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Abstract
We introduce and study some variants of a notion of canonical set theoretical truth. 
By this, we mean truth in a transitive proper class model M of ZFC that is uniquely 
characterized by some ∈-formula. We show that there are interesting statements that 
hold in all such models, but do not follow from ZFC, such as the ground model 
axiom and the nonexistence of measurable cardinals. We also study a related con-
cept in which we only require M to be fixed up to elementary equivalence. We show 
that this theory-canonicity also goes beyond provability in ZFC, but it does not rule 
out measurable cardinals and it does not fix the size of the continuum.

Keywords  Set theory · Mathematical realism · Philosophy of mathematics · 
Justification of Axioms · Mathematical Platonism · Ground Axiom · Axiom of 
Choice Forcing

1  Introduction

It is an old logical dream to devise an effectively describable axiomatic system for 
mathematics that uniquely describes ‘mathematical reality’; in modern logical lan-
guage, this should mean at least that it uniquely fixes a model. It is well-known that 
this dream is unattainable in first-order logic: By the Löwenheim-Skolem theorem, 
we get models of all infinite cardinalities once there is one infinite model; and by 
Gödel’s incompleteness theorem, if the theory is strong enough to express elemen-
tary arithmetic, it will have different models that are not even elementary equivalent.
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Focusing on ZFC set theory, one of the main foundational frameworks for math-
ematics, these two effects can in a certain sense be cancelled out by asking not for 
arbitrary models, but for transitive models that are proper class-sized, i.e. contain 
all ordinals. When we restrict the allowed models in this way, there are extensions 
of ZFC that uniquely fix a model. The most prominent example is V = L : It is well-
known (and provable in ZFC) that ZFC+V = L has exactly one transitive class-
model, provided that ZFC is consistent.

This form of canonicity gives the axiom of constructibility a certain attractive-
ness: It seems to describe, up to the unavoidable weakness of first-order logic, a 
unique ‘mathematical reality’. However, it is usually seen as too restrictive since 
many objects of set-theoretical interest are ruled out under this assumption.

But V = L is by far not the only theory that uniquely fixes a transitive class model: 
Other examples include V = L[0♯] and V = L[x] , where x is an absolute Π1

2
-singleton 

(see below). The ‘true mathematical reality’ that the adherents of the logical dream 
mentioned in the beginning believe in would have to be one of those ‘canonical’ 
models. Hence, whatever holds in all of these ‘canonical’ models will have to be 
accepted as true by someone who believes in a uniquely describable mathematical 
reality. We call such statements ‘canonically necessary’. If there are no such state-
ments that go beyond what is derivable from ZFC, then this kind of mathematical 
realism would be mathematically neutral: the belief in a uniquely describable mathe-
matical reality would merely be a way of interpreting set theory, without influencing 
it. On the other hand, if there are statements that hold in all canonical models with-
out following from ZFC, this realistic mindset would be mathematically informative.

In this paper, we investigate statements that hold in all ‘canonical’ models of 
ZFC, i.e. in all transitive class models that are uniquely fixed by some extension 
of ZFC by finitely many extra statements.1 It turns out that the realistic mindset is 
indeed mathematically informative: Examples of canonically necessary statements 
that do not follow from ZFC are the ground model axiom of (Reitz 2007) (Theo-
rem 23) and the non-existence of measurable cardinals (Theorem 28).

This approach generalizes in a natural way to the concept of ‘canonical conse-
quence’: Namely, a sentence � is a ‘canonical consequence’ of a theory T if and 
only if, for all � such that T + � has (provably in ZFC2) exactly one transitive class 
model M, we have M ⊧ 𝜓.

1  After most of the work in this paper was done, we noticed that in Friedman (1973) and Friedman 
(1978), H. Friedman defined and investigated a similar concept for countable set-sized models of a fixed 
height � under the name ‘ �-categoricity’. However, there is otherwise no overlap in the settings, the ques-
tions considered and the results; in particular, in Friedman’s setting, one of the main results is that L is 
the unique ‘categorial’ model (Friedman 1973,  p. 543), while in our setting, there are infinitely many 
under sufficient large cardinal assumptions.
2  It would also be natural to replace ZFC by T here as well; but for the time being, we keep ZFC as our 
base theory.
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One can then ask for the canonicity of the ZFC axioms themselves: Are there 
proper subsystems T of ZFC that canonically imply the ZFC axioms? We give some 
preliminary results in this respect.3

A natural weakening of the concepts of canonical truth and consequence would 
be to merely demand that the theory of the transitive class model M, rather than 
M itself, is uniquely determined by an ∈-sentence. Let us say that an ∈-theory is 
canonical if and only if there is an ∈-sentence � such that all transitive class models 
of ZFC+� are elementary equivalent. Then we can say that a sentence � is ‘theory-
canonical’ if and only if it is contained in all canonical theories. If we replace ZFC 
by some ∈-theory T in this definition, we obtain the notion of a T-canonical theory. 
We can then say that a sentence � is a ‘theory-canonical consequence of T’ if and 
only if it is contained in all T-canonical theories. This ‘theory canonicity’ turns out 
to be strictly weaker than canonicity (for example, it does not exclude measurable 
cardinals), but is still informative: There are theory-canonical consequences of ZFC 
that are not first-order consequences of ZFC.

We conclude with various open questions; in particular, we do not know whether 
the continuum hypothesis is canonically necessary (we conjecture that it is not) or 
whether there are canonical models of ZF+¬ AC (i.e. whether the axiom of choice is 
canonically necessary over ZF).

2 � Basic Definitions

We start by giving a formal counterpart to the intuitive idea that a theory T ‘uniquely 
fixes a transitive class model’ and ‘uniquely fixes a transitive class model up to ele-
mentary equivalence’. This is not straightforward, as quantifying over proper classes 
is not possible in ZFC. This might be solvable by instead working in NBG, but we 
prefer to stick to ZFC for the moment, partly because the methods we intend to use 
(forcing, class forcing and inner models) are commonly developed for ZFC models. 
Thus, a proper class model of ZFC will always be an inner model of V. Of course, 
this will immediately trivialize our analysis when one assumes V = L , so that L is 
the only transitive class model. To get a sufficient supply of inner models, we will 
hence assume sufficient large cardinals in our metatheory.

Still, we need to deal with our inability, due to the lack of a truth predicate, 
to quantify over all inner models. This will be solved by formulating the unique-
ness not as a single statement, but as a scheme. This leaves us with the problem of 
expressing that the class defined by a formula � is a model of ZFC. Again, this is not 
trivial, since ZFC is not finitely axiomatizable. Fortunately, for the case we are inter-
ested in, there is a workaround:

3  A related question is which subsystems T of ZFC have the property that ZFC holds in all inner models 
of T. One result in this direction, due to Philip Welch, will be given below.
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Lemma 1  (See Jech 2002, Theorem 13.9.) A transitive class C is a model of ZF if 
and only if C is closed under Gödel operations and almost universal (i.e. for every 
subset x ⊆ C , there is y ∈ C with x ⊆ y).

We fix a natural enumeration (�i ∶ i ∈ �) of the ∈-formulas in order type �.

2.1 � Canonical Implication

Definition 2  Let � be an ∈-formula, i, j ∈ � . Let IMZFC
i

(�, y) (‘inner model’) abbre-
viate the statement ‘ M�i,y

∶= {x ∶ �i(x, y)} is transitive, almost universal, closed 
under Gödel operations, contains all ordinals and satisfies AC and � ’. More gener-
ally, when T is an ∈-theory, we let IMT

i
(�, y) denote the claim that M�i,y

 is a transi-
tive class model of T.

The uniqueness statement U�,T

ij
 is the following ∈-formula:

Now, � is a uniqueness statement over a theory T if and only if all elements of 
UT

�
∶= {U

�,T

ij
∶ i, j ∈ �} are provable in T4. When T is ZFC, we will usually drop 

‘over T’.
Moreover, for T an extension of KP, � is a T-canonical statement if and only if 

there is some i ∈ � such that ∃yIMi(�, y) and � is a uniqueness statement. When T is 
ZFC, we simply call � canonical.

Remark 3  Note that we do not require ∃yIMi(�, y) to be provable in T; we only want 
it to be true (in V). These existence statements will usually be derived from stronger 
meta-theories, such as ZFC with large cardinals.

Remark 4  Typically, T will just be ZFC. Below, we will also consider cases where 
T is much weaker; however, some base theory is necessary to exclude unwanted 
cases such as ‘ ∈ is a total ordering’ (which has On as its only transitive proper class 
model) from our consideration.

The paradigmatical example for a uniqueness statement is V = L , which is a Π2

-statement. This is indeed the minimal complexity for a uniqueness statement:

Proposition 5  No Σ2-sentence is a uniqueness statement.

Proof  Suppose otherwise, let � ≡ ∃x∀y�(x, y) be a uniqueness statement, where � 
is Δ0 , and let M be the unique transitive class model of ZFC+� . Pick a ∈ M such 
that M ⊧ ∀y𝜙(a, y) , and let � ∈ Card be large enough so that a ∈ VM

�
 . As a cardinal, 

∀y, y�[(IMT
i
(�, y) ∧ IMT

j
(�, y�)) → ∀x(�i(x, y) ↔ �j(x, y

�
))].

4  Alternatively, we could also demand that all elements of UT

�
 hold in V. We will take up this idea below 

as C1-canonicity.
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� is Σ1-reflecting, so VM
𝜅

⊧ ∀y𝜙(a, y) . Let ℙ�+ be the forcing for adding a new sub-
set of �+ described in (Kunen (1973), section  6) (i.e., the set of partial functions 
f ∶ �+ → {0, 1} of cardinality < 𝜅+ ), and let M[G] be a generic extension for ℙ� . 
Since ℙ�+ is �-closed, we have VM[G]

�
= VM

�
 ; thus VM[G]

𝜅
⊧ ∀y𝜙(a, y) , and since � 

is also a cardinal in M[G], we have that M[G] ⊧ ∀y𝜙(y, a) by Σ1-reflection. Thus 
M[G] ⊧ZFC+� , contradicting the assumption that � is a uniqueness statement. 	�  ◻

Definition 6  A statement � is canonically necessary (c.n.) if and only if � holds in 
all canonical models of ZFC.

A statement � is canonically possible (c.p.) if and only if there is a canonical 
model M ⊧ 𝜙 of ZFC, i.e., if and only if its negation is not canonically necessary.

Definition 7  Let T be an extension of KP.
If M is a transitive class model of T, then M is T-canonical if and only if there is a 

T-canonical statement � such that M ⊧ 𝜙.
If A is any ∈-theory and � is an ∈-statement, then � canonically follows from A if 

and only if � holds in all canonical models in which A holds. In this case, we write 
A ⊧c 𝜙.

The preceding notions can be generalized by replacing the single tc statement 
� with elements from a class T  of theories. We would then, e.g., say that T ⊧T

c
𝜙 if 

and only if � holds in every transitive proper class model of T that is fixed by some 
element of T  . Particularly interesting cases might be the set of recursive theories, of 
countable theories, of Σn-axiomatizable theories, or even the class of all ∈-theories 
with ordinal parameters. However, in this work, we will focus on the singleton case 
and only briefly mention when our results easily generalize to other variants.

For a class A of ∈-theories with ordinal parameters, we say that a formula � is 
A-canonical, written ZFC⊧C

c
𝜙 , if and only if � holds in all transitive class mod-

els M of ZFC such that, for some T ∈ A , M is the unique transitive class model of 
ZFC+T.5

Let C denote the class of ∈-theories with ordinal parameters. For a cardinal � , C� 
denotes the subclass of C consisting of the elements with cardinality �.6 Finally, let 
C
L be the class of constructible countable ∈-theories.

2.1.1 � Weak Canonicity

In our definition above, we required that ZFC must be capable of proving the unique-
ness of a model of ZFC+� . A somewhat reasonable weaker requirement would be 
that ZFC+� proves this.

5  Note that we do not require that the uniqueness of the respective models is provable in ZFC, but only 
that it is true (in V). This relaxation seems unavoidable, as no analogue of the schematic approach taken 
for single statements is available for arbitrary theories.
6  Note that, by the last footnote, C1-canonical necessity is not the same as canonical necessity.
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Definition 8  � is weakly canonical if and only if ZFC+� proves the uniqueness 
statements in the definition of canonicity. If M is a model of ZFC+� for some 
weakly canonical � , then M is weakly canonical. If � holds in all weakly canonical 
models, then � is weakly canonically necessary (weakly c.n.).

2.2 � Theory‑Canonical Implication

We now give a formal counterpart to the claim that a statement � fixes a transitive 
class model of a theory T up to elementary equivalence. Intuitively, a sentence � 
is ‘theory-canonical’ (tc) if and only if it is provable in ZFC that any two inner 
models M and N of ZFC+� are elementary equivalent. Formally, we again need 
to express this as a scheme: Whenever �0 and �1 define transitive proper classes 
M0 and M1 in which � holds, we have that ZFC proves �M0 ↔ �M1.

Definition 9  For i, j, k ∈ � , � an ∈-formula and T an ∈-theory, the theory-uniqueness 
statement TU�,T

ijk
 is the following ∈-formula:

An ∈-sentence � is a theory-uniqueness statement for T if and only if ZFC proves all 
elements of TUT

�
∶= {TU

�

ijk
∶ i, j, k ∈ �}.

We say that a theory-uniqueness sentence � for T is theory-canonical (tc) over a 
theory T if and only if ∃yIMi�(�, y) is true (in V) for some i ∈ �.

For theories T and S, we say that S is a canonical extension of T if and only if 
there is a theory-canonical sentence � over T such that S is the (unique) theory of the 
transitive class models of T + � . When T is ZFC, we call S a canonical theory.

A transitive class model M of T is tc over T if and only if some � holds in M 
which is tc over T.

A sentence � is ‘theory-canonically necessary’ (tcn) if and only if � belongs to 
all canonical extensions of ZFC. Likewise, � is ‘theory-canonically possible’ (tcp) if 
and only if it belongs to some canonical extension of ZFC.

We can then extend this as above to obtain a notion of ‘theory-canonical 
implication’:

Definition 10  If T is an ∈-theory and � is an ∈-sentence, then we say that � is a 
‘theory-canonical consequence (tc-consequence) of T’, or that T ‘tc-implies � ’ if and 
only if we have M ⊧ 𝜙 for every transitive class model M that is tc over T. In this 
case, we write T ⊧tc 𝜙.

As above, the notions of theory-canonicity and tc-implication can be general-
ized to theories, rather than single statements.

∀y, y�[(IMT
i
(�, y) ∧ IMT

j
(�, y�)) → (�

M�i ,y

k
↔ �

M�j ,y
�

k
)].
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2.3 � General Properties of ⊧
c
 and ⊧

tc

In this section, we consider some general logical and proof-theoretic properties of 
⊧c and ⊧tc.

Definition 11  For a theory T, we let C(T) ∶= {𝜙 ∶ T ⊧c 𝜙} and 
TC(T) ∶= {𝜙 ∶ T ⊧tc 𝜙} be the sets of canonical and theory-canonical consequences 
of T, respectively.

Note that, for any T, we have C(T) ⊆ CT(T) . It is easy to see that both ⊧c and ⊧tc 
are closure operators on the set of ∈-theories.7

Clearly, for any theory T, C(T) and TC(T) are closed under first-order inferences. 
There are, however, additional inference rules with this property, such as the �-rule 
(for which, however, the restriction to transitive models suffices). We do not know 
whether there are inference rules that are sound for ⊧c or ⊧tc but not already for tran-
sitive models.

We also note that, again due to the restriction to transitive models, compactness 
fails for both notions. Since in the setting of (theory-)canonicity, we want to keep 
our basic theory even if it is infinite, we define the relevant compactness property as 
follows:

Definition 12  Let T be an ∈-theory. We say that ⊧c has the compactness property 
over T if and only if, for every set S of ∈-sentences � , T ∪ S ⊧c 𝜙 implies that there is 
a finite subset S′ ⊆ S such that T ∪ S� ⊧c 𝜙 . The definition for ⊧tc is analogous.

Proposition 13  Neither ⊧c nor ⊧tc have the compactness property. That is, there are 
a theory T and an ∈-sentence � such that T ⊧tc 𝜙 (and thus T ⊧c 𝜙 ), but there is no 
finite subtheory of T ′ of T such that T ′ ⊧c 𝜙 (and thus, neither T ′ ⊧c 𝜙).

Proof  Define 0♯,i as the i-th iterate of the sharp operator applied to 0. For i ∈ � , let 
�i be the sentence ‘ 0♯,i exists’, let S ∶= {�i ∶ i ∈ �} , let T be ZFC∪ S, and let � be 
the sentence ‘For every i ∈ � , 0♯,i exists’. Then T ⊧tc 𝜓 (and hence T ⊧c 𝜓).

However, if S′ is a finite subset of S, then there is a k ∈ � that is maximal with the 
property that �k ∈ S� . But now, V = L[0♯,k] is a uniqueness statement over ZFC and 
in the unique transitive class model of V = L[0♯] , � clearly fails. Hence T �

̸⊧c 𝜓 (and 
thus also T �

̸⊧c 𝜓).
Thus, T and � are as desired. 	�  ◻

Since compactness fails, there cannot be sets of finite inference rules (i.e., rules 
with finitely many premises) that are both sound and complete for ⊧c or ⊧tc.

7  Note a slight pathology for theories T that do not have (theory-)canonical models: For such theories, 
the definition of (theory-)canonical implication universally quantifies over the empty set and is thus vac-
uously fulfilled for every statement � , so that, in this case, we have that C(T) and TC(T) both coincide 
with the set of all ∈-sentences.
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Proposition 14  There is an infinite ∈-theory T such that, for any finite subset S ⊆ T  , 
ZFC+S has a canonical model, but ZFC+T does not.

Proof  Let T and � be as in the proof of Proposition 13, then T + ¬� is as desired. 	
� ◻

By taking � to be ⊥ , Proposition 13 follows from Proposition 14. However, we 
consider the given presentation to be more illustrative.

3 � Examples of Canonical Truth

Obvious examples for uniqueness statements are V = L or V = L[0♯] with corre-
sponding canonical models L and L[0♯] . These actually give rise to a larger class of 
examples:

Definition 15  A real number x is a relative Π1
2
-singleton if and only if there is a Π1

2

-statement � such that x is the unique element y of L[x] with L[x] ⊧ 𝜙(y).
A real number x is an absolute Π1

2
-singleton8 if and only if there is a Π1

2
-statement 

� such that x is the unique element y of V with �(y).

Corollary 16  An absolute Π1
2
-singleton x is the unique element satisfying its defining 

Π
1
2
-formula � in each transitive inner model that contains x, while all other models 

will not contain such a witness.

Proof  By Shoenfield absoluteness, if M is a transitive class model of ZF− , x ∈ M 
and M ⊧ 𝜙(x) , then V ⊧ 𝜙(x) . Hence, if some transitive inner model had two dis-
tinct elements satisfying � , the same would hold for V, contradicting uniqueness. 
Similarly, if M was some transitive inner model with x ∉ M but M ⊧ 𝜙(y) for some 
y ∈ M , then V ⊧ 𝜙(x) ∧ 𝜙(y) ∧ x ≠ y , again contradicting the uniqueness. 	�  ◻

The existence of 0♯ has consistency strength. However, no such assumption is 
needed to obtain canonical models beyond the constructible universe:

Proposition 17  It is consistent relative to ZFC that there are canonical models 
besides L.

Proof  (Sketch) Force a Π1
2
-singleton over L as described in chapter 6 of Friedman 

(2000). The generic extension satisfies that there is a real number r satisfying the Π1
2

-statement � (which is unique) and V = L[r] and is unique with this property. 	�  ◻

8  For the notion of an absolute Π1

2
-singleton, cf., e.g., David (1982).
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Lemma 18  There is a subtheory T of ZFC+‘0♯ exists’ that is consistent with V = L 
such that there are canonical models M of T with L ⊊ M ⊆ L[0♯].

Proof  In Friedman (2000), Theorem 6.23, it is shown that there is a Π1
2
-singleton x 

and a theory T as in the statement of the lemma such that x ∉ L , 0♯ ∉ L[x] and L[x] 
is canonical with respect to T. 	�  ◻

According to the discussion before Theorem 6.23 in Friedman (2000), it is open 
whether the x in the preceding proof can be proved to be unique in ZFC rather than 
ZFC+0♯ exists.

Question 19  Is there a canonical model M with L ⊊ M ⊊ L[0♯]?

Our first observation concerning canonical implication is that it does not coincide 
with first-order provability, i.e., there are canonically necessary statements that are 
not provable in ZFC:

Lemma 20  There is some ∈-formula � such that � does not hold in all transitive 
class models of ZFC, but � is canonically necessary.

Proof  Let � be the statement: ‘It is not the case that there is a Cohen-generic filter G 
over L such that V = L[G] ’. (Thus, intuitively, � says: ‘I am not a Cohen-extension 
of L’). This is an ∈-statement. Clearly, � is false in a Cohen-extension L[G] of L.

On the other hand, let M be canonical and assume that M ⊧ 𝜙 . Let � be a unique-
ness statement for M. Then there is some G Cohen-generic over L with M = L[G] . 
Moreover, as M ⊧ 𝜓 , there is some condition p such that p ⊩ 𝜓 . Let G′ be Cohen-
generic over L relative to G such that p ∈ G� . Then L[G�

] ⊧ 𝜓 but L[G�
] ≠ L[G] , a 

contradiction to the assumption that � is a uniqueness statement. 	�  ◻

Remark 21  For any ∈-sentence �(�) with ordinal parameters, the homogenity of 
Cohen forcing implies that, if �(�) holds in the generic extension, then �(�) is forced 
by 1 . It follows that the sentence � just constructed is also C-canonical.

This example can be considerably strengthened: In fact, no set forcing exten-
sion can be canonical. It is not obvious that the statement ‘I am not a set forcing 
extension’ is expressable in the first-order language of set theory at all, but by Reitz 
(2007), where it is introduced under the name ‘ground model axiom’ or ‘ground 
axiom’, it turns out to be so.

Definition 22  (See Reitz 2007) The Ground Model Axiom (GMA) is the statement 
that there is no transitive class model M of ZFC such that, for some forcing ℙ ∈ M 
and some ℙ-generic filter G over M, we have V = M[G] . It is proved in Reitz (2007) 
that GMA is expressible as an ∈-formula.

Theorem 23  The ground model axiom GMA is canonically necessary.
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Proof  Assume that M is canonical, witnessed by � , and M does not satisfy the 
ground axiom, e.g. M = N[G] , where N is an inner model of M and G is a generic 
filter for a forcing ℙ ∈ N . As � holds in M, there is some p ∈ ℙ such that p ⊩ 𝜙 
over N.

We pass from M to a generic extension M[H] in which �M
(ℙ) is countable (via 

the appropriate Levy collapse). By Rasiowa-Sikorski, we find in M[H] two mutu-
ally ℙ-generic filters over N containing p, namely G1,G2 . Hence N[G1] ⊧ 𝜙 and 
N[G2] ⊧ 𝜙 , but N[G1] ≠ N[G2] , as e.g. G1 ∈ N[G1] ⧵ N[G2] , so M = N[G] cannot 
be unique with this property, a contradiction.

	�  ◻

Although the preceding argument generalizes to show that forcing extensions by 
homogenous, as well as countably closed, forcings cannot be C-canonical, we do not 
know whether GMA is CL-canonical. It is, however, not C-canonical:

Theorem 24  GMA is not C-canonically necessary.

Proof  (Sketch) We use an iterated forcing of length � . (A similar construction is 
described in Reitz (2009), proof of Theorem 26.) The first forcing ℙ0 adds a Cohen-
real, and then, for i > 1 , the ith forcing encodes the generic objects of the (i − 1) th 
forcing in the continuum function. In the extension by this forcing, the generic filter 
can then be read off from the continuum function. Let ℙ denote this forcing, and, 
for some ℙ-generic extension L[G] of L, let T be the theory that tells us sufficiently 
many values of the continuum function in L[G] to reconstruct G. Then L[G] is the 
unique transitive class model of T+‘I am a ℙ-generic extension of L’. Hence L[G] is 
C-canonical, but L[G] ⊧̸GMA. 	�  ◻

Question 25  Is GMA CL-canonically necessary?

By a similar argument, now using the forcing theorem for symmetric extensions 
(see Hayut and Karagila (2020), p. 453; also see Karagila (2019)), we obtain:

Corollary 26  No symmetric extension of a ZFC-model is canonical. Thus, the state-
ment that V is not a generic extension of a ZFC-model is canonically necessary.

We can further exploit this argument in a different direction, yielding an upper 
bound on the elements of a canonical model. To this end, recall, e.g. from Fuchs 
et al. (2015) that, in set-theoretical geology, the mantle is the intersection of all tran-
sitive class models M of ZFC such that V is a generic extension of M.

Proposition 27  If M is canonical, then M is a subclass of the mantle.

Proof  Suppose that M is canonical with uniqueness statement � and N is a ground 
for V. Then V = N[G] for some ℙ-generic filter G over N and some forcing ℙ ∈ N . 
Moreover, for some formula �(x, y) and some parameter y, there is a condition 
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p ∈ G which forces over N that � holds in the inner model that is defined by a 
�(x, y) . Let H be ℙ-generic over V with p ∈ H . Then G and H are mutually generic. 
Since p ∈ H , there is an inner model M′ of N[H] in which � holds. By uniqueness 
of inner models of � in N[G × H] , we have M = M� . Since G and H are mutually 
generic over N, we have N[G] ∩ N[H] = N and hence M ⊆ N , as required.

	�  ◻

Given Theorem 23, one might wonder whether GMA captures the full strength of 
canonical necessity, i.e. whether there are canonically necessary statements that do 
not follow from GMA. This also turns out to be true:

Theorem 28 

(1)	 The statement that ‘There is no measurable cardinal’ is canonically necessary.
(2)	 The statement that ‘There are only finitely many measurable cardinals’ is C1

-canonically necessary.

Proof  We start with the second statement. Suppose for a contradiction that M is a 
canonical model with uniqueness statement �(�) ( � ∈ On ) and that M contains infi-
nitely many measurable cardinals (�i ∶ i ∈ �) . By a theorem of Kunen (see, e.g., 
Theorem 19.17 of Kanamori (2003)), there is an ultrapower Ult(M,U) by a normal 
ultrafilter U on some �i that fixes � . But then, Ult(M,U) is a transitive class inner 
model of ZFC+�(a�) different from M, contradicting the assumption that M was 
unique with these properties.

The first statement can be proved in the same way, by just taking the ultrapower 
with any normal ultrafilter on a measurable cardinal in M (since there is no � to 
preserve).

	�  ◻

Theorem 29  Suppose that there is a measurable cardinal in V. Then every canonical 
model has a proper class of order indiscernibles.

Proof  Suppose that M is a canonical model with uniqueness statement � , and 
suppose that M is defined in V as {x ∶ 𝜓(x, p⃗} , for some p⃗ ∈ V  . Let M0 ∶= M . 
Let U be a normal ultrafilter on � , and let � ∶ V → Ult(V ,U) be the ultrapower 
embedding. Define M1 as {x ∶ 𝜓(x,𝜋(p⃗)}Ult(V ,U) . Since � is elementary, so is 
(� ↾ M0) ∶ M0 → M1 . Thus M1 is a transitive class model of ZFC+� , and thus, 
M1 = M.

Let �1 = �(�) , so 𝜅1 > 𝜅 . Iterating this procedure, and taking direct limits at limit 
ordinals, we obtain a sequence (M� ∶ � ∈ On) of models, all of which are equal to M, 
on the one hand and a strictly increasing sequence (�� ∶ � ∈ On) of cardinals in M on 
the other. But now, it is standard to show that (�� ∶ � ∈ On) is a sequence of order 
indiscernibles for M. 	�  ◻
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Corollary 30  There are canonically necessary statements that do not follow from 
GMA.

Proof  By results of J. Reitz (see Reitz 2007), the fine structural models for measur-
able cardinals satisfy GMA. Hence, the nonexistence of measurable cardinals does 
not follow from GMA. 	�  ◻

The canonical impossibility of measurable cardinals suggests further consid-
erations about the canonical possiblity, or otherwise, of large cardinals. First, a 
positive observation:

Theorem 31 

	 (i)	 Let 𝜙♯ be the statement ‘For every x ⊆ 𝜔 , x♯ exists’. If 𝜙♯ holds in V, then 𝜙♯ is 
canonically possible.

	 (ii)	 If �† is the statement that x† exists for every x ⊆ 𝜔 , and �† holds in V, then �† 
is canonically possible.

Proof  (i) Let us add the unary function symbol ♯ to the language of set theory, with 
the obvious intended meaning. For a set X, let Def♯(X) be the set of subsets of X that 
are definable over X using the language of set theory extended by ♯ . Now define a 
class L̂ ⊆ V  in analogy with L as follows:

•	 L̂0 = �

•	 L̂𝛼+1 = Def♯(L̂𝛼)

•	 L̂𝜆 =
⋃

𝜄<𝜆 L̂𝜄 for 𝜄 < 𝜆
•	 Finally, L̂ ∶=

⋃

𝜄∈On L̂𝜄.

By Π1
2
-absoluteness of sharps, the sharp function and thus L̂ is a definable sub-

class of V via the recursion just stated. It is clear from the definition that L̂ ⊧ 𝜙♯ . 
That L̂ ⊧ ZFC can be checked similarly to the fact that ZFC holds in L. Thus L̂ is a 
canonical model in which 𝜙♯ holds.

(ii) is now proved similarly, as the †-operation is still Π1
2
 . 	�  ◻

We can do the same for other inner model operators whose iterability is Π1
2
.

3.1 � Canonicity and the Continuum Function

All examples of canonical models that we have constructed so far satisfy the con-
tinuum hypothesis, and even the generalized continuum hypothesis. An attractive 
question is then whether ZFC⊧cCH, or even whether ZFC⊧cGCH. We conjecture 
that this is false (see the last section). Here, we mention some related results. We 
denote by c the continuum (class) function that maps each ordinal � to 2card(�).
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Theorem 32  ¬CH is weakly c.p.

Proof  In Theorem  19 of Groszek (1988), a set forcing extension M of L is con-
structed such that M ⊧ ¬CH , but CH holds in every transitive class N such that 
L ⊆ N ⊆ M (and this is provable in ZFC). The forcing ℙ used is definable over M 
without parameters.

Consider the ∈-statement � ‘I am a ℙ-extension of L’. Then every proper inner 
model of a transitive class model M of ZFC+� will satisfy CH, so that M is the only 
inner model of M in which CH fails (and all of this is provable in ZFC+� ). Hence M 
is a weakly canonical model of ZFC+¬CH.

	�  ◻

3.2 � How Canonical is ZFC?

Besides asking which statements are canonically necessary over ZFC, one can also 
step backwards and ask whether the axioms of ZFC canonically follow from weaker 
subtheories.

Even forgetting about uniqueness statements, the restriction to transitive class 
models alone yields certain results.

The following observation was communicated to us by Philip Welch:
Recall that Σ2-KP is Kripke-Platek set theory (see, e.g., Mansfield and Weitkamp 

1985) supplemented with the Σ2-collection and the Σ2-separation scheme. Moreover, 
Pot denotes the power set axiom.

Theorem  33  (Welch) All axioms of ZF are implied over transitive classes by Σ2

-KP+Pot (the power set axiom). In particular, Σ2-KP+Pot⊧cZF.

Proof  Let M be an transitive class model Σ2-KP+Pot, defined in V. By Lemma 1, it 
suffices to show that M is closed under Gödel functions and almost universal.

Since M ⊧KP, M is clearly closed under Gödel functions.
It remains to show that M is almost universal. To this end, we will show how 

to define inside M the cumulative hierarchy (VM
�

∶ � ∈ On) and show that 
M =

⋃

�∈On V
M
�

.
Once this is done, the argument finishes as follows: If x ⊆ M is a set, we consider 

the functional class F ∶ x → On (defined in V) that maps each y ∈ x to the smallest 
� ∈ On such that y ∈ VM

�
 . By Replacement in V, F[x] is a set of ordinals in V, and so 

� = supF[x] is an ordinal. Then, by definition of � , we have x ⊆ VM
𝛼

 , which suffices.
Inside M, define a class function F ∶ On ×M → M as follows:
For successor ordinals, let F(� + 1, x) = z if and only if z = P(x(�)) , i.e. if and only 

if there is exactly one set a with (�, a) ∈ x and ∀y(y ∈ z ↔ y ⊆ x) ; if there is no such 
set, then F(� + 1, x) = � . Since the first existential (and implicit, via the uniqueness 
condition, universal) quantifier is bounded, this is Π1.

For a limit ordinal � , F(�, x) = z if and only if z =
⋃

x , i.e., if and only if 
∀y(y ∈ z ↔ ∃b ∈ x(y ∈ b) . Again, this is Π1.
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Now the class function VM
∶ On → M defined by applying the recursion princi-

ple to F is Σ2 over M.
We claim that VM

∶=

⋃

�∈On V
M
�

= M.
It is clear that VM ⊆ M.
To see the reverse direction, suppose otherwise, and let x ∈ M be ∈-minimal (by 

transitivity of M) such that x ∉ VM . Then, by transitivity of M, we have x ⊆ M , and 
by minimality of x, we have x ⊆ VM . Thus (by replacement in V), there must be an 
ordinal � such that x ⊆ VM

𝛼
 . But then, we have x ∈ VM

�+1
.

	�  ◻

Corollary 34  Let M be a canonical model of ZF with uniqueness statement � , where 
� is Σm , and let n = max{3, n} . Then M has no proper transitive Σn-elementary sub-
structure that contains all ordinals.

Proof  Suppose that N ≺
Σn

M and On ⊆ N . Then N ⊧ 𝜙 . Moreover, since n ≥ 3 , 
N ⊧ Σ2-KP and N ⊧Pot. By Theorem 33, N ⊧ZF. Hence N ⊧ZF+� , and since � is a 
uniqueness statement, we have N = M . 	�  ◻

Remark 35  By a similar argument, one can see that a canonical model M with a Σn

-uniqueness statement coincides with the Σn-Skolem hull of the ordinals in M.

Question 36  Is there a transitive proper class inner model of KP+Pot in which ZF 
fails? Do we have KP⊧cZF?

3.2.1 � The Axiom of Choice

We do not know whether there is a canonical model of ZF in which the axiom of 
choice fails. One of the most studied theories contradicting choice is ZF+AD, where 
AD is the axiom of determinacy. Whether or not AD is canonically possible is open. 
However, we have the following partial results:

Theorem  37  Assume that A♯ exists for every A ⊆ ℝ . Then there is no canonical 
model of T:=ZF+V=L(ℝ)+AD.

Proof  Suppose that M is a canonical (proper class) inner model and that T holds in 
M; let � be the canonical sentence for M.

We first claim that ℝM is countable. Otherwise, we can find a countable elemen-
tary substructure R# of (ℝM

)
# , but then L(R) is an inner model M′ that has the the 

same theory as M; in particular, M ⊧ 𝜙 . However, we will clearly have M′ ≠ M , 
contradicting the uniqueness of M.

It now follows from Theorem 0.1 in Schindler and Steel (2006) that we can pass 
to a generic extension of M and find an extender sequence E⃗ with extenders below 
�M
1

 such that the symmetric collapse of Col(𝜔,<𝜔M
1
) over M is equal to L(ℝ)V (in 

fact, it is shown in Schindler and Steel (2006) that �M
1

 is a limit of Woodin cardinals 
in L[E⃗]).
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Since ℝM is countable and since (ℝM
)
# exists, the required generic extension 

exists in V, as it can be chosen as a collapse below the least ℝM-indiscernible. Thus 
we can choose L[E⃗] in V and since �M

1
 is countable and E⃗# exists, P(�M

1
)
M is count-

able in V. Hence we can choose two different Col(𝜔,<𝜔M
1
)-generics over M in V. By 

homogeneity of the forcing, the extensions have the same theory, but this contradicts 
the uniqueness of M. 	�  ◻

4 � Theory Canonicity

The fact that canonicity rules out measurable cardinals almost trivially may suggest 
that it is too strong a demand; and indeed, uniquely fixing a transitive class model is 
rather much to ask. A reasonable weakening would be that the statement � only fixes 
transitive class models up to elementary equivalence, which is the intuition behind 
the concept of theory-canonicity, as defined above.

We observe that theory-canonicity still goes beyond ZFC, but allows for measur-
able cardinals:

Proposition 38  The existence of measurable cardinals is theory-canonically 
possible.

Proof  Let � be the statement ‘ V = L[U] , where U is a normal ultrafilter’. Now, every 
two transitive class models M and M′ of � can be coiterated to a common target 
model N (see, e.g., Jech 2002, Theorem 19.14), which will be elementary equivalent 
to both M and M′ ; thus M and M′ are elementary equivalent. Hence � is tc. Clearly, 
any transitive class model M of � contains a measurable cardinal. 	�  ◻

Proposition 39  There is an ∈-sentence � that is theory-canonically necessary, but 
does not follow from ZFC.

Proof  For x ⊆ 𝜔 , let Tx be the theory {2ℵi = ℵi+1 ∶ i ∈ x} ∪ {2ℵi = ℵi+2 ∶ i ∉ x} . 
Thus, in a model of Tx , x is encoded in the continuum function. Denote the Easton 
forcing that forces Tx to be true over a model of GCH by Px.

Now let � be the sentence that claims that V is not of the form (L[x])[Px] , where x 
is Cohen-generic over L. Clearly, � does not follow from ZFC, as it e.g. fails in mod-
els of the form (L[x])[Px] just described.

We claim that � is tcn. Suppose otherwise; then there are a tc statement � and a 
transitive class model M of ZFC+� + ¬� . Then there is a real number x which is 
Cohen-generic over L such that M = (L[x])[Px] . By the forcing theorem, � is forced 
by some Easton-condition q in Px . The fact that q belongs to Px and that � is forced 
by q in Px , which holds in L[x], is in turn forced by some Cohen-condition p over L.

Now let r and r′ be two incompatible extensions of p, and let xr and xr′ be Cohen-
generic reals extending r and r′ , respectively.
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Then both in L[xr] and in L
[
xr� ] , we have that q ⊩ 𝜓 . Pick a Pxr

-generic filter Gr 
and a Pxr′

-generic filter Gr′ , both containing q; this is possible as q belong both to Pxr
 

and to Pxr′
 , because r and r′ extend p, which forces this.

Then � holds both in Mr ∶= (L[xr])[Gr] and in Mr� ∶= (L[xr� ])[Gr� ] ; however, as 
xr ≠ xr′ , there is some i ∈ � such that Mr ⊧ 2ℵi = ℵi+1 and Mr� ⊧ 2ℵi = ℵi+2 or vice 
versa. Thus Mr and Mr′ are two models of ZFC+� that are not elementary equiva-
lent, which contradicts the assumption that � is tc. 	�  ◻

Concerning the size of the continuum however, theory canonicity has little infor-
mation to offer:

Proposition 40  When � is definable in L and cf(𝜄) > 𝜔 , then there is a tc model of 
ZFC+2ℵ0 = ℵ𝜄 . That is, any possible value of the continuum that is definable is also 
theory-canonically possible.

Proof  Let P� be the Cohen forcing notion for achieving 2ℵ0 = ℵ𝜄 over L. Then P� is 
definable from � , which is definable by assumption, so P� is definable in L. Now the 
statement � ≡‘V is a P�-generic extension of L’ in a transitive class model M of ZFC 
implies that M ⊧ 2ℵ0 = ℵ𝜄 and moreover, by homogenity of P� , all sentences true in 
M are forced by 1 and thus hold in all such extensions. Thus M is a tc model in 
which 2ℵ0 = 2ℵ𝜄 holds. 	�  ◻

Remark 41  : Note that the proof of Proposition  40 also implies that GMA is not 
theory-canonically necessary, as all Cohen-extensions of L have the same theory, ‘V 
is a Cohen-extension of L’ is expressable as an ∈-sentence � and GMA clearly fails 
in every transitive class model of �.

We can also show that ¬AC is theory-canonically possible. We know the follow-
ing lemma from a talk of Karagila; however, it has apparently so far not been made 
explicit in the literature. We thank Asaf Karagila for a sketch of the proof (personal 
communication) and the kind permission to include it here.

We say that a transitive class model of ZF is a ‘Cohen-model of the first type’ if 
and only if it is a symmetric extension of L in the sense of the first Cohen model as 
described, e.g., in Jech (2008), chapter 5.3.

Lemma 42  There is an ∈-formula �cs such that, for a transitive class M ⊧ZF, we 
have that M ⊧ 𝜙cs if and only if M is a Cohen model of the first type.9

Proof  By Theorem 4.2 of [16], we have that, if M is a Cohen model of the first type, 
then there is an M-generic filter F such that M[F] = L[F] , L[F] ⊧ZFC and M is a 

9  We thank Asaf Karagila for informing us about this following folklore result and sketching the proof 
below to us.
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symmetric submodel of L[F]. By Remark 3.3 of [16], we have M = L(A) , where A is 
the set of Cohen reals added by F over L.

So we can express �cs as ‘There is a generic filter F such that M is the symmetric 
submodel of L[F]’. (More precisely, we mean that M is the class of the F-evaluations 
of the symmetric names.) 	�  ◻

Proposition 43  There is a canonical theory T that extends ZF+¬AC.

Proof  Consider the statement �cs from Lemma 42, and let M be a transitive class 
model of ZFC+�cs.

For such an M, we have M ⊧ ¬AC; moreover, if � is a sentence such that M ⊧ 𝜓 , 
then, by homogenity of the Cohen-forcing, we have 1 ⊩ 𝜓 , and hence, any two tran-
sitive class models of �cs are elementary equivalent.

	�  ◻

5 � Further Ideas and Questions

Question 44  Is V = HOD (theory-)canonically necessary?

Question 45  Is CH canonically necessary? Is GCH canonically necessary?

We conjecture that the answer to the last question is negative; a natural approach 
is to iterate Friedman’s forcing for adding a Π1

2
-singleton (described in Friedman 

(2000), chapter 6) �2 many times to generate a canonical model in which CH fails.

Question 46  (Dominik Klein): Is AC canonical for models of ZF? That is, is there a 
formula � such that there is a unique transitive class model M of ZF+� and such that 
AC fails in M?

More boldly, is there a canonical model of ZF+AD?

By a theorem of Kunen (1973), AC fails in the model C�2 , which is constructed 
in analogy with L, but using definability in the infinitary language L�1,�1

 . This moti-
vates the investigation of canonical implication for infinitary languages, which we 
plan to consider in future work.

Question 47  Can M#
1
 be an element of a canonical model?

Question 48  In general, which ZFC axioms are (theory-)canonical over the others? 
Or over KP? Are there e.g. canonical models for ZFC− in which power set fails? Are 
there canonical models of ZFC without replacement in which replacement is false?

The Ehrenfeucht principles asserts that, when a is definable from b, but a ≠ b , 
then a and b have different types; there are several variantes of this principle, dis-
cussed in, e.g., (Enayat 2004a; Mycielski 1995; Fuchs et  al. 2018). Following 
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(Enayat 2004b), a model M of ZF is ‘Leibnizean’ if and only if any two elements of 
M have different types with ordinal parameters.

Question 49  Does every canonical model of ZFC satisfy the Ehrenfeucht principle? 
Is every canonical model of ZFC Leibnizean?

Question 50  Is there a proof calculus that is sound and complete for ⊧c and ⊧tc ? 
(Note that, by failure of compactness, such a calculus cannot consist of a finite set of 
finite rules.) Are there inference rules R such that, if R allows deducing � from T, 
then T ⊧c 𝜙 (or T ⊧tc 𝜙 ), but � can fail in transitive class models of T?

A concept closely related to, but different from, (theory-)canonicity is that of 
‘unique describability’: Namely, we say that �(�) has unique models if and only if, 
for every transitive class model N of ZFC, there is at most one inner model M of N 
such that M ⊧ 𝜙(𝛼) . This more liberal notion is closely related to recognizability by 
Ordinal Turing Machines (see Carl et al. 2018) and is considered in ongoing work 
with Philip Welch.
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