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UNIVERSITÀ DEGLI STUDI DI SIENA

Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche

  

DI 

On the Expressive Power of

Graph Neural Networks:

Beyond the Weisfeiler-Leman Test

Caterina Graziani

PhD in Information Engineering and Science

Supervisors

Prof. Monica Bianchini, Prof. Moreno Falaschi

Examination Commitee

Prof. Stefano Melacci

Prof. Barbara Hammer

Prof. Fabrizio Costa

Thesis reviewers

Prof. Filippo Maria Bianchi

Prof. Barbara Hammer

Siena, 06/07/2024



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

Abstract

Graphs are pervasive in many applications, hence the quest for models that can learn

effective representations of them. Graph Neural Networks (GNNs) have emerged

among other architectures for graph processing, and the study of their theoretical

properties has recently experienced a rapid rise. A special focus is dedicated to

their expressive power, which consists in the ability of GNNs to differentiate non-

isomorphic graphs and to approximate functions on graphs. These properties are

strictly related to classification/regression tasks where distinguishing between dif-

ferent inputs is crucial for the final performance of the model. In this thesis, we

address two main challenges: the lack of expressiveness results for GNNs on ar-

bitrary graph types and the inherently limited expressive power of standard GNNs,

which is upper bounded by the Weisfeiler-Leman (1-WL) test. For example, GNNs

cannot count any substructure different from star graphs or even distinguish small

non-isomorphic graphs. The fields that can benefit from a deeper understanding of

the limitations of GNNs are countless, including biology, physics, and social net-

work analysis. In such application domains, the types of graphs involved are varied:

for example, data can find natural representations via directed or undirected, homo-

geneous or heterogeneous, static or dynamic graphs, and even via multigraphs and

hypergraphs. However, foundational studies regarding the mentioned graph types

are lacking. We aim to fill the gap by providing a comprehensive expressiveness

investigation on GNNs for arbitrary graph types. In particular, we devise appro-

priate extensions of 1-WL and k-WL, identifying relations among them within an

algebraic lattice framework. Then, we prove a universal approximation theorem for

GNNs across all the aforementioned domains. In particular, the study extends to

discrete dynamic graphs, widely used in practice, which require a peculiar analysis

approach, due to the difference between dynamic architectures and static ones. We

further propose a new, more expressive algorithm, Path-WL, modifying the aggreg-

ation mechanism of GNNs, from the topological neighborhood to a path-based one,

enhanced with geodesic distance information. The corresponding model, Pain (PAth

Isomorphism Network), is strictly more expressive than GNNs. Additionally, com-

pared to other architectures known to be more powerful than GNN, we demonstrate

that PAIN is not bounded by any of them. We characterize graph classes that can be

distinguished by Path-WL and demonstrate the ability of Path-WL to count cycles

of arbitrary length. This thesis aims to take a step forward in our understanding of

GNN capabilities and proposes new strategies to overcome their limitations.
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Chapter 1

Introduction

In the past few years, deep learning has led to significant breakthroughs in fields such as

computer vision, employing Convolutional Neural Networks (CNNs), or natural language

processing, with Recurrent Neural Networks (RNNs) [6, 7] and, recently, with Trans-

formers [8, 9]. However, these techniques are tailored for images and sequential data,

and do not perform as well with other data types. As a result, there has been a growing

interest in exploring the so-called geometric deep learning [10], namely deep learning for

non-Euclidean data such as manifolds or graphs.

Graphs are complex data structures that relate entities (the nodes) through relations (the

edges). They are ubiquitous as they can be used to model several application domains

such as social networks [11], traffic networks [12], sensors networks [13], metabolic and

regulatory networks [14]. We can represent meshed surfaces as graphs, or complex struc-

tures like molecules and compounds, among others. Graphs can also be considered as

a generalization of rather regular structures like texts (line graphs), or images (grid-like

graphs). Notably, the leading journal Nature has devoted exceptional attention to the

impact of graphs, dedicating several covers to the topic (see Figure 1.1). Due to the

versatility of graphs to model several real-world scenarios, they play a key role in modern

machine/deep learning. Still, they are hard to process because of their non-Euclidean

structure, which means that graphs generally lack a grid-like form, a common system

of coordinates, or a vector space structure. Furthermore, the classical assumption of

independence among the entities is negated, given their strong interconnection. Hence,

the primary challenge in this domain is to find an effective representation of the graph

so that it can be readily utilized by machine learning models [15]. Since 2008, there

has been an increasing interest in Graph Neural Network (GNN) approaches for directly

processing graphs [16, 17, 18] and many GNN variants have been developed, including

Neural Networks for graphs [19], Gated Sequence Graph Neural Networks [20], Spec-

tral Networks [21], Graph Convolutional Neural Networks [22], GraphSAGE [23], Graph

Attention Networks [24], and Graph Networks [25].

Despite GNNs have revolutionized learning on graphs and achieved state-of-the-art

performance in numerous tasks, theoretical studies have shown that they can fail to solve

simple problems [26]. Actually, most studies on the expressive power of GNNs focus on

their ability to distinguish non-isomorphic graphs (separation power) and approximate

functions (approximation capability). In fact, the ability of GNNs to distinguish graphs

is also related to their capability to approximate functions on graphs. Broadly speaking,

a GNN takes a graph as input and produces an output at the node level or for the whole

graph, based on the local graph topology. A GNN successfully distinguishes between two
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4 1. Introduction

Figure 1.1: (top) Nature’s co-citation network, cover art by A.-L. Barabasi, A. J. Gates,

A. Grishchenko, Q. Ke, M. Martino, and O. Varol. 2019. (bottom left) 2011 cover of

[1] inspired by network medicine, (bottom right) 2004 cover of [2] focusing on network

biology.

graphs, if it produces different outputs for each of them. A notable issue occurs when

a GNN produces identical outputs for two non-isomorphic, and thus distinct, graphs.

Classical approximation results for neural networks such as [27, 28] do not directly extend

to GNNs [29, 30, 31] because of the additional requirement of permutation invariance.

Such requirement ensures that the graph-level outcome is invariant to the order of the
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nodes in the graph [25]. This property is crucial for maintaining the consistency of graph-

based learning, but it also imposes significant constraints on the types of functions that

GNNs can approximate. Indeed, [32] proved that GNNs can approximate any function

that is invariant or equivariant to graph isomorphism.

In this chapter, we first discuss the limitations of GNNs, serving as motivation driving

the presented research. Then, we detail the contributions made to the field and outline

the structure and organization of the thesis. Finally, we present the complete list of

publications from which the thesis is drawn, along with additional works that, while not

closely related to the topic discussed here, have been developed during my PhD.

1.1 Motivation

The main purpose of this thesis is the analysis of some theoretical properties of graph

Neural Networks, which have recently been the subject of an in-depth study [33]. In

particular, we focus on their expressive power, which is the ability of GNNs to distinguish

graphs and approximate functions on them. But how easy is it to distinguish two graphs,

in general?

1.1.1 The Graph Isomorphism Problem

The study of expressive power of GNNs is related to a number of long-standing difficult

tasks in graph theory [34, 35], one of the most prominent being the Graph Isomorphism

(GI for short). It was recognized as a ”disease” by [36] in 1977, and it consists of de-

ciding whether two graphs are isomorphic or not. Two graphs are isomorphic if there is

a bijection ϕ between the two node sets that preserves the ”adjacencies”, that is, if an

edge (u, v) exists in the first graph, there exists a link between the corresponding nodes

ϕ(u), ϕ(v) in the second graph. Two isomorphic graphs are essentially the same graph,

modulo a suitable permutation of the nodes. Therefore, given the bijection ϕ, it is pos-

sible to verify in polynomial time whether two graphs are isomorphic or not, i.e. the GI

problem falls into the NP complexity class, thus being of particular theoretical interest.

Its actual complexity is still unknown: since 1979, when Garey and Johnson included GI

in a list of natural problems whose complexity was unknown [37], it is not known whether

a polynomial-time algorithm that solves GI exists nor if it is NP-hard 1. More precisely,

GI is believed to fall into the NP-intermediate class, i.e. the class of problems that are in

NP but are neither NP-complete nor belong to P.

This problem appears to be highly relevant also in a broad range of applications, from

the classification of molecular graphs in chemistry to computational graphs — that can

be used to represent mathematical expressions — in computer science. Due to its im-

portance, many efforts have been dedicated to design efficient algorithm to approximate

GI [38]. The history of approaches for solving the problem approximately dates back to

the 1960s [39, 40, 41, 42]. In 2015, Babai showed an effective algorithm to solve GI in

quasi-polynomial (2log(n)
O(1)

) time [43], improving the previous best bound (from 1983) of

1Note that both might be true at the same time, since P could coincide with NP.
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expO(
√

n log(n)), where n is the number of nodes. The existence of a quasi-polynomial time

algorithm for solving GI is one of the strongest indicators against its NP-completeness.

In fact, the NP-completeness of GI would imply that every problem in NP is solvable in

quasi-polynomial time [44]. Various heuristics to test isomorphism between two graphs

are surveyed in [45]. Among them, the Weisfeiler-Leman2 (1-WL) method was considered

as one possible candidate to solve the GI problem in polynomial time. Actually, iso-

morphism for many classes of graphs (e.g. trees, planar graphs [46, 47], or graphs of

bounded maximum degree) can be decided in polynomial time and, in practice, the graph

isomorphism problem can often be solved efficiently [48, 49].

1.1.2 The power of the Weisfeiler-Leman test

The Weisfeiler-Leman test first appeared in 1968 in a bulletin of information sciences

of the Soviet Union [50] (see Figure 1.2). Similar methods had already been used in

Chemoinformatics since 1965, to create descriptors or fingerprints for small molecules

[51, 52]. These were employed to determine structural similarities between molecules or

to explain their chemical properties [53]. The original paper described the 2-WL variant,

which is however equivalent to 1-WL, also known as Colour Refinement and it consists of

a polynomial-time heuristic for testing graph isomorphism [39, 40]. It iteratively produces

a node coloring based on the current color of the node and the colors of its neighbors.

After termination, it compares two graphs based on the resulting color sets of their nodes.

Figure 1.2: The original paper of Weis-

feiler and Leman.

If they are different, the two graphs are not

isomorphic, otherwise they are possibly iso-

morphic. 1-WL provides only a necessary con-

dition to isomorphism.

In [48], it was shown that 1-WL identifies al-

most all graphs after two iterations. More spe-

cifically, the fraction of graphs of order n which

are not identified by 1-WL tends to 0 as n tends

to infinity [54]. This algorithm is also applied

to speed up computations in other fields, for ex-

ample in static program analysis [55] or within

the context of graph kernels in machine learn-

ing [56]. A comprehensive description of power

and limits of 1-WL can be found in [57, 44, 58].

We are particularly interested in the relation

between 1-WL and GNNs. Independently, [26]

and [59] showed that the separation power of

GNNs is characterized by 1-WL. Equivalently,

the 1-WL test exactly defines the classes of

graphs that GNNs can recognize as non-isomorphic. A deep understanding of the re-

lationship between 1-WL and GNNs is fundamental to study the theoretical properties

2We use the spelling “Leman” here as Andrew Leman, co-inventor of the algorithm, preferred it over

the transcription “Lehman”; see https://www.iti.zcu.cz/wl2018/pdf/leman.pdf.

https://www.iti.zcu.cz/wl2018/pdf/leman.pdf
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Figure 1.3: Example of non isomorphic 3-regular graphs that 1-WL fails to distinguish.

of the latter and goes beyond expressiveness. For example, [60] derived a generalization

bound for GNNs, relating their VC dimension with the number of colors produced by the

1-WL.

1.1.3 The limits of Graph Neural Networks

Graph Neural Networks are a large class of relational models for graph processing. Once

proper weights are learned, GNNs are at most as expressive as 1-WL. This correspondence

justifies the effectiveness of GNNs in many tasks but also clarifies its limitations. For

example, 1-WL systematically fails to distinguish simple graphs (see Figure 1.3). In [61],

several non-isomorphic graph pairs are described that are not distinguishable by 1-WL

test and hence by GNNs. This limitation can be partially attributed to the fact that

1-WL can only count simple substructures like star graphs [62, 63]. In fact, 1-WL cannot

recognize or count cycles [57] and this has important consequences for GNNs in terms of

applications. For example, in Bioinformatics, the properties of a chemical molecule may

depend on the presence or absence of small substructures [64]; in social network analysis,

the count of triangles allows to evaluate the presence and the maturity of communities

[65, 66, 67, 68, 69]. Another structural property that 1-WL fails to detect is the presence

of disconnected components, which is crucial in many applications, ranging from social

networks to biochemistry [70, 71].

Concerning approximation capabilities, GNNs turned out to be universal approximators

on graphs modulo the constraints enforced by 1-WL. A limit of current results is that they

only apply to static undirected homogeneous graphs with node attributes. In contrast,

real-life applications often involve a much larger variety of graph types, and the usual

results on expressivity cannot be trivially extended to distinguish them.

1.2 Contributions

This thesis focuses on knowledge gaps in the theoretical understanding of the expressive

power of GNNs. The goal is to fill these gaps and use the knowledge gained to design new

GNN models. In particular, we study the GNN expressive capability on graph domains

that have not yet been considered, also providing new tools to better understand the

GNN expressiveness in general. Moreover, we propose a novel GNN architecture using

paths to extend their expressive power and study such architecture from a theoretical and
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experimental viewpoint.

The main contributions of the thesis are listed in the following.

• We extend the expressiveness results on GNNs to all graph types mentioned in the

previous section. To this aim, we consider a large class of graphs, called Static At-

tributed Undirected Homogenous Graphs (SAUHGs), and we extend the Weisfeiler-

Leman test definition to both SAUHGs and dynamic graphs. Moreover, we consider

an equivalent way to test isomorphism, other than 1-WL, that is the unfolding tree.

An unfolding tree consists of a tree constructed by a breadth-first visit of the graph,

starting from a given node. If the unfolding trees of two nodes are equal in the limit,

the nodes are called unfolding tree equivalent. Two graphs are possibly isomorphic

if all their unfolding trees are equal. From [72], it is known that for static undirected

node-attributed graphs, both the unfolding tree and the Weisfeiler–Leman approach

for testing the isomorphism of two graphs are equivalent. We show that this equi-

valence holds also for the devised extensions. Another main result consists in the

analysis of the approximation capabilities of generic GNNs for dynamic graphs and

SAUHGs. We show that they are capable of approximating, in probability and up

to any precision, any measurable function on graphs that respects the corresponding

1-WL/unfolding equivalence. Moreover, the proof is constructive and allows us to

deduce hints on the GNN architecture that can achieve the desired approximation.

Finally, we provide an experimental validation of our theoretical results on synthetic

datasets. See [3] for more details.

• We extend the higher-order WL test (k-WL) to arbitrary graph types, and we study

the relations among the various tests. The result is a complete, distributive, and

modular lattice. Interestingly, this draws a connection with the field of General

Algebra, which we aim to explore in more detail in the future. This preliminary

work has been presented at the ECML 2022 MLG Workshop [73].

• To overcome the limits of GNNs, we propose Path-WL, a general class of color

refinement algorithms based on paths and geodesic distance information. We study

the relation of Path-WL with 1-WL and also compare Path-WL to other more

expressive architectures present in the literature. We conclude that Path-WL is

strictly more expressive than 1-WL and it is not comparable to other higher-order

extensions. A key feature of the effectiveness of Path-WL is the ability to count

cycles of arbitrary length. Moreover, we propose PAIN, a GNN with an expressive

power equivalent to Path-WL, and empirically verify our theoretical results, in

both synthetic and real-world datasets. This work has been accepted at ICML

2024 [74] and already presented, in short form, at the Neurips 2023 GLFrontiers

Workshop [75].
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1.3 Outline

The thesis is organized as follows. Chapter 2 provides all the necessary preliminaries;

moreover, to make reading easier, all the notation symbols are collected in a table. Instead,

chapter-specific preliminaries will be found at the beginning of each chapter. The second

part of the thesis (Part II) is characterized by the extensions to arbitrary graphs of the

above described literature results. In particular, Chapter 3 contains the extension of

WL and unfolding tree to edge-attributed and dynamic graphs and the approximation

theorems for the related GNNs. Chapter 4 proposes an extended hierarchy of WL for

arbitrary graphs, related to higher-order models. The third part of the thesis (Part III)

consists of the definition of a new framework where the locality of the classical message-

passing algorithm is overcome, in favor of a more expressive class of models based on

paths (Chapter 5). Conclusions are collected in Part IV while other works, which have

characterized my PhD journey, are summarized in Appendix A. Appendices B and C

gather proofs, additional details, and insights related to Part II and Part III, respectively.

1.4 List of Publications

My doctoral program has led to the following publications. The symbol * stands for

’equal contribution’.

• Weisfeiler–Lehman goes Dynamic: An Analysis of the Expressive Power

of Graph Neural Networks for Attributed and Dynamic Graphs

Silvia Beddar-Wiesing*, Giuseppe Alessio D’Inverno*,Caterina Graziani*, Veron-

ica Lachi*, Alice Moallemy-Oureh*, Franco Scarselli, Josephine M. Thomas

Neural Networks, Volume 173, 2024, 106213, ISSN 0893-6080 ([3])

• On the Extension of the Weisfeiler-Lehman Hierarchy by WL Tests for

Arbitrary Graphs

Silvia Beddar-Wiesing*, Giuseppe Alessio D’Inverno*,Caterina Graziani*, Veron-

ica Lachi*, Alice Moallemy-Oureh*, Franco Scarselli

18th International Workshop on Mining and Learning with Graphs - ECMLPKDD

2022 ([73])

• The Expressive Power of Path based Graph Neural Networks

Caterina Graziani*, Tamara Drucks*, Fabian Jogl, Monica Bianchini, Franco

Scarselli, Thomas Gärtner

Accepted at ICML2024 ([74]); Accepted at NeurIPS 2023 GLFrontiers Workshop

([75])

During the formation period of my PhD, I have produced other works that are not included

in the core of the thesis. They are listed below and described in Appendix A in more

detail.

• Enhancing Embedding Representations of Biomedical Data using Logic

Knowledge
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Michelangelo Diligenti, Francesco Giannini, Caterina Graziani, Stefano Fiorav-

anti, Moreno Falaschi, Giuppe Marra

In 2023 International Joint Conference on Neural Networks (IJCNN) (pp.1-8).

New York, USA : IEEE [10.1109/IJCNN54540.2023.10191706] ([76])

• Multi-stage Synthetic Image Generation for the Semantic Segmentation

of Medical Images

Paolo Andreini, Simone Bonechi, Giorgio Ciano, Caterina Graziani, Veronica

Lachi, Natalie Nikoloulopoulou, Monica Bianchini, Franco Scarselli

In Artificial Intelligence and Machine Learning for Healthcare (pp. 79-104).

Cham, Switzerland: Springer [10.1007/978-3-031-11154-9 5] ([77])

• A Neural Network Approach for the Analysis of Reproducible Ribo–Seq

Profiles

Giorgia Giacomini*,Caterina Graziani*, Veronica Lachi*, Pietro Bongini*, Niccolò

Pancino*, Monica Bianchini, Davide Chiarugi, Angelo Valleriani, Paolo Andreini*

Algorithms, 15(8) [10.3390/a15080274].

Basel, Switzerland: Molecular Diversity Preservation Int. ([78])

• Blinking Rate Comparison Between Patients with Chronic Pain and Par-

kinson’s Disease

Emanuel Stefanescu, Niccolò Pancino, Caterina Graziani, Veronica Lachi, Maria

Lucia Sampoli, Giovanna Maria Dimitri, Alessia Bargagli, Dario Zanca, Monica Bi-

anchini, Dafin Mures,anu, Alessandra Rufa

European Journal of Neurology 29, 669-669, 2022.

Oxford, GB: Blackwell Science. ([79])

• A mixed statistical and machine learning approach for the analysis of

multimodal trail making test data

Niccolò Pancino*, Caterina Graziani*, Veronica Lachi*, Maria Lucia Sampoli,

Emanuel S, tefǎnescu, Monica Bianchini, Giovanna Maria Dimitri*

Mathematics 9, 3159, 2021.

Basel, Switzerland: MDPI AG, 2013 [10.3390/math9243159]. ([80])

• A Two-Stage GAN for High-Resolution Retinal Image Generation and

Segmentation

Paolo Andreini, Giorgio Ciano, Simone Bonechi, Caterina Graziani, Veronica

Lachi, Alessandro Mecocci, Andrea Sodi, Franco Scarselli, Monica Bianchini

Electronics 11, 60, 2021.

Basel, Switzerland: MDPI [10.3390/electronics11010060]. ([81])

• Point-Wise Ribosome Translation Speed Prediction with Recurrent Neural

Networks

Pietro Bongini, Niccolò Pancino, Veronica Lachi, Caterina Graziani, Giorgia Gi-

acomini, Paolo Andreini, Monica Bianchini

Mathematics, MDPI, 12, 3, 2024. [10.3390/math12030465] ([82])
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Chapter 2

General Preliminaries and Notation

This chapter collects the general preliminaries, namely the basic concepts that are com-

mon to the whole thesis.

2.1 Notation

We first provide a table gathering the mathematical notation used across the thesis.

N natural numbers

R real numbers

Z integer numbers

≤ less than or equal (classical order on numbers)

[n], n ∈ N sequence 1, 2, . . . , n

Nk,Rk,Zk k-dimensional vector spaces

x = (xi)i∈[n] ordered sequence (or vector) of n elements

A matrix

∥ · ∥ norm on R
∥ · ∥∞ ∞-norm on R

∅ empty set

⊥ undefined; non-existent element

{·} set

{{·}} multiset

|M | cardinality of a set M

∪ union of two (multi)sets

× cartesian product of two (multi)sets

⊆ subset (included or equal)

⊑ less expressive than or equally expressive to

∼r equivalent w.r.t. relation r

2.2 Graph Theory

Let G = (V, E) be a graph with node set V and edges E . We refer to the number of nodes

|V| in G as the order of G. Let N (v) be the neighborhood of a node v ∈ V, i.e. the set

of all nodes adjacent to v, and be δ(v) the degree of a node v ∈ V, i.e., the number of

neighbors |N (v)|. For a graph G, we denote with ∆ the maximum vertex degree of the
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graph. In the present work, we only consider finite, homogeneous, and undirected graphs.

In this framework, we consider graphs endowed with a node labeling, which is defined in

the following.

Definition 2.1 (Node labeling). Let G = (V, E) be a graph. We define a node labeling

as a function α : V → Σ with an arbitrary codomain Σ that we call set of labels.

We denote a graph endowed with a node labeling by G = (V, E , α) and α(v) by αv for

v ∈ V.

We sometimes refer to α as the node attributes (see Chapter 3 for example) or, in the

context of neural networks, as the node features or even as colors, when it comes to

coloring procedures.

2.3 Graph Neural Networks

Message-passing graph neural networks (GNNs) leverage the graph structure and the

node labeling α to learn a representation vector (or embedding) for individual nodes,

denoted by hv, or for the entire graph, denoted by hG. Each node embedding is updated

by aggregating the embeddings of its neighboring nodes.

Definition 2.2 (GNN). Let G = (V, E , α) be a graph with node labeling α. We initialize

the feature of node v as h
(0)
v = αv for all v ∈ V. The computation scheme of a message-

passing graph neural network for iteration i > 0 is defined as

h(i)
v = Combine

(
h(i−1)
v , Aggregate

({{
h(i−1)
u : u ∈ N (v)

}}))
,

where h
(i)
v is the feature vector of node v at the i-th iteration. The GNN output for a

node-level learning task after iteration k is given by

hv = Readout
(
h(k)
v

)
,

and the output for a graph-level learning task is given by

hG = Readout
({{

h(k)
v : v ∈ V

}})
.

In [26], it shown shown that with a sufficient number of GNN layers and injective

Combine, Aggregate, and Readout functions the resulting GNN architecture is as

expressive as the Weisfeiler-Leman test. Moreover, the depth of the GNN equals the

number of iterations of the test. For more details both on foundations and applications

of GNNs, we point to recent surveys [83, 84] and to the review of GNN methods [85].

2.4 The Expressivity of GNNs

In this section of the preliminaries, we introduce the tools to study the expressive power

of GNNs, namely the Weisfeiler-Leman test, its k-dimensional extension, and the concept

of the unfolding tree of a node.
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Figure 2.1: Two iterations of 1-WL. As a starting point, for i = 0, the colors are assigned

uniformly to the nodes. From the second iteration (i = 2) on, the partition is stable and

the algorithm terminates.

2.4.1 The Weisfeiler-Leman test

We first formally define the Weisfeiler-Leman test, a coloring procedure employed to test

graph isomorphism [39, 40].

Definition 2.3 (1-WL). Let G = (V, E , α) be a graph with node labeling α and let Σ be

a set of colors. Let c
(i)
v ∈ Σ be the color of the node v at iteration i and let c

(0)
v = αv.

The Weisfeiler-Leman test updates the color of node v at each iteration i > 0 as follows:

c(i)v = hash
(
c(i−1)
v ,

{{
c(i−1)
u : u ∈ N (v)

}})
,

where hash bijectively maps its input to a color from Σ.

1-WL partitions the nodes of a graph into equivalence classes (i.e., the colors), where

equivalent nodes are assigned the same color1. The algorithm terminates with a stable

coloring when the partitioning does not change between iterations. To test whether two

graphs are isomorphic, 1-WL is applied to both graphs. If the stable coloring of the two

graphs differs, i.e., the graphs have a different number of nodes with the same color, the

graphs are non-isomorphic. The algorithm is not conclusive if the stable coloring is the

same, i.e., the two graphs can be, but are not guaranteed to be, isomorphic. See Figure

2.1 for an example of 1-WL.

Remark 2.1. Compare Definition 2.2 and Definition 2.3. GNNs can be viewed as a

neural version of the 1-WL algorithm, where colors are replaced by continuous feature

vectors and neural networks are used to aggregate over node neighborhoods [23, 86, 59].

Remark 2.2 (Notation). In general, given a coloring algorithm T , nodes u and v are

called T -equivalent if they result in the same color after the termination of the algorithm

T . It is denoted by u ∼T v. Similarly, graphs G and H are T -equivalent if every node

v in G is bijectively mapped to a node u in H s.t. u ∼T v. We denote with PT the

partition in equivalence classes induced by T . Let T1 and T2 be two coloring algorithms.

We write T1 ⊑ T2 if PT2
is finer than or equal to PT1

and every class in PT1
is a union

1Indeed, it is an equivalence relation, namely it is reflexive, symmetric, and transitive.
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of classes in PT2
. If we identify the expressivity of an algorithm with its ability to assign

different colors to non-isomorphic graphs, the finer the partition, the greater the ability

to distinguish. Then, we interpret T1 ⊑ T2 as T2 is not less expressive than T1. We write

T1 ⊏ T2 if T2 is strictly more expressive than T1 and T1 ≡ T2 iff T1 ⊑ T2 and T2 ⊑ T1.

If it holds that T1 ̸⊑ T2 but at the same time T2 ̸⊑ T1, the two tests are said to be

incomparable.

2.4.2 Unfolding tree

Another equivalent way of testing the isomorphism of two graphs is comparing the un-

folding trees2 (UT) rooted at their nodes. First, we formally define what a tree is.

Definition 2.4. A tree is a connected acyclic graph. A rooted tree is a tree in which

one vertex is chosen as the root.

Definition 2.5 (Unfolding Tree). The unfolding tree UTl
v in graph G = (V, E ,X) of

node v ∈ V up to depth l ∈ N0 is defined as

UTl
v =

{
Tree(xv, ∅) if l = 0

Tree
(
xv,UTl−1

N(v)

)
if l > 0 ,

where Tree(xv, ∅) is a tree consisting of node v with feature xv. Tree
(
xv,UTl−1

N(v)

)
is

the tree consisting of the root node v and subtrees UTl−1
N(v) =

{{
UTl−1

u | u ∈ N(v)
}}

of

depth l − 1. The unfolding tree of v is defined as UTv = liml→∞ UTl
v.

Here is an example of the unfolding tree of depth d = 2 for node 1 of the graph in

Figure 2.2.

Figure 2.2: The unfolding tree UT2
1 for the graph on the left.

[88] and [89] showed that the unfolding tree and 1-WL are equivalent for testing the

isomorphism of two graphs, i.e., the colors of the nodes after i iterations of 1-WL are the

same if and only if the unfolding trees of depth i are isomorphic.

2The unfolding trees are in some text referred to as computational graphs [87].
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2.4.3 Higher order versions of the WL test

In [90] the authors devised the more powerful extension k-WL, which colors k-tuples from

Vk instead of single nodes (see [59]).

Definition 2.6 (k-WL Test). Let Ns,j = {(s1, ..., sj−1, r, sj+1, ..., sk) |r ∈ V} be the j-th

neighborhood of a k-tuple s = (s1, ..., sk) ∈ Vk. It is obtained by replacing the j-th

component of s by every node from V. In iteration 0, the algorithm initializes each k-

tuple with its atomic type, i.e., two k-tuples s, s′ ∈ Vk get the same color if the assignment

si 7→ s′i induces an isomorphism between the subgraphs induced from the nodes from s

and s′, respectively.

For iteration i > 0, we define

C
(i)
s,j = HASH

(
(c

(i−1)
s′ |s′ ∈ Nj(s))

)
,

and set

c(i)s = HASH
(
c(i−1)
s , (C

(i)
s,1, ...,C

(i)
s,k)

)
.

Hence, two tuples s and s′ with c
(i−1)
s = c

(i−1)
s′ get different colors in iteration i if there

exists j ≤ k such that the number of j−neighbors of s and s′, respectively, colored with

a certain color is different. The algorithm then proceeds analogously to the 1-WL. By

increasing k, the algorithm gets more powerful in terms of distinguishing non-isomorphic

graphs, i.e., for each k ≥ 2, there are non-isomorphic graphs that can be distinguished by

the (k + 1)-WL but not by the k-WL [61, 4].

As both are used in GNN literature, we point out the existence of two variants of the

same algorithm, which are the folklore k-WL (k-FWL) and the oblivious k-WL (k-OWL).

Whenever we mention k-WL, we are referring to k-OWL, for which the following proper-

ties hold:

• 1-WL is equivalent in expressive power to 2-WL ([91])

• (k + 1)-WL is more expressive than k-WL for any k ≥ 2 [61].

The existing relation between k-OWL and k-FWL is the following:

k-OWL ≡ (k − 1)-FWL,

for any k > 1 ([92]).
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Chapter 3

Weisfeiler and Leman go Edge–Attributed
and Dynamic

R
ecently, there has been an increasing interest in studying the theoretical properties

of GNNs. Such a trend is partially motivated by the attempt to derive foundational

knowledge to design reasonable solutions for many possible applications [85]. A particular

focus is on the expressive power of GNNs since the performance of a model also depends

on its capability to distinguish different graphs or approximate functions. On the one

hand, it has been proven that GNNs are as powerful as the Weisfeiler-Lehman test (1-

WL) in their ability to distinguish graphs [26, 59]. Moreover, it has been shown that the

equivalence enforced by 1-WL equals the unfolding equivalence [72] [88]. Hence, 1-WL

and the unfolding equivalence can be used interchangeably. On the other hand, it has

been proven in [93] that the original GNN model can approximate in probability, up to

any degree of precision, any measurable function τ(G, v) → Rm that respects the unfold-

ing equivalence. Such a result has been recently extended to a large class of GNNs [88]

called message-passing GNNs, including most contemporary architectures. Despite the

availability of the mentioned results on the expressive power of GNNs, their application

is still limited to undirected static graphs with attributes only on nodes. This limitation

is particularly restrictive since modern applications usually involve more complex data

structures, such as heterogeneous, directed, dynamic graphs and multigraphs. In partic-

ular, the ability to process dynamic graphs is progressively gaining significance in many

fields such as social network analysis [94], recommender systems [95, 96], traffic forecast-

ing [12] and knowledge graph completion [97, 98]. Several surveys discuss the usage of

dynamic graphs in other application domains [99, 100, 101, 102, 103]

Considering the diversity of graph types, it has recently been shown that Static Attributed

Undirected Homogeneous Graphs with both attributes on nodes and edges (SAUHG1) can

act as a standard form for graph representation [104]. This means that all the common

graph types can be transformed into SAUHGs without losing their encoded information.

We collected a detailed description of the transformations from any graph type to SAUHG

as additional preliminaries (Appendix B.1).

In this chapter, we aim to study the expressive power of GNNs for arbitrary graph types,

analyzing both their separation and approximation capabilities. In particular, we per-

form two different analyses, one focused on SAUHGs and the other on dynamic graphs.

Indeed, despite the possibility of representing a dynamic graph as a SAUHG, the existing

1Throughout the chapter, we often refer to the SAUHGs simply as ”static graphs with attributes also

on the edges”. This is because all the considered graphs are undirected, homogeneous, and with node

attributes. We left the acronym SAUHG, to be consistent with the literature.
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Figure 3.1: a) In Thm. 3.2, we prove the equivalence of the attributed unfolding tree

equivalence (AUT) and the attributed 1–WL equivalence (1-AWL) for SAUHGs. After-

ward in Thm. 3.5, we show a result on the approximation capability of static GNNs for

SAUHGs (AGNN) using the AUT equivalence. b) Analogously to the attributed case, we

show similar results for Dynamic GNNs (DGNN) which can be used on temporal graphs.

GNN architectures for dynamic graphs are notably different compared to the static ones.

To appreciate the structural difference of architectures tailored for dynamic graphs, we

refer the reader to [105, 99, 102], where several models are surveyed. The diagram in

Figure 3.1 serves as a visual abstract of our results on separation capabilities. On the

left, 3.1a), the results for static graphs with edge-attributes and analogously on the right,

3.1b), the ones for dynamic graphs.

More precisely, the content of the chapter is based on [3] and its outline is as follows.

• We define two new versions of the Weisfeiler-Leman test and of the Unfolding Tree

both for SAUHGs and Dynamic graphs.

• We show that the static attributed 1-WL (AWL) and the corresponding Unfolding

Tree (AUT) induce the same equivalence on nodes. We prove the equivalence also

for the dynamic counterparts (DWL and DUT). Such a result makes it possible to

use the WL and UT interchangeably to study the expressiveness of these types of

GNNs.

• We show that generic GNN models for dynamic graphs and SAUHGs are capable

of approximating, in probability and up to any precision, any measurable function

on graphs that respects the corresponding 1-WL/unfolding equivalence.

• The result on approximation capability holds for graphs with attributes of reals

and unconstrained target functions. Thus, most of the domains used in practical

applications are included. Moreover, the proof is constructive, which allows us

to deduce information about the GNN architecture that can achieve the desired

approximation.

• We validate our theoretical results with an experimental analysis. Our setup shows

that sufficiently powerful Dynamic GNNs (DGNNs) can approximate dynamic sys-

tems that preserve the unfolding equivalence in contrast to non-universal architec-

tures which lead to poor performances.
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3.1 Preliminary definitions

In the following, we formally define the domain of the present investigation: the static

edge-attributed graph, and the dynamic graph. Then, we report the architectures specific-

ally designed to handle such graph types, respectively AGNN for edge-attributed graphs

and DGNN for dynamic graphs. Their expressiveness and approximation capabilities will

be the object of the present investigation.

Definition 3.1 (SAUHG). G is a Static, (node and edge) Attributed Graph

(SAUHG) if G = (V, E , α, ω), where V is a finite set of nodes, E ⊂ {(u, v) | ∀u, v ∈ V}
is a finite set of edges. Node and edge attributes are determined by the mappings

α : V → Rk, ω : E → Rk′
that map into the node attribute set Rk, and edge attribute

set Rk′
for some k, k′ ∈ N. The domain of SAUHGs will be denoted as G.

In the following, we will denote with αv := α(v) and with ω(u,v) := ω((u, v)).

Temporal changes in the graph can be formalized in several ways, here the dynamic graph

definition consists of a discrete-time representation.

Definition 3.2 (Dynamic Graph). Let I = [0, . . . , l] ⊊ N0 be a sequence of timesteps.

Then a (discrete) dynamic graph G = (VI , EI , α′, ω′) is a sequence of static graph

snapshots, i.e. G = (Gt)t∈I , where each Gt is a SAUHG. We define, for the time interval

I, the total set of nodes of the dynamic graph G as VI :=
⋃
t∈I

Vt. Similarly, the total

set of edges as EI :=
⋃
t∈I

Et. Then, the dynamic node attributes α′ and edge attributes

ω′, are determined respectively by the partial functions α′ : V×I → A and ω′ : E×I → B

defined only for existent nodes and existent edges at each time t:

α′(v, t) := αt(v) if v ∈ Vt

ω′((u, v), t) := ωt((u, v)) if (u, v) ∈ Et

where αt and ωt are the attributes functions of the graph snapshot, Gt (See Def. 3.1).

In the following, we will denote with α′
v(t) := α′(v, t) and with ω′

(u,v)(t) := ω′((u, v), t).

In our formalization, the dynamic graph is evolving on two levels: its topological structure

and its attributes. From a structural perspective, note that the sets of nodes and edges

are not static but vary over time, denoted as Vt and Et respectively. Consequently, also

the neighborhood of a node v ∈ VI is changing over time, and we will call it Nt(v). If

v ∈ VI it means that there exists a time t such that v ∈ Vt, namely the node exists at

some point in the interval I. The same applies to edges. The attributes αt on nodes and

ωt on edges can change their value over time as well.

Once SAUHGs and dynamic graphs are defined, we can outline the architectures capable

of handling those graph types: an Attributed Graph Neural Network (AGNN), which

addresses edge attributes, and a discrete Dynamic Graph Neural Network (DGNN), spe-

cifically tailored for dynamic graphs.

Given that SAUHGs act as a standard form for all graph types, the ordinary GNN ar-

chitecture will be extended to take edge attributes into account. This can be done by
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including the edge attributes in the general message passing GNN framework (See Pre-

liminaries 2.3), as follows.

Definition 3.3 (AGNN). For a SAUHG G = (V, E , α, ω) let u, v ∈ V. We initialize the

feature of node v as h
(0)
v = αv for all v ∈ V. The AGNN propagation scheme for iteration

i > 0 is defined as

h(i)
v = Combine(i)

(
h(i−1)
v ,Aggregate(i)

(
{{h(i−1)

u }}u∈N (v), {{ω(u,v)}}u∈N (v)

))
The output for a node-specific learning problem after the last iteration L is given by

zv = Readout
(
h(L)
v

)
,

using a selected aggregation scheme and a suitable Readout function. Similarly, the

output for a graph-specific learning problem is determined by

z = Readout
(
{{h(L)

v | v ∈ V}}
)
.

In this particular model, the attributes on the edges remain constant. Therefore they

play a role in the initialization of the node features but they do not change during the

learning phase. Moreover, the feature of the edge (u, v) is aggregated independently from

the features of the nodes u and v.

For the dynamic case, we chose a widely used dynamic GNN model from [99]. This

particular discrete dynamic graph neural network (DGNN) uses a recurrent network to

encode the temporal evolution and a standard GNN to encode each graph snapshot. Here,

we substitute the standard GNN with the previously defined AGNN.

Definition 3.4 (DGNN). Given a discrete dynamic graph G = (Gt)t∈I , a discrete

DGNN using a continuously differentiable recursive function f for temporal modelling

can be expressed as:

qv1(0), . . . ,qvn(0) = hv1(0), . . . ,hvn(0) := AGNN(G0)

hv1(t), . . . ,hvn(t) := AGNN(Gt) ∀ t ≥ 0

qvi(t) := f(qvi(t− 1),hvi(t)) ∀ vi ∈ V
(3.1)

where hvi(t) ∈ Rr is the hidden representation of node vi at time t of dimension r

and qvi(t) ∈ Rs is an s-dimensional hidden representation of node vi produced by f , and

f : Rs × Rr → Rs is a neural architecture for temporal modeling (in the methods surveyed

in [99], f is almost always an RNN or an LSTM). Depending on the task, if graph or

node focused, a suitable Readoutdyn function will be used to get the final output.

Once we have defined the architectures dealing with the domains of interest we aim

to extensively study their expressive capabilities. The study of expressive power can be

approached from two perspectives: one focuses on distinguishing graphs, and the other on

approximating functions. These two perspectives are closely related. For the former, we

define new versions of the Weisfeiler-Leman test characterizing the expressivity of AGNN
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and DGNN. Similarly, we define the corresponding unfolding trees and demonstrate that

they induce the same equivalence as the WL tests do. Finally, we prove that all the

functions preserving this equivalence can be approximated by the AGNN and DGNN

architectures.

3.2 Edge-Attributed and Dynamic Extensions of 1-

WL test and Unfolding Tree

In this section, the extensions of 1-WL and Unfolding Tree are collected. From [72], it is

known that for static node-attributed graphs, both the unfolding tree and the Weisfeiler-

Leman approach are equivalent for testing the isomorphism of two graphs. Thus, we first

extend the notion of unfolding trees and the Weisfeiler-Leman test to an edge-attributed

version.

Definition 3.5 (Edge-Attributed 1-WL test). Let Hash be a bijective function that codes

every possible node attribute with a color from a color set Σ and G = (V, E , α, ω). The

edge-attributed 1-WL (1-AWL) test is defined recursively through the following.

• At iteration i = 0, the color is set to the hashed node attribute:

c(0)v = Hash(αv)

• At iteration i > 0, the Hash function is extended to the edge attributes:

c(i)v = Hash
((

c(i−1)
v , {{c(i−1)

u }}u∈N (v), {{ω(u,v)}}u∈N (v)

))
In the following, the 1-WL equivalence of graphs and nodes is extended by using the

edge-attributed version of the 1-WL test.

Definition 3.6 (Attributed 1-WL equivalence). Two nodes u, v are attributed WL-

equivalent, noted by u ∼AWL v, if and only if cu = cv.

Analogously, let G1 = (V1, E1, α1, ω1) and G2 = (V2, E2, α2, ω2) be two SAUHGs. Then,

G1 ∼AWL G2, if and only if for all nodes v1 ∈ V1 there exists a corresponding node

v2 ∈ V2 such that v1 ∼AWL v2.

Definition 3.7 (Edge-Attributed Unfolding Tree). The attributed unfolding tree Td
v

in graph G = (V, E , α, ω) of node v ∈ V up to depth d ∈ N0 is defined as

Td
v =

{
Tree(αv), if d = 0

Tree
(
αv, {{(ω(u,v),T

d−1
u )}}u∈N (v)

)
if d > 0 ,

where Tree(αv) is a tree constituted of node v with attribute αv, and the expression

Tree
(
αv, {{(ω(u,v),T

d−1
u )}}u∈N (v)

)
denotes the tree of depth d consisting of the root node

v connected to trees of depth d − 1 rooted at each neighbor u of v, namely Td−1
u . The

edges connecting the root v to the trees are weighted by the corresponding edge attribute

ω(u,v), for every neighbor u ∈ N (v). We call attributed unfolding tree of v, denoted

by Tv, the tree determined by Tv = lim
d→∞

Td
v.
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Definition 3.8 (Attributed Unfolding Equivalence). Let G1 = (V1, E1, α1, ω1) and G2 =

(V2, E2, α2, ω2) be two SAUHGs. Then G1 and G2 are attributed unfolding tree

equivalent, noted by G1 ∼AUT G2, iff {{Tu | u ∈ V1}} = {{Tv | v ∈ V2}}. Analogously,

two nodes u ∈ V1, v ∈ V2 are unfolding tree equivalent, noted by u ∼AUT v if and only if

Tu = Tv.

Now we can define the dynamic versions, extending the attributed ones to a time-

dependent approach. We employ SAUHGs as a standard form for the static graph at

each timestep, as they represent the most general case of static graphs.

Definition 3.9 (Dynamic 1-WL test). Let G = (VI , EI , α′, ω′) be a dynamic graph. Let

Hash 0
t be an injective function encoding every node attribute at time t with a color from

a color set Σ. The dynamic 1-WL test (1-DWL) generates a dynamic color cv for

each node v ∈ V, that is a sequence of attributed colors cv(t) over the time interval I,

following the iterative procedure described below.

• At iteration i = 0 and time t, the color of node v is set to the hashed node attribute

or, whether v doesn’t exist, to a fixed color c⊥:

c(0)v (t) =

{
Hash 0

t (α′
v(t)) if v ∈ Vt,

c⊥ otherwise.

• Then, the aggregation mechanism at time t is defined by the injective function

Hasht, for i > 0:

c(i)v (t) = Hasht

((
c(i−1)
v (t), {{c(i−1)

u (t)}}u∈Nv(t), {{ω(u,v)(t)}}u∈Nv(t)

))
Note that if a node doesn’t exist at time t, its color is c

(i)
v (t) = c⊥ for every i ≥ 0

because its neighborhood is empty. This implies that non-existent nodes cannot influence

the neighborhood aggregation of other nodes, or equivalently, that they cannot propagate

through the graph. Note that the edge attributes contribute from the iteration i = 1 in

discriminating more the colors of the nodes.

Definition 3.10 (Dynamic 1-WL equivalence). Two nodes u, v ∈ V in a dynamic graph

G are said to be dynamic WL equivalent, noted by u ∼DWL u, if their colors resulting

from the WL test are pairwise equal for each timestep. Analogously, let G and G′ be two

dynamic graphs. Then G ∼DWL G′, iff {{cu | u ∈ V}} = {{cv | v ∈ V ′}}.

In Figure 3.2 we show two iterations of DWL test.

Remark 3.1. Note that the dynamic WL test is not just a multi-dimensional extension

of the attributed one as it may seem, because the graph snapshots are not independent.

This means that even if all the graph snapshots are pairwise equivalent via AWL, the

dynamic graphs can be DWL non-equivalent. For example, look at the dynamic graphs

G and G′ in Figure 3.3. If a node doesn’t exist at a certain timestep, it is represented

with a dotted line. At each timestep t = 1, 2, 3, Gt ∼AWL G′
t but G ≁DWL G′. Indeed,
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Figure 3.2: DWL test on the graph G composed of three static graph snapshots. Taken

from [3].

Gt ∼AWL G′
t if and only if you find a bijection between the nodes of the graphs such

that v ∼AWL v′ for v ∈ Vt and v′ ∈ V ′
t. The bijection is not necessarily the same for

every timestep (once v is equivalent to v′, once to u′). Instead, to guarantee the dynamic

equivalence, there must exist a bijection on the nodes such that, v ∼DWL v′ for v ∈ VI

and v′ ∈ V ′
I . Here, the nodes in the total sets VI and V ′

I , are coupled once for all the

timestep t, that is v ∼DWL v′ iff for all t, v ∼AWL v′. Equivalently, we compare the

sequence of colors for each node, and two sequences are equal, if they are equal for all

the timestep, also the order of the colors is taken into account. We consider the entity of

the nodes as permanent (the nodes in the total set), their state (existent/non-existent) is

time-dependent and encoded in their colors.

Definition 3.11 (Dynamic Unfolding Tree). Let G = (VI , EI , α′, ω′) be a dynamic graph.

The dynamic unfolding tree T d
v of node v ∈ VI up to depth d ∈ N0 is a sequence of

attributed unfolding trees T d
v := (Td

v(t))t∈I . If v ∈ Vt, then Td
v(t) is defined in the

following:

Td
v(t) :=

{
Tree(α′

v(t)), if d = 0

Tree
(
α′
v(t), {{(ω′

(u,v)(t),T
d−1
u (t))}}u∈Nv(t)

)
if d > 0,

where, at each time t, the tree corresponds to the attributed unfolding tree of Def. 3.7.

If the node v doesn’t exist at time t, namely v /∈ Vt, then Td
v(t) := T⊥ for every d.

Definition 3.12 (Dynamic Unfolding Equivalence). Two nodes u, v ∈ V are said to be

dynamic unfolding equivalent u ∼DUT v iff Tu = Tv, that is Tu(t) = Tv(t) for every

timestep t. Analogously, two dynamic graphs G, G′ are said to be dynamic unfolding

equivalent G ∼DUT G′, iff {{Tu | u ∈ V}} = {{Tv | v ∈ V ′}}.

Finally, we are going to prove that the attributed/dynamic version of the unfolding

tree and the WL test, induce the same equivalence on nodes, based on the following
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Figure 3.3: Graphs G and G′ that are AWL equivalent for every snapshot but not DWL

equivalent.

helping lemma. In [93], it has been shown that the unfolding trees of infinite depth are

not necessary to consider for this equivalence. Instead, the order of the graph is sufficient

for the depth of the unfolding trees, which is finite since the graph is bounded. The

following lemma determines the equivalence between the attributed unfolding trees of

two nodes and their colors resulting from the attributed 1-WL test.

Lemma 3.1. Let G = (V, E , α, ω) be a SAUHG and nodes u, v ∈ V. Then it holds that

∀ d ∈ N0 : Td
u = Td

v ⇐⇒ c(d)u = c(d)v .

A complete proof can be found in Appendix B.2.1.

Directly from Lemma 3.1, we can formalize that the unfolding tree equivalence and the

attributed 1-WL equivalence of two nodes are indeed the same, both for edge-attributed

graphs and dynamic graphs.

Theorem 3.2 (AWL=AUT). Let G = (V, E , α, ω) be a SAUHG. Then, it holds

∀ u, v ∈ V : u ∼AUT v ⇐⇒ u ∼AWL v.

The result is a direct consequence of Lemma 3.1.
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Theorem 3.3 (DWL=DUT). Let G be a discrete dynamic graph where V is the total set

of nodes. Then, it holds

∀ u, v ∈ V : u ∼DUT v ⇐⇒ u ∼DWL v.

Proof. Two nodes are dynamic unfolding/WL equivalent iff they are attributed unfold-

ing/WL equivalent at each timestep, that is

u ∼DUT v ⇐⇒ u ∼AUT v ∀t ∈ I

and

u ∼DWL v ⇐⇒ u ∼AWL v ∀t ∈ I

Then, as a consequence of Theorem 3.2, we can conclude that the equivalence induced by

DUT and DWL is the same.

The theorem covers the case of non-existent nodes. Indeed, two non-existent nodes are

AWL-equivalent at time t if they have the same color c⊥ and they are AUT-equivalent if

they have the same tree T⊥.

Thanks to these results, the unfolding equivalence and the WL equivalence will be used

interchangeably in the next chapters.

3.3 Universal Approximation Capabilities for AGNN

and DGNN

In this section, the results from Section 3.2 are brought together in the formulation of

a universal approximation theorem for GNNs working on SAUHGs and dynamic graphs.

Analogously to [93] and [88], we are going to prove that AGNNs and DGNNs can approx-

imate all the functions that preserve the attributed or dynamic unfolding equivalence.

3.3.1 GNNs for Edge-Attributed Static Graphs

First of all, it is necessary to define the family of functions preserving the attributed

unfolding equivalence. A function on nodes preserves the attributed unfolding equivalence

if the output of the function is equal when two nodes are attributed unfolding equivalent.

Definition 3.13 (Functions preserving the AUT equivalence). Let G = (V, E , α, ω) be a

SAUHG and u, v ∈ V two nodes. Then a function f : G × V → Rm is said to preserve

the attributed unfolding equivalence if

v ∼AUT u ⇒ f(G, v) = f(G, u)

All the functions that preserve the attributed unfolding equivalence on the domain G
of SAUHGs, are collected in the set F(G).
With an argument analogous to [93], we show that there exists a relation between the

functions preserving the unfolding equivalence and the attributed unfolding, as follows.
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Proposition 3.4 (Functions of attributed unfolding trees). A function f belongs to F(G)
if and only if there exists a function κ defined on trees such that for any graph G ∈ G it

holds f(G, v) = κ(Tv), for any node v ∈ G.

The proof works analogously to its unattributed version presented in [93] and can be

found in Appendix B.2.2.

We can finally state the universal approximation capability of AGNNs on SAUHGs. We

consider only finite graphs.

Theorem 3.5 (Universal Approximation Theorem by AGNN). Let G be the domain of

bounded SAUHGs with the maximal number of nodes N = max
G∈G

|G|. For any measurable

function f ∈ F(G), any norm ∥ · ∥ on Rm, any probability measure P on G, and for any

positive reals ϵ, λ, the following holds.

There exists an AGNN, defined by the continuously differentiable functions Combine,

Aggregate and Readout, with embedding vector of dimension r = 1, i.e. hv ∈ R,
such that the function φ realized by the AGNN after 2N − 1 steps, satisfies the condition

P (∥f(G, v)− φ(G, v)∥ ≤ ε) ≥ 1− λ, ∀G ∈ G, ∀ v ∈ V.

The corresponding proof can be found in the Appendix B.2.4.

Theorem 3.5 essentially states that given a function f that preserves the AWL equivalence,

there exists an AGNN that approximates it in probability.

Remark 3.2. Note that the theorem has few requirements on the components defining

the AGNN. That is, Combine, Aggregate, and Readout have no other constraints

than to be continuously differentiable. They are completely generic (differentiable) func-

tions. This situation does not correspond to practical cases where the AGNN adopts

particular architectures, and those functions are neural networks, or more generally, para-

metric models. For example, they can be made of layers of sum, max, average, etc. Thus,

it is of great interest to clarify whether the theorem still holds when the components of

the AGNN are parametric models.

Having established the theoretical approximation capability of AGNNs, we now look

for an approximation theorem that more closely aligns with the AGNNs implemented in

practice.

Following [93], it turned out that the class of networks that are sufficiently general to

be able to approximate any function preserving the unfolding equivalence is the class of

AGNNs with universal components.

Definition 3.14 (Universal Components). A class of AGNN models is said to have

universal components if, for every ϵ > 0 and any continuous target functions Combine,

Aggregate, Readout, there exists an AGNN composed by parametric modelsCombineθ,

Aggregateθ, Readoutθ and parameters θ such that∥∥Combine(h,Aggregate({h1, . . . ,hn}))− Combineθ(h,Aggregateθ({h1, . . . ,hn}))
∥∥
∞ ≤ ϵ,∥∥Readout(q)− Readoutθ(q)

∥∥
∞ ≤ ϵ ,

holds, for any vectors h, h1, . . . ,hn ∈ Rr, q ∈ Rs.
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We call QA, the class of AGNNs with universal components. The following result

shows that Theorem 3.5 holds for AGNNs with universal components.

Theorem 3.6 (Approximation by Neural Networks). Let assume that the hypotheses

of Theorem 3.5 are fulfilled. Then, there exists a parameter set θ and some functions

Combine
(i)
θ , Aggregate

(i)
θ , Readoutθ, implemented by Neural Networks in QA, such

that Theorem 3.5 holds.

Namely, if the employed components of the AGNN are universal approximators, then

the AGNN can approximate any function preserving the AUT equivalence. The proof is

identical to the one contained in [93]; to give a hint on the methodology, we refer to the

more complex proof of the analogous Theorem 3.9 for DGNNs.

3.3.2 GNNs for Dynamic Graphs

In this section, the analysis performed for static graphs with edge attributes is extended

to cover the dynamic case. First of all, we define the dynamic system, which is a function

in the dynamic graphs domain.

Definition 3.15 (Dynamic System). Let D be the domain of dynamic graphs and let

VI =
⋃
t∈I

Vt. A dynamic system is a function dyn : D∗ := I ×D × VI → Rm defined as

dyn(t, G, v) := g(xv(t)) ∀ v ∈ Vt. (3.2)

Here, g : Rr → Rm is an output function while xv(t) represents the state function and is

determined by

xv(t) =

{
a(t, G, v) if t = 0

up(xv(t− 1), a(t, G, v)) if t > 0,

where a : I ×D × VI → Rr is a function that processes the graph snapshot Gt at time t

and provides an r-dimensional internal state representation for each node v ∈ Vt. Finally,

up : Rr × Rr → Rr is a recursive function, that is called state update function.

Definition 3.16. A dynamic system dyn(·, ·, ·) preserves the dynamic unfolding

equivalence on D∗ if and only if for any input graph sequences G,G′ ∈ D in the time

interval I, and two nodes v ∈ VI , u ∈ V ′
I it holds

v ∼DUT u =⇒ dyn(t, G, v) = dyn(t, G′, u) ∀t ∈ I.

The class of dynamic systems that preserve the unfolding equivalence on D∗ will be

denoted by F(D∗). A characterization of F(D∗) is given by the following result (similar

to [93]).

Proposition 3.7 (Functions of dynamic unfolding trees). A dynamic system dyn(·, ·, ·)
belongs to F(D∗) if and only if there exists a function κ defined on attributed trees such

that for all the triplets (t, G, v) ∈ D∗ it holds

dyn(t, G, v) = κ
(
(Tv(i))i∈[t]

)
.
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The proof can be found in Appendix B.2.3.

Finally, the universal approximation theorem for static GNNs can be extended to the

discrete dynamic graph neural networks, as follows.

Theorem 3.8 (Universal Approximation Theorem by DGNN). Let G = (Gt)t∈I be a

discrete dynamic graph in the domain D and N = max
G∈D

|G| be the maximal number of nodes

in the domain. Let dyn(t, G, v) ∈ F(D) be any measurable dynamical system preserving

the unfolding equivalence, ∥ · ∥ be a norm on Rm, P be any probability measure on D∗

and ϵ, λ be any positive real numbers. Then, there exists a DGNN such that the function

φ realized by this model satisfies

P (∥dyn(t, G, v)− φ(t, G, v)∥ ≤ ε) ≥ 1− λ ∀ (t, v,G) ∈ D∗.

The proof can be found in the Appendix B.2.5.

Theorem 3.8 states that given a dynamical system that preserves the DWL equivalence,

there exists a DGNN that approximates it. In particular, the DGNN that realizes the

theorem is the composition of a recursive function that is continuously differentiable,

with AGNNs that satisfy the hypothesis of Theorem 3.5. Moreover, to reach the desired

approximation, it is sufficient to have real numbers as embedding ”vectors” for the AGNNs

and the recurrent model. As observed in Remark 3.2, we notice that the components of

the DGNN need solely to be continuously differentiable to make the DGNN a universal

approximator modulo the DUT equivalence. What happens if these components are

approximated by neural networks or in general, by parametric models? Does the theorem

still hold? Analogously to the attributed case, we define the class of models with universal

components, for which the theorem holds.

Definition 3.17. A class of discrete DGNN models is said to have universal components

if the employed AGNNs lay in the class QA (see Def. 3.14) and the employed recurrent

model fθ is designed such that for every ϵ1 > 0 and any continuously differentiable target

function f , it holds ∥∥f(q,h)− fθ(q,h)
∥∥
∞ ≤ ϵ1,

for any input vectors h ∈ Rr, q ∈ Rs.

Moreover, the output of the DGNN, given by the parametric function Readoutdyn,θ,

must satisfy for every ϵ2 > 0:∥∥Readoutdyn(q
⋆)− Readoutdyn,θ(q

⋆)
∥∥
∞ ≤ ϵ2,

for every continuously differentiable target function Readoutdyn and every input vector

q⋆ ∈ Rs.

We denote with QD, the class of discrete DGNNs with universal components. An

instance of this class is a DGNN composed of neural networks whose universality has been

established, e.g. MLP [27] and RNN [106]. The following result shows that Theorem 3.8

holds for discrete DGNNs with universal components.

Theorem 3.9 (Approximation by Neural Networks). If the hypotheses of Theorem 3.8 are

fulfilled, then there exists a parameter set θ, and functions fθ, Readoutdyn,θ implemented

by neural networks in QD, such that Theorem 3.8 holds.
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The proof can be found in the Appendix B.2.6.

Discussion. The following remarks may further help to understand the results proven

in the previous paragraphs:

• Theorem 3.5 suggests an alternative approach to process several graph domains

with a unique and universal AGNN model. Indeed almost all the graphs - including

hypergraphs, multigraphs, directed graphs, ... - can be transformed to SAUHGs

with node and edge attributes [104].

• The proofs of Theorems 3.5 and 3.8 are based on space partitioning reasoning, that

is a constructive procedure. Differently from the technique based on the Stone-

Weierstrass theorem [30], which is existential in nature, such an approach allows

us to deduce information about the details of the networks that reach the desired

approximation. The theorems point out that the approximation can be obtained

with a hidden dimension r = 1, both in AGNNs and DGNNs. At the same time,

the required state dimension for the Recurrent Neural Network of DGNNs is still

equal to 1. Such a result may appear surprising, but the proofs show that GNNs

can encode unfolding trees with a single real number.

• Moreover, Theorems 3.5 and 3.8 specify that GNNs can obtain the approximation

with 2N−1 layers. We may incorrectly presume that the maximum number of layers

required to reach the desired approximation depends on the diameter diam(G) of

the graph, which can be smaller than the number of nodes N since the information

in a GNN can flow from one node to another in diam(G) iterations. However,

diam(G) layers are not always sufficient to distinguish all the nodes of a graph. In

fact, it has been proven that N−1 is a lower bound on the number of iterations that

the 1-WL algorithm has to carry out to be able to distinguish any pairs of 1-WL

distinguishable graphs [107], and 2N − 1 is a lower bound for 1-WL algorithm to

distinguish pairs of nodes in two different graphs [72]. So overall, 2N − 1 is also the

lower bound for the GNN computation time to approximate any function for either

graph-focused or node-focused tasks (see [88] for a detailed discussion).

• Theorems 3.5 and 3.8 specify that the approximation is modulo the unfolding equi-

valence (or modulo the WL equivalence). We observe that in the dynamic case, only

a part of the architecture limits the set of functions that can be computed by the

DGNN. Indeed, the dynamic GNN contains two modules: the AGNN, producing an

embedding of the graph at each time step, and the Recurrent Neural Network, which

processes the sequence of the graph snapshots. Intuitively, the Recurrent Neural

Network does not affect the equivalence, since Recurrent Neural Networks can be

universal approximators [106] and implement any function of the sequence without

introducing other constraints beyond those already introduced by the AGNN.

• Theorem 3.8 does not hold for every Dynamic GNN, as we consider a discrete

recurrent model working on sequences of graph snapshots (also known as Stacked
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DGNN). Nevertheless, several DGNNs of this kind are listed in [105], such as GCRN-

M1 [108], RgCNN [109], PATCHY-SAN [110], DyGGNN [111], and others.

3.4 Experimental Validation

In this Section, we validate our theoretical findings with an experimental study. For this

purpose, we carry out two sets of experiments described as follows:

E1. We show that a DGNN with universal components can approximate a function

FDWL : D → N that models the 1-DWL test. The function FDWL assigns to the

input graph a target label representing its class of 1-DWL equivalence;

E2. In the same approximation task, we compare DGNNs with different GNN modules

from the literature to show how the universality of the components affects the

approximation capability.

We focus on the ability of the DGNN to approximate FDWL, so only training performances

are considered, i.e., we do not investigate the generalization capabilities over a test set.

Since the 1-DWL test provides the finest partition of graphs reachable by a DGNN, the

mentioned tasks experimentally evaluate the expressive power of DGNNs.

Dataset. The dataset consists of dynamic graphs, i.e., vectors of static graph snapshots

of fixed length T . Each static snapshot is one of the graphs in Fig. 3.4. Since the dataset

is composed of all the possible combinations of the four graphs, it contains 4T dynamic

graphs. Given that the graphs in Fig. 3.4 are pairwise 1-WL equivalent ( a) is 1-WL

equivalent to b) and c) is 1-WL equivalent to d) ), the number of classes is 2T , with
4T

2T
= 2T graphs in each class. For each dynamic graph, the target is the corresponding

1-DWL output, represented as a natural number. For training purposes, the targets are

normalized between 0 and 1 and uniformly spaced in the interval [0, 1]. Therefore, the

distance between each class label is d = 1/2T . A dynamic graph G with target yG will

be said to be correctly classified if, given out = DGNN(G), we have |out− yG| < d/2.

Experimental setup.

E1 For the first set of experiments, the Dynamic Graph Neural Network is composed

of two modules: A Graph Isomorphism Network (GIN) [26] and a Recurrent Neural

Network (RNN), which implement the static GNN and the temporal Network f of

Eq. (3.1), respectively. Since it has been proven that the GIN is a universal archi-

tecture [26] and the RNNs are universal approximators for dynamical systems on

vector sequences [106], the architecture used in the experiments fits the hypothesis

of Theorem 3.8. Thus, it can approximate any dynamical system on the temporal

graph domain.

The model hyperparameters for the experiments are set as follows. The GIN includes
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a) b)

c) d)

Figure 3.4: These four static graphs are used as components to generate the synthetic

dataset. Graphs a) and b) are equivalent under the static 1-WL test; the same holds for

c) and d).

nmax = 6 layers2. The MLP in the GIN network contains one hidden layer with

a hyperbolic tangent activation function and batch normalization. Hidden layers

of different sizes, i.e., hgin ∈ {1, 4, 8}, have been tested. For sake of simplicity, the

output network has one hidden layer with the same number of neurons as the MLP

in the GIN. Furthermore, hrnn = 8 is the size of the hidden state of the RNN.

E2 In the other set of experiments, we test DGNNs composed by different GNN static

modules and an RNN module (analogously to E1.). In particular, we compare

DGNNs with the GNN module taken from the following list:

– GIN as mentioned before;

– Graph Convolutional Network (GCN) [22];

– GNN presented in [15] (see also [59]) where the aggregation function is the sum

of the hidden features of the neighbours; it will be called gconv add;

– GNN presented in [15] with mean of the hidden features of the neighbours as

aggregation function, called gconv mean here;

– GAT [24].

Here, the used hyperparameters are hidden dimension is h = 8, the number of layers

L = 4, and the time length L = T = 5.

In both the experimental cases, the model is trained over 300 epochs using the Adam

optimizer with a learning rate of λ = 10−3. Each configuration is is evaluated over 10

runs. The overall training is then performed on an Intel(R) Core(TM) i7-9800X processor

running at 3.80GHz using 31GB of RAM and a GeForce GTX 1080 Ti GPU unit. The code

used to run the experiments can be found at https://github.com/AleDinve/dyn-gnn.

2As investigated in the discussion paragraph 3.3.2, for graph-focused tasks, it is sufficient to perform

the message-passing convolution for several times equal to the maximum number of nodes over the graphs

in the dataset domain.

https://github.com/AleDinve/dyn-gnn
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Figure 3.5: Experimental Framework E1. Training accuracy over the epochs for a DGNN

trained on the dataset containing dynamic graphs up to time length T = 4 (a) and T = 5

(b).

Results. The results of the experiments confirm our theoretical statements. More pre-

cisely, the DGNNs performed as follows during training.
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Figure 3.6: Experimental framework E2. Training accuracy a) and training loss b) over

the epochs for several DGNNs trained on the dataset containing dynamic graphs up to

time length T = 5. Figure b) is in logarithmic scale.

E1 In Fig. 3.5, the evolution of the training accuracy over the epochs is presented for

different GIN hidden layer sizes hgin and for dynamic graphs up to time lengths

T = 4 (Fig. 3.5a) and T = 5 (Fig. 3.5b). All the architectures reach 100% accuracy

for experiments on both time lengths. Even setting hgin = 1 leads to a perfect

classification at a slower rate. It may appear surprising that, even with a hidden

representation of size 1, the DGNN can well approximate the function FDWL.

However, as we already pointed out in paragraph 3.3.2, the possibility of reaching

the universal approximation with a feature of dimension 1 is confirmed by The-
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orem 3.8.

E2 The DGNN with the GIN module achieve the best performance in terms of learning

accuracy and speed of decreasing, as illustrated in Fig. 3.6. The DGNN with the

gconv addmodule is able to learn the task, although learning is unstable (see Fig. 3.6

b)). This is not surprising since this module has been proven to match the expressive

power of the 1-WL test [59]. The other DGNNs are incapable to learn the objective

function. This is a consequence of their weaker expressive power, widely investigated

in literature [26, 88].

Thus, overall, our theoretical expectations were met by both experiments.

3.5 Conclusion

This chapter provided two extensions of the 1-WL isomorphism test and the unfolding

tree. First, we introduced WL test notions to attributed and dynamic graphs, and second,

we introduced extended concepts for unfolding trees on attributed and dynamic graphs.

Further, we extended the strong connection between unfolding trees and the (dynam-

ic/attributed) 1–WL tests, proving that they induce the same equivalence between nodes

for the attributed and the dynamic case, respectively.

Regarding the models employed in the present investigation, AGNN and DGNN, we have

proved that both the different GNN types can approximate in probability up to any

precision, any function that preserves the (attributed/dynamic) unfolding equivalence.

Note that the dynamic GNN considered here follows a discrete-time representation, i.e.,

as a sequence of static graph snapshots without actual timestamps. Thus, Theorem 3.8

does not hold for all Dynamic GNNs, as we consider a discrete recurrent model working

on graph snapshots (also known as Stacked DGNN). Nevertheless, several DGNNs of this

kind are listed in [105], such as GCRN-M1 [108], RgCNN [109], PATCHY-SAN [110],

DyGGNN [111], and others. Still, the approximation capability depends on the functions

Aggregate and Combine designed for each GNN working on the single snapshot and

the implemented Recurrent Neural Network. For example, the most general model, the

original RNN, has been proven to be a universal approximator [106].

In the future, we could investigate other extensions like, for example, the n-dimensional

attributed/dynamic WL test or other versions of unfolding trees, covering GNN models

not considered by the frameworks used in this study. A preliminary work in this direction

is presented in the next chapter.
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Chapter 4

The Extended Weisfeiler-Leman Hierarchy
for Arbitrary Graph Types

D
ue to the limitations of 1-WL, several more powerful extensions have been devised.

One of the most natural is the k-WL, coloring k-tuples in Vk instead of single nodes.

The k-WL test forms a totally ordered chain where the power of the tests increases with

the value of k. In particular, k-WL is less powerful than (k + 1)-WL for every k > 1 and

1-WL is equivalent to 2-WL. This result shows that if two graphs are not distinguish-

able by a k-WL test, there must be an l-WL test with l > k that can distinguish them [61].

Figure 4.1: The WL complete lattice.

Its minimum is the 1-WL test, equival-

ent to the 2-WL test, and its maximum

is the Attributed Graph Isomorphism

(AGI) and the Dynamic Graph Iso-

morphism (DGI) test.

Given that the k−WL tests only apply to

simple node-attributed graphs, we first revise

the attributed and dynamic extensions of the

k−WL. Then we draw connections among the

various versions of WL, creating a novel ex-

tended hierarchy of tests for arbitrary graphs

(reported in Figure 4.1). The order among the

tests is no longer total but partial, so we will

employ basic concepts from lattice theory to

analyze the resulting structure. A promising

result is that the new WL-hierarchy consti-

tutes a complete and distributive lattice with

the partial order defined by: A ≤ B iff the

partition PA induced by the test A is equal or

coarser than the partition PB induced by the

test B. The minimum element of this lattice

is the 1-WL test, equivalent to the 2-WL test,

while the maximum element is the Attributed

Graph Isomorphism (AGI) test and Dynamic

Graph Isomorphism (DGI) test. This chapter

is based on [73] which is a preliminary work

whose final goal is to find useful implications

from lattice theory for the GI problem. Some

possible research questions on this topic could

be, e.g.,

• How big is the difference |PB | − |PA| of the partitions PA,PB if A ≤ B?
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• Which approaches from lattice theory can be applied to the WL hierarchy to infer

beneficial consequences from it?

• Is it possible for two graphs to find the minimal WL-test capable of distinguishing

the graphs?

• What are minimal requirements to a subset of WL-tests such that it remains a

lattice, or that we obtain a semilattice?

4.1 Preliminaries from Lattice Theory

Here, we provide some preliminary notions from lattice theory such as the definition of

lattice itself and some related properties. The mathematical structure of a lattice can be

fully characterized using algebraic terms. The partial order coming from theWL-hierarchy

extension, including the k−dimensional attributed and dynamic WL tests, results in a

lattice of all the considered WL tests.

Definition 4.1 (Semilattice). Let L =< L, · > be a commutative semi-group. If ∀a ∈ L

holds a · a = a (i.e. every element in A is idempotent) then L is a semilattice.

Definition 4.2 (Lattice). Let L =< L,∨,∧ > be an algebra such that < L,∨ > and

< L,∧ > are semilattices.

L is a lattice if the absorption laws hold, i.e. if

a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a ∀a, b ∈ L.

The lattice operations ∨ and ∧ are called join and meet, respectively. It is particularly

important to underline the relation between lattices and partially ordered sets (posets).

Let L be a set, ≤ a partial order on L (i.e., ≤ is reflexive, anti-symmetric and transitive)

and X ⊆ L. Then, an element a ∈ L is an upper bound of X in L, such that x ≤ a

∀x ∈ X and, if x ≤ b ∀x ∈ X then a ≤ b, if it exists. Similarly, the lower bound can be

defined. Given X ⊆ L, we will indicate with ∨X and ∧ the upper bound and the lower

bound respectively (if they exist).

Theorem 4.1. Let L be a poset such that any X ⊆ L, |X| < ∞, admits upper and lower

bounds. Then, < L,∨,∧ > is a lattice where, ∀a, b ∈ L

a ∨ b =
∨

{a, b} and a ∧ b =
∧

{a, b}.

Vice versa, if < L,∨,∧ > is a lattice, then the relation a ≤ b iff a ∨ b = b iff a ∧ b = a is

a partial order.

Every finite subset X ⊆ L , X = {a1, . . . , an} admits upper and lower bounds defined by∨
X = a1 ∨ · · · ∨ an

∧
X = a1 ∧ · · · ∧ an.

Definition 4.3. Let L be a lattice. Then a, b ∈ L are comparable if a ≤ b or b ≤ a.

Otherwise, they are incomparable.
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Figure 4.2: Hasse diagram of the lattices M3 (left) and N5(right).

If the elements of L are pairwise comparable, the lattice is fully ordered and it is called

a chain. We say that b covers a if {c : a ≤ c ≤ b} = {a, b}, denoted as a ⪯ b.

The best way to understand the order structure of a lattice is to draw its Hasse diagram;

Informally, in a Hasse diagram the lattice elements are arranged on a plane so that if

a < b then b is above a. Moreover, a line is drawn from a to b, whenever a ≺ b.

Definition 4.4 (Complete Lattice). A lattice L is complete if each subset of L admits

upper and lower bounds.

Definition 4.5 (Distributive Lattice). A lattice L is distributive if

∀a, b, c ∈ L
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

There are two ‘minimal’ counterexamples to distributivity, namely the non-distributive

lattices M3 and N5, depicted in Figure 4.2.

The following theorem characterizes distributive lattices in terms of ‘forbidden sub-

structures’.

Theorem 4.2 ([112]). Let L be a lattice. Then L is distributive iff, L does not contain

an unbounded sublattice which is isomorphic to M3 or N5.

4.2 The extended Weisfeiler-Leman Hierarchy

Here we extend the k-WL hierarchy to arbitrary graph types, by defining an Attributed

and dynamic k-WL tests.

Definition 4.6 (Attributed k-WL Test). Given a k-tuple s = (s1, ..., sk) ∈ Vk, the j-th

neighborhood of s is defined as in 2.6. It is an inductive procedure: in iteration i = 0, the

algorithm labels each k-tuple with its atomic type, i.e., two k-tuples s and s′ in Vk get the

same color if the map si 7→ s′i induces an attributed isomorphism between the subgraphs

induced from the nodes from s and s′, respectively. For iteration i > 0, we define the list

of weights of the j-th neighborhood of s as:

Ωs,j =
(
ω(x,y)|(x, y) ∈ E and x,y are in the same tuple in Ns,j

)
.

Then we set

C
(i)
s,j = Hash

(
(c

(i−1)
s′ |s′ ∈ Nj(s))

)
,
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and

c(i)s = Hash
(
c(i−1)
s , (Ωs,1, ...,Ωs,k), (C

(i)
s,1, ..., C

(i)
s,k)

)
.

Analogously to the k-WL test, the k-AWL proceeds as the 1-WL test and two tuples s

and s′ with c
(i−1)
s = c

(i−1)
s′ get different colors in iteration i if there exists j ≤ k such

that the number of j−neighbors of s and s′, respectively, colored with a certain color is

different. Additionally, an increasing k implies a more powerful k-AWL test.

For the dynamic WL test an extended version of the attributed 1-WL test is used and

defined in Def. 3.5 in r-dimensions. Note, that it is not equal to an attributed extension

of the r-dimensional WL-test defined in [59] since here a special subset of r nodes is used.

Based on the modified WL test, the corresponding dynamic WL equivalence is defined

respectively.

Definition 4.7 (Dynamic k-WL Test). Given a k-tuple s = (s1, ..., sk) ∈ Vk
t , the j-th

neighborhood of s at time t is obtained by replacing the j-th component of s by every

node from Vt :

Ns,j(t) = {(s1, ..., sj−1, r, sj+1, ..., sk) |r ∈ Vt}

At iteration i = 0, the algorithm labels each k-tuple with its atomic type analogously to

the k-AWL, but for any t ∈ I. For iteration i > 0, we define the list of weights of the j-th

neighborhood of s at time t as:

Ωs,j =
(
ω{x,y}|(x, y) ∈ E and x,y are in the same tuple in Ns,j(t)

)
.

Then we set

C
(i)
s,j(t) = Hasht

(
(c

(i−1)
s′ (t)|s′ ∈ Ns,j(t))

)
,

and

c(i)s (t) = Hasht

(
c(i−1)
s (t), (Ωs,1(t), ...,Ωs,k(t)), (C

(i)
s,1(t), ..., C

(i)
s,k(t))

)
.

Note that the Hasht function can be different in each timestamp.

4.2.1 Establishing connections between the various tests

In this section, the attributed and dynamic WL tests are positioned into the Weisfeiler-

Leman Hierarchy.

Theorem 4.3. 1-WL test ⊏ 1-AWL test

Proof. First, we show that 1-WL test is a subset of the 1-AWL test and then we give a

counter example for them being equal.

⊏ Let g1 := (V1, E1), g2 := (V2, E2) be two graphs with g1 ∼1−WL g2. Introducing

empty attribute functions αi : Vi → ∅, ωi : Ei → ∅ for i = 1, 2 leads to the the same

initial coloring of the nodes and unattributed edges, and thus to the performance

of the 1-WL test. Therefore, it follows g1 ∼1−AWL g2.

̸= In Fig. 4.3 one can see that the 1-AWL test can distinguish the first and last graph

(graphs a and c), while the 1-WL test fails.
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Figure 4.3: The graphs a) and b) are falsely recognized as 1-WL and 1-AWL isomorphic;

the same holds for the 3-WL and 3-AWL. The graphs b) and c) are falsely recognized as

isomorphic just by the 1-WL/3-WL test while the 1-AWL/3-AWL test correctly recognizes

both graphs as non isomorphic. The same result holds for the graphs b) and c) for 1-

WL and 1-AWL while 3-WL and 3-AWL can distinguish both. The 1-WL and 3-WL

equivalences on the graphs from a) and b) and a) and c) without attributes are taken

from [4, §3.1].

Corollary 4.4. 2-WL test ⊏ 1-AWL test

Proof. As stated in [113, §3.5, Cor. 3.5.8], 1-WL test and 2-WL test are equivalent.

Corollary 4.5. k-WL test ⊏ k-AWL test.

Proof. Follows analogously from the proof of Theorem 4.3.

Corollary 4.6. The k-DWL test ⊑ (k+1)-DWL test.

Proof. Follows immediately from the static Weisfeiler-Lemann Hierarchy.

Theorem 4.7. The 3-WL test and the 1-AWL test cannot be compared regarding to the

Weisfeiler Lemann Hierarchy.

Proof. In Fig. 4.3 one can see that the 3-WL test can distinguish the graphs a) and b)

but the 1-AWL test cannot. However, the 3-WL test cannot distinguish the graphs b)

and c) while the 1-AWL test can.

Theorem 4.8. 1-DWL ≡ 1-AWL

The proof of the theorem can be found in the Appendix B.3.1.

Corollary 4.9 (Weisfeiler-Leman Lattice). The Weisfeiler-Leman hierarchy is an infin-

ite, bounded, complete, and distributive lattice (as a consequence of theorem 4.2). The

partial order relation is: A ⊑ B iff the partition PA induced by the test A is equal or

coarser than the partition PB induced by the test B, i.e. |PA| ≤ |PB | and each subset in

PA is a union of subsets in PB, i.e.,

∀ A ∈ PA ∃ {Bi} ⊂ PB , for some indices i, s.t. A =
⋃

B.
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The minimum element of this lattice is the 1-WL test, equivalent to the 2-WL test, while

the maximum element is the Attributed Graph Isomorphism test (AGI), equivalent to the

Dynamic Graph Isomorphism test (DGI).

The lattice is represented in Figure 4.1.

4.3 Conclusion

Graph isomorphism is still a non-trivial problem lying in the class NP. However, a com-

mon practical solution for at least distinguishing non-isomorphic graphs is the Weisfeiler-

Lehman (WL) method. Given that the initial WL tests can just handle node-attributed

graphs, in this preliminary work we extended the WL Hierarchy to arbitrary graphs. Par-

ticularly, we introduced a k−dimensional attributed and dynamic version of the k−WL

test. We further investigated the relation between the devised tests and we found out that

it is a partial ordering. This results in a complete and distributive lattice, which paves

the way for concepts of lattice theory to be utilized in the context of graph isomorphism

and WL tests.
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Going Beyond the Topological

Neighborhood
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Chapter 5

Path-based Graph Neural Networks:
A New Hierarchy of Highly Expressive GNNs

I
n this chapter, we systematically investigate the expressive power of paths to increase

the expressivity of graph neural networks (GNNs). In particular, the message-passing

graph neural network has been shown to be at most as expressive as the Weisfeiler-Leman

(1-WL) color refinement algorithm [26, 59]. Given all the well-studied limitations of 1-

WL, research efforts have resulted in several novel graph neural networks which leverage

graph substructures to improve expressivity [114, 115, 116, 117, 118, 119, 120]. Paths

are arguably one of the simplest graph substructures. Despite that, paths have only re-

cently received attention in the context of GNNs, and can be broadly categorized into

GNNs which incorporate shortest path information [121, 122, 123, 124, 125, 126, 127] and

GNNs which aggregate or sample from the set of all paths [128, 129, 130]. While it has

been shown that the incorporation of shortest path information increases the expressive

power of GNNs [121, 122, 123], [130] demonstrated that shortest paths alone are not

more expressive than 1-WL. Thus, it is of interest to investigate GNNs which consider all

paths. Recently, [129] has proven that paths can be used to generalize topological neural

networks such as CW Networks [131]. [128] sample from all paths and [130] aggregate

over paths instead of the standard topological neighborhood. While it has been shown

that path-based GNNs can achieve strong empirical performances in combination with

distance encoding, a precise characterization of their expressive power is lacking. We

propose to fill the existing gap in the literature and show that path-based GNNs with

distance information form a novel class of highly expressive GNNs.

The content of the chapter is based on [74, 75] and outlined below.

• We propose Path-WL, a general class of color refinement algorithms based on

paths and geodesic distance information. Path-WL is an iterative procedure that

performs message passing on all paths up to a certain length.

• We prove that Path-WL is strictly more expressive than 1-WL and we characterize

graph classes that can be distinguished by Path-WL.

• We demonstrate the ability of Path-WL to count cycles of arbitrary length.

• We prove that Path-WL is incomparable to the k-WL algorithm as well as to other

expressive architectures.
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• We eventually design PAIN, a GNN with expressive power equivalent to Path-WL

and empirically verify our theoretical results.

5.1 Preliminary definitions

Definition 5.1 (Path). A path p = (v, v1, . . . , vℓ) in a graph G = (V, E), is a sequence

of non-repeated nodes connected through edges in E . The length of a path is the number

of edges of the path or, equivalently, the number of nodes −1. For example, the path

p = (v, v1, . . . , vℓ) has length ℓ.

We denote with P ℓ
v := {(v, v1, . . . , vk) | 1 ≤ k ≤ ℓ}, the set of all the possible paths of

length up to ℓ starting at node v. The edge case with ℓ = 0 is P 0
v := {v}.

Definition 5.2 (Cycle). A cycle Cℓ = (v1, . . . , vℓ) of length ℓ is a sequence of adjacent

and non-repeated nodes in the graph G, with the additional condition that the first and

the last node are adjacent, i.e., there exists an edge (v1, vℓ). The length of a cycle is

determined by the number of edges or the number of nodes in the cycle (which are the

same).

In the following, some properties of graphs are formally defined. These properties are

crucial to the understanding of the content of the chapter.

Definition 5.3 (Useful graph properties). Let G = (V, E) be a graph.

G is connected if for any v, u ∈ V there exists a path connecting u and v.

G is d-regular if every node has the same degree d, i.e., ∀v ∈ V δ(v) = d.

G is strongly regular, noted as SR(n, k, λ, µ), if G is a regular graph with n vertices

and degree k such that (i) every two adjacent vertices have λ common neighbors, and (ii)

every two non-adjacent vertices have µ common neighbors for some integers λ, µ ≥ 0.

G is traceable if it contains a Hamiltonian path, namely a path that includes all the

nodes of the graph. A traceable graph is homogeneously traceable if every node of

the graph is an endpoint of a Hamiltonian path.

G is Hamiltonian if it contains a Hamiltonian cycle, i.e., a cycle that contains every

node in the graph exactly once. Hamiltonian graphs are homogeneously traceable, but

the converse is not necessarily true.

The ability to count substructures plays a pivotal role in many applications. Thus, we

formally define what we mean with counting and recognizing a pattern subgraph F .

Given two graphs G and F , we write sub(F,G) to denote the number of subgraphs of G

isomorphic to F . Similarly, let sub(F,G, u) be the number of subgraphs in G isomorphic

to F which includes the node u.

Definition 5.4 (Counting). We say that a coloring algorithm T can count a substructure

F , if for two graphs G,H, sub(F , G) ̸= sub(F , H) implies that T (G) ̸= T (H).

Definition 5.5 (Recognizing). We say that a coloring algorithm T can recognize a

substructure F , if for two graphs G,H, sub(F , G) > 0 and sub(F , H) = 0 implies that

T (G) ̸= T (H).



i
i

i
i

i
i

i
i

5.2. Path-WL: A Path-Based WL Test 47

5.2 Path-WL: A Path-Based WL Test

In this section, we propose Path-WL, a generalized class of color refinement algorithms

to analyze the expressive power of path-based graph neural networks. The main difference

between Path-WL and 1-WL is that instead of aggregating over neighbors, Path-WL

aggregates over the multisets of paths. Furthermore, Path-WL can use information

about shortest path distances in the graph. In particular, for every node within a path of

length ℓ, we combine the node color with the shortest path distance to the starting node.

Note that we only add this information to every node in the path that is at most d ≤ ℓ

hops away from the starting node. Next, we define how to combine path information with

shortest path information.

Definition 5.6. For a set of paths P ℓ
v , we define the path multiset with distance encoding

as

d-Pℓ
v :=

{{ ((
cv, η

d
vv

)
,
(
cv1 , η

d
vv1

)
, . . . ,

(
cvk , η

d
vvk

))
| (v, v1, . . . , vk) ∈ P ℓ

v , k ≤ ℓ
}}
,

where cv is the color of node v and ηdvvi is the shortest path distance from v to vi if

the shortest path distance is less or equal to d and ∅ otherwise.

Now we can introduce the iterative color refinement algorithm Path-WL.

Definition 5.7 (Path-WL). Let G = (V, E , α) be a graph with node coloring α. Let

c
(i)
v ∈ Σ be the color of the node v ∈ V at iteration i, from a set of colors Σ. The initial

color of the node v corresponds to the node coloring, that is c
(0)
v := αv. Let Hash be an

injective function encoding every path in d-Pℓ
v with a color cv ∈ Σ, with d ≥ 0. Then,

the updating procedure for d-Path-WLℓ is defined as

c(i)v = Hash
(
d-Pℓ,(i−1)

v

)
.

If needed, we make the number of iterations i explicit by writing d-Path-WLℓ,(i). By

increasing the shortest path length d in the distance encoding we can obtain increasingly

expressive algorithms. Here, we highlight two variants of d-Path-WL with interesting

theoretical properties:

0-Path-WL. The simplest variant of Path-WL is 0-Path-WL which incorporates no

additional distance information. Despite its simplicity, 0-Path-WL is strictly more ex-

pressive than 1-WL, and a single iteration can distinguish a variety of graph families

indistinguishable by 1-WL (see Section 5.3.3). As an example, consider the graphs G and

G′ in Figure 5.2. With uniform vertex features, these two graphs are indistinguishable by

1-WL. However, the first iteration of 0-Path-WL can distinguish these graphs, as shown

in the following proposition.

Proposition 5.1. For every ℓ ≥ 5, G ≁0-Path-WLℓ,(1) G′, while G ∼1−WL G′.
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Figure 5.1: Stable graph coloring after one iteration of 1-WL. These two not isomorphic

graphs represent the two real molecules Decalin and Bicyclopentyl [4].

Proof. Let G = (V, E ,X) and G′ = (V ′, E ′,X′) be the graphs in Figure 5.2. The partition

induced on nodes by 1-WL is represented in Figure 5.1, where each color corresponds to

an equivalence class. We can see that there exists a bijection from the equivalence classes

in G to the equivalence classes in G′ and we can thus conclude G ∼1−WL G′. For the

other direction, first, let us notice the symmetry of the two graphs, where we can group

the nodes into three different equivalence classes: (i) Nodes with degree 3, (ii) neighbors

of degree 3 nodes, and (iii) nodes which are not adjacent to nodes with degree 3. We

now consider the path multisets up to length 5, denoted by 0-P5, for each of the three

node equivalence classes. In Figure 5.2, we can see that 0-P5 for nodes v ∈ G, v′ ∈ G′

belonging to equivalence class (i) differ, as 0-P5
v contains 4 paths of length 5, while 0-

P5
v′ contains only 2 paths of length 5. Given the injectivity of the Hash function, for

two nodes to get different colors it is sufficient to have different path multisets, as this

ensures different colors from the first iteration onwards. The same argument applies to

the remaining nodes in (ii) and (iii), which differ with respect to their multiplicity of

paths of length 5: (ii) in G, these nodes have 5 paths of length 5, whereas in G′ they

have 3 paths of length 5 and for (iii) the nodes in G have 3 paths of length 5, whereas in

G′ they have 2 paths of length 5. Due to the different multiplicities of paths of length 5,

we conclude that 0-Path-WL is able to distinguish the two graphs.

Remark 5.1. Note that for path length equal to one it holds that 0-Path-WL1 ≡ 1-WL.

1-Path-WL. We refer to the case of d = 1 as neighbor marking. This minor modi-

fication allows 1-Path-WL to count cycles at the node level and suffices to prove that

Path-WL is not contained within the k-WL hierarchy. Furthermore, this implies that

0-Path-WL is not bounded in expressivity by several other powerful GNNs such as sub-

graph GNNs ([132, 119, 133]) or Local 2-GNNs ([134, 135, 136, 137]). See Section 5.3.1

and Section 5.3.2 for more details.

The expressive power of d-Path-WLℓ is monotonically non-decreasing with respect

to the path length ℓ and shortest path distance d ≤ ℓ.

Proposition 5.2. For every d′ ≥ d ≥ 0 and ℓ′ ≥ ℓ ≥ 1, it holds that

d-Path-WLℓ ⊑ d′-Path-WLℓ, and d-Path-WLℓ ⊑ d-Path-WLℓ′ .
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v

G′

G

v′

0-P5
v (G)

4×

3× 4×
4×

4×

0-P5
v′(G′)

1×

4×

3× 4×
4×

2×

1×

Figure 5.2: Example of non-isomorphic graphs for which 1-WL fails, but Path-WL can

distinguish them in the first iteration. In the grey boxes, we visualize the path multisets

up to length 5 for nodes v and v′.

Refer to the Appendix C.3.1 for the proof of Proposition 5.2. Note that to ensure a

monotonic increase of the expressive power with respect to the path length ℓ, it is im-

portant to consider the multiset of all paths up to length ℓ. Indeed, shorter paths can be

crucial to distinguish two graphs, while longer paths can be identical.

We further point out that the least expressive variant 0-Path-WL is at least as

expressive as pathNN, the path-based GNN proposed by [130].

Remark 5.2. For every ℓ ≥ 1, 0-Path-WLℓ,(ℓ) ⊒ pathNN ([130]) with path length ℓ.

Similarly to our architecture, pathNN pre-computes all paths of length up to ℓ. Then,

it computes an embedding for each node and iteratively updates these embeddings by

aggregating the embeddings of nodes in paths. Contrarily to our architecture, pathNN

does not aggregate all path lengths at the same time and instead first aggregates over

paths of length one, then over paths of length two, and so on. This limits the number of

iterations to at most ℓ whereas 0-Path-WL is not limited in the number of iterations.

This is a strength of Path-WL as we notice that increasing the number of iterations can

reduce the path length needed for maximal expressivity (see Section 5.4). This can lead

to a significant decrease in runtime as the runtime only scales linearly with the number

of iterations but exponentially with the path length. We refer to the Appendix C.1 for a

more in-depth discussion on Remark 5.2.

Time complexity. The time complexity of enumerating all possible paths of length at

most ℓ for some fixed ℓ for one node in a graph G can be computed in O(∆ℓ) using depth-

first-search, where ∆ denotes the maximum vertex degree in G. For a graph of order n,

this yields an overall time complexity of O(n∆ℓ) to compute all simple paths up to length

ℓ. Note that we can perform the shortest path encoding with minimal computational
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overhead, as shortest paths are a subset of all paths. Thus, i iterations of Path-WL with

path length ℓ has time complexity O(n∆ℓi).

In practice, it is often not necessary to compute all paths. Instead, a small path

length often suffices for maximal expressivity. Furthermore, real-world graphs are often

sparse which drastically reduces the number of paths. In particular, real-world molecular

datasets such as NCI1, NCI109, AIDS or PROTEINS ([138]) have an average degree

of less than three which implies that only a small number of paths exists. Additionally,

increasing the number of iterations can significantly decrease the path length required for

maximal expressivity (see Section 5.4 and the Appendix C.7).

5.3 The Discriminative Power of Paths

In this section, we present our main results on the expressive power of path-based graph

neural networks. For this, we analyze path-based graph neural networks within the math-

ematical framework of d-Path-WL. First, in Section 5.3.1 we analyze how d-Path-WL

relates to k-WL. Then, in Section 5.3.2 we analyze its ability to count cycles. Finally, in

Section 5.3.3 we characterize which graph families can be distinguished by d-Path-WL

for every d ≥ 0 in only a single iteration. We provide a summary of our key theoretical

results in Table 5.1.

Table 5.1: Summary of our theoretical results.

Theoretical Result Requirement Reference

0-Path-WLℓ ≡ 1-WL ℓ = 1 Rem. 5.1

0-Path-WLℓ,(ℓ) ⊒ pathNN(ℓ) ∀ℓ ≥ 1 Rem. 5.2

0-Path-WLℓ ⊐ 1-WL ∀ℓ > 1 Thm. 5.3

0-Path-WLℓ,(1) incomparable to 1-WL(ℓ) ∀ℓ ≥ 3 Thm. 5.11

1-Path-WLℓ ̸⊑ k-WL ℓ ∼ k2, k ≥ 3 Thm. 5.4 (1)

k-WL ̸⊑ 1-Path-WLℓ ℓ ≥ 1, k ≥ 3 Thm. 5.4 (2)

1-Path-WLℓ can count k-cycles ℓ ≥ k − 1 Thm. 5.6

1-Path-WLℓ ̸⊑ SubgraphGNN

1-Path-WLℓ ̸⊑ Local 2-GNN ℓ ≥ 7 Thm. 5.8

1-Path-WLℓ ̸⊑ Folklore 2-GNN

1-Path-WLℓ ̸⊑ Folklore k-GNN ℓ ∼ (k + 1)2 Thm. 5.8

d-Path-WLℓ ⊑ d′-Path-WLℓ ℓ ≥ 1, d′ ≥ d ≥ 0 Prop. 5.2

d-Path-WLℓ ⊑ d-Path-WLℓ′ ℓ′ ≥ ℓ ≥ 1, d ≥ 0 Prop. 5.2

5.3.1 Relation to the k-WL Hierarchy

Our first theorem states that for every path length and any shortest path distance, d-

Path-WL is more expressive than 1-WL.
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Theorem 5.3. For every path length ℓ > 1, every d ≥ 0, d-Path-WLℓ is more expressive

than 1−WL.

Proof sketch. The proof consists of two parts: first, we prove that 0-Path-WL is always

at least as expressive as 1-WL. Then, we provide an example of two graphs G,G′ and

show the existence of two nodes u ∈ VG and v ∈ VG′ that 0-Path-WL can distinguish,

but such that u ∼1-WL v. The conclusion of the proof follows from the monotonicity of the

expressive power of d-Path-WL. Refer to C.4.1 in the Appendix for the full proof.

Theorem 5.3 states that even 0-Path-WL, which simply aggregates over path multis-

ets in each iteration, is more expressive than the standard Weisfeiler-Leman test. This

implies that any GNN with expressive power greater than or equal to 0-Path-WL is more

expressive than the entire class of message-passing graph neural networks, since they are

limited by 1-WL. We show an even stronger result on the relation to the k-WL hierarchy,

for d-Path-WL with d ≥ 1:

Theorem 5.4. Let d ≥ 1 and k ≥ 3. Then, d-Path-WL and k-WL are incomparable.

Equivalently, the following holds:

(1) for every k ≥ 1 there exists a path length ℓ such that d-Path-WLℓ ̸⊑ k-WL;

(2) for every ℓ ≥ 1, there exists a k such that k-WL ̸⊑ d-Path-WLℓ.

Proof sketch. The proof consists in finding for all k, a pair of non isomorphic graphs

identified by k-WL but distinguished by d-Path-WL with a sufficient path length, and

viceversa. The first direction mainly relies on the fact that d-Path-WL can distinguish

between graphs with different cycle counts for any cycle length l (see Corollary 5.7)

whereas k-WL fails to do so for cycles of length l ∼ k2 [139, Theorem 1.3]. We further

show that one iteration and d = 1 is always sufficient to distinguish them.

For the other direction, fixed a certain length ℓ, we can always construct two graphs

of treewidth 2, that can’t be distinguished by d-Path-WLℓ but can be distinguished by

3-WL [140, Theorem 6.1]. We refer to the Appendix for more details (cf. App. C.4.2).

Theorem 5.4 states that for every k, there exist graphs that d-Path-WL can dis-

tinguish, while k-WL fails. This shows that d-Path-WL is not limited by the k-WL

hierarchy.

5.3.2 Counting Cycles

The expressive power of a test can also be described in terms of its ability to count

substructures in the graph. Similar to [63, 141] we define the counting power of a test

by its ability to distinguish between graphs with different substructure counts. We first

show that 0-Path-WL can distinguish between cycles of different lengths at node level.

Proposition 5.5. Let Cn and Cm be two cycles of different lengths, with n > m. For

any v ∈ Cn and any u ∈ Cm,

v ∼1−WL u but v ≁0-PATH-WLℓ,(1) u ∀ℓ ≥ m.
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Proof. The left-hand side, i.e., v ∼1−WL u, comes from the fact that every cycle is a

connected 2-regular graph (cf. Appendix C.2) and that 1-WL cannot distinguish regular

graphs at the node level. Let u and v be two arbitrary nodes in cycles Cn and Cm,

respectively, and compute the first iteration of 0-Path-WL for u and v. This consists of

computing the multisets of paths Pu and Pv. Note that the longest path from each node

in Cm has length m− 1 as Cm is a cycle. Since n > m, the multiset of paths from a node

in Cn contains paths of length m so the two multisets Pℓ
v and Pℓ

u are different for every

ℓ ≥ m.

Proposition 5.5 provides a theoretical justification for 0-Path-WL to distinguish the

graph instances in Figure 5.2, as they contain cycles of different lengths. In particular,

the minimum path length necessary to discriminate the graphs in Figure 5.2 is exactly

the size of the minimum cycle.

Our next theorem states that with the incorporation of neighborhood information,

i.e., d-Path-WL with d ≥ 1, we can count cycles of arbitrary length at node level:

Theorem 5.6. Let sub(Cℓ, G, v) ̸= sub(Cℓ, H, u) for some graphs G,H, nodes u, v and

cycle Cℓ. Then,

u ≁1-Path-WLℓ−1 v.

Proof sketch. By Definition 5.6, neighbors vi of the starting node v are identified by pairs

(cvi , 1). Triangles on vertices v, v1, v2 are thus represented by paths of length 2 with two

marked neighbors: ((cv, 0), (cv1 , 1), (cv2 , 1)). These can be counted with 1-Path-WL2,(1).

The general proof can be found in the Appendix C.5.1.

Note that being able to count cycles at node level is stronger than counting cycles at

graph level. Indeed, node level counting implies graph level counting, but the opposite is

not true. As a corollary of Theorem 5.6, 1-Path-WL can distinguish between two graphs

with different cycle counts:

Corollary 5.7. Let sub(Cℓ, G) ̸= sub(Cℓ, H) for some graphs G,H and cycle Cℓ. Then,

G ≁1-Path-WLℓ−1 H.

We can combine Corollary 5.7 with the analysis of [142] that investigates whether

different GNNs can count cycles. This allows us to prove that Path-WL is not bounded

in expressivity by Subgraph GNNs ([132, 119, 133]), Local 2-GNNs ([134, 135, 136, 137]),

and Folklore k-GNNs ([32, 136, 143]).

Corollary 5.8. For every expGNN ∈ {SubgraphGNN, Local 2-GNN, Folklore k-GNN},
and every k ≥ 1, there exists a path length ℓ such that 1-Path-WLℓ ̸⊑ expGNN.

Please find more details in C.5.2 in the Appendix. While Corollary 5.7 is of great

interest from a theoretical point of view ([62, 63, 141]), this result is also of practical

relevance as it can reduce the path length needed to distinguish two graphs. For instance,

we can distinguish the smallest pair of non-isomorphic strongly regular graphs Rook and

Shrikhande, cf. Figure 5.3, with multisets of paths up to length 7, but paths of length up

to 4 are sufficient if we use neighbor information, thus almost halving the required path

length. This reduces the runtime by a factor of 200.



i
i

i
i

i
i

i
i

5.3. The Discriminative Power of Paths 53

Figure 5.3: Rook ’s 4x4 graph (left) and the Shrikhande (right) graph. They cannot be

distinguished by 3-WL but by 0-Path-WL7,(1) and 1-Path-WL4,(1).

5.3.3 One Iteration Is Almost All You Need

In this section, we investigate graph families that can be distinguished by 0-Path-WL

with only one iteration. Formally, let G and H be two disjoint graph families. We say

that a coloring algorithm T can distinguish G and H, if for every pair of graphs G ∈ G
and H ∈ H it holds that G ≁T H. Note that all results in this section generalize to

d-Path-WL as well as to pathNN ([130]).

Theorem 5.9. There exists an ℓ such that 0-Path-WLℓ,(1) can distinguish the following

pairs of infinite graph families:

1. Hamiltonian graphs of different orders at node and graph level,

2. Hamiltonian graphs and non-homogeneously traceable graphs at graph level, and

3. almost all connected d-regular graphs and disconnected graphs with d-regular con-

nected components at graph level.

Proof sketch. For the proof, it is sufficient to show that path multisets can distinguish

the graph families, as this is equivalent to 0-Path-WL with one iteration. Please refer

to Section C.6 in the Appendix for the full proof.

In Theorem 5.9, the families in (2) and (3) are of special interest, as they contain

graph classes that are indistinguishable by 1-WL. For (2), consider the construction in

Corollary 5.10. For (3), it is well known that 1-WL is not able to distinguish d-regular

graphs. Examples for d = 2 and d = 3 can be found in Figure 5.4. Structures similar

to Figure 5.4c could represent social networks, split into multiple communities. This

example offers insights into the importance of distinguishing the two graphs, particularly

in applications like community detection.

Corollary 5.10. Let Cn be a cycle of length n. H is a graph of order 2n composed of two

cycles Cn+1 with an edge in common. G is a graph of order 2n composed of two cycles

Cn connected by an extra edge. For any n ≥ 3, it holds that

G ≁0-PATH-WL2n−1,(1) H and G ∼1−WL H.
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(a) (b)

(c)

Figure 5.4: Graphs that cannot be distinguished by 1-WL but can be distinguished by

0-Path-WLℓ with (a) ℓ = 3 and (b),(c) ℓ = 4. The required length ℓ corresponds to the

order of the smallest connected component.

See Figure 5.5 for a visualization of how H and G are constructed. Note that such

pairs of graphs are indistinguishable by 1-WL; the graphs in Figure 5.1 represent an

instance of Corollary 5.10.

We have shown that even the simplest version of Path-WL, 0-Path-WL with one it-

eration, can already distinguish between graph families which are 1-WL-indistinguishable.

However, the following theorem states that 0-Path-WL with one iteration is not more

expressive than 1-WL.

Theorem 5.11. 1-WL-equivalence at iteration ℓ and 0-Path-WLℓ,(1)-eqivalence are in-

comparable for every ℓ ≥ 3.

Proof sketch. For the proof, it suffices to show that there exists a pair of nodes such that

(i) 0-Path-WLℓ,(1) is able to discriminate them, while 1-WL with ℓ iterations fails and

(ii) vice-versa. For (i), please refer to Corollary 5.10 for an example. For (ii), please see

the counterexample in Figure 5.6. See the Appendix C.6.2 for the complete proof.

Note that Figure 5.6 is a counterexample for a recent result of [130, Theorem 3.3].

0-Path-WL3,(2) is able to distinguish the graphs presented in Figure 5.6.
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Figure 5.5: Two non-isomorphic 1-WL-equivalent graphs that can be distinguished by

0-Path-WL2n−1,(1).

v v′

v ≁1-WL v′

v ∼0-Path-WL3,(1) v′

but

Figure 5.6: Counterexample that shows that path multisets alone are not more expressive

than 1-WL.

5.4 Experimental Analysis

To empirically evaluate our findings, we design PAIN (PAth Isomorphism Network),

a GNN architecture that is as powerful as Path-WL.We evaluate PAIN on three datasets

designed for studying the expressivity of GNNs and on one real-world benchmark dataset.

We next define the PAIN family of GNNs.

5.4.1 The PAIN Family

Let G = (V, E , α) be a graph with node features α. Each GNN in the PAIN family has

n ≥ 1 layers, uses paths of length up to ℓ ≥ 1, and distances up to d ≤ ℓ. Analogously to

Path-WL, for a fixed distance d, we denote such a GNN as d-PAIN. PAIN computes an

embedding h
(i)
v for each node v ∈ V in each layer i ∈ {1, . . . , n}. Similar to Path-WL,

we initialize each node embedding as the node features h
(0)
v = αv. The embeddings are

updated iteratively

h(i)
v = Aggregate

({{
z(i−1)
p : p ∈ P ℓ

v

}})
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where z
(i−1)
p is the embedding of path p defined via

z(i−1)
p = f(p) = f

((
h(i−1)
v , . . . ,h(i−1)

vℓ

))
.

In order to gain maximal expressive power, the function f must be injective over

sequences, and Aggregate must be injective over multisets. For f we select an LSTM

([144]) as they can approximate any function on sequences ([106]). In most experiments

we use the sum for Aggregate as it allows the representation of injective functions over

multisets [26, Lemma 5]. To get a graph-level prediction, we pool all node representations

in the final layer and apply a multi-layer perceptron.

Datasets. To study the expressivity of the PAIN family, we use the synthetic datasets

exp ([145]), sr ([146]) and csl ([147]). exp contains 600 non-isomorphic pairs of graphs

representing propositional formulas. Each pair of graphs in this dataset cannot be dis-

tinguished by 1-WL but can be distinguished by 3-WL. With sr we refer to the same

subset of strongly regular graphs used by [130]. Each pair of graphs in this dataset can-

not be distinguished by 3-WL, as 3-WL fails to distinguish strongly regular graphs. An

instance of this dataset is visualized in Figure 5.3. csl contains 150 graphs with 41 nodes

belonging to 10 different isomorphism classes that are indistinguishable by 1-WL. These

graphs are constructed by overlapping two different Hamiltonian cycles. Our experiments

on exp and sr evaluate to what degree untrained PAIN can distinguish graphs. For csl,

we train PAIN to predict the isomorphism classes. Additionally, we perform an ablation

study to investigate the impact of iterations, path length and distance on the expressivity.

For real-world evaluation, we use zinc ([148, 149]). zinc contains 12,000 small mo-

lecules. For this dataset, PAIN performs a regression task to predict the solubility of

each molecule.

Experimental setup. For exp and sr, we closely follow the experimental setup of

[130]. We use an untrained PAIN with a two-layer LSTM to compute 16-dimensional

embeddings. We use Euclidean normalization on the input for the LSTM and consider

two representations the same if the Euclidean distance is below ϵ = 10−5. Analogous to

[130], for sr we restrict the path length to 4 due to computational considerations and use

path length 5 for exp. All presented results are repeated over 5 seeds. We use a one-layer

0-PAIN for exp and a one-layer 1-PAIN for sr. For csl, we perform stratified 5-fold

cross-validation with a 3:1:1 split. We train a small PAIN model with an embedding

dimension of 16. We train 500 epochs with a fixed learning rate of 10−5. We report the

test set accuracy in the epoch with the highest validation performance and average this

test set accuracy over all cross-validation splits. We perform ablations for different values

of the path length ℓ ∈ {1, . . . , 6}, number of layers n ∈ {1, 2}, and distance encoding

depth d ∈ {0, 1, ℓ}.
On zinc we train a 5 layer 1-PAIN with path length 3 and embedding dimension 128. As

zinc contains edge features, we extend PAIN accordingly. As common on zinc, we train

with an initial learning rate of 10−3 that we half whenever the validation metric does not

increase for 20 epochs. The training stops after the learning rate dips below 10−5 or after
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Table 5.2: Mean and standard deviation of accuracy (↑) on the csl dataset.

1 Layer 2 Layers

ℓ 0-PAIN 1-PAIN 2-PAIN 0-PAIN 1-PAIN 2-PAIN

2 12± 4 20± 0 20± 0 12± 4 64± 8 70± 9

3 18± 4 40± 0 50± 0 20± 0 47± 6 64± 4

4 29± 5 54± 5 90± 0 32± 3 64± 5 90± 0

5 50± 0 59± 1 100± 0 46± 5 67± 2 100± 0

6 50± 0 90± 0 100± 0 46± 5 90± 0 100± 0

Table 5.3: Pairs of graphs in exp that cannot be distinguished by the given models. Bold

marks the strongest result.

Model exp ↓
GIN ([26]) 600

3-WL ([32]) 0

pathNN ([130]) 0

PAIN (ours) 0

1000 epochs. We train the model 10 times and report the average test set mean absolute

error in the epoch with the lowest validation error. For more details on experiments see

the Appendix C.8.

Distance Encoding. We do not use distance encoding for exp. For sr we mark neigh-

bors by adding a constant value of 1.0 to all the neighbors of the starting node within a

path. For csl and zinc we use a different type of neighborhood encoding better suited for

a learning task. For every distance encoding (even depth 0) we attach to each embedding

in each path a learned vector that encodes some type of distance. In the case of d ≤ 1,

this vector encodes the position in the sequence. For the case of d > 1, this encodes

the shortest path distance between the starting node and the current node in the path.

Finally, when d ≥ 1 we add an additional feature to the embedding of each node in the

path that is 1 if it is a neighbor to the starting node in the path and 0 otherwise.

Our code can be found at https://anonymous.4open.science/r/pathGNNs-D065/.

Results. On exp, untrained 0-PAIN with path length 5 can distinguish all graphs

(Table 5.3), which is consistent with the results in [130]. Please note that we, however, do

not use distance encoding as proposed in [130] and could thus verify that the multiplicities

of paths of length 5 are sufficient. On sr, untrained 1-PAIN is able to distinguish more

than 50% of all graph pairs (cf. Figure 5.7). In general, our results are comparable with

[130] with distance encoding. For SR(29,14,6,7) we obtain significantly better results of

around 40% failure rate in comparison to the 80% failure rate of pathNN.

Table 5.2 shows the results on the csl dataset, which suggest that the expressivity

increases with the number of layers, the path length, and the depth of the distance

https://anonymous.4open.science/r/pathGNNs-D065/
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Table 5.4: Mean and standard deviation of mean absolute error on the zinc (12,000 nodes

with edge features) dataset. GIN, GCN and GAT experiments where conducted by [5],

all other GNNs where benchmarked by the cited authors. Bold marks the strongest

architecture.

Model MAE (↓)
GIN ([26]) 0.387± 0.015

GCN ([150]) 0.278± 0.003

GAT ([24]) 0.384± 0.007

CIN ([131]) 0.079± 0.006

ESAN ([151]) 0.102± 0.003

pathNN ([130]) 0.090± 0.004

PAIN (ours) 0.148± 0.003

SR16622 SR251256 SR261034 SR281264 SR291467 SR361446 SR401224
0.0

0.2

0.4

0.6

0.8

1.0
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Figure 5.7: Results on sr for path length 4 and marked neighbors. The blue line indicates

the failure rate of 3-WL.

encoding. Most importantly, increasing the depth d gives a strong boost in accuracy

without increasing the time complexity. For example for a single layer and path length

ℓ = 5, increasing the distance encoding depth from 0 to ℓ improves the accuracy from 50%

to 100%. What is especially interesting is that no 0-PAIN model achieves an accuracy of

over 50% for csl which indicates that the distance encoding is crucial for the expressive

power required for this dataset. Finally, we can see that increasing the number of layers

gives a strong boost in predictive performance for short path lengths and especially for

ℓ = 2. This is important, as increasing the number of layers increases the runtime only

by a constant factor compared with an exponential increase with ℓ. Finally, Table 5.4
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shows the results on zinc. We observe that 1-PAIN outperforms classical message-passing

GNNs.

5.5 Conclusion

In this chapter, we investigated the discriminative power of paths to distinguish between

non-isomorphic graph instances. For this, we have proposed Path-WL a general class of

color refinement algorithms that allows us to investigate the expressivity of path-based

graph neural networks. We have proven that Path-WL is incomparable in expressivity

to several other powerful GNNs such as subgraph GNNs or k-GNNs. Furthermore, Path-

WL is able to count cycles which is important for learning tasks on molecular structures.

All of this indicates that path-based GNNs form a novel class of highly expressive GNNs.

As the computational cost of our approach is strongly dependent on the chosen path

length, we plan to characterize graph classes for which it is proven that a reasonably low

path length is sufficient for maximal expressivity. Furthermore, we intend to investigate

approaches that only require the computation of a subset of all paths of a certain length.
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Chapter 6

General Conclusions

In this thesis, we aimed to extend the expressiveness of graph neural networks beyond

the constraints enforced by the standard 1-WL test. Since the conclusions are already

presented at the end of each chapter, we provide a summary and discuss future perspect-

ives.

In the first part of the thesis, we addressed the lack of fundamental theory on data struc-

tures that do not belong to the class of static, undirected, and homogeneous graphs with

node attributes. In particular, we suggested an alternative approach to process several

graph domains with a unique and universal AGNN model. We introduced appropriate

versions of 1-WL/UT equivalence, and, considering generic GNN models that can operate

on those domains, we proved their universal approximation capabilities. Specifically, we

proved that AGNNs and DGNNs can approximate in probability up to any precision,

any measurable function that preserves the (attributed/dynamic) unfolding equivalence.

Moreover, these results hold for graphs whose attributes are vectors of reals, and with

completely unconstrained target functions. Further, we extended the higher-order attrib-

uted/dynamic k-WL hierarchy to arbitrary graphs and compared the various tests. The

order among them is no longer total but partial, which prepares the ground for concepts

of Lattice Theory to intersect with Graph Theory and Graph Neural Networks.

A special attention was also devoted to discrete dynamic GNNs, which are widely used in

practice but lack a comprehensive foundational theory. Since the presented results only

apply to discrete recurrent models working on graph snapshots, and not to all dynamic

GNNs, future work will focus on extending the investigation to graphs with a continuous-

time representation. One difficulty in this context lies in deciding in which sense two

continuous-time dynamic graphs are called WL equivalent, since there are many pos-

sibilities for dealing with the given timestamps. For example, the investigation on the

equivalence between dynamic graphs involves analyzing how to manage dynamic graphs

that are equal in their structure but differ in their temporal occurrence, i.e., according

to the commitment of the WL equivalence or the unfolding tree equivalence, it is re-

quired to decide whether the concepts need to be time-invariant. In the case when two

graphs with the same structure must be distinguished if they appear at different times,

the node and edge attributes can be extended by an additional dimension carrying the

exact timestamp. Thereby, the unfolding trees of two (structurally) equal nodes would

be different, having different timestamps in their attributes. Then, all dynamic graphs

G ∈ D are defined over the same time interval I. This assumption can be made without

loss of generality, since the set of timestamps of G can be padded by including missing

timestamps t̄ and G can be padded by empty graphs Gt̄ = ∅.
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In the second part of the thesis, we searched for a new aggregation mechanism, to al-

leviate the short-sightedness of standard GNNs. To overcome the local neighborhood

aggregation, we proposed using paths. In a broader sense, we systematically investigated

the expressive power of path-based graph neural networks.

To this aim, we proposedPath-WL, a new coloring algorithm based on paths and geodesic

distances. We characterized families of graphs that can be distinguished by Path-WL.

For a sufficient path length, Path-WL is not comparable to a wide range of expressive

graph neural networks, it can count cycles, and achieves strong results on the notoriously

difficult family of strongly regular graphs. Our theoretical results indicate that Path-

WL forms a new hierarchy of highly expressive graph neural networks. Even if the gained

expressivity comes at an increased computational cost, we observed that the complexity

is a function of the maximum degree of the graph, hence it is tractable for sparse graphs

and it is strongly dependent on the chosen path length. We plan to characterize graph

classes for which it is proven that a reasonably low path length is sufficient for maximal

expressivity. We also aim to further explore how iterations (i.e. number of layers) can

reduce the required path length, starting from the provided insights. Furthermore, we

intend to investigate approaches that only require the computation of a subset of all

paths, including various sampling strategies, to assess which theoretical guarantees are

maintained in a probabilistic scenario.

A common future perspective unifying the two main lines of research in this thesis is

to create a comprehensive hierarchy of WL tests, including Path-WL and other more

expressive algorithms, all adapted to deal with arbitrary graph types. A valuable addition

would be to categorize the tests based on their ability to count substructures. This would

transform the hierarchy into a practical guide for selecting the most suitable architecture

for the problem at hand. Such extensions might result in a deeper understanding of the

expressive power of different GNN architectures.

The present thesis focuses exclusively on the expressive power of GNNs. However, multiple

factors are interleaved at the same time. GNNs with the same expressive power may

differ for other fundamental properties, e.g., computational complexity and generalization

capability. Indeed, more expressive models are typically more complex and can perfectly

model the training data, including noise and outliers, which can lead to overfitting. This

can make them less effective at predicting new, unseen data. Conversely, a less expressive

model might underfit the training data, failing to capture essential patterns but potentially

generalizing better, avoiding learning noise. Moreover, we discussed how increasing the

number of layers can improve expressiveness (and in the case of path GNNs, decrease the

required path length) but this can lead to over-smoothing. The issue of oversmoothing

in GNNs is closely tied to the question of their expressiveness. This phenomenon occurs

when multiple layers in a GNN repeatedly apply the same smoothing operation – typically,

averaging node features with those of their neighbors. As a result, as the number of layers

increases, the node features across the entire graph tend to converge to a similar state.

This makes it difficult for the model to distinguish between nodes based on their features,

effectively reducing the discriminative power of the network.
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Therefore, as a future work, we also plan to understand how the architecture of Ag-

gregate(i), Combine(i), and Readout influence those other fundamental properties.

Understanding and managing the interplay between expressiveness and generalization of

GNNs is key factor to enhance their capabilities, making them more effective and versatile

across a broad range of applications.
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[171] G. Chéron, I. Laptev, and C. Schmid, “P–CNN: Pose–based CNN features for action

recognition,” in Proceedings of the IEEE International Conference on Computer Vision,

2015, pp. 3218–3226.

[172] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R–CNN,” in Proceedings of the

IEEE International Conference on Computer Vision, 2017, pp. 2961–2969.

[173] T.-C. Huynh, “Vision–based autonomous bolt–looseness detection method for splice con-

nections: Design, lab–scale evaluation, and field application,” Automation in Construction,

vol. 124, p. 103591, 2021.

[174] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolu-

tional neural networks,” Advances in Neural Information Processing Systems, vol. 25, pp.

1097–1105, 2012.

[175] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. Van de Weijer,

Eye tracking: A comprehensive guide to methods and measures. oup Oxford, 2011.

[176] G. Veneri, E. Pretegiani, F. Rosini, P. Federighi, A. Federico, and A. Rufa, “Evaluating

the human ongoing visual search performance by eye tracking application and sequencing

tests,” Computer methods and programs in biomedicine, vol. 107, no. 3, pp. 468–477, 2012.

[177] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” Journal

of the American statistical Association, vol. 47, no. 260, pp. 583–621, 1952.

[178] A. Vargha and H. D. Delaney, “The kruskal-wallis test and stochastic homogeneity,”

Journal of Educational and behavioral Statistics, vol. 23, no. 2, pp. 170–192, 1998.

[179] B. G. Amidan, T. A. Ferryman, and S. K. Cooley, “Data outlier detection using the

chebyshev theorem,” in 2005 IEEE Aerospace Conference. IEEE, 2005, pp. 3814–3819.

[180] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical

image segmentation,” in Medical image computing and computer-assisted intervention–

MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, pro-

ceedings, part III 18. Springer, 2015, pp. 234–241.

[181] J. MacQueen et al., “Some methods for classification and analysis of multivariate obser-

vations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics and

probability, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281–297.



i
i

i
i

i
i

i
i

78 BIBLIOGRAPHY

[182] F. Geerts, “Walk message passing neural networks and second-order graph neural net-

works,” CoRR, vol. abs/2006.09499, 2020.

[183] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman, “Invariant and equivariant graph

networks,” in 7th International Conference on Learning Representations, 2019.

[184] J. You, R. Ying, and J. Leskovec, “Position-aware graph neural networks,” in International

conference on machine learning. PMLR, 2019, pp. 7134–7143.

[185] D. Lim, J. D. Robinson, L. Zhao, T. Smidt, S. Sra, H. Maron, and S. Jegelka, “Sign

and basis invariant networks for spectral graph representation learning,” in International

Conference on Learning Representations, 2022.

[186] Z. Dong, M. Zhang, P. Payne, M. A. Province, C. Cruchaga, T. Zhao, F. Li, and Y. Chen,

“Rethinking the power of graph canonization in graph representation learning with stabil-

ity,” in The Twelfth International Conference on Learning Representations, 2023.

[187] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal generalized pagerank

graph neural network,” in 9th International Conference on Learning Representations, 2021.

[188] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan,

G. Ver Steeg, and A. Galstyan, “Mixhop: Higher-order graph convolutional architectures

via sparsified neighborhood mixing,” in International Conference on Machine Learning.

PMLR, 2019, pp. 21–29.

[189] G. Wang, R. Ying, J. Huang, and J. Leskovec, “Multi-hop attention graph neural net-

works,” in Proceedings of the Thirtieth International Joint Conference on Artificial Intel-

ligence, August 2021, 2021, pp. 3089–3096.

[190] P. A. Papp and R. Wattenhofer, “A theoretical comparison of graph neural network exten-

sions,” in International Conference on Machine Learning. PMLR, 2022, pp. 17 323–17 345.

[191] N. Robertson and P. D. Seymour, “Graph minors. ii. algorithmic aspects of tree-width,”

Journal of algorithms, vol. 7, no. 3, pp. 309–322, 1986.

[192] V. Balakrishnan, Schaum’s Outline of Graph Theory: Including Hundreds of Solved Prob-

lems. McGraw Hill Professional, 1997.

[193] N. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, 1736-1936. Oxford University

Press, 1986.

[194] R. W. Robinson and N. C. Wormald, “Almost all regular graphs are hamiltonian,” Random

Structures & Algorithms, vol. 5, no. 2, pp. 363–374, 1994.

[195] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep

learning library,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[196] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,”

in ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.



i
i

i
i

i
i

i
i

Appendix A

Other Works:
Statistical and Machine Learning Approaches
for Biomedical Applications

This chapter provides an overview of other research activities that have characterized my PhD

but are not closely related to the thesis topic. I would like to start with two papers which are

related to my Master’s Degree thesis. The common research question is: what is driving the

irregular dynamics of ribosomes during the translation phase?

A Neural Network Approach for the Analysis of Repro-

ducible Ribo–Seq Profiles [78]

Ribosomes perform protein synthesis from mRNA templates by a highly regulated process called

translation. Translation control plays a key role in the regulation of gene expression, both in

physiological and pathological conditions [152]. The advent of high-throughput methods to meas-

ure the levels of gene expression has revealed the implications of multiple factors that might im-

pact the rate at which an mRNA is translated. In recent years, the Ribosome profiling technique

(Ribo–seq) has emerged as a powerful method for globally monitoring the translation process

in vivo at single nucleotide resolution [153]. Based on deep sequencing of mRNA fragments,

Ribo–seq allows to obtain profiles that reflect the time spent by ribosomes in translating each

part of an open reading frame. Unfortunately, the profiles produced by this method can vary

significantly in different experimental setups, being characterized by poor reproducibility [154].

To address this problem, we have employed a statistical method for the identification of highly

reproducible Ribo–seq profiles, which was tested on a set of E. coli genes. In particular, in-

spired by the seminal work proposed in [155], we perform a novel analysis procedure for Ribo-seq

data that allows us to identify the reproducible Ribo-seq profiles emerging from the comparison

of independent Ribo-seq experiments performed in different laboratories under the same con-

ditions. These significantly reproducible profiles are then collected into a library of consensus

sequences, in which sub-regions characterized by different translation speeds can be isolated.

State-of-the-art artificial neural network models have been used to validate the quality of the

produced sequences. Moreover, new insights into the dynamics of ribosome translation have

been provided through a statistical analysis of the obtained sequences. The analysis showed a

statistically significant difference in the nucleotide composition between sub-sequences charac-

terized by different translation speeds. The combinations of these experiments allowed us to

discover that the translation speed is modulated both by the nucleotide composition of the se-

quences and by the order in which they appear within each sequence. Our code is available at

https://github.com/pandrein/Ribo-Seq-analysis.

https://github.com/pandrein/Ribo-Seq-analysis
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Point–wise Ribosome Translation Speed Prediction with

Recurrent Neural Networks [82]

Escherichia Coli is a benchmark organism and it has been deeply studied by the scientific com-

munity for decades, obtaining a vast amount of metabolic and genetic data. Among these data,

estimates of the translation speed of ribosomes over its genome are available. The molecular pro-

cess of translating mRNA into proteins is a cornerstone of cellular biology, representing a critical

intersection between the genetic code and functional biomolecules. Translation is executed by

ribosomes, which are sophisticated molecular complexes composed of RNA and protein com-

ponents. These complexes function as the sites of protein synthesis, interpreting the genetic

information encoded in mRNA sequences and assembling corresponding amino acids into poly-

peptide chains, which subsequently fold into functional proteins, essential for cell life. Translation

is not merely a mechanical process but is intricately regulated, playing a pivotal role in the con-

trol of gene expression. This regulation is essential for maintaining cellular homeostasis, enabling

cells to adapt protein production to suit specific tissue requirements and to respond to a wide

variety of internal and external stimuli. The fidelity and efficiency of translation are critical, and

disruptions in these processes are frequently implicated in disease mechanisms [152], highlighting

the importance of understanding translation at a molecular level. The complexity of translation

extends beyond the ribosome-mRNA interactions. The ribosome itself is a dynamic entity, cap-

able of various interactions with the mRNA molecule, the emerging peptide chain, and external

molecular factors [156]. These interactions are not merely mechanical but are intricately regu-

lated, contributing to the efficiency of protein synthesis. Recognizing these interactions is crucial

for a comprehensive understanding of translation and its role in cellular function and pathology.

In order to understand if there exist biological signals to suggest ribosomes how to move on the

mRNA strand, we decided to process the mRNA sequences with machine learning models. The

objective is to predict the translation speed of each nucleotide, codon, or amino acid inside a

sequence. The models are trained, validated, and tested on a dataset of E.Coli Open Reading

Frames (ORFs), obtained from a consensus pool of 9 source datasets. Once trained and suc-

cessfully validated, the model can then be exploited to predict the translation speed of all the

E.Coli ORFs for which the consensus threshold was not reached, thus marking the uncertainty

in determining the translation speed with traditional methods. On one hand, this method can

help build models for reliable predictions of mRNA translation speed, reducing the future need

for more costly Ribo-Seq experiments. On the other hand, ablation studies and attention mech-

anisms can help explain the models’ decisions, thus identifying the factors that determine the

speed in nature, and their importance.



i
i

i
i

i
i

i
i

81

In the next work, we made use of a neuro-symbolic approach to refine the representations

of the entries of a large biomedical knowledge graph. In neuro-symbolic methods, symbolic

knowledge (in this case first-order logic rules) is integrated into a neural component and can

provide useful additional information to improve the performance [157].

Enhancing Embedding Representations of Biomedical

Data using Logic Knowledge [76]

Knowledge Graph Embeddings (KGE) have become a quite popular class of models specifically

devised to deal with ontologies and graph structure data, as they can implicitly encode statistical

dependencies between entities and relations in a latent space [158, 159]. KGE techniques are

particularly effective for the biomedical domain, where it is quite common to deal with large

knowledge graphs underlying complex interactions between biological and chemical objects. Re-

cently in the literature, the PharmKG dataset has been proposed as one of the most challenging

knowledge graph biomedical benchmarks, with hundreds of thousands of relational facts between

genes, diseases, and chemicals [160]. Although KGEs can scale to very large relational domains,

they generally fail to represent more complex relational dependencies between facts, therefore

we claim that logic rules can constitute a valuable source of additional knowledge to establish

complex interconnections among these entities. However, given the remarkable dimension of

this benchmark, successfully applying methodologies that combine KGEs and logic rules is very

challenging and, according to the authors’ knowledge, this is the first work accomplishing this

task. To this end, we adopt Relational Reasoning Network (R2N), a recently proposed neural-

symbolic approach [161] showing promising results on knowledge graph completion tasks. An

R2N uses the available logic rules to build a neural architecture that reasons over KGE latent

representations. In the experiments, we show that our approach is able to significantly improve

the current state-of-the-art on the PharmKG dataset. Finally, we show how it is possible to

employ automatic rule mining techniques to enrich knowledge graph completion tasks [162], and

we provide an in-depth ablation study to evaluate the performance of R2Ns according to different

settings of the rule miner.

Other than graphs and sequences, I worked with images. In particular, I focused on two

powerful techniques, namely, image generation and semantic segmentation. The standard model

to generate new images from existing data is the Generative Adversarial Network (GAN) [163].

On the other hand, image segmentation is the task of classifying portions of the image as be-

longing to a particular semantic area of the picture (for example main subject/ background).

This allows us to simplify and/or change the representation of an image into something more

meaningful and easier to analyze. This is crucial in applications such as medical imaging, where

precise analysis can aid in diagnosis and treatment planning. In particular, we targeted retinal

fundus images. The paper on this topic has been included also in a chapter of the book Artificial

Intelligence and Machine Learning for Healthcare [164]. We provide a summary of both versions.
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A Two-Stage GAN for High-Resolution Retinal Image

Generation and Segmentation[81]

In this paper, we use Generative Adversarial Networks (GANs) to synthesize high-quality retinal

images along with the corresponding semantic label-maps, instead of real images during training

of a segmentation network. Different from other previous proposals, we employ a two-step

approach: first, a progressively growing GAN [165] is trained to generate the semantic label-maps,

which describes the blood vessel structure (i.e., the vasculature); second, an image-to-image

translation approach is used to obtain realistic retinal images from the generated vasculature.

The adoption of a two-stage process simplifies the generation task so that the network training

requires fewer images with consequent lower memory usage. Moreover, learning is effective, and

with only a handful of training samples, our approach generates realistic high-resolution images,

which can be successfully used to enlarge small datasets such as DRIVE [166] and CHASE-DB1

[167]. Comparable results were obtained by employing only synthetic images in place of real data

during training. The practical viability of the proposed approach was demonstrated on two well-

established benchmark sets for retinal vessel segmentation—both containing a very small number

of training samples—obtaining better performance with respect to state-of-the-art techniques.

Multi–stage Synthetic Image Generation for the

Semantic Segmentation of Medical Images [77]

Recently, deep learning methods have had a tremendous impact on computer vision applications,

from image classification and semantic segmentation [168, 169, 170] to object detection and face

recognition [171, 172, 173, 174]. Nevertheless, the training of state–of–the–art neural network

models is usually based on the availability of large sets of supervised data. Indeed, deep neural

networks have a huge number of parameters that, to be properly trained, require a fairly large

dataset of supervised examples. This problem is particularly relevant in the medical field due

to privacy issues and the high cost of image tagging by medical experts. In this chapter, we

present a new approach that allows to reduce this limitation by generating synthetic images with

their corresponding supervision. In particular, this approach can be applied in semantic seg-

mentation, where the generated images (and label–maps) can be used to augment real datasets

during network training. The main characteristic of our method, differently from other existing

techniques, lies in the generation procedure carried out in multiple steps, based on the intuition

that, by splitting the procedure in multiple phases, the overall generation task is simplified. The

effectiveness of the proposed multi–stage approach has been evaluated on two different domains,

retinal fundus and chest X–ray images. In both domains, the multi–stage approach has been

compared with the single–stage generation procedure. The results suggest that generating im-

ages in multiple steps is more effective and computationally cheaper, yet allows high-resolution,

realistic images to be used for training deep networks.
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The Trail Making Test (TMT) is used in clinical practice as a neuropsychological assessment

of visual attention and task switching. The test investigates the subject’s attentive abilities

and the capability to quickly switch from a numerical to an alphabetical visual stimulus. We

exploited an oculomotor-based methodology, called eye-tracking, to study cognitive impairments

in patients affected by chronic pain and extrapyramidal syndrome, such as Parkinson’s disease.

Here we briefly present the main paper and a spin-off published in the European journal of

neurology, focusing on one of the three indicators detected in [80]: the spontaneous blinking rate.

A Mixed Statistical and Machine Learning Approach

for the Analysis of Multimodal Trail Making Test Data

[80]

Eye-tracking can offer a novel clinical practice and a non-invasive tool to detect neuropathological

syndromes [175]. In this paper, we show some analysis of data obtained from the visual sequential

search test [176]. Indeed, such a test can be used to evaluate the capacity to look at objects in a

specific order, and its successful execution requires the optimization of the perceptual resources

of foveal and extrafoveal vision. The main objective of this work is to detect if some patterns

can be found within the data to discern among people with chronic pain, extrapyramidal pa-

tients, and healthy controls. We employed statistical tests [177, 178, 179] to evaluate differences

among groups, considering three novel indicators: blinking rate, average blinking duration, and

maximum pupil size variation. Additionally, to divide the three patient groups based on scan-

path images—which appear very noisy and all similar to each other—we applied deep learning

techniques [180] to embed them into a larger transformed space. We then applied a clustering

approach [181] to correctly detect and classify the three cohorts. Preliminary experiments show

promising results.

Blinking Rate Comparison Between Patients with Chronic

Pain and Parkinson’s Disease [79]

Blinking can be spontaneous, voluntary, or reflex. Spontaneous blink rate (SBR) is strictly

related to dopamine levels in the central nervous system and is considered a reliable noninvas-

ive biomarker of central dopaminergic activity. Reduced spontaneous blinking rate is a com-

mon finding in Parkinson’s disease and other parkinsonian syndromes suggesting involvement

of fronto-striatal system and a reduced Dopamine tone. Recent evidence indicates a possible

relationship between the central dopaminergic system and pain modulation in both animal and

human studies. A subpopulation of dopaminergic neurons within the ventrolateral periaque-

ductal grey (PAG), which is included in the pain modulatory network, projects to brain regions

known to be involved in pain modulation. D1 and D2 receptors are expressed in the PAG and

seem to have an antinociception activity. The aim of this study is to investigate changes of SBR

in patients with Chronic Pain (CP) compared to normal subjects and PD.
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Appendix

The present appendix collects all the proofs that were not included in the main text of Part II

of the thesis (Chapter 3 and 4). We provide first some additional preliminaries.

B.1 Additional Preliminaries

Definition B.1 (Different Graph Types). The elementary graphs are defined in [104] as follows.

• A directed graph (digraph) is a tuple G = (V, E) containing a set of nodes V ⊊ N and

a set of directed edges given as tuples E ⊆ V × V.

• A (generalized) directed hypergraph is a tuple G = (V, E) with nodes V ⊊ N and

hyperedges E ⊆ {(x, fi)i | x ⊆ V, fi : x → N0} that include a numbering map fi for the i-th

edge (x, f)i which indicates the order of the nodes in the (generalized) directed hyperedge.

An elementary graph G = (V, E) is called

• undirected if the directions of the edges are irrelevant, i.e.,

– for directed graphs: if (u, v) ∈ E whenever (v, u) ∈ E for u, v ∈ V.

– for directed hypergraphs: if fi : x → 0 for all (x, fi)i ∈ E1.

• multigraph if the node or edge sets are multisets.

• heterogeneous if the nodes or edges can have different types. I.e., the node set is de-

termined by V ⊆ N×S with a node type set S and thus, a node (v, s) ∈ V is given by the

node v itself and its type s. The edges can be extended by a set R that describes their

types, to (e, r) ∀ e ∈ E of edge type r ∈ R. Otherwise, the graph is called homogeneous.

• attributed if the nodes V or edges E are equipped with node or edge attributes2, formally

given by a node and edge attribute function, respectively, i.e. α : V → A and ω : E → W,

where A and W are arbitrary attribute sets.

[104] claims that there exists a bijective transformation from any arbitrary graph type defined

in Def. B.1 to the SAUHG. They result from concatenating transformations for single graph

properties and are sketched in the following.

Graph Type Transformations. Given a graph of arbitrary type, the concatenation of

suitable transformations from the following list leads to the SAUHG type.

• Hypergraph → Simple Graph: Transform undirected hyperedges to fully connected

subgraphs and directed edges to chained directed bipartite subgraphs given the hyperedge

direction.

1fi(x) = 0 encodes that x is an undirected hyperedge
2In some literature attributes are also called features.
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• Multigraph → Simple Graph: Encode multiple nodes or edges in an additional counter

each and, i.a., concatenate the corresponding attributes in a vector.

• Dynamic → Static: Encode the dynamical behaviour of the graph into a time series of

node and edge attributes accordingly.

• Unattributed → Attributed: Add empty attributes to each node or edge.

• Directed → Undirected: Replace all directed edges with undirected ones and add the

direction as encoded additional information into the edge attributes.

• Heterogenous → Homogeneous: Encode the different node or edge types in an addi-

tional dimension of the node or edge attribute, respectively.

B.2 Universal Approximation Capabilities

Here are collected the proofs of Lemmas, Propositions, and main Theorems on approximation

capabilities of AGNNs and DGNNs.

B.2.1 Proof of Lemma 3.1

Statement. Consider G = (V, E , α, ω) with nodes u, v ∈ V and corresponding attributes αu, αv.

Then it holds

∀ d ∈ N0 : Td
u = Td

v ⇐⇒ c(d)u = c(d)v (B.1)

Proof. The proof is carried out by induction on d, which represents both the depth of the

unfolding trees and the iteration step in the WL coloring.

d = 0: It holds

T0
u = Tree(αu) = Tree(αv) = T0

v

⇐⇒ αu = αv ⇐⇒ c(0)u = Hash(αu) = Hash(αv) = c(0)v .

because of the injectivity of the Hash function.

d > 0: Suppose that Eq. (B.1) holds for d− 1, and prove that it holds also for d.

- By definition, Td
u = Td

v is equivalent to{
Td−1

u = Td−1
v and

Tree
(
αu, {{(ω(n,u),T

d−1
n )}}n∈N (u)

)
= Tree

(
αv, {{(ω(n′,v),T

d−1
n′ )}}n′∈N (v)

)
.

(B.2)

- Applying the induction hypothesis, it holds that

Td−1
u = Td−1

v ⇐⇒ c(d−1)
u = c(d−1)

v . (B.3)

- Eq. (B.2) is equivalent to the following:

αu = αv, {{(ω(n,u),T
d−1
n )}}n∈N (u) = {{(ω(n′,v),T

d−1
n′ )}}n′∈N (v)

That is equivalent to:{
ω(u,n) = ω(v,n′) ∀ n ∈ N (u), n′ ∈ N (v) and

Td−1
n = Td−1

n′ ∀ n ∈ N (u), n′ ∈ N (v).
(B.4)
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- By the induction hypothesis, Eq. (B.4) is equivalent to

{{c(d−1)
n | n ∈ N (u)}} = {{c(d−1)

n′ | n′ ∈ N (v)}}.

- Putting together Eq. (B.3), (B.4), and the fact that the Hash function is bijective,

we obtain:

Hash
((

c(d−1)
u , {{c(d−1)

n | n ∈ N (u)}}, {{ω(n,u) | n ∈ N (u)}}
))

= Hash
((

c(d−1)
v , {{c(d−1)

n′ | n′ ∈ N (v)}}{{ω(n′,v) | n′ ∈ N (v)}}
))

which, by definition, is equivalent to c
(d)
u = c

(d)
v .

B.2.2 Proof of Proposition 3.4

Statement. A function f belongs to F(G) if and only if there exists a function κ defined on

trees such that for any graph G′ ∈ G it holds f(G′, v) = κ(Tv), for any node v ∈ G′.

Proof. We prove by showing both equivalence directions:

⇐ If there exists a function κ on attributed unfolding trees such that f(G′, v) = κ(Tv) for

all v ∈ G′, then u ∼AUT v for u, v ∈ G implies f(G′, u) = κ(Tu) = κ(Tv) = f(G′, v).

⇒ If f preserves the attributed unfolding equivalence, then a function κ on the attributed

unfolding tree of an arbitrary node v can be defined as κ(Tv) := f(G′, v). Then, if Tu

and Tv are two attributed unfolding trees, Tu = Tv implies f(G′, u) = f(G′, v) and κ is

uniquely defined.

B.2.3 Proof of Proposition 3.7

Statement. A dynamic system belongs to F(D) if and only if there exists a function κ defined

on attributed trees such that for all (t, G, v) ∈ D it holds

dyn(t, G, v) = κ
((

Tv(i)
)
i∈[t]

)
.

Proof. We show the proposition by proving both directions of the equivalence relation:

⇒: If there exists κ such that dyn(t, G, v) = κ
((

Tv(i)
)
i∈[t]

)
for all triplets (t, G, v) ∈ D, then

for any pair of nodes u ∈ G1, v ∈ G2 with u ∼DUT v it holds

dyn(t, G1, u) = κ
((

Tu(i)
)
i∈[t]

)
= κ

((
Tv(i)

)
i∈[t]

)
= dyn(t, G2, v).

⇐: On the other hand, if dyn preserves the unfolding equivalence, then we can define κ as

κ
((

Tv(i)
)
i∈[t]

)
= dyn(t, G, v).

Note that the above equality is a correct specification for a function. In fact, if

κ
((

Tv(i)
)
i∈[t]

)
= κ

((
Tu(i)

)
i∈[t]

)
implies dyn(t, G, u) = dyn(t, G, v), then κ is uniquely defined.
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B.2.4 Proof of Theorem 3.5

Since the proof proceeds analogously to the one in [88], we will only sketch the proof idea here

and refer to the original paper for further details. The key point is that Theorem 3.5 is equivalent

to another theorem ([93, Lemma 2]), where the domain is a finite subset of G and the attributes

are integers. Hence, proving this theorem is sufficient to prove Theorem 3.5.

To prove the equivalence between the two theorems, we need [93, Lemma 2], Theorem 3.2, and

the extended version of [93, Lemma 1] to the domain of SAUHGs G, that we provide in the

following. Intuitively, the lemma suggests that a domain of SAUHGs with continuous attributes

can be partitioned into small subsets so that the attributes of the graphs are almost constant

in each partition. Moreover, in probability, a finite number of partitions is sufficient to cover a

large portion of the domain.

Lemma B.1. For any probability measure P on G, and any reals λ, δ, where λ > 0, δ ≥ 0, there

exists a real b̄ > 0, which is independent of δ, a set Ḡ ⊆ G, and a finite number of partitions

Ḡ1, . . . , Ḡp of Ḡ, where Ḡj = Gj × {vj}, with Gj ⊆ G and vj ∈ Gj, such that:

• P (Ḡ) ≥ 1− λ holds;

• for each j, all the graphs in Gj have the same structure, i.e., they differ only in the values

of their attributes;

• for each set Ḡj, there exists a hypercube Hj ⊂ RNM2k such that γG ∈ Hj holds for any

graph G′ ∈ Gj with N = maxG′∈G |V ′| and M = maxG′∈G |E ′|. Here, γG′ denotes the vector

obtained by concatenating all the attribute vectors of both nodes and edges of G′, namely

γG′ = [AG′ |ΩG′ ], where AG′ is the concatenation of all the node attributes and ΩG′ is the

concatenation of all edge attributes;

• for any two different sets Gi, Gj, i ̸= j, their graphs have different structures, or their

hypercubes Hi, Hj are disjoint, i.e., Hi

⋂
Hj = ∅;

• for each j and each pair of graphs G1, G2 ∈ Gj, the inequality ∥γG1 − γG2∥∞ ≤ δ holds;

• for each graph G′ ∈ Ḡ, the inequality ∥γG′∥∞ ≤ b̄ holds.

Proof. The proof is similar to the one contained in [93]. The only remark needed here is that we

can consider the whole concatenating of all attributes from both nodes and edges without loss of

generality; indeed, if we were considering the node and the edge attributes separately, we would

need conditions on the hypercubes, s.t.:

∥AG1 −AG2∥∞ ≤ δA, δA > 0,

and ∥ΩG1 − ΩG2∥∞ ≤ δΩ, δΩ > 0.

Then we can stack those attribute vectors, as in the statement, s.t. :

∥γG1 − γG2∥∞ = ∥
(
[AG1 |⊬] + [⊬|ΩG1 ]

)
−

(
[AG2 |⊬] + [⊬|ΩG2 ]

)
∥∞

≤ ∥AG1 −AG2∥∞ + ∥ΩG1 − ΩG2∥∞
≤ δA + δΩ := δ

which allows us to exploit the same proof contained in [93].

Thanks to the previous lemma, adopting an argument similar to that in [93], it is proven that

the following theorem, where the domain contains a finite number of graphs and the attributes

are integers, is equivalent to Thm. 3.5.
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Theorem B.2. For any finite set of p patterns {(G′
j , v)| G′

j ∈ G, v ∈ V ′
j , j ∈ [p]}, with the max-

imal number of nodes in the domain N = maxG′∈G |G′|, for any function which preserves the

attributed unfolding equivalence, and for any real ε > 0, there exist continuously differentiable

functions Aggregate(i), Combine(i), ∀ i ≤ 2N − 1, s.t.

hi
v = Combine(i)

(
h(i−1)
v ,Aggregate(i)

(
{hi−1

u }u∈nev , {ω(u,v)}u∈nev

))
and a function Readout, with hidden dimension r = 1, i.e, hi

v ∈ R, so that the function φ

(realized by the AGNN), computed after N steps, satisfies the condition

|τ(G′
j , v)− φ(G′

j , v)| ≤ ε for any v ∈ V ′
j . (B.5)

Sketch of the proof. The idea of the proof is designing a GNN that can approximate any function

τ that preserves the attributed unfolding equivalence. According to Thm. 3.4 there exists a

function κ, s.t.

τ(G′
j , v) = κ(Tv).

Therefore, the GNN has to encode the attributed unfolding tree into the node attributes, i.e.,

for each node v, we want to have hv = ▽(Tv), where ▽ is an encoding function that maps

attributed unfolding trees into real numbers. The existence and injectiveness of ▽ are ensured by

construction. More precisely, the encodings are constructed recursively by the Aggregate(i) and

the Combine(i) functions using the neighborhood information, i.e., the node and edge attributes.

Consequently, the theorem can be proven given that there exist appropriate functions ▽,
Aggregate(i), Combine(i) and READOUT. For this purpose, the functions Aggregate(i) and

Combine(i) must satisfy ∀ i ≤ 2N − 1:

▽(Ti
v) = hi

v

= Combine
(i)

(
h
(i−1)
v ,Aggregate

(i)
(
{{hi−1

u }}u∈N (v), {{ω(u,v)}}u∈N (v)

))
= Combine

(i)
(
▽(Ti−1

v ),Aggregate
(i)

(
{{▽(Ti−1

u )}}u∈N (v), {{ω(u,v)}}u∈N (v)

))
.

In a simple solution, Aggregate(i) decodes the attributed trees of the neighbors u of v, Ti−1
u ,

and stores them into a data structure to be accessed by Combine(i). The detailed construction

of the appropriate functions is given in [88].

B.2.5 Proof of Theorem 3.8

The proof works analogously to the one of Theorem 3.5. We just need some additional observa-

tions.

Lemma B.3. Lemma B.1 holds for the domain of dynamic graphs D.

Proof. Indeed, taking into account the argument in [104], one can establish a bijection between

the domain of dynamic graphs and the domain of SAUHGs; on the latter, we can directly apply

B.1.

Again, Thm. 3.8 is equivalent to the following, where the domain contains a finite number of

elements in D and the attributes are integers. This time, we present the detailed construction

because it is slightly different with respect to the one presented in [88].

Theorem B.4. For any finite set of p patterns {(t(j), G(j), v(j))| (t(j), G(j), v(j)) ∈ D, j ∈ [p]}
with the maximal number of nodes N = max

G∈D
|G| and with graphs having integer features, for any
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measurable dynamical system preserving the unfolding equivalence, ∥ · ∥ be a norm on Rm, P be

any probability measure on D and ϵ be any real number where ϵ > 0. Then, there exists a DGNN

as defined in Def. 3.4 such that the function φ (realized by this model) computed after N steps

satisfies the condition

||dyn(t(j), G(j), v(j))− φ(t(j), G(j), v(j))|| ≤ ε (B.6)

∀ j ∈ [p] where t(j) ∈ I.

Proof. The proof of this theorem involves assuming that the output dimension is m = 1, i.e.,

dyn(t, G, v) ∈ R, but the result can be extended to the general case with m ∈ N by concatenating

the corresponding results. As a result of Theorem 3.7, there exists a function κ, s.t. dyn(t, G, v) =

g(xv(t)) = κ((Tv(i))i∈[t]), where (Tv(i))i∈[t] is a sequence of t + 1 attributed unfolding trees.

Given Nt as the number of nodes of the graph G at timestep t, in order to store the graph

information, an attributed unfolding tree of depth 2Nt − 1 is required for each node, in such a

way that κ can satisfy

dyn(t, G, v) = κ((Tv(i))i∈[t]) = κ((T2Nt−1
v (i))i∈[t]).

The required depth is a straight consequence of [88, Theorem 4.1.3]. Considering the finite

domain G with N = max
G∈G

|G|, using a depth of 2N − 1, we are sure that every unfolding three

contains all the necessary information. Thus, from now on, we will assume that the depth of

the unfolding trees is 2N − 1. To simplify the notation, we will continue to use the notation

[Tv(ti)]i=1,...,j .

The main idea behind the proof of Theorem B.4 is to design a DGNN that can encode the

sequence of attributed unfolding trees (Tv(i))i∈[t] into the node attributes at each timestep t,

i.e., qv(t) = #t((Tv(i))i∈[t]). This is achieved by using a coding function that maps sequences of

t+1 attributed trees into real numbers. To implement the encoding that could fit the definition

of the DGNN, two coding functions are needed: the ∇ function, which encodes the attributed

unfolding trees, and the family of coding functions #t. The composition of these functions is

used to define the node’s attributes, and the DGNN can produce the desired output by using

this encoded information as follows:

qv(0) = hv(0) = #0

(
∇−1(hv(0))

)
qv(t) = #t

(
APPENDt

(
#−1

t−1(qv(t− 1)),∇−1(hv(t))
)) (B.7)

where hv := h
(L)
v is the final representation produced by L layers of GNN. The ausiliar func-

tion APPENDt and the ∇, #t coding functions are defined in the following.

The APPENDt Function

Let T d
v be the domain of the attributed unfolding trees with root v, up to a certain depth d. The

function APPENDt : {(Td
v(i))i∈[t−1]} ∪ ∅ × T d

v → {(Td
v(i))i∈[t]} is defined as follows:

APPEND0

(
∅,Td

v(0)
)
:= Td

v(0)

APPENDt

((
Td

v(0), . . . ,T
d
v(t− 1)

)
,Td

v(t)
)

:=
(
Td

v(0), . . . ,T
d
v(t− 1),Td

v(t)
)

Intuitively, this function appends the unfolding tree snapshot of the node v at time t to the

sequence of the unfolding trees of that node at the previous t− 1 timesteps.



i
i

i
i

i
i

i
i

B.2. Universal Approximation Capabilities 91

In the following, the coding functions are defined; their existence and injectiveness are provided

by construction.

The ∇ Coding Function

Let ∇ := µ∇ ◦ ν∇ be a composition of any two injective functions µ∇ and ν∇ with the following

properties:

- µ∇ is an injective function from the domain of static unfolding trees, calculated on the

nodes in the graph Gt, to the Cartesian product N× NP × ZA, where P is the maximum

number of nodes a tree could have and A is the attributes dimension.

Intuitively, in the Cartesian product, N represents the tree structure, NP denotes the

node numbering, while, for each node, an integer vector in ZA is used to encode the node

attributes. Notice that µ∇ exists and is injective since the maximal information contained

in an unfolding tree is given by the union of all its node attributes and all its structural

information, which equals the dimension of the codomain of µ∇.

- ν∇ is an injective function from NP+1 × ZA to R, whose existence is guaranteed by the

cardinality theory.

Since µ∇t and ν∇t are injective, also the existence and the injectiveness of ∇t is ensured.

The #t Coding Functions

Similarly to ∇, the functions #t := µ#t ◦ ν#t are composed by two functions µ#t and ν#t with

the following properties:

- µ#t is an injective function from the domain of the dynamic unfolding trees T d
t (v) :=

{(Td
v(i))i∈[t]} to the Cartesian product Nt ×NtPt × ZtA = Nt(Pt+1) × ZtA, where Pt is the

maximum number of nodes a tree could have at time t.

- ν#t is an injective function from Nt(P+1) ×ZtA to R, whose existence is guaranteed by the

cardinality theory.

Since µ#t and ν#t are injective, also the existence and the injectiveness of #t are ensured.

The recursive function f , and the functions Aggregate
(i)
t and Combine

(i)
t

The recursive function f has to satisfy

f
(
qv(t− 1),hv(t)

)
= #t

(
(Tv(i))i∈[t]

)
= qv(t),

where the hv(t) is the hidden representation of node v at time t extracted from the final layer of
the t-th AGNN, i.e. hv(t) = AGNN (Gt, v). In particular, at each iteration i, we have

h
(i)
v (t) = Combine

(i)
t

(
h
(i−1)
v (t),Aggregate(i)

(
{{h(i−1)

u (t)}}u∈Nv(t), {{ω(u,v)(t)}}u∈Nv(t)

))
Further, the functions Aggregate

(i)
t and Combine

(i)
t – following the proof in [88] – must satisfy

▽(Ti
v(t)) = hi

v(t) = Combine
(i)
t

(
hi−1
v (t),Aggregate

(i)
t

(
{{hi−1

u (t) }}u∈Nv(t), {{ω(u,v)(t)}}u∈Nv(t)

))
= Combine

(i)
t

(
▽(Ti−1

v (t)),Aggregate
(i)
t ({{▽(Ti−1

u (t)) }}u∈Nv(t))
)

∀ i ≤ 2N − 1 and ∀ t ∈ I.

For example, the trees can be collected into the coding of a new tree, i.e.,

Aggregate
(i)
t (▽(Ti−1

u (t)), u ∈ Nv(t)) = ▽(∪u∈Nv(t)▽
−1(▽(Ti−1

u (t)))),
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Figure B.1: The Attach operator on trees.

where ∪u∈Nv(t) denotes an operator that constructs a tree with a root having void attributes

from a set of subtrees (see Fig. B.1). Then, Combine
(i)
t assigns the correct attributes to the root

by extracting them from Ti−1
v (t), i.e.,

Combine
(i)
t (▽(Ti−1

v (t)), b) = ▽(Attach(▽−1(▽(Ti−1
v (t))),▽−1(b))),

where Attach is an operator that returns a tree constructed by replacing the attributes of the

root in the latter tree with those of the former tree and b is the result of the Aggregate
(i)
t

function. Now, notice that, with this definition, Aggregate
(i)
t , Combine

(i)
t , and Readoutdyn

may not be differentiable. Nevertheless, Eq. (B.6) has to be satisfied only for a finite number

of graphs, namely Gj . Thus, we can specify other functions Aggregatet
(i)
, Combinet

(i)
, and

Readout, which produce exactly the same computations when they are applied on the graphs

Gj , but that can be extended to the rest of their domain so that they are continuously differenti-

able. Obviously, such an extension exists since those functions are only constrained to interpolate

a finite number of points 3.

The Readoutdyn function

Eventually, Readoutdyn must satisfy:

κ(·) := Readoutdyn(#t(·))

so that, ultimately,

dyn(t, G, v) =

Readoutdyn
(
#t

(
APPENDt

(
#−1

t−1(qv(t− 1)),∇−1(hv(t))
)))

This concludes the proof of Theorem B.4 and because of the equivalence between the two

results, it also concludes the proof for 3.8.

B.2.6 Proof of Theorem 3.9

Statement. Assume that the hypotheses of Thm. 3.8 are fulfilled and QD is a class of discrete

DGNNs with universal components. Then, there exists a parameter set θ, and the functions

3Notice that a similar extension can also be applied to the coding function ▽ and to the decoding

function ▽−1. In this case, the coding function is not injective on the whole domain, but only on the

graphs mentioned in the theorem.
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AGNN(t)θ, f0,θ, fθ, implemented by Neural Networks in QD, such that the thesis of Thm. 3.8

holds.

Proof. The idea of the proof follows from the same reasoning adopted in [88]. Intuitively, since the

discrete DGNN of Thm. 3.8 is implemented by continuously differentiable functions, its output

depends continuously on the possible changes in the DGNN implementation: small changes in

the function implementation cause small changes in the DGNN outputs. Therefore, the functions

of the DGNN of Thm. 3.8 can be replaced by Neural Networks, provided that those networks

are suitable approximators.

As in the proof of the dynamic version of the approximation theorem, cf. Thm. 3.8, without

loss of generality, we will assume that the attribute dimension is n = 14.

First of all, note that Thm. 3.8 ensures that we can find continuously differentiable functions

f̄ , Readoutdyn such that, for the corresponding function φ̄ implemented by the DGNN it holds:

P (∥ dyn(t, G, v)− φ̄(t, G, v)∥ ≤ ε

2
) ≥ 1− λ ∀ t ∈ I, ϵ, λ > 0. (B.8)

Considering that the theorem has to hold only in probability, we can also assume that the domain

is bounded to a finite set of patterns {(t(i), (Gt)
(i)
t∈I , v

(i)) | i = 1, . . . , p} (as in Theorem B.4). As

a result, the functions , f̄ and Readoutdyn are bounded and have a bounded Jacobian. We can

take the maximum of these Jacobians, which we will denote as B.

Moreover, let fθ, Readoutdyn,θ be universal components for DGNN, as in Def. 3.17, that

approximate f̄ , Readoutdyn, respectively. Further, let ϵ1, ϵ2, > 0 be the corresponding approx-

imation errors, i.e., ∥∥f(q,h)− fθ(q,h)
∥∥
∞ ≤ ϵ1, and∥∥Readoutdyn(Q(t))−Readoutdyn,θ(Q(t))

∥∥
∞ ≤ ϵ2

(B.9)

hold ∀ t ∈ I.

Now, from the proof of Theorem 3.6 we know that

P (∥AGNNi(G, v)−AGNNθ,i(G, v)∥ ≤ ϵs) ≥ 1− λi

for i ∈ [t], ϵs > 0 and for any norm. Then we can take every λi small enough, s.t.

∥AGNNi(G, v)−AGNNθ,i(G, v)∥∞ ≤ ϵs

holds on a finite set of patterns large enough to include those ones of the i-th timestep of

each patterns of dynamic graphs on which Eq. (B.8) holds.

Therefore, if we define h̄(t) := AGNNi(Gt) and hθ(t) := AGNNθ,i(Gt) we have

|h̄(t)− hθ(t)∥∞ =
∥∥AGNNi(Gt)−AGNNθ,i(Gt)

∥∥
∞ ≤ ϵs.

In addition, let H̄(t) andHθ(t) be the internal representations produced by AGNN andAGNNθ,

stacked over all the nodes of the input graph. Then it holds

∥H̄(t)−Hθ(t)∥∞ ≤ Nϵs ∀ t ∈ I, (B.10)

where N = maxG∈D|G| is the maximum number of nodes of the static graphs input in the

bounded domain. Let again Q̄(0) := H̄(0) and Q̄(t) := F̄ (Q̄(t− 1), H̄(t)) be the stacking of the

internal states produced by DGNN’s internal recursive function f̄ . Analoguously, let Qθ(0) :=

4A GNN can theoretically be modeled with multiple components by stacking Neural Networks for

each dimension, respectively.
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Hθ(0) and Qθ(t) := Fθ(Qθ(t− 1), Hθ(t)) be the output produced by the corresponding function

of the parameterized DGNN.

Then it holds:

∥Q̄(0)−Qθ(0)∥∞ = ∥H̄(0)−Hθ(0)∥∞ ≤ Nϵs (B.11)

and

∥f̄(Q̄(0), ·)− f̄(Qθ(0), ·)∥∞ ≤ B∥Q̄(0)−Qθ(0)∥∞
∥f̄(·, H̄(1))− f̄(·, Hθ(1))∥∞ ≤ B∥H̄(1)−Hθ(1)∥∞

for a bound B on the Jacobian of f̄(q,h) ∀ t ∈ I and ∀ q, which, along with Eq. (B.10) and

Eq. (B.11) gives

∥f̄(Q̄(0), ·)− f̄(Qθ(0), ·)∥∞ ≤ NϵsB

∥f̄(·, H̄(1))− f̄(·, Hθ(1))∥∞ ≤ NϵsB
(B.12)

Therefore, we have that:

t = 1 :

∥Q̄(1)−Qθ(1)∥∞
=∥f̄(Q̄(0), H̄(1))− fθ(Qθ(0), Hθ(1))∥∞

add 0
= ∥f̄(Q̄(0), H̄(1))− f̄(Qθ(0), H̄(1))

+ f̄(Qθ(0), H̄(1))− f̄(Qθ(0), Hθ(1))

+ f̄(Qθ(0), Hθ(1))− fθ(Qθ(0), Hθ(1))∥∞
△-ineq.

≤ ∥f̄(Q̄(0), H̄(1))− f̄(Qθ(0), H̄(1))∥∞
+ ∥f̄(Qθ(0), H̄(1))− f̄(Qθ(0), Hθ(1))∥∞
+ ∥f̄(Qθ(0), Hθ(1))− fθ(Qθ(0), Hθ(1))∥∞

(B.12)

≤ 2NϵsB +Nϵ1

:=λ1(ϵs, ϵ1).

t > 0: Analoguously, it follows for t¿1 that

∥Q̄(t)−Qθ(t)∥∞
=∥f̄(Q̄(t− 1), H̄(t))− fθ(Qθ(t− 1), Hθ(t))∥∞
=∥f̄(Q̄(t− 1), H̄(t))− f̄(Qθ(t− 1), H̄(t))

+ f̄(Qθ(t− 1), H̄(t))− f̄(Qθ(t− 1), Hθ(t))

+ f̄(Qθ(t− 1), Hθ(t))− fθ(Qθ(t− 1), Hθ(t))∥∞
≤∥f̄(Q̄(t− 1), H̄(t))− f̄(Qθ(t− 1), H̄(t))∥∞

+ ∥f̄(Qθ(t− 1), H̄(t))− f̄(Qθ(t− 1), Hθ(t))∥∞
+ ∥f̄(Qθ(t− 1), Hθ(t))− fθ(Qθ(t− 1), Hθ(t))∥∞

≤Nλ0B +NϵsB +Nϵ1

:=λ1(ϵs, ϵ1).
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The above reasoning can then be applied recursively to prove that

∥Q̄(t)−Qθ(t)∥∞ ≤ λt(ϵs, ϵ1),

where λt(ϵs, ϵ1) could be found as little as possible, according to ϵs, ϵ1. Finally, let ϵ2 > 0, so

that

∥φ̄(t, G, v)− φθ(t, G, v)∥∞
= ∥Readoutdyn(Q̄(t))−Readoutdyn,θ(Qθ(t))∥∞
≤ ∥Readoutdyn(Q̄(t))−Readoutdyn(Qθ(t))∥∞
+ ∥Readoutdyn(Qθ(t))−Readoutdyn,θ(Qθ(t))∥∞
≤ λtB + ϵ2 = λ(ϵs, ϵ1, ϵ2).

Thus, we choose ϵs, ϵ1, ϵ2, s.t. λ ≤ ε
2
; going back in probability, we obtain

P (∥φ̄(t, G, v)− φθ(t, G, v)∥ ≤ ε

2
) ≥ 1− λ ∀ t ∈ I,

which, along with Eq. (B.8), proves the result.

B.3 WL Hierarchy

Here is reported the proof of Theorem 4.8 from Chapter 4.

B.3.1 Proof of Theorem 4.8

Statement. 1-DWL≡ 1-AWL

Proof. Let G = (Gt)t∈I be a dynamic graph and static(G) =: G′ = (V ′, E ′, α′, ω′) the SAUHG

resulting from a bijective graph type transformation (cf. Appendix B.1). Furthermore, let

V :=
⋃

t∈I Vt be the set of all nodes appearing in the graph sequence of G and α̃ : V ×I → A×⊥
with α̃v(t) := (αv(t), ρ) be the extended attribute function for all nodes including a flag ρ ∈ {0, 1}
for the existence of a node at time t. The theorem follows immediately from(

c(i)u (t)
)
t∈I

=
(
c(i)v (t)

)
t∈I

⇔ c(i)u = c(i)v ,

for all iterations i and u, v ∈ V. By induction, it follows:

i = 0: (
c(0)u (t)

)
t∈I

=
(
c(0)v (t)

)
t∈I

Def. 3.9⇔
(
Hash (α̃u(t))

)
t∈I

=
(
Hash (α̃v(t))

)
t∈I

⇔ α̃u(t) = α̃v(t) ∀ t ∈ I
by constr.⇔ α′

u = α′
v ⇔ Hash

(
α′
u

)
= Hash

(
α′
v

)
⇔ c(0)u = c(0)v

i > 0: Assume the induction hypothesis (IH) is true for i − 1 and show the assumption is also
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true for i.(
c(i)u (t)

)
t∈I

=
(
c(i)v (t)

)
t∈I

Def. 3.9⇔
(
Hash

(
c(i−1)
u (t), {{c(i−1)

n (t)}}n∈Nu(t), {{ω(u,n)(t)}}n∈Nu(t)

))
t∈I

=
(
Hash

(
c(i−1)
v (t), {{c(i−1)

n′ (t)}}n′∈Nv(t), {{ω(v,n′)(t)}}n′∈Nv(t)

))
t∈I

Bij. of Hash⇔ c(i−1)
u (t) = c(i−1)

v (t) ∧ {{c(i−1)
n (t)}}n∈Nu(t) = {{c(i−1)

n′ (t)}}n′∈Nv(t)∧
∧ {{ω(u,n)(t)}}n∈Nu(t) = {{ω(v,n′)(t)}}n′∈Nv(t) ∀ t ∈ I

IH⇔c(i−1)
u = c(i−1)

v ∧ {{c(i−1)
n }}n∈Nu = {{c(i−1)

n′ }}n′∈Nv ∧ {{ω(u,n)}}n∈Nu = {{ω(v,n′)}}n′∈Nv

Bij. of Hash⇔ Hash
((

c(i−1)
u , {{c(i−1)

n }}n∈Nu , {{ω(u,n)}}n∈Nu

))
= Hash

((
c(i−1)
v , {{c(i−1)

n }}n∈Nv , {{ω(v,n′)}}n′∈Nv

))
Def. 3.5⇔ c(i)u = c(i)v
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Appendix

This appendix contains the proofs of all the theorems sketched in Chapter 5.

C.1 Additional Related work

In this section, we provide a more comprehensive discussion on related work.

Walks vs. Paths. Although walks and paths in a graph are rather similar concepts, they

have different implications for GNN expressivity. By definition, walks are sequences of adjacent

nodes, and therefore paths are particular walks without node repetitions. However, due to

the local nature of the message-passing procedure, which iteratively updates the feature of a

node based on its neighborhood, GNNs at layer ℓ encode all the walks up to length ℓ for each

node (see [89]). Conversely, GNNs do not encode the identity of a node and therefore cannot

identify repetitions of the same node in a walk. We thus argue that aggregating paths, in

contrast to walks, does contribute additional information that can be helpful to distinguish

between non-isomorphic graphs. Other approaches utilize walks in a way that increases the

expressive power of GNNs. For example, [182] proposes the walk Message Passing Neural Network

(walk-MPNN), generalizing the second-order non-linear invariant network by [183]. This model

computes embeddings for pairs of nodes by encoding the walks between the two nodes. This

architecture is strictly more powerful than 1-WL but is bounded in expressive power by 3-WL,

regardless of the length of the walks. Indeed, increasing the length may allow to distinguish

graphs with less iterations but cannot enhance expressivity. Conversely, the power of Path-WL

increases with the length of the paths. Therefore, PAIN is more powerful than walk-MPNN for

some graph families such as strongly regular graphs (see Theorem 5.4).

Path-based GNNs. As argued in the previous paragraph, using paths to update node em-

beddings in GNNs can increase their expressive power. Several architectures have been devised

that encode path information in different ways. For instance, [121] propose shortest path net-

works, which replace the topological neighborhood with shortest paths. They are provably more

expressive than 1-WL, but not more expressive than 3-WL. [122] consider geodesic information

between pairs of nodes and show that they distinguish almost all d-regular graphs for which 1-WL

consistently fails. Closely related to using shortest paths directly is the incorporation of distance

information. This can be done either explicitly ([184, 123, 124]) or implicitly ([125, 126, 127]).

[123, 184, 124] propose position aware GNNs, whereas [125] introduce a transformer architecture

with spatial encoding. These approaches are quite similar to the general idea of using positional

encodings in the context of graph representation learning ([145, 185, 186]). Recently, several

GNNs have been proposed that consider all paths instead ([128, 130, 129]). [129] introduce a

color refinement test based on path complexes, a topological generalization of paths, which is

strictly more expressive than 1-WL and not bounded by 3-WL. [128] propose a graph neural
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network which samples from the set of all paths. Their model additionally learns structure and

distance information with the help of a recurrent cell. [130] propose pathNN, which aggregates

paths instead of the standard topological neighborhood. They achieve strong empirical per-

formance by additionally encoding shortest path distances in an LSTM cell. Please refer to the

discussion of Remark C.1 for a detailed comparison between Path-WL and pathNN.

k-Hop GNNs. Standard message-passing GNNs aggregate messages from the direct neigh-

bors of each node, which are called the first-hop neighbors. Recently, many architectures have

generalized the message-passing scheme by aggregating information from all the nodes within

the k-hop neighborhood simultaneously ([126, 187, 188, 189]). The idea of aggregating distant

nodes, beyond the first-order neighborhood, is similar to that of path-based GNNs. However,

in the k-hop aggregation we gather nodes with the same shortest path distance from a refer-

ence node, which is at most k. In contrast, the path-based aggregation provides a richer and

context-aware representation, as it includes information such as the order of nodes within the

same k-hop. [127] and [190] extended the k-hop GNNs by encoding, respectively, the subgraph

induced by the nodes in the k-th hop (KP-GNN) and the subgraph induced by the whole k-hop

neighborhood (Nk). All these modifications increase the expressive power of GNNs beyond 1-

WL [127, Prop.1]. The k-hop GNNs are limited by 3-WL, including the KP-GNN [127, Thm.

2]. On the contrary, considering the complete k-hop increases the expressivity because Nk is

incomparable to 3-WL [190, Thm. 6.3]. However, d-Path-WL and Nk are fundamentally differ-

ent graph coloring procedures: d-Path-WL aggregates only paths up to a certain length which

are endowed with distance information, while Nk aggregates the subgraph induced by the entire

k-hop neighborhood.

C.2 Additional preliminaries

In the following, we provide some additional preliminaries.

Definition C.1 ([139]). Let G = (VG, EG, ) and H = (VH , EH) be two graphs. We say that H

is a homomorphic image of G if there is a surjective homomorphism ϕ : VG → VH such that:

EH = {(ϕ(u), ϕ(v)) | (u, v) ∈ EG}

We denote with spasm(G) the set of homomorphic images of G.

The tree-width of a graph H, noted by tw(H), can be defined in terms of tree decomposition.

Definition C.2. ([191]) A tree decomposition of a graph G = (V, E) is a pair (X,T ) where

T = (I, A) is a tree, and X = {Xi : i ∈ I} is a family of subsets of V, such that:

(i)
⋃
i∈I

Xi = V

(ii) Every edge of G has both its ends in some Xi, for i ∈ I.

(iii) For all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The tree-width of a tree decomposition is max
i∈I

|Xi| − 1. The tree-width of G is the minimum

tree-width taken over all possible tree decompositions of G.

Definition C.3 ([139]). The hereditary tree-width of G, noted by hdtw(G), is the maximum

tree-width among the tree-widths of the homomorphic images of G, i.e.,

hdtw(G) := max
H∈spasm(G)

tw(H)
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Definition C.4 ([192]). An Eulerian cycle, also called an Eulerian circuit or Euler tour, in

an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph

is called Eulerian.

C.3 Path-WL: A path-based WL test

C.3.1 Proof of Proposition 5.2

Statement. For every d′ ≥ d ≥ 0, ℓ′ ≥ ℓ ≥ 1 it holds that

d-Path-WLℓ ⊑ d′-PATH-WLℓ,

and

d-Path-WLℓ ⊑ d-Path-WLℓ′ .

Proof. Due to the transitivity of the order relation ⊑, it suffices to prove the statement for

d′ = d + 1 and ℓ′ = ℓ + 1. To demonstrate the non-decreasing expressive power of d-Path-

WLℓ with respect to d, first we need to show that for every ℓ, if two nodes u and v are s.t.

u ∼(d+1)-Path-WLℓ v then u ∼d-Path-WLℓ v. Let cdvi := Hash
(
d-Pℓ

vi

)
be the color of node vi after

termination of d-Path-WL. Hence, cd+1
u = cd+1

v by hypothesis. Due to the injectivity of the HASH

function, this implies that the multiset of paths with distance encoding up to length d + 1 are

equal, that is (d+1)-Pℓ
u = (d+1)-Pℓ

v. What we aim to infer is that d-Pℓ
u = d-Pℓ

v. By definition, for

every path ((cv, η
d
vv), (cv1 , η

d
vv1), . . . , (cvℓ , η

d
vvℓ)) ∈ d-Pℓ

v, η
d
vvi ̸= ∅ if ηd

vvi ≤ d < d+ 1. Therefore,

it holds for any path in (d+1)-Pℓ
v that all tuples (cvi , η

d+1
vvi ) are the same in d-Pℓ

v if the distance

between the nodes v and vi is less or equal than d, otherwise ηd
vvi is ∅. Hence, we conclude

that d-Pℓ
u = d-Pℓ

v. To prove the monotonicity of d-Path-WLℓ as the path length increases, it is

enough to consider two facts. The first is the injectivity of the Hash function, and the second is

that d-Pℓ
v contains paths up to length ℓ. Hence, if we can distinguish two nodes with a certain

length ℓ, these different paths are also included in d-Pℓ+1
v .

Remark C.1. For every ℓ ≥ 1, it holds that 0-Path-WLℓ,(ℓ) ⊒ pathNN ([130]) with path length

ℓ.

Discussion of Remark C.1. We compare d-Path-WL and the annotation scheme characterizing

pathNN with respect to the same number of iterations ℓ. We claim that one iteration of d-

Path-WL contains all information of the corresponding layer of pathNN. For example, in the

first layer pathNN computes paths of length one (= the neighborhood) whereas 0-Path-WL

computes paths of length up to ℓ. At the second layer, pathNN aggregates paths of length two

where each node feature is updated given the paths of length one, computed at the first layer.

0-Path-WL aggregates the same set of paths up to length ℓ, but each node is updated with the

paths of length up to ℓ, computed in the first layer. After the second iteration of 0-Path-WL, one

node may receive information from nodes at distance 2ℓ from it. At each step, 0-Path-WL has

access to all information that pathNN contains, with the same asymptotic complexity. Hence, the

expressivity of 0-Path-WL cannot be bounded by pathNN. Moreover, in the pathNN framework,

the length of the paths must coincide with the number of iterations while these two parameters

are independent in our algorithm. We often observe that these parameters positively affect each

other: increasing the length may decrease the number of iterations needed to distinguish two

graphs, and vice versa (see Section C.7).
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C.4 Relation to the k-WL Hierarchy.

C.4.1 Proof of Theorem 5.3

Statement. For every path length ℓ > 1 and every d ≥ 0, d-Path-WLℓ is more expressive than

1-WL.

Proof. It is sufficient to prove the theorem for d = 0 because the addition of distance information

d > 0 would not decrease the expressive power of the test. The proof consists of two parts: (i)

we demonstrate that 0-Path-WL is as expressive as 1-WL, and (ii) we prove that 0-Path-WL

is more expressive than 1-WL. For (i), we prove that for every length ℓ > 1, for every node u, v

and every iteration i ∈ N,

u ≁WL(i) v ⇒ u ≁0-Path-WLℓ,(i) v.

By the definition of the two coloring algorithms, this corresponds to

Hash
(
c(i)v ,

{{
c(i)w |w ∈ N(v)

}})
̸= Hash

(
c(i)u ,

{{
c(i)w |w ∈ N(u)

}})
⇒ Hash(0-Pℓ,(i)

v ) ̸= Hash(0-Pℓ,(i)
u )

Let α be the left-hand side of the implication. Due to the injectivity of the Hash function it is suf-

ficient to show that α implies 0-Pℓ,(i)
v ̸= 0-Pℓ,(i)

u . α is true if c
(i)
v ̸= c

(i)
u or if

{{
c
(i)
w |w ∈ N(v)

}}
̸={{

c
(i)
w |w ∈ N(u)

}}
, or both. Given that every element of 0-Pℓ,(i)

v is a sequence whose first ele-

ment is c
(i)
v , i.e.,

0-Pℓ,(i)
v :=

{{
(c(i)v )

}}
∪
{{

(c(i)v , c(i)w )w∈N(v)

}}
∪ · · · ∪

{{
(c(i)v , c(i)w , . . . , c(i)y )w∈N(v)∧ y=πl(p

ℓ
v)

}}
,

where πj(p
ℓ
v) denotes the j−th node of path pℓv, we can simply conclude that if c

(i)
v ̸= c

(i)
u then

0-Pℓ,(i)
v ̸= 0-Pℓ,(i)

u . Suppose that c
(i)
v = c

(i)
u . Then,

{{
c
(i)
w |w ∈ N(v)

}}
̸=

{{
c
(i)
w |w ∈ N(u)

}}
implies

{{
(c

(i)
v , c

(i)
w )w∈N(v)

}}
̸=

{{
(c

(i)
u , c

(i)
w )w∈N(u)

}}
. Due to the fact that 0-Pℓ,(i) is a multiset

of sequences of heterogeneous length, the fact that paths of length one are different is enough to

conclude that 0-Pℓ,(i)
v ̸= 0-Pℓ,(i)

u .

For (ii), we prove that Path-WL is more expressive than 1-WL. This is accomplished by

showing an instance of non-isomorphic graphs which 1-WL fails to distinguish but Path-WL is

able to distinguish (see Figure C.1 for one such example).

Figure C.1: The coloring after one iteration of Path-WL is enough to distinguish the

two non-isomorphic graphs that 1-WL cannot distinguish. Note that the partition is the

same but the colors of the nodes are different.

C.4.2 Proof of Theorem 5.4

In order to prove Theorem 5.4 we need to demonstrate first the following Lemma.
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Lemma C.1. Let Cℓ be a cycle of length ℓ = ⌊ k
2
⌋k. Then Cℓ has hereditary tree-width k − 1.

Proof. Recall that a graph G has hereditary tree-width k − 1 if the maximal treewidth among

the graphs in the set of homomorphic images of G is k − 1 (See Definition C.3). Thus, in order

to prove the lemma, we have to show that (i) there exists a graph H with treewidth k−1, which

is a homomorphic image of Cℓ and also that (ii) there does not exist a different graph H ′ which

is a homomorphic image of G with treewidth larger than k − 1.

(i) For the first part of the proof, we claim that H is a k-clique. Note that the tree-width of a

k-clique (cf. Definition C.2) corresponds to the vertices’ degree, that is k − 1. It remains

to prove that a k-clique is a homomorphic image of the cycle Cℓ, with ℓ = ⌊ k
2
⌋k, that is,

ℓ = k−1
2

k for odd k and ℓ = k2

2
for even k.

First, consider k to be odd (and therefore k − 1 is even). Then, from Euler’s Theorem,

which states that a connected graph has an Eulerian cycle if and only if every vertex has

even degree ([193]), we can conclude that a k-clique, with k odd, contains an Eulerian

cycle. Based on that, we claim that we can map the Eulerian cycle of a k-clique to the

k-clique itself, via a surjective homomorphism ϕ (cf. Definition C.1). This corresponds to

prove that the k-clique is the homomorphic image of a cycle Cℓ (in this case, Cℓ coincides

with the Eulerian cycle). In particular, the number of edges of the Eulerian cycle1 is

equal to the number of edges of the clique, that is ℓ = k · k−1
2

. To guarantee that ϕ is a

homomorphism, the vertices in the cycle must be connected in a way that for every edge

(u, v) in the cycle, there exists a corresponding edge (ϕ(u), ϕ(v)) in the clique. This is

ensured by the definition of Eulerian cycle, which traverses the edges of the clique exactly

once. See Figure C.2 for an example of such a homomorphism for k = 5.

The resulting function ϕ is surjective because is mapping a cycle of k−1
2

k vertices to a

clique of k vertices. Hence, we proved the claim for k odd.

Now consider the case of an even k. We aim to show that a k-clique is the homomorphic

image of some cycle Cℓ, with ℓ = k2

2
. Imagine then, to remove a vertex from the k-clique

(as shown in Figure C.3a for the case k = 6). Deleting a node results in a (k − 1)-clique

that we know from the previous point, is the homomorphic image of its Eulerian cycle.

The following procedure illustrates how to build the cycle which will be homomorphically

mapped to the k-clique.

– Begin with the cycle on k−2
2

(k−1) edges, the Eulerian cycle of the (k−1)-clique (See

Figure C.3b). We want to add to the cycle the edges that correspond to the missing

edges in the k-clique (cf. the dotted edges in Figure C.3a).

First, consider the minimal walk in the cycle, which starts at one node and ends

in the same node. This corresponds to ”open” the cycle, doubling one node, and

leaving the edges fixed. See for example Figure C.4, where we doubled the node a.

To preserve the homomorphism, the new node will be mapped to ϕ(a).

– As a second step, we need to add to the cycle the edge corresponding to the k − 1

edges linking the deleted node x to all the other nodes. We want to do it using

the minimal number of edges. Each node in the cycle has degree 2 but x has k − 1

neighbors, which is odd. Therefore we will connect x to couples of neighbors (until

k − 2) and we will have a neighbor repeated twice. In order to utilize the minimum

number of edges, the neighbor that will be repeated twice is the node that has been

1Note that in a cycle, the number of edges corresponds to the number of vertices.
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Figure C.2: The construction of the homomorphism ϕ from the cycle C10 to the 5-clique.

The arrows connect the vertices via the function ϕ, which is surjective. The fact that the

nodes are connected such that ϕ is a homomorphism, is guaranteed by the presence of

the Eulerian cycle in the clique. Indeed, to construct the cycle it is enough to follow the

Eulerian cycle on the clique, starting from any edge.

doubled in the previous step (that is a)2. The number of copies of x will be k
2
and

therefore the number of added edges will be (2· k
2
), because with x we add 2 neighbors

at a time. It remains to link the neighbors together, with ( k
2
− 1) edges. The total

2Of course, we can obtain a valid surjective homomorphism by creating a double copy of a node

different from a but it will result in the addition of more edges.
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(a) (b)

Figure C.3: (a) Deleting one vertex from the 6-clique, the red vertex x, results in a 5-

clique. (b) A 5-clique is the homomorphic image of a 10-cycle (See C.1 (i), for k odd).

Figure C.4: First step of the procedure: double the red node a and open the cycle. The

new node is mapped to ϕ(a).

amount of edges in the cycle will be:

(k − 1)
k − 2

2
+ k +

(
k

2
− 1

)
=

k2

2

(ii) What remains to show is that there does not exist a homomorphic image of Cℓ with a

treewidth larger than k − 1. For any homomorphic image of Cℓ on k nodes, we know

that the treewidth cannot be larger than k − 1. Hence, the only possibility to obtain a

homomorphic image with a larger treewidth would be to increase the number of vertices

(to at most ⌊ k
2
⌋k). However, any homomorphic image with more than k vertices will have

a treewidth of at most k − 1. We prove this based on the concept of forbidden minors: If

a graph G does not have Kn+1 as minor, then G has a treewidth of at most n− 1. Since

Cℓ by definition only has ⌊ k
2
⌋k edges, no homomorphic image of Cℓ can have a Kk+1 as a

minor, and thus the hereditary treewidth of the Cℓ is k − 1.

Now we can finally state and prove Theorem 5.4.

Statement. Let d ≥ 1 and k ≥ 3. Then, d-Path-WL and k-WL are incomparable. Equivalently,

the following holds:

(1) for every k ≥ 1 there exists a path length ℓ such that d-Path-WLℓ ̸⊑ k-WL;

(2) for every ℓ ≥ 1, there exists a k such that k-WL ̸⊑ d-Path-WLℓ.
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Proof. To prove the first part of the statement, we make use of a recent result from [139, Theorem

1.3]. This result states that for every graph F such that hdtw(F ) > k, the k-WL algorithm fails

to detect subgraph counts of the pattern F . In our case, let F be a cycle on ⌊ k+2
2

⌋(k + 2)

nodes. From Lemma C.1, we know that the hereditary tree-width of a cycle on ⌊ k+2
2

⌋(k + 2)

nodes is k + 1 > k. Then, from Corollary 5.7, we assert that for every d ≥ 1, d-Path-WLℓ

can count cycles of any length. In particular, the path length needed to count the pattern F is

ℓ = ⌊ k+2
2

⌋(k+2)− 1. That is, to distinguish after the first iteration of d-Path-WLℓ, two graphs

indistinguishable by k-WL, we need path length ℓ ∼ k2.

For the second part of the statement, we show that for every path length ℓ, we can always

construct two graphs that are d-Path-WL-indistinguishable but distinguishable by k-WL for

k ≥ 3. Consider the following graph construction (inspired by the proof for [190, Theorem 6.3]).

We set µ := 2ℓ + 1 and construct two graphs in the following way: C2µ, which is a cycle of

length 2µ, and Cµ,µ, which consists of two disconnected cycles of length µ each. Next, we set

d = ℓ, which aligns with the maximum expressive power of d-Path-WLℓ. If the two graphs

are indistinguishable by d-Path-WL with d = ℓ, they are indistinguishable for every 0 ≤ d ≤ ℓ

(cf. Prop. 5.2). With d-Path-WLℓ, each node aggregates all the paths of length up to ℓ with

shortest path distances d ≤ ℓ. Since each node in C2µ as well as Cµ,µ is the starting point for

exactly two paths for every length up to ℓ, it will have the same color assignment and the two

graphs cannot be distinguished by d-Path-WL. On the other hand, k-WL can distinguish the

two graphs for every k ≥ 3 ([140, Theorem 6.1]).

C.5 Counting cycles

We start by proving the following preliminary Lemma.

Lemma C.2. Each connected 2-regular graph of n vertices is isomorphic to a cycle Cn.

Proof. We prove the statement above by induction on the number of vertices. The smallest

connected 2-regular graph is a triangle, hence the induction base is n = 3. Suppose that G′ =

(V ′, E ′) is a connected 2-regular graph with n + 1 vertices. Consider one vertex v ∈ V ′, which,

by definition, has degree two and therefore two neighbors denoted by v1 and v2. v1 and v2 each

have another neighbor u1 and u2 respectively, with u1 ̸= u2 ̸= v, and we thus exclude that

they are connected to each other. Indeed, if this were the case, G′ would have a disconnected

component with 3 vertices. Let G be the graph obtained by removing vertex v from G′ and

connecting (v1, v2) with a new edge (See Figure C.5). The resulting G is connected, 2-regular

with n vertices hence, for the inductive hypothesis, it is isomorphic to a cycle on n vertices Cn.

If G is a cycle, then adding back the node v and connecting it to v1 and v2 as well as deleting

the edge (v1, v2) is equivalent to adding a path of length two to the cycle. In this way, we obtain

a cycle of length n+ 1, which is isomorphic to G′.

C.5.1 Proof of Theorem 5.5

Statement. Let sub(Cℓ, G, v) ̸= sub(Cℓ, H, u) for some graphs G,H, nodes u, v and cycle Cℓ.

Then, u ≁1-Path-WLℓ−1 v.

Proof. The cycle Cℓ is identified by a path of length ℓ− 1 where the last node is a marked node.

That is, a cycle corresponds to paths of the form: ((cv1 , 0), . . . , (cvℓ , 1)). Due to the different

cycle count at the nodes v and u, their multisets of paths 1-Pℓ−1
v and 1-Pℓ−1

u , will contain a
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v

v1 v2 v2v1

v

G′ G

Figure C.5: Sketch for the proof of Lemma C.2.

different number of such paths. That is, 1-Pℓ−1
v ̸= 1-Pℓ−1

u and given the injectivity of the Hash

function, also the outcome of 1-Path-WL will be different for the two nodes.

C.5.2 Proof of Corollary 5.8

Statement. For every expGNN ∈ {SubgraphGNN, Local 2-GNN, Folklore k-GNN}, and for

every k ≥ 1, there exists a path length ℓ such that 1-Path-WLℓ ̸⊑ expGNN.

Proof. The proof is a direct consequence of the fact that 1-Path-WLℓ can count arbitrary cycles

given a sufficient path length ℓ. In particular, with path length ℓ, 1-Path-WL can count cycles on

ℓ+1 nodes, while SubgraphGNN, Local 2-GNN, and Folklore 2-GNN are limited to count cycles

on maximum 7 nodes ([136]). Moreover, the Folklore k-GNNs are characterized in expressive

power by k − FWL ≡ (k + 1) − WL, for every k ≥ 1 (cf. Prelim.C.2). Hence, given that

1-Path-WLℓ is not bounded by k-WL (cf. Theorem 5.4) for length ℓ ∼ k2, this concludes the

proof.

C.6 One iteration is almost all you need

C.6.1 Proof of Theorem 5.9

Statement. There exists ℓ such that 0-Path-WLℓ can distinguish the following pairs of infinite

graph families:

1. Hamiltonian graphs of different orders at node and graph level,

2. Hamiltonian graphs and non-homogenously traceable graphs at graph level, and

3. almost all connected d-regular graphs and disconnected d-regular graphs with n connected

components at graph level.

In order to prove 5.9 we prove (1)–(3) separately.

(1) Hamiltonian graphs of different order.

Corollary C.3. Let Hn and Hm be two Hamiltonian graphs with n and m vertices, respectively,

and n > m. For any v ∈ Hn and any u ∈ Hm, it holds

v ≁0-PATH-WLℓ u ∀ℓ ≥ m.
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Proof. By definition, a Hamiltonian graph H is a graph that contains a cycle C including all the

vertices of the graph. Therefore, the length of the Hamiltonian path in Hm is m − 1, which is

the longest path in the graph, containing all possible nodes. The same argument holds for Hn,

with n > m. In particular, we are able to distinguish two graphs Hn and Hm by comparing their

path multisets, i.e., after the first iteration, 0-Path-WLℓ
v ̸= 0-Path-WLℓ

u ∀ℓ ≥ m.

(2) Hamiltonian graphs and non-homogenously traceable graphs. The following

theorem states that with sufficiently large ℓ, 0-Path-WLℓ can always distinguish between two

classes of graphs: non-homogeneously traceable graphs and Hamiltonian graphs.

Theorem C.4. Let G and H be two graphs of the same order n. G is a non-homogeneously

traceable graph and H a Hamiltonian graph. Then,

G ≁0-Path-WLn−1 H.

Proof. By definition, a non-homogeneously traceable graph is a traceable graph such that at least

one node in the graph is not an ending point of a Hamiltonian path. We denote with hn−1
v a gen-

eric Hamiltonian path from v. Formally, there exists a node v ∈ G such that hn−1
v /∈ 0-Pn−1

v (G).

A Hamiltonian graph is a graph with a Hamiltonian cycle. Any node in the Hamiltonian cycle

is an ending point of a Hamiltonian path. Hence, for any node u ∈ H, hn−1
u ∈ 0-Pn−1

u (H). At

graph level, the conclusion follows.

Referring to the graph G and G′ in figure 5.2, we state that:

Proposition C.5. For every ℓ ≥ 5, G ≁0-Path-WLℓ,(1) G′, while G ∼1−WL G′.

Proof. Let G = (V, E ,X) and G′ = (V ′, E ′,X′) be the graphs in Figure 5.2. The partition

induced on nodes by 1-WL is represented in the following figure, where each color corresponds

to a ∼1-WL equivalence class. As a consequence of Theorem 5.3, the partition induced on the

nodes by 0-Path-WL is made of three or more classes. Due to the symmetry of the two graphs,

we exclude that the nodes can be arranged in more than three equivalence classes, arguing that

from symmetric nodes depart the same paths. Hence, to prove the statement is enough to show

that the color of one node v in G, via 0-Path-WL, is different from all the other nodes’ colors in

G′. Given the injectivity of the Hash function, for two nodes to get different colors is sufficient to

have different multisets of paths 0-P (this would ensure different colors from the first iteration).

We pick the node v in G as in Figure 5.2. Note that δ(v) = 3, and the degree tells us the

multiplicity of paths of length 1 in 0-Pv. Therefore, all the nodes u in G′ with δ(u) = 2 are such

that 0-Pu ̸= 0-Pv. Then, we represent in Figure 5.2 the multiset of paths up to length 5, for

the node v and the node v′. Due to the different multiplicity of paths of length 5 from the two

nodes, we conclude that 0-Path-WL is able to distinguish the two graphs.

Given that, for every ℓ ≥ k, 0-Pk ⊆ 0-Pℓ, it follows that

0-Pk
v ̸= 0-Pk

v′ =⇒ 0-Pℓ
v ̸= 0-Pℓ

v′ ∀l ≥ k.
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(3) Connected regular graphs vs. disconncected regular graphs. Another prop-

erty of graphs that is closely related to the concept of paths is connectivity. In the following,

we prove that paths can distinguish pairs of regular graphs that are 1−WL-equivalent but not

isomorphic because one is connected and the other is disconnected. This implies that 1−WL is

unable to detect connectivity.

Theorem C.6 (Connectivity). Let G be a disconnected graph with n connected components

which are all d-regular graphs, with d ≥ 2. Let s be the size of the smallest component. Let G′

be a connected d-regular graph, such that |VG′ | = |VG|. 0-Path-WL can then distinguish almost

every1 couple of such graphs G, G′, whereas 1−WL cannot. In particular,

G ∼WL G′ but G ≁0-PATH-WLs G′.

Proof. Theorem 1 of [194] states that for d ≥ 3 almost every d-regular graph is Hamiltonian and

from Lemma C.2 we know that every connected 2-regular graph is Hamiltonian.

Hence let’s consider all the connected components of G and the graph G′ as Hamiltonian graphs.

Then, from Corollary C.3 we know that two Hamiltonian graphs of different order can be distin-

guished by 0-Path-WLℓ. The required length ℓ in this case is the size of the smallest connected

component of G, i.e. ℓ = s. Indeed, for every node v in G′, 0-Ps
v contains a path of length s while

0-Ps
u = 0-Ps−1

u for every u in the smallest component of G. Then we can extend the reasoning

to the graph level and conclude that G ≁0-PATH-WLs G′.

Examples for d = 2 and d = 3 can be seen in Figure 5.4.

Note that it is always possible to construct a connected d−regular graph by merging two

d-regular disconnected components via a degree-invariant transformation; See figure C.6 for an

example of the transformation process which preserves the degree of the nodes.

Definition C.5 (Degree-invariant transformation). Let G = (V, E ,X) be a graph. Let T : E →
V × V be a transformation on the edges of G, such as the deletion and/or the creation of edges.

The transformation is said to be degree-invariant if changing the edges does not change the

degree of the nodes.

Figure C.6: Example of a degree-invariant transformation. (a) The two graphs G and H

can be any two graphs, with at least one edge. (b)−(c) represent the two steps of the

transformation: first remove one edge and then link together the two structures in such

a way that the degree of the nodes is preserved.

1Almost all d-regular graphs of order n having a property P means limn→∞ Pr(P ) = 1; refer to [194]

for details.
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C.6.2 Proof of Theorem 5.11

Statement. 1-WL-equivalence at iteration ℓ and 0-Path-WLℓ,(1)-eqivalence are incomparable

for every ℓ ≥ 3.

Proof. We prove the following equivalent formulation of the statement. There exist nodes u, v

such that for some k ∈ N

u ≁0-Path-WLk,(1) v and u ∼1-WL v at iteration k.

and there exist nodes u′, v′ such that for some t ∈ N

u′ ∼0-Path-WLt,(1) v′ and u′ ≁1-WL v′ at iteration t.

In order to prove the theorem it suffices to show two examples: (i) one example, where 0-Path-

WL is able to discriminate between two nodes but 1-WL fails, and (ii) a second example where

the converse holds. For the first example, we can choose any graph class described before, or

the famous instance shown in Figure 5.2. For the other direction, we refer to figure C.7. The

highlighted nodes in the figure have different unfolding trees (hence, u ≁UT3 v) but they are

indistinguishable by the multiset of paths, at least for length l = 3.

Figure C.7: Graphs G and H and the relative multisets of paths of length up to 3, for

the node v in G and u in H. These two graphs serve as a counterexample for paths being

more discriminative than unfolding trees (and thus 1-WL).

Counterexample for [130, Theorem 3.3] In the following Figure C.8 we computed the

path-based unfolding trees PT (cf. [130, Definition 3.1] for the two nodes v in G and u in H.

Figure C.8: Counterexample showing that PT-equivalence is not more expressive than

1-WL. Indeed v ≁WL u but the path-based unfolding trees for u and v are identical.
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C.7 Importance of iterations

In the following, we want to provide some intuition on the importance of the iterations for

improving expressivity. For instance, consider the two graphs G and H in Figure C.9. The

two highlighted nodes v and u are 0-Path-WL3-equivalent, as they have the same multiset of

paths of length up to 3 (see FigureC.7). Hence, the output of the first iteration of 0-Path-WL

will result in the same color for u and v, as shown in Figure C.9, it=1. If we perform another

iteration, we can distinguish the two nodes, see Figure C.9, it=2.

The iterative procedure increases the expressive power of paths, as colors are assigned to the

nodes. The coloring helps to discriminate more between the nodes. Notably, with iterations, we

observed that we may reduce the required path length to distinguish two non-isomorphic graphs.

For example, in Figure C.10, we can see that the two graphs, which are indistinguishable with one

iteration of 0-Path-WL3, can be distinguished with two iterations of 0-Path-WL2, modifying

the complexity from O(∆3) to O(∆2).

Figure C.9: The two nodes v and u are indistinguishable by 0-Path-WL3,(1), indeed they

have the same color after iteration 1. But computing the paths with colored nodes allows

us to distinguish v and u. That is, 0-Path-WL
3,(2)
v ̸=0-Path-WL

3,(2)
u

C.8 Additional Information on Experiments

Experimental Setup For exp, sr and zinc we use a two-layer LSTM for f and summation

for graph-level (READOUT) and path-level pooling (AGG). For zinc we use a shared LSTM for f to

reduce the number of parameters. The dataset zinc also contains categorical node features which

we project to the embedding dimension. For zinc, we incorporate edge features by embedding

them and then concatenating them to the vector embeddings in each path. For example in a path

(v1, v2, v3) we would attach to the embedding of v2 the embedded feature of edge (v1, v2) and

to v3 the feature of (v2, v3). As the first node v1 has no associated edge we simply concatenate
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Figure C.10: The two graphs are colored from the first iteration of 0-Path-WL with

paths of length 2. The nodes u and v are not distinguishable, but the multiset of paths

contains different paths. The output of the second iteration will result in different colors.

That is, 0-Path-WL
2,(2)
v ̸=0-Path-WL

2,(2)
u

an all-zeros vector to it. Finally, we reverse the paths on zinc as this gives us a small boost in

performance (this has also been noticed by [130]).

Due to numerical instabilities encountered with csl, we vary some parameters for this data-

set to combat these instabilities. For csl we use a one-layer LSTM for f and the mean function

for graph-level (READOUT) and path-level pooling (AGG). For csl and zinc, we add a two-layer

multi-layer-perceptron (MLP) with ReLU activations and batch norm after each LSTM. We

use PyTorch ([195]) and PyTorch Geometric ([196]). We conduct our experiments on servers

equipped with an RTX-3080 GPU and Intel Core i7-10700KF/i9-11900KF CPU.

Our code can be found at https://github.com/ocatias/ExpressivePathGNNs and https:

//github.com/tamaramagdr/synthetic-pain.

Training Time Comparison. In practice, it can be computationally infeasible to compute

all paths. However, as current research on the expressivity of GNNs commonly focuses on

molecules that have sparse structures this means that path-based GNNs such as our PAIN can

be run efficiently on such datasets. We benchmark the run-time of PAIN on zinc against GIN

[26] and two subgraph GNNs: DS and DSS [151]. For all four models, we select hyperparameters

that yield the best validation set performance. For this, we train all four models on zinc and

report the mean and the standard deviation of the training time of each model. For DS and

DSS we use a policy that extracts the 3-hop neighborhood (egonets) of every node. PAIN is

identical to the model described in Section 5.4. All other models use an embedding dimension of

256 with a dropout rate of 0.5. GIN uses four message-passing layers, and both DS and DSS use

five layers. All models are trained with early stopping. Table C.1 shows that PAIN with path

length three is only slightly slower than DS and DSS on zinc (12k graphs) on consumer grade

hardware. Finally, we would like to point out that it is not necessary to store every path up to

https://github.com/ocatias/ExpressivePathGNNs
https://github.com/tamaramagdr/synthetic-pain
https://github.com/tamaramagdr/synthetic-pain
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length ℓ. For the sake of expressivity, it suffices to only store paths that are not part of larger

paths. In preliminary experiments, this improved the runtime of PAIN by a speed-up factor of

two.

Table C.1: Average training time for different GNNs on zinc. All models were trained

with early stopping.

Model Average Training Time (↓)
GIN [26] 0.11± 0.02 h

DS [151] 0.62± 0.06 h

DSS [151] 0.69± 0.06 h

PAIN (ours) 0.97± 0.09 h
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