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Abstract
Aims: The accurate classification of habitats is essential for effective biodiversity con-
servation. The goal of this study was to harness the potential of deep learning to 
advance habitat identification in Europe. We aimed to develop and evaluate models 
capable	of	assigning	vegetation-	plot	records	to	the	habitats	of	the	European	Nature	
Information	System	(EUNIS),	a	widely	used	reference	framework	for	European	habitat	
types.
Location: The	 framework	was	designed	 for	use	 in	Europe	and	adjacent	 areas	 (e.g.,	
Anatolia,	Caucasus).
Methods: We	 leveraged	deep-	learning	 techniques,	 such	as	 transformers	 (i.e.,	mod-
els with attention components able to learn contextual relations between categorical 
and	numerical	features)	that	we	trained	using	spatial	k-	fold	cross-	validation	(CV)	on	
vegetation	plots	sourced	from	the	European	Vegetation	Archive	(EVA),	to	show	that	
they	have	great	potential	for	classifying	vegetation-	plot	records.	We	tested	different	
network architectures, feature encodings, hyperparameter tuning and noise addition 
strategies to identify the optimal model. We used an independent test set from the 
National	Plant	Monitoring	Scheme	(NPMS)	to	evaluate	its	performance	and	compare	
its results against the traditional expert systems.
Results: Exploration of the use of deep learning applied to species composition and 
plot-	location	criteria	for	habitat	classification	led	to	the	development	of	a	framework	
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1  |  INTRODUCTION

The	 term	habitat	 (Hall	et	al.,	1997)	encompasses	a	broad	 range	of	
definitions	(Yapp,	1922).	In	this	study,	we	adopt	the	following:	“plant	
and	 animal	 communities	 as	 the	 characterizing	 elements	 of	 the	 bi-
otic	environment,	together	with	abiotic	factors	(soil,	climate,	water	
availability	and	quality,	and	others),	operating	together	at	a	partic-
ular	scale”	(Davies	&	Moss,	1999).	The	EUNIS	habitat	classification	
(Moss,	 2008)	 uses	 this	 definition	 and	 serves	 as	 a	 comprehensive	
and	hierarchical	pan-	European	system	for	habitat	identification	that	
covers all types of habitats, which are identified by specific codes, 
names	 and	 descriptions.	 The	 EUNIS	 classification	 system	 stands	
nowadays	as	a	widely	 recognized	framework	 for	European	habitat	
types, as it has already played a pivotal role in numerous applica-
tions,	both	 research	and	applied	 (Evans,	2012).	 It	provides	a	 com-
mon language for communication among scientists, policymakers, 
and	other	 stakeholders.	The	European	Environment	Agency	 (EEA)	
initiated	 a	 (still	 ongoing)	 process	 of	 revision	 of	 the	 EUNIS	 habitat	
classification	at	the	three	(and	in	some	cases	four)	highest	levels	of	
its classification hierarchy. This revision led to a more consistent and 
less ambiguous typology.

Habitat	 type	 classification	 (or	 identification)	 is	 a	 fundamental	
process integral to ecology, involving automatically classifying an 
area based on its environmental characteristics and species compo-
sition.	It	is	done	by	combining	observations	of	species	co-	occurrence	
or abundance with environmental estimates to classify vegetation 
plots across landscapes. Several tools for vegetation classifica-
tion with different logic and strategy are available, in particular 
machine-	learning	algorithms	(Hastie	et	al.,	2009)	and	expert	systems	

(Noble,	1987).	The	former	are	tools	for	induction	of	the	independent	
knowledge base, whereas the latter emulate the process of expert 
classification done by humans by using explicitly defined logical for-
mulas.	These	 (numerical)	 tools	can	also	play	a	vital	 role	 for	nature	
conservation,	landscape	mapping	and	land-	use	planning	and	can	fa-
cilitate	biodiversity	management	(Estopinan	et	al.,	2024).	They	make	
monitoring of species and habitats easier and more accurate, provide 
decision support for nature conservation and guidance for nature 
restoration and development. Thus, it can be particularly valuable in 
the current context where a significant portion of habitats are at risk 
of	collapsing	(at	least	32%	of	European	terrestrial	habitats	and	18%	
of marine habitats are threatened; Janssen et al., 2016).	Therefore,	
habitat type classification has a crucial role in ecology, and using the 
EUNIS	habitat	 classification	 can	 serve	 as	 a	 key	 instrument	 for	 as-
sessing	progress	toward	the	European	Union's	biodiversity	targets.

On the one hand, many expert systems have been published by 
the	global	community	(Tichý	et	al.,	2019)	and	have	long	played	a	cru-
cial role in protecting and restoring habitats and species. Whether 
they	classify	 the	vegetation	of	precisely-	defined	phytosociological	
units	(Marcenò	et	al.,	2018;	Novák	et	al.,	2023),	the	vegetation	of	en-
tire	countries	(Chytrý,	2012; Wiser et al., 2018)	or	even	the	vegetation	
or	habitats	of	larger	areas	(Mucina	et	al.,	2016;	Chytrý	et	al.,	2020),	
these expert systems all follow human decisions. They are usually 
designed by experts who have extensive knowledge of the char-
acteristics of different habitats and their species composition. 
These	systems	thus	employ	assignment	rules	(species-	based	and/or	
location-	based	membership	conditions)	to	classify	vegetation	plots	
into	vegetation	or	habitat	 types	with	 formal	definitions.	However,	
it is important to note that these definitions can evolve over time, 

containing a wide range of models. Our selected algorithm, applied to European habi-
tat types, significantly improved habitat classification accuracy, achieving a more than 
twofold	improvement	compared	to	the	previous	state-	of-	the-	art	(SOTA)	method	on	
an external data set, clearly outperforming expert systems. The framework is shared 
and	maintained	through	a	GitHub	repository.
Conclusions: Our results demonstrate the potential benefits of the adoption of deep 
learning for improving the accuracy of vegetation classification. They highlight the 
importance of incorporating advanced technologies into habitat monitoring. These 
algorithms have shown to be better suited for habitat type prediction than expert 
systems. They push the accuracy score on a database containing hundreds of thou-
sands	of	 standardized	presence/absence	European	 surveys	 to	88.74%,	as	assessed	
by expert judgment. Finally, our results showcase that species dominance is a strong 
marker of ecosystems and that the exact cover abundance of the flora is not required 
to train neural networks with predictive performances. The framework we developed 
can be used by researchers and practitioners to accurately classify habitats.

K E Y W O R D S
artificial intelligence, biodiversity monitoring, deep learning, European flora, expert system, 
habitat type identification, phytosociology, species composition, vascular plants, vegetation 
classification
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meaning that the structure of the expert systems might need to be 
modified in order to replace current provisional definitions with im-
proved	ones	or	to	use	new	vegetation-	plot	records	to	characterize	
habitat	 types.	Moreover,	 the	current	version	of	 the	expert	system	
for automatic classification of European vegetation plots to habitat 
types	 of	 the	 EUNIS	 habitat	 classification	 (i.e.,	 EUNIS-	ESy;	 Chytrý	
et al., 2021)	contains	some	definitions	that	are:

• strict, for example, to be correctly assigned to its habitat, a vege-
tation plot should contain at least n species of a given functional 
species group, or the total cover of a discriminating species group 
in a vegetation plot should be greater than the total cover of other 
discriminating species groups in the plot;

• complex, for example, to be correctly assigned to its habitat, 
the total cover of a functional species group in a vegetation plot 
should be greater than that of another functional group, exclud-
ing the species of the former group from the latter group, or the 
sum	of	square-	rooted	percentage	covers	of	the	species	belonging	
to a discriminating species group in a vegetation plot should be 
greater	than	the	sum	of	square-	rooted	percentage	covers	of	the	
species of another discriminating species group;

• and idiosyncratic, for example, to be correctly assigned to its hab-
itat, a vegetation plot should belong to a given data set, or a veg-
etation plot should not be located in a given country.

These intricacies motivate the exploration of alternative ap-
proaches,	such	as	the	application	of	deep-	learning	algorithms,	which	
we delve into in this study.

On the other hand, even though they have shown great poten-
tial	 for	modeling	 species	distributions	 (SDM)	 (Botella	et	 al.,	2018),	
modern	deep-	learning	techniques	have	never	been	applied	to	clas-
sify	EUNIS	habitats	(Joly	et	al.,	2024a),	and	their	application	(Černá	
&	Chytrý,	2005)	to	the	classification	of	habitats	at	a	global	scale	is	
a	 relatively	 unexplored	 territory	 (Joly	 et	 al.,	2023).	 Deep-	learning	
techniques	are	types	of	machine-	learning	models	that	can	automati-
cally	learn	patterns	and	features	from	large	amounts	of	data	(Botella,	
Deneu,	Gonzalez,	et	al.,	2023)	and	that	are	typically	designed	and	
trained by data scientists who have expertise in artificial intelligence 
(AI)	and	data	analysis.	As	had	already	been	done	for	species	(Deneu	
et al., 2021),	we	sought	to	establish	that	it	was	feasible	to	map	the	
extent	of	European	Union	(EU)	habitats	at	(very)	high	spatial	resolu-
tion	(Deneu	et	al.,	2022).	Thus,	we	used	in-	situ	plant	species	com-
position data, information on the location and some environmental 
features	(Leblanc	et	al.,	2022)	 in	a	framework	with	a	diverse	range	
of	deep-	learning	models	that	could	be	trained	for	different	types	of	
habitats in order to reach an optimal compromise between accuracy 
and	generalization.	Habitat	 type	 identification	has	 traditionally	 re-
lied	on	expert	knowledge,	a	process	that	is	not	only	time-	consuming	
and	costly	but	also	susceptible	to	subjectivity.	Advances	in	machine	
learning have opened new opportunities for automating this process 
using	large	data	sets	of	environmental	and	other	auxiliary	data	(Joly	
et al., 2024b).	We	built	upon	these	techniques	to	enable	automation	
and scalability in habitat classification, which forms the cornerstone 

of	 our	 study.	 AI-	powered	 Habitat	 Distribution	 Models	 (HDMs)	
should thus be suited to represent how complex ecological niches 
and spatial dynamics determine the distribution of many habitats in 
a	region.	Machine	learning	could	improve	predictive	performance	in	
HDMs	 compared	 to	 expert	 systems	by	better	mapping	 the	 actual	
realized	distribution	of	habitat	types.

We	trained	different	models	on	very	 large	volumes	of	data	(by	
coupling	 EUNIS	 types	with	 plant	 species	 composition	 recorded	 in	
vegetation	plots)	to	develop,	share	and	maintain	a	generic,	free	and	
open-	source	 deep-	learning	 framework	 capable	 of	 accurately	 clas-
sifying vegetation plots to their habitat types. Several crucial fea-
tures were introduced into the software package to make it generic 
and reusable in a wide variety of contexts. We focused our work 
on	five	key	areas	for	(i)	high	modularity	(for	enhanced	flexibility),	(ii)	
new	data	loaders	(to	handle	both	internal	and	external	classification	
criteria,	i.e.,	respectively	species-	based	and	location-	based	criteria;	
De	Cáceres	et	al.,	2015),	(iii)	new	model's	architectures	(in	particular	
models	based	on	transformers;	Vaswani	et	al.,	2017),	 (iv)	new	 loss	
functions	(i.e.,	the	penalty	for	an	incorrect	classification	of	a	vege-
tation plot, in particular for species assemblage prediction with an 
imbalanced	top-	k loss; Garcin et al., 2022)	and,	(v)	a	new	inference	
module	 allowing	 to	 compute	 the	 top-	k	 classification	 for	 any	 user-	
specified area and plant species composition.

2  | METHODS

2.1  | Data

2.1.1  |  EVA:	A	comprehensive	data	set	for	habitat	
classification

Our	 data	 source	 for	 training	 the	 deep-	learning	 framework	 was	
drawn	 from	a	 subset	of	 the	European	Vegetation	Archive	 (EVA),	
a	 data	 repository	 of	 vegetation-	plot	 observations	 (i.e.,	 records	
of	 plant	 taxon	 co-	occurrence	 and	 cover-	abundance	 at	 particular	
sites	 in	 plots	 ranging	 from	 1 m2 to a few hundred m2 that have 
been	 collected	 by	 vegetation	 scientists)	 from	 Europe	 and	 adja-
cent	 areas.	 The	 EVA	 database	 (Chytrý	 et	 al.,	 2016),	 which	 was	
accessed	on	22	May	2023,	 is	an	 initiative	of	 the	Working	Group	
European	Vegetation	Survey	 (EVS).	Each	of	 the	vegetation	plots	
typically contained estimates of the cover abundance of each spe-
cies	 (vascular	plants	 in	every	vegetation	plot,	bryophytes	and/or	
lichens	 in	 some	 vegetation	 plots)	 alongside	 various	 supplemen-
tary details and additional sources of information on vegetation 
structure,	location	and	environmental	features.	Although	the	EVA	
database represents a valuable resource for studying vegetation 
patterns and dynamics, we considered potential limitations stem-
ming from the representativeness of the data and the possibility 
of	sampling	bias	(inherent	to	sets	of	data	assembled	from	multiple	
sources	and	originally	collected	for	various	purposes)	(Michalcová	
et al., 2011).	The	final	data	set	contained	a	total	of	886,260	geo-
referenced	plots	(with	an	average	of	approximately	20	species	per	
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plot),	10,481	different	species	(see	Appendix	S2 for the list of all 
plants	 species	 contained	 in	 the	 training	 data	 set	 from	EVA)	 and	
228	 different	 habitats	 (see	 Appendix	 S3 for the table listing all 
habitats	from	the	level	three	of	the	EUNIS	hierarchy	that	are	pre-
sent	in	the	EVA	training	data	set),	all	belonging	to	one	of	the	eight	
habitat	groups	 (level	one	EUNIS	habitats)	 that	were	the	focus	of	
this study, often referred by their 2020 codes:

1.	 Littoral	 biogenic	 habitats	 (MA2) — 31,533	 vegetation	 plots;
2.	 Coastal	habitats	(N) — 37,574	vegetation	plots;
3.	 Wetlands	(Q) — 94,100	vegetation	plots;
4. Grasslands and lands dominated by forbs, mosses or lichens 
(R) — 298,816	vegetation	plots;

5.	 Heathlands,	scrub	and	tundra	(S) — 67,494	vegetation	plots;
6.	 Forests	and	other	wooded	land	(T) — 251,474	vegetation	plots;
7. Inland habitats with no or little soil and mostly with sparse veg-
etation	(U) — 8018	vegetation	plots;

8.	 Vegetated	man-	made	habitats	(V) — 97,251	vegetation	plots.

See	Appendix	S4 for a detailed overview of all the preprocessing 
steps and to Figure 1	for	different	visualizations.

2.1.2  |  NPMS:	An	independent	data	set	to	
evaluate models

To comprehensively assess and compare the transferability of 
our	 models	 and	 the	 EUNIS-	ESy	 expert	 system,	 we	 also	 estab-
lished an independent and separate test data set whose labels 
were	not	generated	by	the	EUNIS	expert	system	or	by	our	algo-
rithms	but	 relied	on	human	annotations.	As	most	of	 the	existing	
European	vegetation-	plot	databases	 indexed	 in	 the	Global	 Index	
of	Vegetation-	Plot	Databases	(Dengler	et	al.,	2011)	(GIVD)	and	the	
Global	Vegetation	Database	(Bruelheide	et	al.,	2019)	(sPlot)	were	
already	 included	 in	 EVA,	 obtaining	 a	 representative	 and	 high-	
quality independent data set for model validation was challeng-
ing.	 To	 address	 this,	 we	 selected	 the	National	 Plant	Monitoring	
Scheme	(NPMS)	(Walker	et	al.,	2015),	which	aims	to	survey	plant	
species	across	different	habitats	in	the	United	Kingdom	by	utilizing	
data	collected	by	citizens	(i.e.,	expert	volunteers	who	carried	out	
surveys	of	wildflowers	and	their	associated	habitats).	This	scheme	
was	 designed	 and	 developed	 collaboratively	 by	 the	 Botanical	
Society	of	Britain	&	Ireland,	UK	Centre	for	Ecology	&	Hydrology,	
Plantlife	and	the	Joint	Nature	Conservation	Committee.	We	spe-
cifically chose this data set because it offered an intriguing op-
portunity to validate the work of numerous European vegetation 
scientists	across	generations	with	a	recent	citizen	science	project	
(Bonnet	 et	 al.,	 2023)	 that	 employed	 a	 systematic	 protocol	 and	
methodology	(e.g.,	the	participants	were	allocated	a	1-	km	square	
in	which	they	had	to	visit	five	plots	in	semi-	natural	habitats	twice	
a	year)	and	encompassed	a	wide	range	of	vegetation	types,	pro-
viding valuable insights into the potential transferability of our 
models	 in	 a	 real-	world	 context,	 beyond	 expert-	driven	 data	 sets.	

It offered an interesting contrast by incorporating data collected 
through	citizen	science	(Bonnet	et	al.,	2020),	thus	expanding	our	
understanding	of	the	generalization	of	the	framework	beyond	tra-
ditional	 scientific	 data	 sets.	 However,	 this	 data	 set	 is	 by	 nature	
very	 different	 from	 EVA,	 and	 there	 is	 a	 significant	 distribution	
shift between the two due to the different collection protocols, 
so we cannot expect the same level of performance. We detail the 
preprocessing	 steps	 to	 create	 the	 test	 data	 set	 in	 Appendix	S4. 
See Figure 2 for a visual representation of the distribution of the 
testing data set.

2.2  | Modeling

2.2.1  |  Validation:	Accounting	for	the	spatial	
structure of ecological data

The goal of this paper is to use the floristic and environmental infor-
mation	 in	 several	 locations	 to	 train	 a	deep-	learning	 tabular	model	
that can predict the habitat type of given points. To mitigate the 
influence of spatial autocorrelation and to ensure that our models 
generalize	well	beyond	the	spatial	structure	of	the	training	data,	we	
split our data set into ten folds according to a spatial block holdout 
procedure	 (Roberts	et	al.,	2017).	All	 the	vegetation	plots	were	as-
signed	into	a	grid	of	10 km × 10 km	cells;	all	of	these	cells	were	then	
randomly sampled for one of the folds and each fold was used once 
as an internal validation set while the nine remaining folds formed 
the	training	set,	allowing	us	to	perform	ten-	fold	cross-	validation	(CV)	
(Stone,	1974).	 The	performance	measure	 reported	by	 the	 ten-	fold	
CV	was	then	the	average	of	the	values	computed	in	the	loop.	This	
method allowed us to evaluate our approaches in a way that limits 
the effect of the spatial bias in the data without wasting much of 
it	 (which	can	occur	when	arbitrarily	 setting	aside	a	validation	set).	
Importantly, it is worth noting that, regardless of the fold designated 
for validation in each iteration, every habitat category remained pre-
sent in the training set formed by the remaining nine folds.

2.2.2  | Models:	Using	deep	neural	networks	on	
tabular data for classification

We	used	the	ten-	fold	CV	procedure	described	above	to	conduct	a	
rigorous	comparative	analysis	of	several	machine	and	deep-	learning	
models. Since there was not an established benchmark for tabular 
data,	we	had	to	work	with	some	of	the	most	used	and	well-	established	
machine	and	deep-	learning	algorithms	in	competitions,	from	ensem-
bles	of	decision	 trees	 (Friedman,	2001)	 to	attention-	based	models	
(Bahdanau	et	al.,	2014).	To	ensure	fairness	and	optimize	their	perfor-
mances,	we	meticulously	tuned	each	model's	main	hyperparameters	
(for	 the	 rest,	we	kept	 the	default	 configurations	 recommended	by	
the	corresponding	papers)	(Feurer	&	Hutter,	2019).	None	of	the	ma-
chine	and	deep-	learning	models	for	tabular	data	described	in	the	ex-
isting	literature	(Borisov	et	al.,	2024)	could	consistently	outperform	
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all the others. To thoroughly evaluate how well our models work, 
we	 adopted	 a	 variety	 of	 approaches	 and	 selected	 neuron-	based	
models	(i.e.,	models	that	consist	of	interconnected	artificial	neurons	
that learn complex patterns in data through forward and backward 
propagation),	tree-	based	models	(i.e.,	models	that	combine	multiple	
base models to improve predictive performance with bagging or 
boosting)	 and	 transformer-	based	 models	 (i.e.,	 models	 that	 enable	
the capturing of intricate contextual relationships within input data 

for	predictive	 accuracy).	We	 illustrate	each	model	 and	 the	associ-
ated	training	procedure	in	Appendix	S1. Five common models were 
retained for evaluation:

1.	 A	MultiLayer	Perceptron	classifier	(MLP)	(Haykin,	1998),	that	is,	
a fully connected class of feedforward artificial neural network. 
It works by taking input data, passing it through multiple 
layers of interconnected nodes with weighted connections 

F I G U R E  1 Hexagonal	binning	showing	the	distribution	of	vegetation	plots	from	the	training	data	set	(top),	zooming	in	on	a	specific	bin	
with	the	raw	spatial	distribution	of	the	vegetation	plots	(bottom),	and	a	vegetation	plot	(assigned	to	the	habitat	type	S51,	i.e.,	Mediterranean	
maquis	and	arborescent	matorral)	with	the	list	of	co-	occurring	species.
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and	 activation	 functions	 (Bircanoğlu	&	Arıca,	2018),	 and	 pro-
ducing output predictions based on the learned patterns in 
the data.

2.	 A	 Random	 Forest	 Classifier	 (RFC)	 (Ho,	1995),	 that	 is,	 a	meta-	
estimator that fits a number of decision tree classifiers on 
various subsamples of the data set and uses averaging to im-
prove	the	predictive	accuracy	and	control	overfitting.	A	single	
decision tree works by recursively partitioning the input data 
based	on	 the	values	of	 its	 features	 to	create	a	 tree-	like	struc-
ture, where each internal node represents a feature and each 
leaf node represents a decision or prediction based on the input 
data's	characteristics.

3.	 An	 eXtreme	 Gradient	 Boosting	 classifier	 (XGB)	 (Chen	 &	
Guestrin, 2016),	that	is,	an	optimized	distributed	gradient-	boosting	
algorithm designed to be highly efficient, flexible and portable. It 
works by iteratively training and adding decision trees to the en-
semble model, each focusing on reducing the residual errors of the 
previous	trees,	using	a	combination	of	gradient	descent	optimiza-
tion	(Ruder,	2016),	regularization	techniques,	and	hardware-	aware	
optimization	to	achieve	high	accuracy	and	scalability.

4.	 A	TabNet	Classifier	 (TNC)	 (Arik	&	Pfister,	2019),	 that	 is,	a	novel	
high-	performance	and	interpretable	canonical	deep	tabular	data	
learning architecture. It works by selectively attending to the 
most informative features of the input data and using a sparse 

F I G U R E  2 Distribution	of	vegetation	plots	in	the	NPMS	test	set.
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masking technique to allow for efficient and interpretable fea-
ture	selection,	while	employing	a	multistep	decision-	making	pro-
cess and auxiliary loss functions to enhance its performance and 
generalization.

5.	 A	 Feature	 Tokenizer + Transformer	 classifier	 (FTT)	 (Gorishniy	
et al., 2021),	that	is,	a	model	that	transforms	all	features	(categori-
cal	 and	numerical)	 to	 embeddings	 and	 applies	 a	 stack	of	 trans-
former layers to the embeddings. It works by transforming all 
features to tokens and running a stack of transformer layers over 
the tokens, so every transformer layer operates on the feature 
level of one object.

2.2.3  |  Encodings:	Mapping	current	habitat	
distributions under different constraints

The	vegetation	plots	found	within	EVA	contain	comprehensive	re-
cords	of	plant	species	co-	occurrences	and	abundances.	All	categori-
cal	 variables	 (i.e.,	 the	 country	 name,	 the	 terrestrial	 ecoregion,	 the	
coastline	and	the	location	on	a	coastal	dune)	are	transformed	using	
the	simple	and	widely	used	one-	hot	encoding	technique	 (Hancock	
&	Khoshgoftaar,	2020).	This	is	an	encoding	method	in	which	a	par-
ticular value of a categorical variable having n possible categories 
would	be	encoded	with	a	one-	dimensional	feature	vector	of	length	
n	where	every	component	is	zero	except	for	the	ith component, cor-
responding to the index of the particular category in the set of pos-
sible	values,	which	has	the	value	one.	All	numerical	features	(i.e.,	the	
degrees of latitude and longitude and the altitude of the vegetation 
plot	 in	meters	above	sea	 level)	were	 left	untouched.	We	proposed	
different	data	representations	(as	 it	 is	known	that	this	can	be	vital	
for	the	success	or	failure	of	models;	Bengio	et	al.,	2013)	to	ensure	
the	framework's	applicability	to	both	abundance	and	presence/ab-
sence	 surveys	 (Joseph	 et	 al.,	2006).	 Three	 distinct	 techniques	 for	
plant species encoding were employed:

1.	 The	 cover-	abundance	 of	 each	 species,	 that	 is,	 the	 natural	 log-
arithm	 of	 the	 raw	 data	 from	 EVA.	 In	 most	 cases,	 it	 was	 origi-
nally	 recorded	 using	 a	 cover-	abundance	 scale	 (Westhoff	&	 van	
der	 Maarel,	 1978).	 The	 scale	 values	 were	 transformed	 to	 the	
arithmetic	mid-	point	 percent	 cover	 value	 corresponding	 to	 the	
individual	 cover-	abundance	 class	 following	 the	 default	 values	
in	 the	 Turboveg	 database	 management	 program	 (Hennekens	
& Schaminée, 2001).

2.	 The	 presence/absence	 of	 each	 species,	 that	 is,	 the	 binarization	
of	the	raw	data	from	EVA.	Each	non-	zero	entry	from	the	original	
data	was	converted	to	the	value	one,	and	every	explicit	zero	was	
preserved	(Scherrer	et	al.,	2020).

3. The reciprocal rank of each species, that is, the inverse of the or-
dinal	ranking	of	the	raw	data	from	EVA.	Each	species	was	ranked	
in	descending	order	of	 its	original	cover-	abundance	value	 (Brun	
et al., 2023)	(from	highest	to	lowest)	and	was	then	associated	with	
the value of the inverse of its position in the ranking.

2.3  |  Evaluation

2.3.1  |  Fitting:	Evaluating	modeling	algorithms	on	
selected covariates

All	details	about	 the	models	and	 their	optimization	are	provided	
in	 Appendix	 S1. We evaluated the performance of the expert 
system	on	 the	 training	 set	we	created.	EVA	data	were	classified	
using	 the	 EUNIS-	ESy	 expert	 system	 (using	 its	 definitions	 of	 in-
dividual	 EUNIS	habitats	 based	on	 their	 species	 composition	 and	
geographic	location)	but	we	wanted	to	see	if	the	vegetation	plots	
would remain classified to the same habitat after interpreting the 
taxon	 names	 with	 the	 Global	 Biodiversity	 Information	 Facility	
(GBIF).	We	thus	kept	the	same	886,260	vegetation	plots,	we	took	
the names from the original database and proceeded to stand-
ardize	 them.	 Furthermore,	 unlike	 our	 experiments	 for	which	we	
kept only vascular plant species and species that were observed at 
least ten times, we also kept in this case species belonging to other 
phyla	(especially	bryophytes	and	lichens	since	they	were	used	by	
the expert system in the definition of some habitats such as S12, 
i.e.,	moss	and	lichen	tundra)	and	rare	species	(as	rare	species	with	
occurrences concentrated in a particular habitat could be used as 
positive	indicators	of	the	habitat	by	the	expert	system).	This	pro-
cess increased the number of species observations to 18,867,936 
(instead	of	 the	17,718,306	used	to	evaluate	our	models)	and	the	
number	of	different	species	to	17,885	(instead	of	the	10,481	used	
to	evaluate	our	models).	Two	of	the	886,260	vegetation	plots	had	
no species left after the species name matching, and as the expert 
system	 (unlike	 our	 framework)	 cannot	 classify	 vegetation	 plots	
solely based on external criteria, we added for both vegetation 
plots	a	fake	species	named	“Unknown	species”	having	a	percent-
age	cover	of	10%.

2.3.2  | Metrics:	Computing	accuracy	to	evaluate	
how well the models are performing

Some of the vegetation plots that were automatically classified by 
EUNIS-	ESy	were	 assigned	 to	 two	or	more	 level-	three	EUNIS	hab-
itats. In order to deal with that and to evaluate the effectiveness 
of our classification framework, considering the complexity of the 
habitat classification task, two key metrics were selected:

1.	 The	 top-	one	 micro-	average	 multiclass	 accuracy,	 that	 is,	
1

N

∑N

i=1
1
�

yi = ŷi
�

 where y	 is	 the	 target	 value	 (the	 classification	
of	 EUNIS-	ESy)	 and	 ŷ	 is	 the	 predictions	 (the	 classification	 of	
the	 framework).	 It	 is	 the	 conventional	 accuracy:	 the	 model's	
prediction must be exactly the expected habitat type. This was 
the most important metric and played a pivotal role in our 
evaluation, as it provided crucial insights into the performance 
of our approaches when we were predicting which habitat was 
the most likely to be observed at a given location.
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2.	 The	 top-	three	 accuracy,	 that	 is,	 1
N

∑N

i=1
ei where ei equals 1 if 

∀k ∈ {1,2,3}, ŷi,k = yi and equals 0 otherwise and where yi is a 
single	ground-	truth	 label	 (produced	by	EUNIS-	ESy)	and	 ŷi,k are 
candidate	labels	(produced	by	the	framework),	both	associated	
to a sample i.	This	means	that	any	of	the	model's	three	highest	
probability predictions must match the expected answer. This 
metric was useful for assessing the performances of our meth-
ods	on	similar	habitats	(i.e.,	habitats	that	have	almost	identical	
species composition and environmental features and are thus 
hard	to	distinguish	 from	one	another)	and	on	scenarios	where	
a vegetation plot was associated with several different habitat 
labels.

2.3.3  |  Noise:	Assessing	the	robustness	and	
generalization	of	models

To	 enhance	 the	 robustness	 (Sietsma	 &	 Dow,	 1991)	 of	 our	 ap-
proaches	 (to	 mitigate	 the	 risk	 of	 the	 phenomenon	 of	 overfitting;	
Dietterich, 1995),	we	experimented	with	the	incorporation	of	con-
trolled	noise	to	the	input	data.	We	introduced	30%	of	dropout,	that	
is, when evaluating the performance of the models, we gave each 
present	species	a	30%	chance	of	being	randomly	considered	absent	
in the input data. This deliberate introduction of noise served the 
vital purpose of reducing the risk that our models would overfit the 
noise	in	the	data	by	memorizing	various	peculiarities	of	some	veg-
etation plots. Instead, it encouraged the models to identify more 
general and transferable patterns, thus bolstering their ability to 
make accurate predictions across diverse ecological contexts. It 
also helped to imitate the omission of plant species during vegeta-
tion	 sampling	 (e.g.,	 if	 some	 species	were	 small	 and	 not	 easily	 vis-
ible)	 (Morrison,	2021).	After	encoding	the	data	and	adding	(or	not)	
noise,	standardization	of	the	features	to	a	mean	of	observed	values	
of	zero	and	a	standard	deviation	of	one	was	always	initiated	(these	
values were estimated from the training data, and then the trans-
formation	 was	 consistently	 applied	 across	 all	 data	 sets),	 as	 it	 has	
been shown that such manipulation can be of benefit to some mod-
els	by	improving	the	numerical	stability	of	the	calculations	(Kuhn	&	
Johnson, 2013).

3  |  RESULTS

3.1  |  Selection: Finding the best- performing model

Table 1 contains a comprehensive overview of all the results we ob-
tained	(with	the	models	already	tuned),	showcasing	the	performance	
of	each	model–encoding	combination.	Among	the	various	configura-
tions tested, the model–encoding combination with the best results 
is	a	MLP	coupled	with	 features	encoded	using	 the	 reciprocal	 rank	
method. This configuration outperformed other models both with 
and without noise addition to the data and when measuring the per-
formance	with	the	top-	one	micro-	average	multiclass	accuracy	(since	
it	is	the	best	suited	metric	in	our	case,	as	we	want	to	prioritize	the	
most	likely	habitat	for	each	vegetation	plot).

Moreover,	 to	 gain	 insights	 into	 the	 run	 time	 (since	 all	 the	 ex-
periments were conducted under the same conditions and some 
people	may	have	 to	use	 the	models	 in	 the	 regime	of	a	 low-	tuning	
time	 budget),	we	 plotted	 the	 time–performance	 characteristic	 for	
the models in Figure 3. For each meticulously tuned configuration, 
we reported both the averaged evaluation performance obtained 
on	the	ten	CV	folds	 (denoting	how	well	the	models	can	generalize	
to	unseen	samples)	and	the	results	obtained	on	the	test	set	 (using	
the	models	trained	on	the	entire	EVA	data	set,	without	holding	out	
part	of	the	available	data).	As	the	encoding	and	the	noise	addition	
did not significantly affect the evaluation time or the inference time, 
we only show the time of the models used with the reciprocal rank 
and	without	noise	addition.	We	can	see	that	all	models,	except	XGB,	
have similar evaluation and inference times, so there is no univer-
sally superior solution in terms of time resources. These two com-
parisons	(Table 1 and Figure 3)	allowed	us	to	make	some	interesting	
findings,	highlighting	the	nuanced	trade-	offs	between	various	mod-
els	and	encodings,	and	emphasizing	the	importance	of	selecting	the	
most appropriate approach based on both performance and runtime 
considerations:

•	 Models	based	on	decision	tree	ensembles,	such	as	RFC	or	XGB,	can	
still	outperform	some	of	the	deep-	learning	models	(MLP,	TNC	and	
FTT)	we	kept	in	our	experiments,	while	requiring	either	a	shorter	
(RFC)	or	a	significantly	longer	(XGB)	amount	of	time	to	train.

TA B L E  1 Comparison	of	the	top-	one	(in	bold)	and	top-	three	(in	italics)	micro-	average	multiclass	accuracy	averaged	over	the	ten	cross-	
validation	(CV)	folds	for	every	model	and	encoding,	with	and	without	noise	addition	(best	top-	one	result	overall	with	and	without	noise	
addition	in	green	background	shading).

Models

Ten- fold CV Ten- fold CV with 30% dropout

Cover abundance Presence/absence Reciprocal rank Cover abundance Presence/absence Reciprocal rank

MLP 88.33/97.99 76.69/95.78 88.74/98.55 72.12/86.46 65.83/88.22 73.20/89.19

RFC 80.31/95.72 73.44/93.74 79.39/95.41 72.56/91.88 66.32/89.90 72.62/92.20

XGB 88.33/98.84 76.52/96.23 86.80/98.56 73.18/88.15 64.74/86.08 72.49/88.58

TNC 79.02/91.55 68.73/87.99 80.22/92.24 65.75/81.17 60.37/82.04 67.20/82.95

FTT 86.62/96.88 75.09/93.78 86.98/97.18 71.18/84.83 64.76/86.50 71.68/86.21
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•	 Although	there	has	been	a	clear	trend	toward	transformer-	based	
solutions	in	recent	years,	these	models,	such	as	TNC	and	FTT,	do	
not consistently outperform standard neural network architec-
tures,	such	as	MLP.

•	 The	 reciprocal	 rank	 encoding	 usually	 leads	 to	 a	 better	 top-	one	
performance	 than	 the	 cover	 abundance	 (except	 for	 tree-	based	
models),	despite	providing	less	 information	about	the	plant	spe-
cies composition in a given vegetation plot.

•	 When	it	comes	to	top-	three	performance,	there	is	no	ubiquitous	
encoding	technique.	However,	 it	seems	that	there	 is	a	trend	to-
ward	decision	tree	ensembles	(RFC	and	XGB),	as	the	best	models,	
with	and	without	noise	addition,	are	always	tree-	based.

•	 Recent	state-	of-	the-	art	specialized	neural	network	architectures	
(e.g.,	TNC	and	FTT)	and	strong	traditional	machine	learning	meth-
ods	(e.g.,	RFC	and	XGB)	do	not	provide	any	benefit	over	a	tuned	
MLP,	which	 is	still	more	than	a	simple	baseline	or	a	good	sanity	
check	(Kadra	et	al.,	2021).

Based	 on	 these	 promising	 findings,	we	 opted	 to	 proceed	with	
the	 configuration	 that	 emerged	 as	 the	 standout	 performer	 (i.e.,	
using	 a	MLP	 classifier	with	 features	 encoded	 using	 the	 reciprocal	
rank	method	and	no	noise	addition)	for	the	subsequent	experiments.	
Indeed,	this	option	was	the	best	trade-	off	between	predictive	perfor-
mance	and	computational	complexity.	As	the	top-	three	performance	
of	EUNIS-	ESy	could	not	be	evaluated	due	to	its	intrinsic	nature,	we	
selected	 the	model	with	 the	 best	 top-	one	 accuracy.	Moreover,	 as	
the	EVA	data	set	contained	data	from	all	European	regions	(and	not	
just	the	UK),	we	opted	for	the	best-	performing	model	of	the	ten-	fold	
CV	evaluation	phase.	This	strategic	choice	would	be	useful	for	the	
next	phases	of	our	research	 (i.e.,	evaluation	and	 interpretability	of	
this	configuration	and	rigorous	comparison	with	the	expert	system).	
Having	 concluded	 the	 rigorous	 process	 of	model	 selection,	which	
included hyperparameter tuning and the identification of the most 
effective	encoding	technique,	we	proceeded	to	re-	train	the	chosen	
model on the entire training data set. This approach allowed us to 
evaluate	the	model's	performance	in	a	holistic	manner	(i.e.,	without	

partitioning the available data into sets and holding out one of them 
for	evaluation)	to	compare	it	to	the	EUNIS-	ESy.

3.2  |  Evaluation: Diving into the 
performance of the best model

Up	until	now,	we	employed	the	micro-	average	multiclass	accuracy	to	
measure the performance of our models. Due to significant class im-
balance	within	the	data	set	(e.g.,	we	had	almost	10,000	times	more	
vegetation plots of the R22 habitat than vegetation plots of the R1L 
habitat	 in	 the	 training	 set),	we	aggregated	 the	 contributions	of	 all	
habitats	 to	 compute	 the	 average	metric.	However,	 in	 some	 cases,	
the	micro-	average	may	not	be	the	most	appropriate	metric	to	evalu-
ate the overall performance of the models. For example, what if we 
were interested in measuring the performance of the model on each 
habitat separately, rather than considering the overall performance 
of the model across all habitats? For such cases, in addition to the 
introduced	metrics,	we	also	computed	the	macro-	average	multiclass	
accuracy	metric	(still	with	k = 1 and k = 3),	which	is	obtained	by	com-
puting	micro-	average	multiclass	accuracy	for	each	class	separately	
and then taking the average over classes. This approach ensured 
that the habitats with only a few vegetation plots contributed the 
same as the habitats with thousands of vegetation plots to the as-
sessment	of	the	model's	performance.	The	use	of	the	macro-	average	
multiclass accuracy mitigated the potential issue of smaller classes 
being overshadowed by larger classes in the overall evaluation of the 
model's	performance.

Before	 delving	 into	 the	 habitat-	specific	 performance	 of	 our	
model, we conducted further experimentation by training two new 
MLPs	with	the	reciprocal	rank	encoding	using	the	same	hyperpa-
rameters as before, except for one crucial alteration: the reduc-
tion	applied	over	 labels	was	 replaced	by	 the	macro-	average.	The	
statistics	were	 calculated	 for	 each	 habitat	 type	 (instead	 of	 each	
vegetation	plot)	and	then	averaged,	but	we	still	used	one	and	three	
as the numbers of highest probability or logit score predictions 

F I G U R E  3 Evaluation	of	time-	performance	characteristics	for	selected	models	on	the	ten	cross-	validation	folds	of	the	entire	EVA	training	
data	set	of	886,260	vegetation	plots	(left)	and	prediction	on	the	NPMS	testing	data	set	of	7521	samples	(right),	with	features	encoded	
with	the	reciprocal	rank	method	(without	noise	addition).	The	circle	size	reflects	the	top-	one	micro-	average	multiclass	accuracy	standard	
deviation	(left)	and	the	size	of	the	model,	that	is,	the	number	of	trainable	parameters	for	deep-	learning	algorithms	and	the	number	of	
estimators	(i.e.,	respectively	the	number	of	trees	in	the	forest	for	RFC	and	the	number	of	gradient-	boosted	trees	for	the	XGB)	for	machine-	
learning	algorithms	(right).
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considered to find the correct habitat types. There are many more 
variations between the different folds and a reduction in overall 
accuracy	compared	to	our	previous	micro-	average	results	 (across	
all	ten	CV	folds,	the	model	achieved	an	average	multiclass	macro-	
average	 accuracy	 of	 respectively	 73.97%	 and	 90.80%	 for	 the	
top-	one	and	top-	three	metrics,	against	an	average	of	88.74%	and	
98.55%	in	micro-	average	accuracy).	While	our	goal	was	to	maintain	
consistency by employing the same model throughout our exper-
iments,	 it	 is	 important	 to	acknowledge	 that	 for	habitat-	wise	per-
formance assessments, it is possible to enhance the results of the 
MLP	model.	One	promising	avenue	for	improvement	is	to	explore	
alternative loss functions, for example by switching the currently 
employed	 loss	 function	 (i.e.,	 the	cross-	entropy	 loss;	Good,	1952)	
for	 the	 imbalanced	 top-	one	 and	 top-	three	 losses,	 which,	 after	
fine-	tuning	using	a	grid	of	parameter	values	recommended	by	the	
authors	 of	 the	 function,	 outperformed	 the	model's	 performance	
under the existing setup.

3.3  |  Comparison: Evaluating the performance of 
hdm- framework and EUNIS- ESy

Of all 886,260 vegetation plots from the data set we used for the ex-
pert system, 742,498 were classified to exactly one habitat of level 
three of one of the eight habitat groups we considered in this study 
(i.e.,	MA2,	N,	Q,	R,	S,	T,	U	or	V).	Among	the	143,762	other	vegetation	
plots,	11%	(i.e.,	15,558	vegetation	plots)	remained	unclassified	and	
4%	(i.e.,	5748)	were	classified	to	more	than	one	habitat.	The	rest	of	
the	vegetation	plots	(i.e.,	122,456	vegetation	plots)	were	classified	
as	habitat	groups	(i.e.,	 level	one	habitats),	broad	habitat	types	(i.e.,	
level	 two	habitats)	 or	 unrevised	 habitats	 (i.e.,	 habitats	 not	 part	 of	
the	current	EUNIS	list).	The	expert	system	achieved	an	accuracy	of	
85.20%.	As	the	expert	system	itself	was	the	tool	that	was	used	to	
classify	the	vegetation	plots	from	EVA,	this	study	shows	the	lack	of	
robustness	 to	 species	 name	 standardization	 of	 the	 expert	 system	
which clearly overfits the original data.

In addition, we performed a comprehensive performance com-
parison between our selected model and the expert system on the 
NPMS	 test	 set,	 presenting	 the	 results	 in	Table 2. For this analy-
sis,	 we	 used	 the	model	 trained	 on	 the	 entirety	 of	 the	 EVA	 data	

set, without holding out one of the folds for evaluation. We dive 
deeper into this evaluation exercise and the disparity in perfor-
mance	scores	observed	between	the	EVA	and	the	NPMS	data	sets	
in	Appendix	S5.

3.4  |  Interpretability: Understanding how the 
models reason

How	 the	models	 qualitatively	 enhance	 habitat	 classification	 is	 a	
major question. To answer the increase in model complexity and 
the resulting lack of transparency, we leveraged different model 
interpretability	 methods	 (e.g.,	 integrated	 gradients	 and	 feature	
ablation).	These	are	discussed	 in	Appendix	S6, in which we dive 
into the explainability of our models and the ecological interpret-
ability	of	the	results.	These	state-	of-	the-	art	algorithms	helped	to	
provide	 an	 easy	 way	 to	 understand	 which	 features	 (e.g.,	 which	
specific	 plant	 species)	 are	 contributing	 the	most	 to	 the	model's	
output. In particular, the implementation of interpretability algo-
rithms can help both researchers and practitioners by facilitating 
the identification of different plant species that lead the model 
to assign a vegetation plot to a given habitat type. For example, 
Figure 4	shows	that	around	85%	of	the	information	about	the	hab-
itat classification of a vegetation plot is contributed by vascular 
plant	species	alone.	Additional	results	include	but	are	not	limited	
to the following:

• The most dominant species inside a vegetation plot are very im-
portant	 in	 the	model's	 output	 (e.g.,	 on	 average,	 in	 a	 vegetation	
plot	containing	ten	species,	over	50%	of	the	total	 importance	is	
contributed	solely	by	the	first	two	species).

• On average, the model gives more importance to herbaceous spe-
cies	(more	than	80%)	than	to	arborescent	species	(less	than	20%),	
even though this trend is reversed for forests and other wooded 
land.

•	 Using	 solely	 plant	 species	 composition	 (with	 neither	 environ-
mental	nor	location	features)	does	not	decrease	the	accuracy	of	
the	model	 and	 it	 sometimes	 slightly	 increases	 it	 (e.g.,	 the	MLP	
averages	88.74%	with	all	features	and	88.75%	with	only	species	
composition).

Hdm- framework EUNIS- ESy

Test accuracy
Top-	one	micro-	average	multiclass	accuracy

37.42% 15.89%

Data requirements
Accuracy	with	neither	location	nor	environmental	features

35.39% 15.42%

Representation learning
Accuracy	with	presence/absence	data

35.58% 11.63%

Noise robustness
Accuracy	with	30%	dropout

34.50% 13.50%

Calculation speed
Time it takes to make predictions

0.42 s 23.91 s

TA B L E  2 Performance	comparison	
of	hdm-	framework	and	EUNIS-	ESy	for	
vegetation-	plot	classification	across	
various	evaluation	metrics	on	the	NPMS	
test set.
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4  | DISCUSSION

4.1  | Main advantages of hdm- framework

We	explain	 in	detail	 the	methodology	 and	use	of	hdm-	framework	
in	Appendix	S7. For an overview of the primary tasks that can be 
accomplished using the framework, please refer to Figure 5. Our dif-
ferent	experiments	have	highlighted	the	remarkable	efficacy	of	AI	in	
classifying	vegetation-	plot	records	into	their	respective	EUNIS	habi-
tats, marking a significant milestone as the first tool to automate this 
process	across	Europe	using	deep-	learning	techniques.	Notably,	our	

framework not only surpasses the performance of traditional expert 
systems but also achieves over double the classification accuracy, 
all while processing data more than 50 times faster than a recently 
developed electronic expert system. This efficiency carries pro-
found academic and practical implications, benefiting phytosociolo-
gists and related fields by potentially expediting research processes 
and enabling timely conservation initiatives. Furthermore, our work 
not	only	underscores	the	potential	of	AI	within	this	domain	but	also	
points	toward	a	broader	paradigm	shift	in	favor	of	advanced	AI	so-
lutions. While we acknowledge the need for continued exploration 
and	potential	challenges	on	the	horizon,	our	framework	lays	a	robust	
foundation for future research and applications in habitat classifica-
tion. It represents a significant leap forward in the practical utility of 
the	EUNIS	habitat	classification	system.

EUNIS-	ESy,	 relying	 on	 species	 cover	 information,	 encounters	
limitations when attempting to classify vegetation plots that only 
record the presence of species without specifying their covers. In 
contrast,	our	hdm-	framework	seamlessly	accommodates	presence-	
only data, extending the applicability of such data. Furthermore, tra-
ditional expert systems typically assess every vegetation plot within 
a	database,	scrutinizing	each	one	to	determine	if	 it	aligns	with	one	
or more predefined habitat definitions specified in their scripts. This 
process can sometimes lead to vegetation plots remaining unclas-
sified	by	the	expert	system.	 In	contrast,	 the	deep-	learning	models	
we present in this study were meticulously trained to assign each 
vegetation	plot	to	(at	least)	one	habitat,	which	is	consistent	with	the	
EUNIS	habitat	classification	 that	was	designed	 to	cover	all	habitat	
types occurring in Europe.

Hdm-	framework	is	an	HDM	platform	facilitating	the	use	of	spe-
cies occurrence data and environmental features retrieved from 
multiple sources. Inspired by the existing literature, we proposed 
several methods that are fast enough to deliver results for thou-
sands	of	vegetation	plots	in	less	than	a	second.	Provided	with	a	set	
of	195	tunable	parameters,	hdm-	framework	has	been	designed	for	
high	customization	flexibility,	so	it	can	be	adapted	to	anyone's	objec-
tives and computing environment. In contrast to the expert system 
which does not itself extract environmental features, the frame-
work	will	 derive	 them	 from	 the	 vegetation-	plot	 coordinates	 using	
the relevant shapefiles already provided and store the calculated 

F I G U R E  4 Doughnut	chart	showing	the	most	important	
group	of	features	of	the	EVA	data	set	according	to	the	integrated	
gradients	method	(applied	to	the	MLP	model	trained	using	the	
reciprocal	rank	encoding	without	noise	addition).	The	group	
“Species”	contains	the	sum	of	the	importance	of	all	species.	The	
group	“Environment”	contains	the	sum	of	the	importance	of	all	five	
environmental	variables	(i.e.,	the	altitude,	the	country	name,	the	
terrestrial ecoregion, the coastline and the location on a coastal 
dune).	The	group	“Location”	contains	the	sum	of	the	importance	of	
both longitude and latitude.

F I G U R E  5 Overview	of	hdm-	framework.	The	panels	display	the	sequence	of	tasks	performed	during	each	of	the	four	main	stages	(data	
set	preparation,	parameters	evaluation,	model	training	and	habitats	prediction).
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values	 (e.g.,	 location	on	coastal	dunes	or	 in	a	certain	ecoregion)	 in	
the header data of the vegetation plots.

4.2  |  Potential improvements for practical 
applications

We discuss the inherent limitations of the training and testing 
data	 set	 in	 Appendix	 S4.	 An	 essential	 aspect	 of	 our	 methodol-
ogy	 revolves	around	 the	 standardization	of	 species	names	using	
the	 GBIF	 Backbone	 Taxonomy.	 This	 step	 plays	 a	 pivotal	 role	 in	
ensuring	consistency	and	facilitating	cross-	data	set	comparisons,	
making	it	a	necessary	component	of	our	approach.	However,	it	is	
important to acknowledge that this process comes with inherent 
trade-	offs,	 including	 the	 loss	 of	 valuable	 information	 pertaining	
to species variations and local taxonomic nuances. The harmo-
nization	of	species	names,	while	promoting	uniformity,	can	 inad-
vertently lead to the amalgamation of distinct taxa or the division 
of a single taxon into multiple names. Such outcomes have the 
potential to influence the accuracy of our classification results. 
Notably,	 in	 some	 instances,	 phytosociology	 experts	 conducting	
vegetation surveys may have recorded species at a higher taxo-
nomic	 level,	such	as	specifying	the	genus	(e.g.,	Quercus),	without	
providing precise species designations. This practice presents a 
challenge	 during	 the	 standardization	 process,	 particularly	 when	
the	GBIF	Backbone	Taxonomy	relies	on	explicit	species	 informa-
tion.	Consequently,	the	standardization	of	higher-	level	taxonomic	
names may not always be feasible, potentially impacting the pre-
cision	 of	 species	 classification	 within	 our	 framework.	 Although	
information	 recorded	 at	 a	 high	 taxonomic	 levels	 (such	 as	 genus)	
can rarely be informative for habitat classification, it is impera-
tive	 to	 recognize	 and	 navigate	 this	 inherent	 trade-	off	 between	
achieving consistency and comparability through species name 
standardization	and	the	potential	 loss	of	finer	taxonomic	details.	
This	trade-	off	significantly	influences	the	interpretation	and	reli-
ability of our classification results, warranting careful considera-
tion	in	our	biodiversity	monitoring	efforts.	Furthermore,	the	GBIF	
Application	Programming	Interface	(API)	works	against	data	kept	
in	the	GBIF	Checklist	Bank	(in	partnership	with	the	Catalogue	of	
Life;	Bánki	et	al.,	2023)	which	taxonomically	indexes	all	registered	
checklist	 data	 sets	 in	 the	GBIF	 network.	 It	 is	 important	 to	 note	
that this taxonomy store is constantly evolving through updates 
and takes taxonomic and nomenclatural information from differ-
ent and new sources, thus potentially resulting in unreproducible 
results.	However,	the	widespread	public	deployment	of	large	lan-
guage	models	in	recent	months	(Zhao	et	al.,	2023)	might	offer	new	
opportunities.	For	example,	 it	could	soon	be	possible	 to	 train	AI	
tools	on	data	that	have	non-	standardized	nomenclature.

Moreover,	 the	 efficacy	 of	 our	model	 is	 intrinsically	 linked	 to	
the taxonomic diversity of vascular plant species present in the 
training	 data	 set	 (EVA).	 As	 our	 models	 are	 trained	 on	 this	 data	
set,	 their	 ability	 to	 recognize	 and	 classify	 species	 is	 contingent	
on exposure during training. While in Europe there are more than 

20,000	species	of	vascular	plants	 (Euro+Med,	2006),	our	 frame-
work was trained on a subset comprising 10,481 distinct vascu-
lar plants. Consequently, when tasked with classifying plots that 
contain species not represented in the training set, certain lim-
itations come to the forefront. In instances where our trained 
models encounter species absent from the training data, it be-
comes necessary to exclude those unrepresented species as our 
models would lack familiarity with them. Consequently, this con-
straint introduces the potential for classification errors, especially 
in scenarios where a substantial proportion of species within a 
plot diverges from those within the training set. This limitation 
is a crucial consideration when applying our framework to novel 
data	sets	(Schmidt	et	al.,	2012)	or	data	sets	characterized	by	high	
species	 diversity	 (Botella,	 Deneu,	 Marcos,	 et	 al.,	 2023).	 To	 en-
hance	 the	 framework's	 utility	 and	 robustness,	 future	 endeavors	
could concentrate on broadening the training set to encompass 
a more extensive spectrum of species. This expansion could be 
achieved through various means, including the acquisition of sup-
plementary	data	sources	(Estopinan	et	al.,	2022)	or	collaboration	
with domain experts to identify and incorporate missing species 
(Szymura	et	al.,	2023).	Being	less	cautious	during	the	data	curation	
phase	(e.g.,	by	not	removing	rare	species	or	species	with	fuzzy	or	
ambiguous	 names)	 could	 also	 be	 an	 option.	 Exploring	 strategies	
to mitigate the impact of species mismatch between training and 
testing	data	would	be	pivotal,	further	augmenting	the	framework's	
versatility and applicability in diverse vegetation classification 
scenarios.

An	 essential	 limitation	 of	 our	 framework	 pertains	 to	 its	 reli-
ance on predefined habitats for classification. The predictions 
generated by our models are grounded in the established defini-
tions	of	EUNIS	habitats	at	the	time	of	model	training.	In	this	paper,	
we focus on eight distinct habitat groups, reflecting the updated 
EUNIS	 classification:	 littoral	 biogenic	 habitats,	 coastal	 habitats,	
wetlands, grasslands and lands dominated by forbs, mosses or li-
chens, heathlands, scrub and tundra, forests and other wooded 
land, inland habitats with no or little soil and mostly with sparse 
vegetation,	and	vegetated	man-	made	habitats.	However,	it	is	par-
amount	to	recognize	that	the	dynamism	of	environmental	classifi-
cations can result in evolving habitat definitions or the emergence 
of	entirely	new	habitats,	driven	by	agencies	such	as	the	EEA.	The	
EUNIS	habitat	classification	itself	is	currently	undergoing	a	process	
of	revision,	and	four	habitat	groups	are	pending	review	(inland	wa-
ters; wetlands; constructed, industrial and other artificial habitats; 
and	complexes).	In	this	respect,	leaving	some	unclassified	vegeta-
tion plots within the training data could be useful to determine if 
new	habitat	 types	need	to	be	defined.	AI	 techniques	could	even	
be used for the definition of those new habitat classes. In addition, 
climate	change	(e.g.,	an	increase	in	temperatures	and	a	decrease	in	
precipitation)	and	other	human	influences	(e.g.,	intensification	for	
more	productive	farming	and	abandonment	of	traditional	land	use)	
are altering biodiversity, potentially leading to species composi-
tion	change	in	some	habitats	(Blowes	et	al.,	2019).	In	such	cases,	
our models would necessitate retraining with vegetation plots 
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categorized	according	to	these	revised	or	newly	established	hab-
itat	types.	This	process	can	be	resource-	intensive	and	potentially	
environmentally taxing, given the associated energy consumption 
(Strubell	et	al.,	2020).	Therefore,	we	must	acknowledge	this	 lim-
itation	and	emphasize	the	importance	of	periodic	model	updates	
to align with any changes in habitat definitions. Furthermore, it 
underscores the need to consider the ecological footprint of these 
retraining	procedures	and	explore	strategies	to	optimize	their	effi-
ciency	and	sustainability.	This	may	encompass	efforts	to	minimize	
energy consumption, employ renewable energy sources during 
the	 training	 phase,	 or	 investigate	 eco-	friendly	 training	 method-
ologies.	By	doing	so,	we	can	ensure	that	our	framework	remains	
adaptable and environmentally responsible in the face of evolving 
habitat classifications.

Currently, our framework operates by selecting an integer k	(by	
default	set	to	one)	and	returning	the	top-	k habitats with the high-
est	score,	a	method	known	as	top-	k classification. Given the com-
plexity of classifying vegetation plots into a substantial number of 
habitats	(a	total	of	228),	relying	on	a	single	value	for	k can lead to 
challenges in precision. To address this issue, we conducted ex-
periments with k	equal	to	3.	However,	our	observations	revealed	
that	in	cases	of	high	certainty,	such	as	T3B	(i.e.,	Pinus canariensis 
forest,	where	 our	MLP	model,	 trained	 using	 the	 reciprocal	 rank	
feature encoding method without noise addition, achieved an im-
pressive	 average	 top-	one	 micro-	average	 multiclass	 accuracy	 of	
98.95%	 across	 all	 ten	 folds),	 employing	 k larger than 1 resulted 
in an excessive number of predictions. Conversely, for instances 
characterized	 by	 significant	 ambiguity,	 like	 R1L	 (i.e.,	 Madeiran	
oromediterranean siliceous dry grassland, where the same model, 
trained using the same method, achieved an average accuracy of 
0.00%	with	the	same	metric	and	evaluation	procedure,	although	
it should be noted that only ten occurrences of this habitat are 
present	 in	 EVA),	 employing	 a	 k-	value	 of	 3	 or	 less	 (for	 example)	
proved	to	be	overly	restrictive.	An	alternative	and	promising	strat-
egy to address this challenge is the implementation of conformal 
prediction	 (Gammerman	et	al.,	2013).	This	approach	dynamically	
adjusts the number of predicted habitats based on the computed 
ambiguity for each sample, while still aiming to maintain an aver-
age of k predictions across all samples, a technique referred to as 
average-	k	classification	(Lorieul	et	al.,	2021).	While	this	approach	
presents a potential solution for handling ambiguity more effec-
tively, it is important to note that it has not yet been integrated 
into our framework but represents a promising avenue for future 
development.

5  |  CONCLUSIONS

In	summary,	the	deep-	learning	framework	presented	in	this	paper	
has demonstrated its remarkable capability to accurately assign 
vegetation-	plot	 records	 to	 their	 respective	 EUNIS	 habitats,	 as	
confirmed through rigorous expert evaluation. This framework 
not only achieves high accuracy and clearly outperforms European 

expert systems but also ushers in a new era of possibilities. It helps 
big vegetation data classification and management. The results 
produced, which are understandable to experts in vegetation clas-
sification, highlight the importance of dominant species and the 
species composition of sites as a whole. The fusion of data sources 
offers unprecedented flexibility, making it suitable for a wide spec-
trum of applications across diverse habitat types. For instance, as 
we consistently assign a substantial number of vegetation plots 
from	 various	 European	 regions	 to	 EUNIS	 habitat	 classifications	
using	 our	 framework,	 it	 paves	 the	way	 for	 precise	 characteriza-
tions of species composition, distribution patterns, and their in-
tricate environmental associations within these habitats. The 
development of this comprehensive framework represents a sig-
nificant	 step	 toward	more	 efficient,	 accurate	 and	 cost-	effective	
classification of habitat types.
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Appendix S1.	Visual	overview	of	the	architectures,	explanations	of	
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tuned hyperparameters with the search spaces and optimal values, 
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