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Hadamard Products of Symbolic Powers
and Hadamard Fat Grids
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Abstract. In this paper we address the question if, for points P, Q ∈ P
2,

I(P )m�I(Q)n = I(P�Q)m+n−1 and we obtain different results according
to the number of zero coordinates in P and Q. Successively, we use
our results to define the so called Hadamard fat grids, which are the
result of the Hadamard product of two sets of collinear points with
given multiplicities. The most important invariants of Hadamard fat
grids, as minimal resolution, Waldschmidt constant and resurgence, are
then computed.
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1. Introduction

In the last few years, the Hadamard products of projective varieties have been
widely studied from the point of view of Projective Geometry and Tropical
Geometry. The main problem in this setting is the behaviour of the Hadamard
product between varieties with many points with zero coordinates.

The paper [8], where Hadamard products of general linear spaces are
studied, can be considered the first step in this direction. Successively, the
second author, with Calussi, Fatabbi and Lorenzini, in [5] and [6], address
the Hadamard products of linear varieties not necessarily in general position.
Moreover, they show that the Hadamard product of two generic linear va-
rieties V and W is projectively equivalent to a Segre embedding and that
the Hilbert function of the Hadamard product V � W of two varieties, with
dim(V ),dim(W ) ≤ 1, is the product of the Hilbert functions of the original
varieties V and W .

An important result contained in [8] concerns the construction of star
configurations of points, via Hadamard product. This construction found a
generalization in [10] where the authors introduce a new construction using
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the Hadamard product to present star configurations of codimension c of P
n

and which they called Hadamard star configurations. Successively, the first
author and Calussi introduced a more general type of Hadamard star con-
figuration; any star configuration constructed by their approach is called a
weak Hadamard star configuration. In [1] they classify weak Hadamard star
configurations and, in the case c = n, they investigate the existence of a
(weak) Hadamard star configuration which is apolar to the generic homoge-
neous polynomial of degree d. The use of Hadamard products in this context
permits a complete control both in the coordinates of the points forming the
star configuration and both in the equations of the hyperplanes involved on
it. This fact leads to the question if other interesting set of points can be con-
structed by Hadamard product. Recent results in this direction can be found
in [3], where the second author along with Capresi and Carrucoli built Goren-
stein sets of points in P

3, with given h−vector, by creating, via Hadamard
products, a stick figure of lines to which they apply the results of Migliore
and Nagel [21], and also in [9] where the third author along with Carlini,
Catalisano and Favacchio found a relation between star configurations where
all the hyperplanes are osculating to the same rational normal curve (contact
star configurations) and Hadamard products of linear varieties.

This paper addresses another question, proposed by the second author
during the CMO Workshop “Ordinary and Symbolic Powers of Ideals” (May
14–19, 2017, Oxaqua, Mexico) stating

Question 1.1. Is it true that for P,Q points in P
2, I(P )m � I(Q)n = I(P �

Q)m+n−1 ?

The answer of this question is given in Theorem 4.2. Successively this
result is used in Section 5 to define the so called Hadamard fat grids, which
are the result of the Hadamard product of two sets of collinear points with
given multiplicities. Finally, we compute algebraic invariants of Hadamard
fat grids, as minimal degree, minimal resolution, Waldschmidt constant and
resurgence. We also point out that the results of Sect. 5 enlarge the known
literature on the minimal graded resolution of sets of fat points in P

2 with all
the same multiplicities supported on a complete intersection (see for instance
[11,18]).

2. Preliminary Results on Join and Hadamard Products of
Ideals

Let S = K[x] = K [x0, . . . , xN ] be a polynomial ring over an algebraically
closed field. Let m = 〈x0, . . . , xN 〉 be the homogeneous irrelevant ideal.

Let I1, I2, . . . Ir be ideals in S. We introduce (N + 1)r new unknowns,
grouped in r vectors yj = (yj0, . . . , yjN ), j = 1, 2, . . . , r and we consider the
polynomial ring K[x,y] in all (N + 1)r + N + 1 variables.

Let Ij(yj) be the image of the ideal Ij in K[x,y] under the map x �→ yj .
Then the join I1 ∗ I2 ∗ · · · ∗ Ir, as defined in [22], is the elimination ideal

(I1(y1) + · · · + Ir(yr) + 〈xi − y1i − y2i − · · · − yri | i = 0, . . . , N〉)
⋂

K[x]
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and their Hadamard product I1�I2�· · ·�Ir, as defined in [8], is the elimination
ideal

(I1(y1) + · · · + Ir(yr) + 〈xi − y1iy2i · · · yri | i = 0, . . . , N〉)
⋂

K[x].

We define the r-th secant of an ideal I ⊂ K[x] to be the r-fold join I
with itself:

I∗r := I ∗ I ∗ · · · ∗ I.

Similarly we define the r-th Hadamard power of an ideal I ⊂ K[x] to be the
r-fold Hadamard product of I with itself:

I�r := I � I � · · · � I.

Remark 2.1. The Hadamard product of points in a projective space is a
coordinate-wise product as in the case of the Hadamard product of matri-
ces. Let p, q ∈ P

N be two points with coordinates [p0 : p1 : · · · : pN ] and
[q0 : q1 : · · · : qN ] respectively. If piqi 
= 0 for some i, the Hadamard product
p � q of p and q, is defined as p � q = [p0q0 : p1q1 : · · · : pNqN ]. If piqi = 0
for all i = 0, . . . , n then we say p � q is not defined. This definition extends
to the Hadamard product of varieties in the following way. Let X and Y be
two varieties in P

N . Then the Hadamard product X � Y is defined as

X � Y = {p � q : p ∈ X, q ∈ Y, p � q is defined}.

Thus the defining ideal of the Hadamard product X �Y of two varieties
X and Y , that is, the ideal I(X � Y ), equals the Hadamard product of the
ideals I(X) � I(Y ) (see [8, Remark 2.6]).

Definition 2.2. If I is a homogeneous ideal of S, the m-th symbolic power of
I is defined as

I(m) =
⋂

p∈Ass(I)

(ImSp ∩ S)

where Ass(I) denotes the set of the associated primes of I. If I is a radical
ideal then I(m) =

⋂
p∈Ass(I) pm.

In this paper we will always deal with ideals of fat points. Given distinct
points p1, . . . , ps ∈ P

N and non-negative integers mi (not all 0), let Z =
m1p1 + · · · + msps denote the scheme (called a set of fat points) defined
by the ideal IZ =

⋂s
i=1 I(Pi)mi , where I(Pi) is the ideal generated by all

homogeneous polynomials vanishing at Pi. When all the mi are equal, we say
that Z is a homogeneous set of fat points. For ideals of this type, the m-th
symbolic power can be simply defined as I

(m)
Z = ImZ =

⋂s
i=1 I(Pi)mmi .

If Im is the regular power of an ideal I, then there is clearly a contain-
ment Im ⊆ I(m) and indeed, for 0 
= I � R, Ir ⊆ I(m) holds if and only if
r ≥ m [2, Lemma 8.1.4]. A much more difficult problem is to determine when
there are containments of the form I(m) ⊆ Ir. The results of [12] and [20]
show that I(m) ⊆ Ir holds whenever m ≥ Nr, where N is the codimension
of the ideal.
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As a stepping stone, the second author and Harbourne [4] introduce an
asymptotic quantity which we refer to as the resurgence, namely

ρ(I) = sup{m/r : I(m) 
⊆ Ir}.

In particular, if m > ρ(I)r, then one is guaranteed that I(m) ⊆ Ir. There are
still, however, very few cases for which the actual value of ρ(I) is known, and
they are almost all cases for which ρ(I) = 1. For example, by Macaulay’s un-
mixedness theorem it follows that ρ(I) = 1 when I is a complete intersection
(see Proposition 2.4). And if I is a monomial ideal, it is sometimes possible
to compute ρ(I) directly. In this paper we will show that if I is the defining
ideal of a Hadamard fat grid, ρ(I) = 1 even if I is a not complete intersection
(see Proposition 5.18 and Corollary 5.19).

We recall some results which will be useful for the rest of the paper.

Proposition 2.3. Let I be a radical ideal in a polynomial ring over an alge-
braically closed field. Then I(t) = I ∗ mt.

Proof. See [23, Proposition 2.8]. �

Proposition 2.4. Let I be a complete intersection ideal in a polynomial ring
over an algebraically closed field. Then I(t) = It for all t ≥ 1.

Proof. See [24, Lemma 5 and Theorem 2 of Appendix 6]. �

Lemma 2.5. The Hadamard product distributes over intersections:
(

⋂

l∈L
Jl

)
� K =

⋂

l∈L
(Jl � K) .

Proof. The proof is analogous to [23, Lemma 2.6]. A polynomial f belongs
to (∩Jl) � K if and only if f(y1y2) ∈ (∩Jl) (y1) + K(y2) if and only if
f(y1y2) ∈ Jl(y1) + K(y2) for all l ∈ L if and only if f ∈ ∩ (Jl � K). �

From the previous lemma we get the following

Corollary 2.6. Let I, J be two ideals in K[x0, . . . , xN ] with primary decompo-
sition respectively I = I1 ∩ I2 ∩ · · · ∩ Is and J = J1 ∩ J2 ∩ · · · ∩ Jt, then

I � J =
⋂

1 ≤ i ≤ s
1 ≤ j ≤ t

Ii � Js. (1)

Remark 2.7. The right-hand term in (1) is not in general a minimal primary
decomposition of I �J since it can contain some redundant term. As a matter
of fact consider, for example, the ideals in K[x0, x1, x2]

I = 〈5x0 − x1 − x2, 6x2
1 − 13x1x2 + 6x2

2〉
J = 〈5x0 − 4x1 − 3x2, 16x2

1 − 26x1x2 + 9x2
2〉

with primary decompositions

I = I1 ∩ I2 = 〈3x1 − 2x2, x0 − 1
5x1 − 1

5x2〉 ∩ 〈2x1 − 3x2, x0 − 1
5x1 − 1

5x2〉
J = J1 ∩ J2 = 〈2x1 − x2, x0 − 4

5x1 − 3
5x2〉 ∩ 〈8x1 − 9x2, x0 − 4

5x1 − 3
5x2〉.
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The primary decomposition of I � J is

〈16x1 − 27x2, 4x0 − 3x2〉 ∩ 〈4x1 − 3x2, 2x0 − x2〉 ∩ 〈3x1 − x2, 3x0 − x2〉
which does not have four ideals as expected. This is due to the fact that
I2 � J1 = I1 � J2.

Lemma 2.8. One has mm ∗ mn = mm+n−1.

Proof. Let u = (u0, . . . , uN ) an integer vector and denote by

mu = 〈xui
i : ui > 0〉 .

We decompose mm = ∩um
u and mn = ∩vm

v. Then the proof follows from
[22, Lemma 2.3] and [23, Lemma 2.6]. �

Definition 2.9. Let Hi ⊂ P
n, i = 0, . . . , n, be the hyperplane xi = 0 and set

Δi =
⋃

0≤j1<...<jn−i≤n

Hj1 ∩ . . . ∩ Hjn−i
.

In other words, Δi is the i−dimensional variety of points having at most
i+1 non-zero coordinates. Thus Δ0 is the set of coordinates points and Δn−1

is the union of the coordinate hyperplanes. Note that elements of Δi have at
least n − i zero coordinates. We have the following chain of inclusions:

Δ0 = {[1 : 0 : · · · : 0], . . . , [0 : · · · : 0 : 1]} ⊂ Δ1 ⊂ . . . ⊂ Δn−1 ⊂ Δn = P
n.

(2)

Let R be the ring K[x0, x1, . . . , xn]. Given a vector of non-negative in-
tegers I = (i0, . . . , in), we denote by XI the monomial xi0

0 xi1
1 · · · xin

n and by
|I| = i0+· · ·+in. Similarly, if P is a point of P

n with coordinates [p0 : p1 : · · · :
pn], we denote by P I the monomial XI evaluated in P , that is pi0

0 pi1
1 · · · pin

n .
Moreover, if P is a point of P

n\Δn−1 with coordinates [p0 : p1 : · · · : pn], we
denote by 1

P the point with coordinates [ 1
p0

: 1
p1

: · · · : 1
pn

].

Definition 2.10. Let f ∈ K[x0, x1, . . . , xn] be a homogenous polynomial, of
degree d, of the form f =

∑
|I|=d aIX

I and consider a point P ∈ P
n \ Δn−1.

The Hadamard transformation of f by P is the polynomial

f�P =
∑

|I|=d

aI

P I
XI . (3)

Theorem 2.11. Let I be an ideal in K[x0, . . . , xn] and consider a point P ∈
P

n \ Δn−1. If f1, . . . , fs ⊂ K[x0, . . . , xn] is a generating set for I, that is
I = 〈f1, . . . , fs〉, then f�P

1 , . . . , f�P
s is a generating set for I(P ) � I.

Moreover, if f1, . . . , fs is a Gröbner basis for I, then f�P
1 , . . . , f�P

s is a
Gröbner basis for I(P ) � I.

Proof. See [7, Theorem 3.5]. �
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3. Preliminary Results on ACM Sets of Fat Points in P
1 × P

1

In this section we recall some known results and a standard technique used
for sets of fat points in P

1×P
1 since they are the main tools to find a minimal

graded free resolution of special sets of fat points in P
2 called Hadamard fat

grids (see Definition 5.1 in Sect. 5). Indeed, we prove that a Hadamard fat
grid inherits some properties from an arithmetically Cohen–Macaulay set of
a fat points in P

1 ×P
1, such as that its defining ideal is generated by product

of linear forms. We should refer the reader to Chapters 4 and 6 in [17] for
more details on arithmetically Cohen–Macaulay sets of fat points in P

1 × P
1.

Let Z be a finite set of points in P
1 × P

1, and let R/IZ denote the
associated N

2-graded coordinate ring. When R/IZ is Cohen–Macaulay, that
is depth R/IZ = dimR/IZ = 2, then Z is called an arithmetically Cohen–
Macaulay (ACM for short) set of points.

Remark 3.1. For the ease of the reader, we now recall a standard argument
that relates sets of (fat) points in P

1 × · · · × P
1 (n-times) and sets of (fat)

points in P
2n−1 in the case n = 2 (see for more details Section 3, Theorem

3.2, Corollaries 3.3 and 3.4 in [13] and, for instance, also [14–16]). We observe
that in our case in P

1 a point is also a hyperplane, and this allows us to use
hyperplane sections and related constructions for our study.

Let R = K[x1,0, x1,1, x2,0, x2,1] = K[P1 × P
1] be the coordinate ring for

P
1×P

1, which we shall also view as the coordinate ring for P
3. Let Z ⊂ P

1×P
1

be a finite set of fat points. Since IZ defines both a set of fat points in P
1×P

1

and a union of linear varieties (fat lines) in P
3, by abuse of notation, we denote

by Z also the subvariety of P
3 defined by this ideal.

In P
1 × P

1 a complete intersection of type (r, 0) and (0, s), or simply an
(r, s)-grid, can be viewed as 2 families of linear forms, and we denote by A1,i

the linear combinations of x1,0 and x1,1, and by A2,i the linear combinations
of x2,0 and x2,1. Set

|{A1,i | A1,i ∩ X 
= ∅}| = r
|{A2,i | A2,i ∩ X 
= ∅}| = s.

Let T be the polynomial ring in r+s variables a1,1, . . . , a1,r, a2,1, . . . , a2,s.
We form the monomial ideal in T given by the intersection of ideals of the
form (a1,i, a2,j)mij corresponding to the components of X. This intersection
defines a height 2 monomial ideal, J ⊂ T . Following Theorem 2 in [13], a set
of fat points Z in P

1 × P
1 is ACM if and only if J ⊂ T is CM, where T is the

ring previously defined. Since Z can be viewed as an ACM set of lines in P
3

(it is 1-dimensional) we can still find a suitable hyperplane section in order
to get a set X of points in P

2 that shares the same Betti numbers as Z. In
particular, with the above described method, we will show that a Hadamard
fat grid in P

2 share the same graded Betti numbers as an ACM set of fat
points in P

1 × P
1 (see Theorem 5.6).

In the sequel, it useful to consider in Z × Z, resp. in N × · · · × N, the
partial (lexicographic) ordering induced by the usual one in Z, resp. in N; we
will denote it by “≤”.
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Consider an (r, s)-grid, and let M = {m1, . . . ,mr}, N = {n1, . . . , ns}
be two sets of non-negative integers with m1 ≤ m2 ≤ · · · ≤ mr and n1 ≤
n2 ≤ · · · ≤ ns. We have

max
i,j

{mi + nj − 1} = mr + ns − 1,

max
i

{mi + nj − 1} = mr + nj − 1,

max
j

{mi + nj − 1} = mi + ns − 1.

For each i = 1, . . . , r and j = 1, . . . , s, set

tij(h) = (mi + nj − 1 − h)+ = max{0,mi + nj − 1 − h} for h ∈ N
0.

For i = 1 . . . , r, let S be the set of the s-tuples of type

S = {(ti1(h), ti2(h), . . . , tis(h))} . (4)

The next Lemma 3.2 shows that the set S of tuples associated to M
and N is totally ordered. It will be useful to find the graded Betti numbers
of a Hadamard fat grid (see Sect. 5).

We have

Lemma 3.2. For i = 1 . . . , r and for h = 0 . . . ,m1 + ns − 2, the set S is a
totally ordered set of tuples with usual lex ordering.

Proof. Let r = 1. From construction, it is maxj{m1 +nj − 1} = m1 +ns − 1.
For h = 0 . . . ,m1 + ns − 2, we have

S = {(t11(h), t12(h), . . . , t1s(h))}
= {((m1 + n1 − 1 − h)+, (m1 + n2 − 1 − h)+, . . . , (m1 + ns − 1 − h)+, )}
= {(m1 + n1 − 1,m1 + n2 − 1, . . . , m1 + ns − 1),

(m1 + n1 − 2,m1 + n2 − 2, . . . ,m1 + ns − 2),

. . . , (m1 + n1 − 1 − m1 − ns + 2, . . . ,m1 + ns − 1 − m1 − ns + 2)}
= {(m1 + n1 − 1,m1 + n2 − 1, . . . , m1 + ns − 1),

(m1 + n1 − 2,m1 + n2 − 2, . . . ,m1 + ns − 2),

. . . , ((n1 − ns + 1)+, (n2 − ns + 1)+ . . . , (1))}.

Since n1 ≤ n2 ≤ · · · ≤ ns, it is m1+nj1 −1 ≤ m1+nj2 −1 for all j1 
= j2,
and since n1 ≤ ns we have n1 − ns + 1 ≤ 0 if n1 < ns and n1 − ns + 1 = 1 if
n1 = ns. Hence S is totally ordered for r = 1.

Suppose r > 1 and the lemma true for all the sets S ′ of s-tuples with
r′ < r and prove it for S. Let 1 ≤ k ≤ r an integer such that mk + nj1 − 1 ≤
mk + nj2 − 1 for all j1 
= j2. From our construction, we have that k = r.

Define for i = 1 . . . , r

S ′ ={(t′i1(h), t′i2(h), . . . , t′is(h))}
where

t′ij(h) =

{
(mi + nj − 1 − h)+ if i 
= k

(mk + nj − 2 − h)+ if i = k.
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By induction S ′ is totally ordered. We observe that

S =S ′ ∪ {((mk+n1−1 − h)+, (mk+n2 − 1 − h)+, . . . , (mk+ns − 1 − h)+)}
and by construction and for all i = 1 . . . , r = k, we have

((mi + n1 − 1 − h)+, . . . , (mi + ns − 1 − h)+) ≤ ((mk + n1 − 1 − h)+, . . . ,

(mk + ns − 1 − h)+).

Thus the set S is totally ordered. �

For each integer 0 ≤ h ≤ mi + ns − 2, with i = 1, . . . , r we define

ai,h :=
s∑

e=1

(mi + ne − 1 − h)+ where (n)+ := max{n, 0}.

Define

ÃZ := (a1,0, . . . , a1,m1+ns−2, a2,0, . . . , a2,m2+ns−2, . . . , ar,0, . . . , ar,mr+ns−2).

Finally, we define AZ to be the set of (m1 +ns −1+ · · ·+mr +ns −1)-tuples,
that is, the set of (

∑r
i=1 mi + rns − r)-tuples that one gets by rearranging

the elements of ÃZ in decreasing order.
We now recall how to compute the graded Betti numbers of I(Z) when

Z is an ACM set of fat points in P
1×P

1. Let AZ = (α1, . . . , αm) be the tuple
associated to Z. Define the following two sets from AZ :

CZ := {(m, 0), (0, α1)} ∪ {(i − 1, αi) | αi − αi−1 < 0}
VZ := {(m,αm)} ∪ {(i − 1, αi−1) | αi − αi−1 < 0}

where we take α−1 = 0. With this notation, we get that a minimal bigraded
free resolution of an ACM set of points in P

1 × P
1 is given by

Theorem 3.3. [17, Theorem 6.27] Suppose that Z is an ACM set of fat points
in P

1 × P
1 with AZ = (α1, . . . , αm). Let CZ and VZ be constructed from AZ

as above. Then a bigraded minimal free resolution of I(Z) is given by

0 −→
⊕

(v1,v2)∈VZ

R(−v1,−v2) −→
⊕

(c1,c2)∈CZ

R(−c1,−c2) −→ I(Z) −→ 0.

The following result will be one of the main tool that allows us to find
that the Betti numbers of a given Hadamard fat grid in P

2 whose support is
a complete intersection.

Proposition 3.4. Let Z be a set of fat points in P
1 × P

1 whose support is a
complete intersection of type (r, s) (or (r, s)-grid)) and whose multiplicities
are of type mi + nj − 1 for i = 1, . . . , r and j = 1, . . . , s. Then Z is ACM.

Proof. From Theorem 6.21 in [17] and Lemma 3.2, we get the conclusion.
�
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4. Hadamard Product of Symbolic Powers of Ideals of Points

We now focus our attention on the Hadamard product I(P )m � I(Q)n, where
P,Q ∈ P

2.
Hence, we work on the polynomial ring S = K[x] = K [x0, x1, x2], over

an algebraically closed field and we still denote by m = 〈x0, x1, x2〉 the ir-
relevant ideal. Since we will only consider two ideals at the time we slighlty
abouse our notation with respect to our original definition. More precisely
we will use the extra variables y = (y0, y1, y2) and z = (z0, z1, z2) for the
Hadamard product of the ideals I and J :

I � J = (I(y) + J(z) + 〈xi − yizi | i = 0, 1, 2〉)
⋂

K[x].

We set H = (x0 − y0z0, x1 − y1z1, x2 − y2z2).
We start with some preliminary results.

Lemma 4.1. Let P = [p0 : p1 : p2] be a point, then
(i) if P ∈ P

2 \ Δ1, then I(P ) � mt = mt,
(ii) if P ∈ Δ1 then mt ⊆ I(P ) � mt.

Proof. For i) we can use Theorem 2.11. Hence the generators of I(P ) � mt

are the Hadamard transformations, with respect to P , of the monomials in
mt. According to Definition 2.10, such transformations of the monomials in
mt are the same monomials scaled by a constant P I , hence I(P ) � mt = mt.

For ii) we can assume, without loss of generality, that p0 = 0

I(P ) � mt = (I(P )(y) + m(z)n + (xi − yizi | i = 0, 1, 2))
⋂

K[x]

=
(
(y0, p2y1 − p1y2)+(z0, z1, z2)

t+(xi − yizi | i = 0, 1, 2)
) ⋂

K[x]

= (x0) + (x1, x2)t

where the last equality follows from the fact that y0 annihilates y0z0. Hence
mt ⊆ I(P ) � mt. Similarly, if the point P has p0 = p1 = 0 one has

I(P ) � mt = (I(P )(y) + m(z)n + (xi − yizi | i = 0, 1, 2))
⋂

K[x]

=
(
(y0, y1) + (z0, z1, z2)

t + (xi − yizi | i = 0, 1, 2)
)⋂

K[x]

= (x0, x1) + (xt
2) ⊃ mt.

�
The following result gives a positive answers to Question 1.1 when the

points P and Q have non-zero coordinates.

Theorem 4.2. Let P and Q be two points in P
2 \ Δ1. Then for m,n ≥ 1 one

has I(P )m � I(Q)n = I(P � Q)m+n−1.

Proof. From Proposition 2.3 we know that

I(P )m = I(P ) ∗ mm and I(Q)n = I(Q) ∗ mn. (5)

Thus, I(P )m�I(Q)n = [I(P ) ∗ mm]�[I(Q) ∗ mn] can be computed by applying
successively the definition of join of two ideals and of Hadamard products of
ideals.
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For this aim, we define

Hx = (x0 − x′
0x

′′
0 , x1 − x′

1x
′′
1 , x2 − x′

2x
′′
2),

Hy = (x′
0 − y′

0 − y′′
0 , x′

1 − y′
1 − y′′

1 , x′
2 − y′

2 − y′′
2 ),

Hz = (x′′
0 − z′

0 − z′′
0 , x′′

1 − z′
1 − z′′

1 , x′′
2 − z′

2 − z′′
2 )

Ĥ =
(
x0 − (y′

0 + y′′
0 )(z′

0 + z′′
0 ), x1 − (y′

1 + y′′
1 )(z′

1 + z′′
1 ), x2

−(y′
2 + y′′

2 )(z′
2 + z′′

2 )
)
.

Hence we have the following sequence of equalities

I(P )m � I(Q)n = [I(P ) ∗ mm] � [I(Q) ∗ mn]

= ([I(P ) ∗ mm] (x′) + [I(Q) ∗ mn] (x′′) + Hx)
⋂

K[x]

=
([

(I(P )(y′) + mm(y′′) + Hy)
⋂

K[x′]
]

+
[
(I(Q)(z′) + mn(z′′) + Hz)

⋂
K[x′′]

]
+ H

)⋂
K[x]

=
(
I(P )(y′) + mm(y′′) + I(Q)(z′) + mn(z′′) + Ĥ

)⋂
K[x]

=
(
I(P )(y′) + I(Q)(z′) + mm(y′′) + mn(z′′) + Ĥ

)⋂
K[x].

Denote by Ĩ the ideal in the last equality in the previous formula, i.e.

Ĩ = I(P )(y′) + I(Q)(z′) + mm(y′′) + mn(z′′) + Ĥ.

Since the elements in Ĥ can be seen as

xi = (y′
i + y′′

i )(z′
i + z′′

i ) = y′
iz

′
i + y′

iz
′′
i + z′

iy
′′
i + y′′

i z′′
i (6)

we can make the following substitution of variables in the ideal Ĥ
k
(1)
i = y′

iz
′
i,

k
(2)
i = y′

iz
′′
i ,

k
(3)
i = z′

iy
′′
i ,

k
(4)
i = y′′

i z′′
i ,

xi = k
(1)
i + k

(2)
i + k

(3)
i + k

(4)
i

with i = 0, 1, 2.
By definition, k

(1)
i = y′

iz
′
i are involved in I(P ) � I(Q) = I(P � Q). Note

that k
(2)
i = y′

iz
′′
i are involved in I(P ) � mn. By Lemma 4.1 (i), we know that

I(P ) � mn = mn. Therefore we can write k̃
(2)
i = z′′

i . Similarly k
(3)
i = z′

iy
′′
i are

involved I(Q) � mm. Using the same lemma we have that I(Q) � mm = mm,
hence k̃

(3)
i = y′′

i . Now we have

xi = k
(1)
i + k̃

(2)
i + k̃

(3)
i + k

(4)
i . (7)

Let f be a form of degree d in Ĩ. If
∏ (

k̃
(2)
i

)ri ∈ mn(z′′) then any term of

f containing
∏ (

k̃
(2)
i

)ri

will be canceled. Hence, any term of f containing
∏(

y′′
i

riz′′
i

ti
)

will be canceled as well. Similarly, for any term of f containing
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∏(
k̃
(3)
i

)ti ∈ mm(y′′) it follows that any term of f containing
∏ (

y′′
i

riz′′
i

ti
)

will be annihilated. Therefore, we conclude that any term of a form f of

degree d in Ĩ containing
∏ (

k
(4)
i

)di

is zero. Hence, we can cancel k
(4)
i from

(7). We have that xi = k
(1)
i + k̃

(2)
i + k̃

(3)
i . Let

H̃ =
(
x0−k

(1)
0 −k̃

(2)
0 −k̃

(3)
0 , x1−k

(1)
1 − k̃

(2)
1 − k̃

(3)
1 , x2 − k

(1)
2 − k̃

(2)
2 − k̃

(3)
2

)

H̃x′ =
(
x′
0 − k

(1)
0 , x′

1 − k
(1)
1 , x′

2 − k
(1)
2

)

H̃x′′ =
(
x′′
0 − k̃

(2)
0 − k̃

(3)
0 , x′′

1 − k̃
(2)
1 − k̃

(3)
1 , x′′

2 − k̃
(2)
2 − k̃

(3)
2

)

H̃x = (x0 − x′′
0 − x′

0, x1 − x′′
1 − x′

1, x2 − x′′
2 − x′

2) .

Therefore,

Ĩ ∩ K[x] =
(
I(P )(y′) + I(Q)(z′) + mm(y′′) + mn(z′′) + H̃

) ⋂
K[x]

=
([(

I(P )(y′) + I(Q)(z′) + H̃x′
) ⋂

K[x′]
]

+
[(

mm(y′′) + mn(z′′) + H̃x′′
) ⋂

K[x′′]
]

+ H̃
) ⋂

K[x]

=
(
[I(P ) � I(Q)] (x′) + [mm ∗ mn] (x′′) + H̃x

)⋂
K[x]

= [I(P ) � I(Q)] ∗ mm+n−1

= I(P � Q) ∗ mm+n−1

and, by Proposition 2.3, the last ideal is equal to I(P � Q)m+n−1 and the
theorem is proved. �
Remark 4.3. If we remove the condition P,Q ∈ P

2 \ Δ1 in Theorem 4.2 we
are able to prove only the following inclusion

I(P )m � I(Q)n ⊃ I(P � Q)m+n−1.

To prove this inequality is enough to apply the proof of Theorem 4.2 using
part ii) of Lemma 4.1.

We observe that if P �Q is defined, and m = n = 1 then it follows from
the definition of Hadamard product that I(P ) � I(Q) = I(P � Q), and hence
Question 1.1 has an affirmative answer. Theorem 4.2 shows that Question
1.1 has an affirmative answer, when we consider points which are not in the
coordinates lines. When one of the point is taken in a coordinate line, the
formula in Question 1.1 is no more valid, as stated in the following:

Proposition 4.4. Let P and Q be two points in P
2.

(a) If P ∈ P
2\Δ1 and P�Q is defined then for m = 1 and n ≥ 1 Question 1.1

has an affirmative answer.
(b) If P,Q ∈ Δ1\Δ0 then Question 1.1 has no affirmative answer but for

m = n = 1.

Proof. (a) Without loss of generality let P = [p0 : p1 : p2] with pi 
= 0 and
assume that Q ∈ Δ0 has exactly one non-zero coordinate, that is Q = [q0 :
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0 : 0]. Assume that m = 1. Since P � Q = Q, therefore we only need to show
that I(P ) � I(Q)n = I(Q)n. We have that

I(P ) � I(Q)n = (p2x1 − p1x2, p2x0 − p0x2) � (x1, x2)n

= ((p2y1 − p1y2, p2y0 − p2y2) + (z1, z2)n + H)
⋂

K[x]

= (x1, x2)n = I(Q)n.

Let m > 1. Since xn
1 /∈ I(Q)n+m−1 and we know that xn

1 ∈ I(P )m�I(Q)n

therefore I(Q)n+m−1 
= I(P )m � I(Q)n.
Note that in general we have

I(P )m � I(Q)n = (p2x1 − p1x2, p2x0 − p0x2)m � (x1, x2)n

= ((p2y1 − p1y2, p2y0 − p2y2)m + (z1, z2)n + H)
⋂

K[x]

= (x1, x2)n = I(Q)n = I(P � Q)n.

Now let Q = [q0 : q1 : 0] ∈ Δ1\Δ0 and m > 1. We have that

I(P )m � I(Q)n = (p2x1 − p1x2, p2x0 − p0x2)m � (q1x0 − q0x1, x2)n

= ((p2y1−p1y2, p2y0−p0y2)m+(q1z0−q0z1, z2)n + H)
⋂

K[x]

= (xn
2 ) + (· · · ).

Since xn
2 /∈ I(P � Q)m+n−1 therefore we have that I(P � Q)m+n−1 
= I(P )m �

I(Q)n.
If m = 1 we have:

I(P ) � I(Q)n = (p2x1 − p1x2, p2x0 − p0x2) � (q1x0 − q0x1, x2)n

= ((p2y1 − p1y2, p2y0 − p0y2) + (q1z0 − q0z1, z2)n + H)
⋂

K[x]

= (xn
2 ) + (xn−1

2 (p1q1x0 − p0q0x1)) + · · · + (p1q1x0 − p0q0x1)n

= (x2, (p1q1x0 − p0q0x1))n = I(P � Q)n.

(b) Let m ≤ n. Without loos of generality assume that P = [p0 : 0 : p2]
and Q = [q0 : q1 : 0]. We have that I(P � Q) = (x1, x2).

I(P )m � I(Q)n = (p2x0 − p0x2, x1)m � (q1x0 − q0x1, x2)n

= ((p2y0 − p0y2, y1)m + (q1z0 − q0z1, z2)n + H)
⋂

K[x]

= (xm
1 , xn

2 ) 
⊂ (x1, x2)n+m−1 = I(P � Q)n+m−1.

Since (x1, x2)n+m−1 ⊂ (xm
1 , xn

2 ) ⊂ (x1, x2)m therefore I(P � Q)n+m−1 ⊂
I(P )m � I(Q)n ⊂ I(P � Q)m.

Now again without loss of generality assume that P = [p0 : p1 : 0]
and Q = [q0 : q1 : 0]. One can see that xm

2 ∈ I(P )m � I(Q)n. Since xm
2 
∈

I(P �Q)m+n−1 therefore the equality fails. Similarly one can show that I(P �
Q)n+m−1 ⊂ I(P )m � I(Q)n ⊂ I(P � Q)m.

�
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5. Hadamard Fat Grids

In this section we introduce and study a particular set of fat points in P
2,

that we call Hadamard fat grid, whose support is a complete intersection. In
particular, in Theorem 5.7 we describe a graded minimal free resolution of a
Hadamard fat grid using the results from Sect. 3, enlarging the known liter-
ature on the minimal graded resolution of homogeneous sets of fat points in
P
2 supported on a complete intersection. We also compute the Waldschmidt

constant and the resurgence of the ideal defining a Hadamard fat grid (see
Proposition 5.17 and Corollary 5.19).

Let PM = {P1, . . . , Pr} and QN = {Q1, . . . , Qs} be two sets of collinear
points in P

2 \ Δ1 with assigned positive multiplicities, respectively, M =
{m1, . . . ,mr} and N = {n1, . . . , ns}. In terms of ideals we have

I(PM ) = I(P1)m1 ∩ · · · ∩ I(Pr)mr and I(QN ) = I(Q1)n1 ∩ · · · ∩ I(Qs)ns .

Definition 5.1. Assume that Pi � Qj 
= Pk � Ql for all 1 ≤ i < k ≤ r and
1 ≤ j < l ≤ s. Then the set of fat points defined by I(PM ) � I(QN ), is called
a Hadamard fat grid and it is denoted by HFG(PM , QN ).

According to Theorem 4.2 and Corollary 2.6, the ideal of HFG(PM , QN )
is

⋂

i∈[r]

⋂

j∈[s]

I(Pi � Qj)mi+nj−1.

By Lemma 3.1 in [8], we know that the Hadamard product Z � S of a
collinear set Z by a point S ∈ P

2\Δ1 is still a collinear set lying on the line
S � L, where Z ⊂ L. Hence, if we denote by �P and �Q the lines in which the
sets PM and QN lie respectively, one has

Pi � Qj ∈ �P � Qj for all i = 1, . . . , r and for all j = 1, . . . , s.

And similarly,

Pi � Qj ∈ Pi � �Q for all j = 1, . . . , s and for all i = 1, . . . , r.

This shows that HFG(PM , QN ) has the structure of a planar grid. Specifi-
cally, it is a set of fat points whose support is a complete intersection of type
(r, s) in P

2.

Example 5.2. Figure 1 shows a Hadamard fat grid for r = 4 and s = 5;
Fig. 1a shows the geometric structure, with all lines involved in the grid,
while in Fig. 1b we represent the multiplicities of each point of the grid.

Remark 5.3. From Fig. 1b we see that the multiplicities of the points in the
grid have a specific behaviour. If we assume that mi ≤ mi+1, for i = 1, . . . , r−
1 and nj ≤ nj+1 for each j = 1, . . . , s−1, then the multiplicities of Pi�Qj and
Pi � Qj+1 differ of nj+1 − nj for all i = 1, . . . , r. Similarly the multiplicities
of Pi � Qj and Pi+1 � Qj differ of mi+1 − mi for all j = 1, . . . , s. Hence the
Hadamard fat grids are a subclass of all possible fat grids in the plane.
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Figure 1. HFG(PM , QN )

From the rest of the paper we assume that s ≥ r and the multiplicities
are ordered in non-decreasing order, that is mi ≤ mi+1, for i = 1, . . . , r − 1
and nj ≤ nj+1 for each j = 1, . . . , s − 1. We denote by I(PM , QN ) the ideal
of HFG(PM , QN ).

To simplify the notation, set mij = mi + nj − 1 for i = 1, . . . , r and
j = 1, . . . , s.

Lemma 5.4. Let Z be a set of fat points in P
1×P

1 whose support is a complete
intersection of type (r, s) (or (r, s)-grid)) and whose multiplicities mij are the
same as a Hadamard Fat grid HFG(PM , QN ). Then Z share the graded same
Betti numbers as a set of fat points Y in P

2.

Proof. From Proposition 3.4, Z is an ACM set of fat points in P
1 × P

1 and
from Remark 3.1, its ideal IZ defines a set of fat lines in P

3, and it still
continues to be ACM and 1-dimensional. Hence, after a “proper hyperplane
section” we get a set of fat points Y in P

2 that has the same graded Betti
numbers as Z. That is, if � is a proper hyperplane section, we have

R/IZ
∼= R + (�)

(�)
/
IZ + (�)

(�)
∼= K[P2]/IY

where the former is ACM. �

Lemma 5.5. Let X and X ′ be two sets of fat points in P
2 whose support is an

(r, s) − grid and with the same multiplicities mij as a HFG(PM , QN ). Then
X and X ′ share the same graded Betti numbers.

Proof. Following again the same method as Theorem 3.2 in [13], Remark 3.1
and Lemma 5.4, we construct the polynomial ring T in the r+s new variables
and form a height 2 monomial ideal J in T given by the intersection of ideals of
the form (a1,i, a2,j)mij corresponding to the components of X. Thus, starting
from the scheme defined by the ideal J , after suitable sequences of proper
hyperplane sections we can construct a set (fat) of lines in P

3 that corresponds
to an ACM set of fat points Z in P

1 × P
1 and since, from Proposition 3.4,

Z is ACM then, from Theorem 3.2 in [13], T/J is CM. Analogously, we
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can construct a set of lines in P
3 that corresponds to an ACM set of fat

points Z ′ in P
1 × P

1 and since Z ′ is ACM then T/J is CM. Again, starting
from the scheme defined by the ideal J , after two other suitable sequences of
hyperplane sections, we get two sets of fat points X and X ′ in P

2 that both
share the same graded Betti numbers as Z and Z ′ ( and as J). �

We show the main two results of this section.

Theorem 5.6. Let X be a Hadamard fat grid HFG(PM , QN ) in P
2 and Z

be an ACM set of fat points in P
1 × P

1 supported on an (r, s)-grid with the
same multiplicities mij as the Hadamard fat grid X. Then X and Z share
the same Betti numbers.

Proof. From Lemma 5.4 we can construct a set of fat points Y an (r, s)-
grid in P

2 that preserves the same multiplicities on mij and the same Betti
numbers as Z. From Lemma 5.5, X and Y (and Z) share the graded same
Betti numbers.

�

We now are able to compute a minimal free graded resolution of a
Hadamard fat grid. We will use the results from previous Sect. 3, to prove
the main result of this section.

Theorem 5.7. Let X = HFG(PM , QN ) be a Hadamard fat grid in P
2. Then

a graded minimal free resolution of I(X) is given by

0 −→
⊕

(v1,v2)∈VX

R(−v1 − v2) −→
⊕

(c1,c2)∈CX

R(−c1 − c2) −→ I(X) −→ 0.

Proof. We can construct AX = (α1, . . . , αm) associated to X using the
method described as Sect. 3. Applying Theorems 3.3 and 5.6, we get the
conclusion. �

In the sequel we adopt the following notation:

Notation 5.8. Let I(PM , QN ) be the ideal of a Hadamard fat grid
HFG(PM , QN ) where M = {m1, . . . ,mr} and N = {n1, . . . , ns} with r ≤ s,
mi ≤ mi+1, for i = 1, . . . , r − 1 and nj ≤ nj+1 for each j = 1, . . . , s − 1. Set
ai = mr−i+1 + ns − 1 and bj = ns−j+1 − ns for i = 1, . . . , r, j = 1, . . . , s.
Let Hi denotes the horizontal lines defining �Q � Pr−i+1, and Vj denotes the
vertical lines defining �P � Qs−j+1.

From Corollary 3.4 in [13] and Theorem 5.7, we have that

Corollary 5.9. If X is a Hadamard fat grid X = HFG(PM , QN ) in P
2, then

its homogeneous ideal is minimally generated by products of linear forms of
type Hi and Vj.

Theorem 5.10. A minimal set of generators of the ideal I(PM , QN ) consists
of mr + ns generators of types Ha1−k

1 · · · Har−k
r · V b1+k

1 · · · V bs+k
s for k =
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0, . . . ,mr +ns −1 where we adopt the convention that Hai−k
i = 1 if ai −k ≤ 0

and V
bj+k
j = 1 if bj + k ≤ 0. That is, a minimal set of generators is of type

Hmr+ns−1
1 H

mr−1+ns−1
2 · · · Hm1+ns−1

r · V 0
1 V

ns−1−ns

2 · · · V n2−ns
s−1 V n1−ns

s ,

Hmr+ns−2
1 H

mr−1+ns−2
2 · · · Hm1+ns−2

r · V 1
1 V

ns−1−ns+1
2 · · · V n2−ns+1

s−1 V n1−ns+1
s ,

...

H0
1H

mr−1−mr

2 · · · Hm1−mr
r · V mr+ns−1

1 · · · V n2+mr−1
s−1 V n1+mr−1

s .

(8)

Proof. We apply Theorems 3.3, 5.6, 5.7 and Corollary 5.9. �

We will show the above results with an example.

Example 5.11. Let X = HFG(PM , QN ) be a Hadamard fat grid where M =
(2, 3, 3) and N = (2, 3, 4, 4) as in Fig. 2.

In this case,

AX = (21, 21, 17, 17, 17, 13, 13, 13, 9, 9, 9, 5, 5, 5, 2, 2, 2),
VX = {(2, 21), (5, 17), (8, 13), (11, 9), (14, 5), (17, 2)}

and

CX = {(0, 21), (2, 17), (5, 13), (8, 9), (11, 5), (14, 2), (17, 0)}.

Then, using Theorem 5.7, a graded minimal free resolution of I(X) is given
by

0 −→ R(−23) ⊕ R(−22) ⊕ R(−21) ⊕ R(−20) ⊕ R2(−19) −→
R(−21) ⊕ R(−19) ⊕ R(−18) ⊕ R2(−17) ⊕ R2(−16) −→ I(X) −→ 0

And using Theorem 5.10, a minimal set of seven generators is given by

H6
1H6

2H5
3

H5
1H5

2H4
3 · V 1

1 V 1
2

H4
1H4

2H3
3 · V 2

1 V 2
2 V 1

3

H3
1H3

2H2
3 · V 3

1 V 3
2 V 2

3 V 1
4

H2
1H2

2H1
3 · V 4

1 V 4
2 V 3

3 V 2
4

H1
1H1

2 · V 5
1 V 5

2 V 4
3 V 3

4

V 6
1 V 6

2 V 5
3 V 4

4 .

(9)

We are able to compute the Waldschmidt constant and the resurgence
of a Hadamard fat grid I(PM , QN ). We recall the following

Definition 5.12. For a given homogeneous ideal 0 
= I � K [x0, . . . , xN ], its
Waldschmidt constant α̂(I) is defined as

α̂(I) = limm→∞α(I(m))/m

where α(I) is the least degree d such that Id 
= (0).
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Figure 2. X = HFG(PM , QN ), with M = (2, 3, 3) and N = (2, 3, 4, 4)

Because of the subadditivity of α, this limit exists (see Lemma 2.3.1 of
[7]). Moreover, α̂(I) > 0 (see Lemma 2.3.2 of [7]).

We need some preliminary result.

Proposition 5.13. Let X = HFG(PM , QN ) be a Hadamard fat grid. The min-
imal degree α(I(PM , QN )) of a generator of the ideal I(PM , QN ) is given by

α(I(PM , QN )) =
r∑

i=1

mi +
r∑

i=1

ns−i+1 − r.

Proof. By Theorem 5.10, we know that the degrees of the minimal generators
of the ideal I(PM , QN ) are of type

⎧
⎨

⎩

r∑

i=1

deg Hmi+ns−t
r−i+1 +

s∑

j=1

deg V
nj−ns+t−1
s−j+1

⎫
⎬

⎭

mr+ns

t=1

,

where Hai−k
i = 1 if ai − k ≤ 0 and V

bj+k
j = 1 if bj + k ≤ 0 for k =

0, . . . ,mr + ns − 1. It means that we only consider non-negative degrees.
Since m1 ≤ m2 ≤ · · · ≤ mr, therefore

deg Hm1+ns−t
r ≤ deg Hm2+ns−t

r−1 ≤ · · · ≤ deg Hmr+ns−t
1 .

On the other hand, deg Hm1+ns−t
r > 0 for t = 1, . . . ,m1 + ns − 1. It follows

that

0 < deg Hm1+ns−t
r ≤ deg Hm2+ns−t

r−1 ≤ · · · ≤ deg Hmr+ns−t
1

∀ t = 1, . . . , m1 + ns − 1. (10)

We can have a similar argument for the other summation as follows.
Since ns ≥ ns−1 ≥ · · · ≥ ns−r+1 ≥ · · · ≥ n1, therefore

deg V n1−ns+t−1
s ≤ · · · ≤ deg V ns−r+1−ns+t−1

r ≤ · · · ≤ deg V
ns−1−ns+t−1
2
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≤ deg V ns−ns+t−1
1 .

One can also observe that deg V ns−ns+t−1
1 = 0 for t = 1. Hence for t = 1 we

have,

deg V n1−ns
s ≤ · · · ≤ deg V ns−r+1−ns

r ≤ · · · ≤ deg V
ns−1−ns

2 ≤ deg V ns−ns
1 = 0.

For t = 1, . . . ,mr + ns, let G = {g1, g2, . . . , gt} be a set of minimal
generators of I(PM , QN ). We claim that gt ≥ gns−ns−r+1 for 1 ≤ t ≤ ns −
ns−r+1.

Set α =
∑r

i=1 mi + (
∑r

i=1 ns−i+1) − r.
We observe that

α =
r∑

i=1

(mi + ns − ns + ns−r+1) +
s∑

j=1

(nj − ns + ns − ns−r+1 − 1)

=
r∑

i=1

(mi + ns−r+1) +
s∑

j=1

(nj − ns−r+1 − 1)

=
r∑

i=1

mi + rns−r+1

+ (n1 − ns−r+1 − 1) + (n2 − ns−r+1 − 1) + · · ·
+ (ns−r − ns−r+1 − 1) + (ns−r+1 − ns−r+1 − 1)

+ (ns−r+2 − ns−r+1 − 1) + · · · + (ns − ns−r+1 − 1).

Since

ns ≥ ns−1 ≥ · · · ≥ ns−r+1 ≥ ns−r ≥ · · · ≥ n1, (11)

we have

α =

r∑

i=1

mi + rns−r+1

+ (ns−r+1 − ns−r+1 − 1) + (ns−r+2 − ns−r+1 − 1) + · · · + (ns − ns−r+1 − 1)

=

r∑

i=1

mi + rns−r+1 +

r∑

i=1

ns−i+1 − rns−r+1 − r

=
r∑

i=1

mi +
r∑

i=1

ns−i+1 − r.

We also note that from (11), we have
(

s∑

i=r+1

ns−i+1 − ns

)
≤ 0. (12)

Then, for 1 ≤ t ≤ ns − ns−r+1 and using (12), we have

gt ≥ α ⇐⇒
r∑

i=1

(mi + ns − t) +
s∑

j=1

(nj − ns + t − 1)

≥
r∑

i=1

mi +

(
r∑

i=1

ns−i+1

)
− r
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⇐⇒
⎛

⎝
s∑

j=1

nj

⎞

⎠ + rns − rt − sns + s(t − 1) ≥
(

r∑

i=1

ns−i+1

)
− r

⇐⇒
(

r∑

i=1

ns−i+1

)
+

(
s∑

i=r+1

ns−i+1

)
+ rns − rt − sns + s(t − 1)

≥
(

r∑

i=1

ns−i+1

)
− r

⇐⇒
(

s∑

i=r+1

ns−i+1

)
− (s − r)ns + s(t − 1) + r − rt ≥ 0

⇐⇒
(

s∑

i=r+1

ns−i+1 − ns

)
+ s(t − 1) + r − rt ≥ 0

⇐⇒ t(s − r) + r − s ≥ 0
⇐⇒ t ≥ 1.

This proves that α is the minimum value among all the degrees of the minimal
generators of a Hadamard fat grid.

�
Example 5.14. Using again the values of Example 5.11 we get

α(I(PM , QN )) = 2 + 3 + 3 + 4 + 4 + 3 − 3 = 16

as expected from its minimal resolution. In this case we have two generators
of minimal degree, namely H5

1H5
2H4

3 · V 1
1 V 1

2 and H4
1H4

2H3
3 · V 2

1 V 2
2 V 1

3 .

Remark 5.15. Note that since m1 ≤ m2 ≤ · · · ≤ mr and n1 ≤ n2 ≤ · · · ≤ ns

therefore the maximum degree of generators of the ideal I(PM , QN ) is as the
following:

β(I(PM , QN )) = max

⎧
⎨

⎩

s∑

j=1

(mr + nj − 1),
r∑

i=1

(ns + mi − 1)

⎫
⎬

⎭ .

We need a preliminary lemma to study the symbolic powers
I(PM , QN )(t).

Lemma 5.16. The t-th symbolic power of I(PM , QN ) is a Hadamard fat grid.

Proof. We know that:

I(PM , QN ) =
r⋂

i=1

s⋂

j=1

I(Pi � Qj)mi+nj−1.

Hence

I(PM , QN )(t) =
r⋂

i=1

s⋂

j=1

I(Pi � Qj)t(mi+nj−1)

=
r⋂

i=1

s⋂

j=1

I(Pi � Qj)((tmi−(t−1))+tnj)−1.
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Therefore, the sets PM ′�QN ′ with multiplicities M ′ = {tm1−(t−1), . . . , tmr−
(t − 1)} and N ′ = {tn1, . . . , tns} is the Hadamard fat grid whose ideal is
I(PM , QN )(t).

�
We are now able to prove the following

Proposition 5.17. The Waldschmidt constant α̂(I(PM , QN )) of the Hadamard
fat grid HFG(PM , QN ) is equal to the least degree of a minimal set of gen-
erators of its defining ideal, i.e. α̂(I(PM , QN )) = α(I(PM , QN )).

Proof. Since the t-symbolic power of the ideal of a Hadamard fat grid
HFG(PM , QN ) defines a new Hadamard fat grid HFG(PM ′ , QN ′), one has

α(I(PM , QN )(t)) = α(I(PM ′ , QN ′))

where M ′ and N ′ are defined as in Lemma 5.16. Hence we can apply Propo-
sition 5.13 to compute α(I(PM ′ , QN ′)) obtaining

α(I(PM , QN ))(t)) =
r∑

i=1

(tmi − (t − 1)) + t
r∑

i=1

ns−i+1 − r

= t

r∑

i=1

mi − r(t − 1) + t

r∑

i=1

ns−i+1 − r

= t
r∑

i=1

mi + t
r∑

i=1

ns−i+1 − rt

= t

(
r∑

i=1

mi +
r∑

i=1

ns−i+1 − r

)

= tα(I(PM , QN )).

Therefore,

α̂(I(PM , QN )) = lim
t→∞

α(I(PM , QN )(t))
t

= α(I(PM , QN )).

�
We pass now to compute the resurgence ρ(I) = sup{m/r : I(m) 
⊆ Ir}

of I = I(PM , QN ).
It is important to notice that even though I(PM , QN ) defines a set

of fat points in P
2 that is not a complete intersection, we will show that

I(PM , QN )t = I(PM , QN )(t) and hence that its resurgence is equal to 1.

Proposition 5.18. Let I(PM , QN ) be the ideal of a Hadamard fat grid, then
I(PM , QN )t = I(PM , QN )(t) for all t ≥ 1.

Proof. By Theorem 5.10, a minimal set of generators of the ideal I(PM , QN )
consists of mr + ns generators of types

gk = Ha1−k
1 · · · Har−k

r · V b1+k
1 · · · V bs+k

s , (13)

where

ai = mr−i+1 + ns − 1, (i = 1, . . . , r), bj = ns−j+1 − ns, (j = 1, . . . , s),
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k = 0, 1, . . . , mr + ns − 1.

The ordinary power I(PM , QN )t is generated by all possible products
of t generators of I(PM , QN ):

gt0
0 gt1

1 · · · gtmr+ns−1
mr+ns−1 (14)

where
∑

ti = t. Substituting (13) in (14) we get that the generators of It are
of the form

Hta1−k
1 · · · Htar−k

r · V tb1+k
1 · · · V tbs+k

s ,

where k = 0, . . . t(mr + ns − 1).
By Lemma 5.16, we know that I(PM , QN )(t) is the ideal of a Hadamard

fat grid given by the sets PM ′ � QN ′ with multiplicities M ′ = {tm1 − (t −
1), . . . , tmr − (t − 1)} and N ′ = {tn1, . . . , tns}. Hence, again by Theorem
5.10, I(PM , QN )(t) is generated by

gk = Ha1−k
1 · · · Har−k

r · V b1+k
1 · · · V bs+k

s , (15)

where

ai = tmr−i+1 − t + 1 − tns − 1 = t(mr−i+1 + ns − 1) = tai, (i = 1, . . . , r),

bj = tns−j+1 − tns = t(ns−j+1 − ns) = tbj , (j = 1, . . . , s),

and

k = 0, 1, . . . , tmr − t + 1 + tns − 1.

Since tmr − t + 1 + tns − 1 = t(mr + ns − 1), every generator in
I(PM , QN )(t) is also a generator in I(PM , QN )t, giving I(PM , QN )(t) ⊂
I(PM , QN )t. The other inclusion is obvious by definition of symbolic powers,
hence we get I(PM , QN )t = I(PM , QN )(t). �

Using the definition of resurgence we get the following

Corollary 5.19. Let I(PM , QN ) be the ideal of a Hadamard fat grid, then
ρ(I(PM , QN )) = 1.

Remark 5.20. Corollary 5.19 can also be recovered by the recent Theorem
2.3 in [19] where the authors provide various examples and questions about
computing the resurgence of homogeneous ideals.
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