we have shown that (2.13), (2.14) and (2.15) hold in any BI-monoid, while (2.10)

is a trivial consequence of left residuation. For (2.11) start from x → (y → z) ≤

x → (y → z) and apply residuation twice to get x → (y → z) ≤ xy → z. For the

other inequality use the same technique starting from xy → z ≤ xy → z. Finally

(x → y) ∧ (x → z) ≥ x → (y ∧ z) follows from Proposition 2.7(4). On the other

hand

((x→ y) ∧ (x→ z))x ≤ (x→ y)x ∧ (x→ z)x ≤ y ∧ z

hence by left residuation (x→ y) ∧ (x→ z) ≤ x→ (y ∧ z).

Assume now that an algebra A satisfies 1.,2. and 3. above. Left monotonicity

of the multiplication follows from (2.14). Then let us show that for a, b ∈ A

a ≤ b iff a→ b ≥ 1.

If a ≤ b then a ∧ b = a and by (2.12)

(a→ a) ∧ (a→ b) = a→ (a ∧ b) = a→ a;

hence a → b ≥ a → a ≥ 1 by (2.10). Conversely if a → b ≥ 1, then by (2.13) and

left monotonicity

a ≤ (a→ b)a ≤ b.

Hence ab ≤ c iff 1 ≤ ab → c iff (by (2.11)) 1 ≤ a → (b → c) iff a ≤ b → c. Hence

A is residuated with respect to ≤.

Finally assume a ≤ b. From bc ≤ bc we get b ≤ c→ bc and hence a ≤ c→ bc

so ac ≤ bc. Hence the multiplication is monotonic in both arguments and A is a

BI-monoid.

Note that along the way we have also shown that BI-monoids are enriched BI-

semilattices, i.e. the class of {→,∧, 1}-subreducts of BI-monoids consists entirely

of BI-semilattices. Accordingly a filter of a BI-monoid is simply a filter of the

underlying BI-semilattice structure. It is an easy exercise to show that filters in

this case are simply semilattice filters containing 1 and closed under multiplication.

We will now describe the congruence filters of a BI-monoid.

Theorem 2.9. The congruence filters of a BI-monoid A coincide with the congru-

ence filters of the underlying BI-semilattice structure.
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Proof. Since the converse is obvious, it is sufficient to show that if a filter F satisfies

(∗), then it is a congruence filter. In Proposition 2.3 we have shown that in this

case

θF = {(a, b) : a→ b, b→ a ∈ F}

is a BI-semilattice congruence. We will prove that it is compatible with · as well,

thus proving that θF ∈ Con(A). Suppose then that (a, b) ∈ θF and let c ∈ A; then

1 ≤ a → (c → ac) ∈ F and b → a ∈ F . By (2.5) and the fact that F is closed

under modus ponens we get that

b→ (c→ ac) = bc→ ac ∈ F.

Since the argument is symmetric we get ac→ bc ∈ F and hence (ac, bc) ∈ θF .

On the other hand c → (b → cb) ∈ F and (b → cb)→ (a → cb) ∈ F because

of (∗), hence again by (2.5) and modus ponens we get c→ (a→ cb) ∈ F and hence

c→ (a→ ca) ∧ c→ (a→ cb) ∈ F . But

c→ (a→ ca) ∧ c→ (a→ cb) = c→ ((a→ ca) ∧ (a→ cb))

= c→ (a→ (ca ∧ cb)) = ca→ (ca ∧ cb)

= ca→ ca ∧ ca→ cb ≤ ca→ cb ∈ F.

Again by symmetricity we get cb→ ca ∈ F and so (ca, cb) ∈ θF . So if (a, b), (c, d) ∈

θF then

ac θF bc θF bd,

hence θF is compatible with ·. By Theorem 2.1 we conclude that F is a congruence

filter.

A BI-monoid in which the multiplication is commutative is a BCI-monoid.

Alternatively a BCI-monoid can be defined as a BI-monoid satisfying (2.8), namely

x→ (y → z) = y → (x→ z). In fact if the multiplication is commutative then (2.8)

is an immediate consequence of (2.11). Conversely if (2.8) holds, from yx→ yx ≥ 1

we get y → (x → yx) ≥ 1 and by (2.8) x → (y → xy) ≥ 1, so eventually xy ≤ yx.

Moreover from (x → y) ∧ 1 ≤ x→ y, residuation and (2.8) we get (2.9). We have

thus shown:

Proposition 2.10. A BCI-monoid is an enriched BCI-semilattice. Hence the vari-

ety of BCI-monoids is congruence permutable.

A more interesting and useful fact is the following.
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Lemma 2.11. Let A a BCI-monoid and let a be an idempotent of A, i.e. a2 = a.

Then for any b, c ∈ A

(2.16) a→ (b→ c) ≤ (a→ b)→ (a→ c).

Proof. We have

(a→ (b→ c))(a→ b)a = (a→ (b→ c))(a→ b)a2

= (a→ (b→ c))a(a→ b)a

≤ (b→ c)b ≤ c.

Thus applying residuation twice we get the thesis.

Not surprisingly, congruence filters of BCI-monoids are very well-behaved.

Theorem 2.12. In a BCI-monoid every filter is a congruence filter.

Proof. Let A ∈ C. In view of Theorem 2.9 it is enough to show that any filter F of

A satisfies (∗). A BCI-monoid is an enriched BCI-semilattice, hence the equation

(2.17) x→ y ≤ (y → z)→ (x→ z)

holds in A, since it is an easy consequence of (2.4) and (2.8). Let then a→ b, b→

a, c→ d, d→ c ∈ F . Then by (2.15)

c→ d ≤ (a→ c)→ (a→ d) ∈ F

and by (2.17)

b→ a ≤ (a→ d)→ (b→ d) ∈ F.

Again by (2.17)

(a→ c)→ (a→ d) ≤ ((a→ d)→ (b→ d))→ ((a→ c)→ (b→ d)) ∈ F

and by applying modus ponens we get

(a→ c)→ (b→ d) ∈ F.

Hence in a BCI-monoid a congruence filter is simply a semilattice filter con-

taining 1 and closed under multiplication. This allows us to obtain a very good

description of the congruence filter generated by a set. For any BCI-monoid A and

a ∈ A let [a) be the semilattice filter generated by a and let

an̂ =

n times︷ ︸︸ ︷
(a ∧ 1) · (a ∧ 1) · . . . · (a ∧ 1) .
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Proposition 2.13. Let A be a BCI-monoid.

1. For any B ⊆ A;

CFA(B) =
⋃
{[(b1 ∧ 1) . . . (bn ∧ 1)) : n ∈ ω, b1, . . . , bn ∈ B}.

2. For any a ∈ A

CFA(a) =
⋃

n∈ω

[an̂)

Hence b ∈ CFA(a) iff an̂ ≤ b for some n ∈ ω. It follows that a principal filter

CFA(a) is principal as a semilattice filter iff there is an n ∈ ω with an̂ ≤ an̂+1 iff

CFA(a) = [an̂).

Proof. (1) Let F be the right side of the above equality; F is clearly a semilattice

filter. Moreover 1 ∈ F and if b, c ∈ F then there are b1, . . . , bm, c1, . . . , ck ∈ B

such that b ≥ (b1 ∧ 1) . . . (bm ∧ 1) and c ≥ (c1 ∧ 1) . . . (ck ∧ 1); hence bc ≥ (b1 ∧

1) . . . (bm ∧ 1)(c1 ∧ 1) . . . (ck ∧ 1) and so bc ∈ F . We conclude that F is a filter

containing B. Now any filter containing B must contain (b1∧1) . . . (bn∧1) for any

n and b1, . . . , bn ∈ B, hence it contains F .

(2) The first part follows from (1). If there is an n with an̂ ≤ an̂+1 then

in fact the two are equal and so F = [an̂). On the other hand if CFA(a) = [b),

then [b) =
⋃

n∈ω[an̂) and by compactness in the semilattice filter lattice we get

[b) = [an̂) for some n. It then follows that b = an̂ and hence an̂ ≤ an̂+1 since the

latter belongs to CFA(a).

Let A be a BCI-monoid and a, b, c, d ∈ A. Let also B be the subalgebra of A

generated by {a, b, c, d}. Then by Proposition 2.13 and Corollary 2.2,

(c, d) ∈ ϑA(a, b) iff ∃n (a↔ b)n̂ ≤ c↔ d.

It follows that

(c, d) ∈ ϑA(a, b) iff (c, d) ∈ ϑB(a, b)

and so any variety of BCI-monoids has the congruence extension property.

A unary operation f(x), on a BCI-monoid A, is compatible if for any a, b ∈ A

there is an n

(a↔ b)n̂ ≤ f(a)→ f(b).

An k-ary operation f(x1, . . . , xk) is compatible if

fi(x) = f(a1, . . . , ai−1, x, ai+1, . . . , ak)
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is compatible for any a1, . . . , ai−1, ai+1, . . . , ak ∈ A and i = 1, . . . , k. Any constant

operation is clearly compatible. The compatible operations on a BCI-monoid are

exactly the operations having the substitution property with respect to any congru-

ence. Suppose f is a compatible operation for A and suppose without loss of gen-

erality that f is unary. If (a, b) ∈ θ, then a → b, b→ a ∈ Fθ, hence (a ↔ b)n̂ ∈ Fθ

for any n. By definition of compatibility we deduce f(a)→ f(b), f(b)→ f(a) ∈ Fθ,

i.e. (f(a), f(b)) ∈ θ. Conversely if f(x) has the substitution property, then

(f(a), f(b)) ∈ ϑ(a, b) and so f(a) ↔ f(b) ∈ CFA((a ↔ b)n̂). By Proposition

2.13 there is an m with

(a↔ b)m̂ ≤ f(a)→ f(b).

A BCI-monoid with compatible operations is an algebra A = 〈A,→

,∧, ·, 1, fi〉i∈I where 〈A,→,∧, ·, 1〉 is a BCI-monoid and any fi is compatible. It

is clear that any congruence θ ∈ Con(A) is completely determined by the BCI-

monoid filter Fθ and that in fact Con(A) coincides with the congruence lattice of

the underlying BCI-monoid structure. In what follows, unless otherwise specified,

by a BCI-monoid we will always mean a BCI-monoid with or without compatible

operations.

2.2. A digression. We have seen that the class of {→,∧, 1}-subreducts of BCI-

monoids (BI-monoids), consists entirely of BCI-semilattices (BI-semilattices). Is

this class a variety? Does this class coincide with the class of BCI-semilattices

(BI-semilattices)? The first question is easily solved in the case of BCI-monoids.

In Proposition 2.13(1) we have shown that, in a BCI-monoid, a ∈ CFA(B) iff

there are b1, . . . , bn ∈ B with

(b1 ∧ 1) . . . (bn ∧ 1) ≤ a.

This, by taking enough residuations, is equivalent to

(2.18) (b1 ∧ 1)→ ((b2 ∧ 1)→ . . .→ ((bn ∧ 1)→ a) . . .) ≥ 1.

Let now V be a variety of BCI-monoids and let SV→,∧ the class of its {→,∧, 1}-

subreducts.

Theorem 2.14. For any variety V of BCI-monoids, the class SV→,∧ is a congru-

ence permutable variety.
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Proof. Since subreducts of BCI-monoids are BCI-semilattices, the theorem will

follow once we show that SV→,∧ is a variety. SV→,∧ is clearly closed under sub-

algebras and direct products. Let then A ∈ SV→,∧ and let B ∈ V such that

A ≤ 〈B,→,∧, 1〉. Let θ ∈ Con(A) and let F = Fθ, let G = CFB(F ) and consider

θG = {(u, v) : u→ v, v → u ∈ G}.

Now u→ v ∈ G = CFB(F ) iff there are b1, . . . , bn ∈ F with

(b1 ∧ 1)→ ((b2 ∧ 1)→ . . .→ (bn → (u→ v)) . . .) ≥ 1.

If u, v ∈ A, then u → v ∈ F , since F is closed under modus ponens, and similarly

v → u ∈ F . Therefore

θG ∩A×A ⊆ {(u, v) : u→ v, v → u ∈ F} = θF = θ.

On the other hand, if (u, v) ∈ θ, then u → v θ u → u ≥ 1, hence u → v ∈ F ;

similarly v → u ∈ F and hence θ ⊆ θG ∩A×A.

We conclude that A/θ is isomorphic to a subalgebra of the {→,∧, 1}-reduct

of B/θ. Hence A/θ ∈ SV→,∧ and the theorem is proved.

The second question is harder, but luckily most of the work has already been

done by Dunn, Meyer and Routley in a different context (see [14] and the biblio-

graphy therein). From now to the end of this section we will proceed more infor-

mally: the details can be filled with some (long) calculations. For more information

consult [13] and [14].

Let A be a BI-semilattice and let Γ be the set of the semilattice filters of A.

Let U be the set of the hereditary subsets of Γ, i.e. those X ⊆ Γ such that F ∈ X

and F ⊆ G implies G ∈ X . Let 1 = {F ∈ Γ : 1 ∈ F}. Clearly 1 is hereditary and

the intersections of two hereditary subsets of Γ is hereditary. In Γ we define the

following ternary relation (the canonical accessibility relation [14]):

R(F,G,H) iff ∀a, b, a ∈ F and a→ b ∈ G implies b ∈ H

Finally if X,Y ∈ U we define

X ◦ Y = {H : ∃F ∈ Y, ∃G ∈ X, R(F,G,H)}

X → Y = {H : ∀F,G, if R(F,H,G) and F ∈ X, then G ∈ Y }.
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Proposition 2.15. If A is a BI-semilattice, then 〈U,→,∩, ◦,1〉 is a BI-monoid.

Proof. First we have to check that U is closed under the operations introduced

above. Consider X,Y ∈ U and let us show that X → Y is hereditary. Let

H ∈ X → Y and H ⊆ H ′ ∈ Γ. If R(F,H ′, G), then R(F,H,G) just by the

definition. Hence if F ∈ X we have G ∈ X and so H ′ ∈ X → Y . Similarly we

show that U is closed under ◦.

Associativity of ◦ follows from a lengthy calculation in which equation (2.4)

is used critically, while monotonicity of ◦ follows straight from the definition. Let

us show that 1 is two sided identity. Note that for any F ∈ Γ, R(F,∇A, F ) holds

and, since ∇A ∈ 1, we get at once that X = 1◦X . Conversely, let H ∈ 1◦X ; then

there is an F ∈ X and a G ∈ 1 with R(F,G,H). If a ∈ F , then a → a ≥ 1 ∈ G

and hence a ∈ H , so that F ⊆ H . But X is hereditary and F ∈ X , so H ∈ X and

eventually 1 ◦ X = X . A very similar argument shows that X ◦ 1 = X . Finally

residuation is shown to hold just using the definitions (and some patience).

Theorem 2.16. Any BI-semilattice can be embedded in a reduct of a BI-monoid.

Hence BI-semilattices are exactly subreducts of BI-monoids.

Proof. Let A be a BI-semilattice and let U = 〈U,→,∩, ◦,1〉 be the BI-monoid

constructed as above. Define a mapping h : A −→ U by setting

h(a) = {F ∈ Γ : a ∈ F}.

Clearly h(a) ∈ U for all a ∈ A, h(1) = 1 and h(a) ∩ h(b) = h(a ∧ b). We now show

that h preserves →, i.e. that for all H ∈ Γ, H ∈ h(a → b) iff H ∈ h(a) → h(b).

Via their definitions this is equivalent to show

a→ b ∈ H iff ∀F,G if R(F,H,G) and a ∈ F , then b ∈ G.

The left-to-right implication follows from the definition of R(F,H,G). To prove the

other, assume that a → b /∈ H . We show that there F,G with a ∈ F , R(F,H,G),

but b /∈ G. Let F = [a) and G = A − {y : y ≤ b} (clearly a semilattice filter), so

that a ∈ F and b /∈ G. If x ∈ F , x → y ∈ G, but y /∈ G, then a ≤ x and y ≤ b.

Using (2.4) and (2.6) one readily gets x→ y ≤ a→ b, and so a→ b ∈ H , contrary

to the hypothesis. It follows that y ∈ G and hence R(F,H,G).

To conclude the proof it remains to show that h is one-to-one. Suppose then

that h(a) = h(b); this implies [a) ∈ h(b) and [b) ∈ h(a), hence b ∈ [a) and a ∈ [b),

hence a = b.
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Let now A be a BCI semilattice and let U as above. It is easily seen, using

(2.1), (2.4) and (2.8), that the equation

(2.19) x ≤ (x→ y)→ y

holds in A. This equation forces the multiplication on U to be commutative, i.e.

U is a BCI-monoid. Really it is enough to show that for any F,G,H , R(F,G,H)

implies R(G,F,H). Assume the former and let a ∈ G and a→ b ∈ F . Then (2.19)

yields (a → b)→ b ∈ G. Since a → b ∈ F and R(F,G,H) we conclude b ∈ H and

hence R(G,F,H). Thus we have shown:

Theorem 2.17. Any BCI-semilattice can be embedded in a reduct of a BCI-

monoid. Hence BCI-semilattices are exactly subreducts of BCI-monoids.

3. The TD-terms

We are now ready to state and prove our first main theorem.

Theorem 3.1. Let V be a variety of BCI-monoids; then the following are equival-

ent.

1. For any A ∈ V and a, b ∈ A, CF (a↔ b) is a principal semilattice filter.

2. There is an n such that the equation

(x↔ y)n̂ ≤ (x↔ y)n̂+1

holds in V.

3. p(x, y, z) = (x↔ y)n̂z is a TD-term for V.

4. V has equationally definable principal congruences: for A ∈ V and a, b, c, d ∈

A

(c, d) ∈ ϑ(a, b) iff (a↔ b)n̂ ≤ c↔ d.

5. V has (first order) definable principal congruences.
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Proof. 1. implies 2. via a standard Mal’cev argument. If we assume 2., by Propo-

sition 2.13, for a, b ∈ A we have CFA(a ↔ b) = [(a ↔ b)n̂). Hence 1. and 2. are

equivalent.

Assume now 2. and note that (x ↔ y)n̂ is idempotent. It is also clear that

(x↔ x)n̂y ≈ y holds in V . Let A ∈ V , a, b ∈ A and q(x) a unary polynomial: from

q(a) → q(b) ϑ(a, b) q(a) → q(a) ≥ 1 we get q(a) → q(b) ∈ Fϑ(a,b) = CFA(a ↔ b)

and so (a ↔ b)n̂ ≤ q(a) → q(b). By residuation we get (a ↔ b)n̂q(a) ≤ q(b) and

using the fact that (a↔ b)n̂ is an idempotent we get

(a↔ b)n̂q(a) ≤ (a↔ b)n̂q(b).

The reverse inclusion is obtained via a symmetric argument. So Theorem 1.1 yields

that (x↔ y)n̂z) is a TD-term for V .

Assume now 3. and let A ∈ V , a, b, c, d ∈ A. We first show that (a ↔ b)n̂ is

idempotent. Let q(x) = (x↔ b)n̂. Then by Theorem 1.1

(a↔ b)n̂(a↔ b)n̂ = p(a, b, q(a)) = p(a, b, q(b)) = (a↔ b)n̂(b↔ b)n̂ = (a↔ b)n̂.

Suppose now that (c, d) ∈ ϑ(a, b). Then

(a↔ b)n̂c = (a↔ b)n̂d.

By residuation and Proposition 2.7(6) we get

(a↔ b)n̂ ≤ c→ (a↔ b)n̂d ≤ c→ d.

A symmetric argument yields (a↔ b)n̂ ≤ d→ c and hence

(a↔ b)n̂ ≤ c↔ d.

Assume now the latter. Then (a↔ b)n̂ ≤ c→ d and by residuation (a↔ b)n̂c ≤ d.

Idempotence of (a↔ b)n̂ gives (a↔ b)n̂c ≤ (a↔ b)n̂d and a symmetric argument

gives the reverse inclusion. We conclude that p(a, b, c) = p(a, b, d) and so (c, d) ∈

ϑ(a, b).

4. obviously implies 5. If we assume 5. there is a first order formula

ϕ(x, y, z, w) such that for any A ∈ V and a, b, c, d ∈ A, (c, d) ∈ ϑ(a, b) iff

A |= ϕ(a, b, c, d). By Proposition 2.13 this implies

V |= ∀xyzw(ϕ(x, y, z, w)⇐⇒
∨∨

m∈ω

((x↔ y)m̂ ≤ (z ↔ w))).

By the compactness theorem there is an n with

V |= ∀xyzw(ϕ(x, y, z, w)⇐⇒ (x↔ y)n̂ ≤ (z ↔ w)).

It follows that CFA(a↔ b) = [(a↔ b)n̂) and the proof is complete.
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Corollary 3.2. The TD-term p(x, y, z) = (x ↔ y)n̂z is commutative and regular.

Hence for a variety V of BCI-monoids the following are equivalent.

1. V has a regular, commutative TD-term;

2. V has a commutative TD-term;

3. V has a TD-term.

Proof. Let A ∈ V and a, b, c, a′, b′ ∈ A; then

p(a, b, p(a′, b′, c)) = (a↔ b)n̂(a′ ↔ b′)n̂c = (a′ ↔ b′)n̂(a↔ b)n̂c

= p(a′, b′, p(a, b, c)),

hence p(x, y, z) is commutative.

To prove regularity observe first that if u ∈ A and u ≤ 1 then

(u↔ 1)n̂ = (u ∧ u→ 1 ∧ 1)n = un.

Hence

p(p(a, b, 1), 1, a) = ((a↔ b)n̂ ↔ 1)n̂a = (a↔ b)n̂a = p(a, b, a)

= p(a, b, b) = (a↔ b)n̂b = ((a↔ b)n̂ ↔ 1)n̂b = p(p(a, b, 1), 1, b)

and p(x, y, z) is regular.

To deal with the {→,∧} subreducts we need a technical definition. In a

BCI-monoid define inductively x→n̂ y by

x→1̂ y = (x ∧ 1)→ y x→n̂+1 y = (x ∧ 1)→ (x→n̂ y);

using the identity xy → z = x→ (y → z) we see at once that

x→n̂ y = xn̂ → y.

Corollary 3.3. Let V be a variety of BCI-monoids satisfying

(x↔ y)n̂ ≤ (x↔ y)n̂+1

and let W = SV→,∧. Then the term

p(x, y, z) = (x↔ y)→n̂ z

is a commutative, regular TD-term for W.
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Proof. By what we said above it is enough to show that t(x, y, z) = (x↔ y)n̂ → z

is a commutative, regular TD-term for V . In fact t(x, y, z) = p(x, y, z) and the

latter contains only → and ∧. Since being a commutative, regular deduction term

can be expressed via equations we will conclude that p(x, y, z) is a commutative,

regular TD-term for W .

Note that t(x, x, y) ≈ y holds in V . Let A ∈ V , a, b ∈ A and q(x) be a unary

polynomial. Once again q(a) → q(b) ∈ CFA(a ↔ b) and hence (via the previous

theorem) (a ↔ b)n̂ ≤ q(a) → q(b). Since (a ↔ b)n̂ is idempotent, from Lemma

2.11 we get

((a↔ b)n̂ → q(a))→ ((a↔ b)n̂ → q(b)) ≥ ((a↔ b)n̂ → (q(a)→ q(b)) ≥ 1

and hence ((a ↔ b)n̂ → q(a)) ≤ (a ↔ b)n̂ → q(b)). The opposite inclusion

is obtained by symmetry, hence we conclude that t(a, b, q(a)) = t(a, b, q(b)); via

Theorem 1.1 t(x, y, z) is a TD-term. To check commutativity we use (2.8). For

a, b, c, a′, b′ ∈ A:

t(a, b, t(a′, b′, c)) = (a↔ b)n̂ → ((a′ ↔ b′)n̂ → c)

= (a′ ↔ b′)n̂ → ((a↔ b)n̂ → c) = t(a′, b′, t(a, b, c)).

The proof that t(x, y, z) is regular is very similar to the one for p(x, y, z) in Corollary

3.2.

In view of the connections with algebraic logic, it is natural to ask what we

can prove in case we deal with structures in which more operations are present. It

turns out that the implication from 1. to 2. in Theorem 3.1 still holds, provided

we have a uniform way of defining certain principal filters.

Corollary 3.4. Let V be a variety of enriched BCI-monoids and suppose that there

is a unary term t(x) such that, for any A ∈ V and for any a, b ∈ B, CFA(a ↔

b) = [t(a↔ b)). Then

p(x, y, z) = t(x↔ y)z p′(x, y, z) = t(x↔ y)→ z

are commutative, regular TD-terms for V.
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Proof. First note that, for a ∈ A, [t(a ↔ a)) = CFA(a ↔ a) = FϑA(a,a) = ∇A,

hence t(a ↔ a) = 1. It follows that the equations p(x, x, y) = p′(x, x, y) = y hold

in V . Next note that for any a, b ∈ A, t(a ↔ b) ≤ 1 and so t(a ↔ b)t(a ↔ b) ≤

t(a ↔ b). On the other hand t(a ↔ b)t(a ↔ b) ∈ [t(a ↔ b)), hence they must

coincide. We have thus proved that t(a↔ b) is idempotent. From here just follow

the proofs of Theorem 3.1, and Corollary 3.2.

If we want a full analog of Theorem 3.1 we must place more conditions on

the additional operations. A non constant unary operation f on a BCI-monoid A

is normal if f(1) = 1 and f(a ∧ 1) = f(a) ∧ 1, it is increasing if x ≤ y implies

f(x) ≤ f(y) and it is multiplicative if f(x) · f(y) ≤ f(xy). An operation f of arity

n ≥ 1 is normal, increasing or multiplicative if

fi(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an)

is normal, increasing or multiplicative for any a1, . . . , ai−1, ai+1, . . . , an ∈ A and

i = 1, . . . , n. We do not need to consider constant operations. In fact a constant

operation on a BCI-monoid is always compatible in our sense so it does not change

the behavior of filters and congruences.

If f is increasing and multiplicative then

fi(x→ y)fi(x) ≤ fi((x→ y)x) ≤ fi(y)

and so

fi(x→ y) ≤ fi(x)→ fi(y).

A BCI-monoid with normal operators is an algebra 〈A,→,∧, · · · , 1, fλ〉λ∈Λ such

that 〈A,→,∧, ·, 1〉 is a BCI-monoid and each fλ is normal, increasing and multi-

plicative. As usual we start determining the congruence filters of a BCI-monoid

with normal operators.

Proposition 3.5. A filter G of A is a congruence filter iff it is closed under any

unary polynomial fi(x) for any normal operator f of A.

Proof. Suppose G is a congruence filter of A and let θ ∈ Con(A) such that G =

∇A/θ. For any normal operator f , if a ∈ G, then a θ v ≥ 1 and hence fi(a) θ

fi(v) ≥ fi(1) ≥ 1. Therefore fi(a) ∈ G.

Suppose that G is a filter closed under all the polynomials fi. Let

θG = {(a, b) : a→ b, b→ a ∈ G}.
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Since G is a filter of the underlying BCI-monoid structure, then θG is a BCI-monoid

congruence and G = ∇A/θG. It is enough to show that θG ∈ Con(A). Let f be a

normal operator of A; then if (a, b) ∈ θG, then a→ b, b→ a ∈ G. Hence

fi(a→ b) ≤ fi(a)→ fi(b) ∈ G fi(b→ a) ≤ fi(b)→ fi(a) ∈ G

and so (fi(a), fi(b)) ∈ G. From here the compatibility of f is straightforward.

Now we try to get a good description of the congruence filter generated by

a set. Let P(A) be the set of all unary polynomials of A involving only the

normal operators and T(A) be the set of all terms in P(A) (i.e. those without any

parameter, except for 1 and the constant operations). Note that if all operators

are unary then P(A) = T(A).

Proposition 3.6. Let A be a BCI-monoid with normal operators.

1. If B ⊆ A, then a ∈ CFA(B) iff there are b1, . . . , bn ∈ B and p1, . . . , pn ∈ P(A)

such that

(p1(b1) ∧ 1) . . . (pn(bn) ∧ 1) ≤ a.

2. If F,G ∈ CFil(A),

F ∨G = {c : ab ≤ c, for some a ∈ F, b ∈ G}.

3. For any a ∈ A, CFA(a) is principal as a semilattice filter iff there is a unary

polynomial p ∈ P(A) with CFA(a) = [p(a)).

Proof. For 1., it is clear that the set of elements satisfying the hypothesis is a

filter. If (p1(b1) ∧ 1) . . . (pn(bn) ∧ 1) ≤ a and g is a unary polynomial coming from

an operator then, using the fact that g is normal, increasing and multiplicative we

get

g(a) ≥ g((p1(b1) ∧ 1) . . . (pn(bn) ∧ 1))

≥ g(p1(b1) ∧ 1) . . . g(pn(bn) ∧ 1) = (gp1(b1) ∧ 1) . . . (gpn(bn) ∧ 1)

hence it is also a congruence filter. On the other hand any congruence filter con-

taining B must contain any (p1(b1) ∧ 1) · · · (pn(bn) ∧ 1), hence 1. holds.

For 3., the right-hand-side of the displayed equality is clearly a congruence

filter containing F and G. On the other hand any element in G∨H = CFA(G∪H)

must be of that form by 1.
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Consider now 4. By 1.

CFA(a) =
⋃
{[(p1(a1) ∧ 1) . . . (pn(an) ∧ 1)) : p1, . . . , pn ∈ P(A), n ∈ ω}.

If CFA(a) = [b), then by compactness in the semilattice filter lattice we have that

CFA(a) = [(p1(a) ∧ 1) . . . (pk(a) ∧ 1)) for some p1, . . . , pk ∈ P(A). Then take

p(x) = (p1(x) ∧ 1) · · · (pk(x) ∧ 1).

Corollary 3.7. Let V be a variety of BCI-monoids with normal operators and let

τ = {f1, f1, f2, . . .} be the set of normal operators symbols. Then the class SV→,∧,τ

is a variety.

To see this just follow the proof of Proposition 3.3 and use 3.6(1). Now we

can prove the analog of Theorem 3.1 for BCI-monoids with normal operators.

Theorem 3.8. Let V be a variety of BCI-monoids with normal operators and

suppose that each operator is unary. Then the following are equivalent.

1. For any A ∈ V, a, b ∈ A, CFA(a↔ b) is principal as a semilattice filter.

2. V has a commutative, regular TD-term.

3. V has a commutative TD-term.

4. V has a TD-term.

5. V has equationally definable principal congruences.

6. V has (first order) definable principal congruences.

Proof. To show that 1. implies 2., it is sufficient to prove that there is a unary term

t such that CFA(a ↔ b) = [t(a ↔ b)) for any A ∈ V , a, b ∈ A (see Corollary 3.4).

Really, it is enough to show it only for the two-generated algebras in V , since in

this case

CFA(a) =
⋃

b∈A

CFSubA(a,b)(a).

We will make also use of the following fact, whose proof can be found in [21]:

Fact. If h : A 7−→ B is a onto homomorphism and a, b ∈ A, then

1. h(ϑA(a, b)) ⊆ ϑB(h(a), h(b));

2. h−1(ϑB(h(a), h(b))) = ϑA(a, b) ∨Kerh.

Let then F be the algebra freely generated by x, y. By hypothesis CFF(x↔ y)

is principal as a semilattice filter. By Proposition 3.6(3) there is a unary term t
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such that CFF(x ↔ y) = [t(x ↔ y)). Let now A ∈ V be generated by a, b and

let h : F 7−→ A be the onto homomorphism defined by h(x) = a, h(y) = b. Then

h(t(x ↔ y)) = t(a ↔ b) and clearly t(x ↔ y) ∈ CFF(x ↔ y) = FϑF(x,y). By 1. in

the fact above we get that t(a↔ b) ∈ CFA(a↔ b).

On the other hand suppose c ∈ CFA(a ↔ b) and let z ∈ F with h(z) = c.

Note that h(z) = c ϑA(a, b) u ≥ 1 and so z ∈ Fh−1(ϑA(a,b)). By 2. in the fact

above z ∈ Fϑ(x,y) ∨ FKerh and by Proposition 3.6(2) there is a u ∈ FKerh with

t(x↔ y)u ≤ z. Note that u Kerh v ≥ 1 and so h(u) ≥ 1. We compute

t(a↔ b) = t(a↔ b) · 1

≤ h(t(x↔ b)) · h(u)

= h(t(x↔ y)u)

≤ h(z) = c.

So [t(a↔ b)) = CFA(t(a↔ b)).

The implications from 2. to 3., from 3. to 4., from 4. to 5. and from 5. to 6.

are obvious. Assume then 6. Then there is a first order formula ϕ(x, y, z, w) such

that for any A ∈ V and a, b, c, d ∈ A

(c, d) ∈ ϑA(a, b) iff A |= ϕ(a, b, c, d).

Consider now P(A) = T(A) and let Γ be the set of finite subsets of T(A). Using

Proposition 3.6 we get

V |= ∀xyzw


ϕ(x, y, z, w)⇐⇒

∨∨

γ∈Γ

(∏

t∈γ

(t(x↔ y) ∧ 1) ≤ z ↔ w

)
 .

By the compactness theorem of equational logic, there are t1, . . . , tn ∈ T(A) with

V |= ∀xyzw

(
ϕ(x, y, z, w)⇐⇒

n∏

i=1

(ti(x↔ y) ∧ 1) ≤ z ↔ w

)
.

Letting now t(x) =
∏n

i=1 ti(x), we have that in any algebra [t(a↔ b)) = CFA(a↔

b). Thus 1. holds.

Corollary 3.9. Let V be a variety of BCI-monoids with unary normal operators and

let W = SV→,∧,τ . If V satisfies Theorem 3.8 then also W satisfies Theorem 3.8.
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Proof. The only thing to check is that the implication from 1. to 2. of Theorem 3.8

still holds. Let t(x), h, and a, b, c, x, y, z, u as in Theorem 3.8. Since z ∈ Fϑ(x,y) ∨

FKerh, by Proposition 3.6(2) there is a u ∈ FKerh with u ≤ t(x↔ y)→ z. Since h

is a homomorphism

1 ≤ h(u) ≤ t(a↔ b)→ c

so t(a↔ b) ≤ c. The rest follows easily.

Remarks. (1) The alert reader will certainly observe that Theorem 3.1 is a corol-

lary of Theorem 3.8. We could have then presented Theorem 3.8 directly, deduce

Theorem 3.1 as a corollary and spare a tree of the Brazilian forest. However we

feel that sometimes elegance is second to clarity.

(2) We have an obvious metastatement: an analog of Theorem 3.8 holds for

any variety of enriched BCI-monoids, for which we have a “good” description of

the congruence filter generated by a set.

4. The logics

In this section we discuss some varieties of BCI-semilattices and monoids with

normal operators and the logics that are naturally associated to them. We stress

that by the word logic, we always mean a propositional logic regarded as a deductive

system. The basic definitions below are taken from [5].

Let L be a propositional language. The set FML of formulas is built in the

usual way using propositional variables. An assignment is any mapping from the

set of variables to formulas; clearly such assignment extends naturally to a map

σ: FML −→ FML. Such a map will be called a substitution.

A deductive system S on L is a pair 〈L,⊢S〉 where ⊢S⊆ P(FmL)× FmL and

moreover for any Γ,∆ ⊆ FmL and ϕ, ψ ∈ FmL

(i) ϕ ∈ Γ implies Γ ⊢S ϕ;

(ii) Γ ⊢S ϕ and Γ ⊆ ∆ implies ∆ ⊢S ϕ;

(iii) Γ ⊢S and ∆ ⊢S ψ for any ψ ∈ Γ implies ∆ ⊢S ϕ;

(iv) Γ ⊢S ϕ implies Γ′ ⊢S ϕ for some finite Γ′ ⊆ Γ;

(v) Γ ⊢S ϕ implies σ(Γ) ⊢S σ(ϕ) for every substitution σ.

The relation ⊢S will be called the entailment (or consequence) relation. A deductive

system can be given also in terms of axioms and rules of inference. The entailment

is then defined as: Γ ⊢S ϕ iff ϕ is contained in the smallest set of formulas that

includes Γ together with all substitution instances of axioms and closed under all

inference rules. A suitable class K of algebras (of the same type as L) can then be
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associated to the deductive system (and K is called an algebraic semantics for S).

When the connection is “the best possible” then K is called an equivalent algebraic

semantic for S. We will not give any formal definition of this concept and the

reader is advised to keep at hand at least [5]. An informal hint is the following: an

equivalent algebraic semantics (EAS) for a deductive system S is a class of algebras

that is to S exactly what the variety of Boolean algebras is to Classical Propositional

Calculus, i.e. is a class of algebras of the same type as the Lindenbaum algebra of

S which satisfies certain (strong) conditions.

Note that the procedure of transforming a logic into a deductive system, when

applied to substructural logics, may conflict with the extralogical motivations of

the logic themselves. In fact the entailment ⊢S is always “structural”, in that it

satisfies the structural rules when applied to sequents. Since this paper is mainly

devoted to explore the “algebraic” consequences of algebrization we shall not be

concerned with this point.

4.1. Linear Logic. Linear Logic has been introduced by J.-Y. Girard [17]. It can be

loosely described as a “resource-sensitive” logic, which keeps track of the number

of times data of given types are used. Its implicational fragment is a BCI-logic, i.e.

it does not satisfy weakening and contraction. Nevertheless Linear Logic cannot

be considered a substructural logic, in that we have two unary operators (the

exponentials) that serve to introduce weakening and contraction in a controlled

way on individual formulas. The propositional language of classical linear logic

consists of four family of connectives:

1. the multiplicative connectives: ⊗ (the tensor product), ℘ (the par, i.e. the

parallel “or”), → (the linear implication, Girard’s −◦), ⊥ (the bottom) and

1;

2. the additive connectives: ∨, ∧, ⊤ and 0;

3. the linear negation (Girard’s ( )⊥), which is a De Morgan involution w.r.t.

∨ and ∧;

4. the exponentials: ! and ?.

A suggestive way of thinking of how this connectives work is to think at formulas

as data types. For instance A∧B is a datum from which we can extract once either

a datum of type A and a datum of type B; A⊗B is just a pair of data; A→ B is

a method of transforming a single datum of type A into the datum of type B; !A

indicates that we can extract as many data of type A as we like (weakening and

contraction on the left side of a sequent) and so on.

In [2] it is shown that any fragment of Linear Logic containing →, ∧ and 1

is algebraizable. The EAS of the {→,∧,1}-fragment is just the variety of BCI-

semilattices, and that of the {→,∧,⊗,1}-fragment is just the variety of BCI-

Acta Sci. Math. (Szeged),64:3−4(1998)
All rights reserved c© Bolyai Institute, University of Szeged



Ternary deduction terms in residuated structures 423

monoids. This was really the motivating fact for our investigation.

The EAS of the exponential free fragment of Linear Logic is the variety of

arabesques [2]. An arabesque A is an algebra of type {∨,∧,→, , 1,⊤} such that

1. 〈A,∨,∧, , ⊤,⊤〉 is a bounded lattice with involution (a De Morgan lattice)

i.e. for a, b ∈ A
a = a

(a ∨ b) = a ∧ b

2. For any a, b, c ∈ A

1→ a = a

a→ a ≥ 1

a→ b ≤ (b→ c)→ (a→ c)

a→ (b→ c) ≤ b→ (a→ c)

(a→ b) ∧ (a→ c) = a→ (b ∧ c)

a→ b ≤ b→ a

a ≤ ((a→ b) ∧ 1)→ b

The variety arabesques is (termwise equivalent to) a variety of BCI-monoids

with compatible operations. A bounded1) BCI-monoid is an algebra 〈A,→,∧, ·, 1, 0〉

where 〈A,→,∧, ·, 1〉 is a BCI-monoid and 0 is a constant satisfying

(a→ 0)→ 0 = a.

We claim that the variety of arabesques is termwise equivalent to the variety of

algebras 〈A,→,∧, ·, 1, 0,⊤, 〉 where

1. 〈A,→,∧, ·, 1, 0〉 is a bounded BCI-monoid;

2. ⊤ is nullary and for each a ∈ A, a ∧ ⊤ = a;

3. for any a, b, c ∈ A

(a→ b) ∧ (a→ c) = (((a→ 0) ∧ (b→ 0))→ 0)→ c.

The proof is easy once one observes that in a bounded BCI-monoid satisfying 3.

above one can define a = a→ 0 and a∨b = ( a∧ b) in such a way that 〈A,∨,∧, 〉

is a De Morgan lattice. We will often make use of this fact in the sequel.

The EASes of bounded linear logics [18] satisfy Theorem 3.1 and so they have

a commutative, regular deduction term. By Corollary 3.3 the EAS of any fragment

containing ∧,→ and 1 has the same property.

1) It is clear that 0 in a bounded BCI-monoid is not necessarily the smallest element in

the semilattice order.
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The EAS for full Linear Logic is the variety of girales [2]. A girale is an algebra

〈A,→ ∨,∧, , 1,⊤, !〉, where 〈A,→ ∨,∧, , 1,⊤〉 is an arabesque, ! is unary and for

any a, b ∈ A

!a ≤ a ∧ 1(4.1)

!a⊗ !b = !(a ∧ b)(4.2)

!!a = !a(4.3)

It is easy to see that the variety of girales is a variety of BCI-monoids with just one

normal operator. In [2] Theorem 2.2 it is proved that the variety of girales satisfies

Corollary 3.4 (in fact t(x) = !x) so it has a commutative, regular TD-term. Since

the only operator is unary, then the variety of girales satisfies also Theorem 3.8.

By the same token any fragment of full Linear Logic containing →,∧, 1 and ! has

an EAS with a commutative, regular TD-term.

4.2. Comparative logics. Comparative logics have been introduced by E. Casari in

[11], as an attempt to axiomatize the notion of “p is less A than q” (A any property).

The primitive connective in the forefront is denoted by ≤: p ≤ q expresses that

the degree of truth of p is less than the degree of truth of q and behaves like

an implication satisfying (B), (C) and (I). Any Comparative logic, regarded as a

deductive system, is algebraizable, since it is an axiomatic extension of the {→

,∧, 1} fragment of Linear Logic. In his paper Casari gives algebraic semantics

that are based on the notion of abelian ℓ-pseudogroup. With some computations

one sees that abelian ℓ-pseudogroups are termwise equivalent to BCI-monoids with

compatible operations.

More precisely the EAS of the “minimal theory” whose axioms and rules are

in [11] p. 163 is (termwise equivalent) to the variety of arabesques satisfying

x→ x = 1

1 ≤ 1.

4.3. Logics without exchange. Usually the lack of exchange in a logic makes things

hopelessly complicated. On the algebraic side this corresponds to dealing with BI-

semilattices and monoids. There are at lest two logics in the literature that try to

explore this situation. The first is a modification of Linear Logic, introduced by

Abrusci [1], usually called noncommutative Linear Logic. In that logic the tensor

product is no longer commutative and there are two negations and two implications.

On the algebraic side this corresponds to studying double BI-monoids. A double

BI-monoid is an algebra 〈A,→,←,∧, ·, 1〉 such that 〈A,→,∧, ·, 1〉 is a semilattice
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ordered left-residuated monoid and 〈A,←,∧, ·, 1〉 is a semilattice ordered right-

residuated monoid. It is not hard to check that → and ← must be related. For

instance

a→ (b← c) = b← (a→ c)

must hold for any a, b, c ∈ A. This is sufficient for proving that the variety of

such objects is congruence permutable (just look at Proposition 2.6 and guess the

right term) and we get a description of congruence filters similar to the one for

BI-monoids. Unfortunately noncommutativity prevents us from getting a good

interplay between semilattice filters and congruence filters.

The second logic has been introduced by Ono and Komori [23]. The logic LBCC

is obtained by removing contraction and exchange from the Genzten formulation of

intuitionistic logic LJ and adding a new binary connective. The fact that the rule of

weakening holds for such a logic, forces its algebraic counterpart to be integral, i.e. 1

is the top element of the semilattice structure. It is clear that LBCC is algebraizable

and its EAS is a variety of BI-monoids with compatible operations. In particular

the EAS of its {→,∧, ·, 1}-fragment is the variety of integral BI-monoids, i.e. those

satisfying x ≤ y → x. A subvariety of integral BI-monoids has been extensively

studied by Bosbach [10]. A left-complemented monoid is an integral BI-monoid,

satisfying also

(x→ y)x = (y → x)y.

Under this hypotheses it can be shown that the semilattice ordering coincides with

the inverse right-divisibility ordering i.e.

x ≤ y iff ∃ z(x = zy)

and ∧ is definable in terms of → and ·: x ∧ y = (x→ y)x.

4.4. Relevance logic. In the system R of relevance logic to the usual connectives ∨,

∧ and is joined an implication satisfying (B), (C) and (W) and a binary connective

◦ (fusion or cotenability). In the original system there is no “truth” symbol, but it

is customary to extend conservatively R to a system Rt with truth.

Both systems R and Rt are algebraizable [15]. The EAS for Rt is the variety of

De Morgan monoids, that is a variety of BCI-monoids with compatible operations.

More precisely a De Morgan monoid is termwise equivalent to an algebra 〈A,→,

∨,∧, ·, 0, 1〉 where

1. 〈A,→,∧, ·, 0, 1〉 is a bounded BCI-monoid;

2. for any a, b, c ∈ A

a ≤ a · a

a→ (a→ b) ≤ a→ b

(a→ c) ∧ (b→ c) = (a ∨ b)→ c;
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3. 〈A,∨,∧〉 is a distributive lattice (∨ is defined in the usual way).

It is clear that the variety of De Morgan monoids satisfies Theorem 3.1 so it has a

commutative, regular TD-term

p(x, y, z) = (x↔ y ∧ 1)z.

4.5. BCK-algebras and related structures. A BCK-algebra is an algebra 〈A,→, 1〉

such that, for any a, b, c ∈ A

a→ a = 1

a→ 1 = 1

1→ a = a

(a→ b)→ ((c→ a)→ (c→ b)) = 1

a→ b = b→ a = 1 implies a = b.

BCK-algebras were introduced by Iseki [20] who proposed them as a semantics

for a certain logic that arises in connection with combinatory logic. They form a

quasivariety that is not a variety [26]. It is clear that the relation

a ≤ b iff a→ b = 1

is a partial order and the connection with the theory presented in this paper lies

in the fact that BCK-algebras coincide with {→, 1}-subreducts of integral commu-

tative residuated partially ordered monoids. This suggests that the possibility of

characterizing TD-terms for varieties of BCK-algebras is strong and M. Palasiński

[24] did exactly that in a preprint that circulated about 19902). Let En be the class

of BCK-algebras satisfying the identity

x→n+1 y ≈ x→2 y

where x→n y is defined in the obvious way. En turns out to be a variety for all n

[12]. Palasiński showed that

• For each n any subvariety of En has a commutative TD-term

pn(x, y, z) = ((x→n y)→ ((y →n x))→ z.

• A variety V of BCK-algebras has a commutative TD-term if and only if it is

contained in En for some n.

2) We thank the referee for making us aware of this fact.
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If we add to BCK-algebra a meet operation in such a way that the underlying partial

order becomes a semilattice order, then we obtain a so called BCK-semilattice. In

our framework a BCK-semilattice is simply an integral BCI-semilattice. Filters

and congruences on BCK-semilattices have been investigated by P. Idziak in [19],

where he developed a theory of filters very similar to the one in the present paper.

4.6. Hoop logics. A hoop is a commutative left-complemented monoid. Therefore

the varieties of hoops is a particular variety of (integral) BCI-monoids. Moreover

our definition of normal operator for BCI-monoids coincides with the one of dual

normal operator for hoops as given in [7]. It follows that our theory of filters is a

proper extension of the one given there. Examples of logics whose EAS is a class

of hoops with dual normal operators are:

• The logic LBCK introduced in [23]. LBCK is obtained by adding exchange to

LBCC and its EAS is the variety of residuated lattices.

• The logic LJ∗ (see again [23]), obtained by adding contraction to LBCK. This

logic satisfies all structural rules, but it is different from LJ. Its EAS is the

variety of residuated lattices satisfying

x→ (x→ y) ≤ x→ y.

It takes a second to see that x ≤ x2 holds in such variety and hence (by

Theorem 3.1) the variety has a commutative, regular TD-term.

• The many-valued logic of  Lukasiewicz. Its EAS is the variety of Wajsberg

algebras [16]. It turns out that Wajsberg algebras are termwise equivalent to

residuated lattices satisfying “ Lukasiewicz’s law”

(x→ y)→ y ≤ (y → x)→ x

• Classical and intuitionistic logic and all their normal modal extensions.

5. Final remarks

The ultimate purpose of this paper was to show that BCI-monoids are a more

natural class then hoops for developing a theory of filters. However they are still

an arbitrary choice. In particular a paper by Blok and Raftery [9], that appeared

while this paper was going through the usual refereeing process, seems to point

in a more general direction. The authors investigate partially ordered integral

commutative residuated monoids. They do not form a variety but seem to admit

a nice filter theory. It is plausible that the theory of TD-terms developed in this
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paper would go through in this context, possibly even in the nonintegral case. We

plan to investigate closely this matter in the near future.

Another question is the following: how close can one come to a complete

characterization of algebras with a commutative, regular TD-term, by continuing

to generalize the notion of residuated monoid? In view of the characterization of

such algebras given in [8] the answer seems to be: not very close at all. So a

more workable question is: what are the special features of TD-terms coming from

residuated monoids? What seems to be needed is some additional condition on the

TD-term that brings it in convergence with residuated monoids.

Finally we wish to thank the anonymous Referee of this paper for his careful

work and his many useful suggestions.
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[10] B. BOSBACH, Komplementäre Halbgruppen. Axiomatik und Arithmetik, Fund.

Math., 64 (1969), 257–287.

[11] E. CASARI, Comparative logics and Abelian ℓ-groups, Logic Colloquium ’88, North

Holland Publ. Co., Amsterdam, 1989, 161–190.

[12] W. H. CORNISH, On Iseki’s BCK-algebras, Lecture Notes in Pure and Applied Math-

ematics 74, M. Dekker, New York, 1984, 101–122.

[13] J. M. DUNN, Relevance logic and entailment, Handbook of Philosophical Logic III:

Alternatives to Classical Logic, D. Reidel Publ. Comp., Dordrecht, 1986, 117–224.

Acta Sci. Math. (Szeged),64:3−4(1998)
All rights reserved c© Bolyai Institute, University of Szeged



Ternary deduction terms in residuated structures 429

[14] J. M. DUNN, Partial gaggles applied to logics with restricted structural rules, Sub-

structural Logics, Clarendon Press, Oxford, 1993, 63–108.

[15] J. M. FONT and A. J. RODRIGUEZ, Note on algebraic models for relevance logic, Z.

Math. Logik Grundlag. Math., 46 (1990), 535–540.

[16] J. M. FONT, A. J. RODRIGUEZ and A. TORRENS, Wajsberg algebras, Stochastica,

8 (1984), 5–31.

[17] J.-Y. GIRARD, Linear logic, Theoret. Comput. Sci., 50 (1987), 1–102.

[18] J.-Y. GIRARD, A. SCEDROV and P. J. SCOTT, Bounded linear logic: a modular

approach to polynomial time computability, Proceedings of the Mathematical Sci-

ence Institute Workshop on Feasible Mathematics, Cornell University, June 1988,

Birkhauser Verlag.

[19] P. M. IDZIAK, Lattice operations on BCK-algebras, Math. Japo., 29 (1984), 839–

846.

[20] K. ISEKI, An algebra related with a propositional calculus, Proc. Japan. Acad., 42

(1966), 26–29.
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