
Articles
eBioMedicine
2023;92: 104625

Published Online 22 May

2023

https://doi.org/10.
1016/j.ebiom.2023.
104625
Gene expression signature predicts rate of type 1 diabetes
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Summary
Background Type 1 diabetes is a complex heterogenous autoimmune disease without therapeutic interventions
available to prevent or reverse the disease. This study aimed to identify transcriptional changes associated with the
disease progression in patients with recent-onset type 1 diabetes.

Methods Whole-blood samples were collected as part of the INNODIA study at baseline and 12 months after diag-
nosis of type 1 diabetes. We used linear mixed-effects modelling on RNA-seq data to identify genes associated with
age, sex, or disease progression. Cell-type proportions were estimated from the RNA-seq data using computational
deconvolution. Associations to clinical variables were estimated using Pearson’s or point-biserial correlation for
continuous and dichotomous variables, respectively, using only complete pairs of observations.

FindingsWe found that genes and pathways related to innate immunity were downregulated during the first year after
diagnosis. Significant associations of the gene expression changes were found with ZnT8A autoantibody positivity.
Rate of change in the expression of 16 genes between baseline and 12 months was found to predict the decline in
C-peptide at 24 months. Interestingly and consistent with earlier reports, increased B cell levels and decreased
neutrophil levels were associated with the rapid progression.

Interpretation There is considerable individual variation in the rate of progression from appearance of type 1 diabetes-
specific autoantibodies to clinical disease. Patient stratification and prediction of disease progression can help in
developing more personalised therapeutic strategies for different disease endotypes.
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Research in context

Evidence before this study
The rate of post-onset beta cell decline during type 1 diabetes
progression varies between individuals. Large scale
longitudinal transcriptomics studies analysing the progression
of type 1 diabetes post-onset are required to dissect the
disease heterogeneity. So far, only a single study by Dufort
et al. analysed longitudinal samples by RNA-seq from 138
subjects and found higher B cell levels and lower neutrophil
levels to be associated with rapid loss of insulin secretion.

Added value of this study
By analysing whole blood RNA-seq data from 92 subjects, we
confirmed increased B cell levels and decreased neutrophil
levels in rapid progressors. Further, this study identified a
gene expression signature that can predict type 1 diabetes
progression, and suggests associations between gene
expression changes and ZnT8A autoantibody positivity.
Overall, understanding type 1 diabetes progression improves
our ability to prevent, diagnose, and treat the disease, leading
to better outcomes for patients.

Implications of all the available evidence
Increasing evidence suggests that type 1 diabetes is a
heterogeneous disease with several disease endotypes.
Identifying the signatures associated with endotypes such
as rapid and slow progressors will help in patient
stratification and identification of a more homogenous
population for clinical trials and therapies. One benefit of a
predictive signature would be the ability to intervene
earlier in the disease process. This could help slow the
progression of the disease and potentially prevent or delay
the onset of symptoms. Another benefit would be
improved monitoring of the disease progression, which
would allow for more personalised treatment plans and
better outcomes for patients. Finally, the gene expression
signature could be used to identify new therapeutic targets
to treat type 1 diabetes. Understanding the underlying
mechanisms of the disease would allow developing new
treatments that target specific pathways or genes involved
in the disease progression.
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Introduction
Type 1 diabetes is a multifactorial autoimmune disease
with genetic and environmental components. Although
progress has been made, no therapies are available to
prevent or reverse the disease. The development of
effective therapies is hampered by our poor under-
standing of the pathogenesis and heterogeneity of the
disease and lack of disease biomarkers and stratifiers.

Type 1 diabetes is a heterogeneous disease. There is
variation in the rate of progression from appearance of
type 1 diabetes-specific autoantibodies to clinical disease
and in post-onset beta cell decline. The age at the
diagnosis is associated with the rate of decline in insulin
secretion (i.e., younger age groups decline faster).1,2 At
least in some patients, a significant proportion of beta
cells exist at diagnosis, suggesting a tempting possibility
of interventions in such patients.3,4 Clearly, the ability to
stratify patients and predict disease progression would
help in developing more personalised therapies.

A specific gene expression signature might predict
disease progression and monitor therapies. Gene
expression changes in whole blood of children pro-
gressing to the disease occur before autoantibodies
appear.5–7 Intriguingly, an immune cell type gene
signature in patients with newly diagnosed type 1 dia-
betes correlates with the disease outcome.8

The aim of this study was to identify changes in
whole-blood gene expression associated with disease
progression in patients with recent-onset type 1 diabetes
during years 1 and 2 of follow-up after the diagnosis. We
used RNA-sequencing (RNA-seq)-based transcriptome
analysis of peripheral blood at diagnosis and at 1 year
follow-up, and correlated gene expression changes with
clinical measures during disease progression (Fig. 1a).
We identified a 16-gene signature that could predict
disease progression. Identifying such a predictive gene
signature would help to stratify patients for more
personalised clinical and therapeutic interventions.
Methods
Clinical cohort
Whole-blood samples were collected as part of the
INNODIA.9 The samples analysed were from the first
100 newly diagnosed INNODIA patients, consisting of
52 males and 48 females. Further details of the cohort
are provided in Table S1. The cohort for this study was
selected in February 2019, based on the longitudinal
clinical information (up to the 6 months visit at the
time), positivity for at least one type 1 diabetes–related
autoantibody, gender distribution, and sample avail-
ability. The autoantibody status (IAA, GADA, IA-2A,
ZnT8A) of the cohort patients indicated that three
cases were negative for all of them. These cases were
excluded from analysis described here. Further, genetic
data defined one MODY10 case who was also removed.
The final cohort consisted of 94 patients with an average
age at diagnosis of 13.2 years (SD 8.5), and a disease
duration of 3.9 weeks (SD 1.5) at baseline. Samples were
collected at baseline, i.e., within 6 weeks of diagnosis
(n = 92) and 12 months after diagnosis (n = 49) with 46
patients having samples at both time points. C-peptide,
glucose, HbA1c and islet-related autoantibody mea-
surements were carried out.9 Glucose was analysed
locally by each site using the available hospital glucose
analysis method. However, they were all performed in
www.thelancet.com Vol 92 June, 2023
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Fig. 1: Linear mixed effects modelling of the type 1 diabetes follow-up data. (a) A schematic diagram of the study. Whole-blood PAXgene
samples were available from the baseline and 1-year follow-up visits. (b) Volcano plot of the model coefficients (x-axis) and the corresponding
p-values (y-axis) (n = 94; 46 with both visits). (c, d) Expression levels of DEFA4 and TOX2 in the cohort over time (n = 94; 46 with both visits).
The baseline and 1-year follow-up samples of the same individual are connected by blue (downregulation) or red (upregulation) arrows.
(e) STRING network with the colours representing the mixed effects model coefficients.
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certified hospital labs. Harmonised protocols for sample
collection and storage were used in the study clinics.
The generated data is person-sensitive and access can be
provided by application to the INNODIA Data Access
Committee.

Ethics
The study followed the guidelines of the Declaration of
Helsinki for research on human participants, and the
study protocol was approved by the ethical committees
of the participating hospitals. Participants gave written
informed consent.

RNA sequencing
Prior to RNA extraction, frozen whole-blood PAXgene
samples were thawed at room temperature for 2 h and
subjected to RNA extraction using PAXgene Blood
miRNA Kit (PreAnalytix/QIAGEN, Cat# 763134). Total
RNA, including RNA longer than approximately 18
www.thelancet.com Vol 92 June, 2023
nucleotides, was purified, following the protocol sup-
plied by the kit manufacturer. Sample concentration was
measured with Nanodrop 2000 spectrophotometer and
Qubit Fluorometric Quantitation (Thermo Fisher Sci-
entific). The quality of the samples was ensured with
Experion Automated Electrophoresis System (Bio Rad)
and Agilent 2100 Bioanalyzer RNA Pico chip. Library
preparation and sequencing were carried out at the
Finnish Functional Genomics Centre (FFGC). Before
starting library preparation, ERCC Spike-in Mix 1
(Invitrogen P/N 4456739) was added to 100 ng RNA
according to the kit’s protocol. RNA-seq libraries were
prepared using TruSeq stranded mRNA HT kit and
protocol # 15031047 (Illumina). The quality and quantity
of the amplified libraries were measured using
Advanced Analytical Fragment Analyzer (Agilent) and
Qubit Fluorometric Quantitation, respectively. Pooled
libraries were sequenced on an Illumina NovaSeq 6000
instrument, using 2 × 50 bp paired-end sequencing.
3
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RNA-seq pre-processing
Three haemoglobin-related genes, HBA1, HBA2, HBB,
were overexpressed in the data with around 11% of all
reads. These reads were filtered prior to normalisation.
The filtered data were CPM (counts per million) scaled
with TMM (Trimmed Mean of the M-values) normal-
isation factors, and log2 transformed using the R pack-
age edgeR.10 Extra samples included as internal quality
controls and one individual classified as having maturity
onset diabetes of the young type 10 (MODY10) were
excluded from the analysis. To filter lowly expressed
genes, only those genes that had an average CPM >1,
were included in the analysis. No imputation was per-
formed in any of the analyses.

C-peptide decline as a measure of disease
progression
Fasted C-peptide/glucose ratio was used to measure
disease progression, because mixed meal tolerance test
(MMTT) data was not available for participants aged
5 years or younger and would have reduced the number
of participants that could be included in the analyses.
Baseline C-peptide corrected for baseline glucose has
been suggested as a suitable surrogate of MMTT AUC.11

In line with this, we observed a high correlation among
individuals with both measures available (Pearson cor-
relation 0.96, p < 0.001; Fig. S1).

Statistical analysis
A linear mixed effects model was fitted to the data
separately for each gene, with the gene expression level
as the dependent variable. Visit, sex, and age were
treated as fixed effects and individual, sequencing pool
and study site as random effects. The mixed effects
modelling was implemented using lmerTest R package.
Benjamini-Hochberg adjusted p-values were used to
correct for multiple testing. We also tested linear mixed
effects models with and without body mass index (BMI)
as a covariate. The model with BMI had significantly
better fit (lower Akaike information criterion AIC and a
Chi-squared test p < 0.05 between the models) for only
3% of the genes that were included in the analysis (450
out of 13,558 genes). Overall, the results with or without
BMI were highly similar (Fig. S2). The top 10 differ-
entially expressed genes (p < 0.001 and coefficient for
the visit > |0.05|) remained similar with and without
BMI included in the analysis. To make the model
generally applicable, we considered only the model
without BMI for all genes.

A large number of different comorbidities and their
combinations were also observed, but only few in-
dividuals shared the same comorbidities. This makes
the inclusion of comorbidities in the models chal-
lenging, as increasing the number of covariates in the
model increases the complexity of the model and,
thereby, the risk of overfitting. Therefore, we have
decided not to include the comorbidities in our model.
Proteins encoded by 187 differentially regulated
genes between visits (Table S2) were used as an input to
the STRING database (https://string-db.org/, 10th of
September 2021). Both experimentally verified in-
teractions and predicted interactions were included.
Combined confidence threshold for interaction was 0.4
(medium confidence). Gene Ontology analysis was
performed at http://geneontology.org. The analysis was
performed separately for the upregulated and the
downregulated genes. Pathways were considered to be
significantly enriched at FDR <0.05 (Fisher’s exact test).

Cell-type proportions were estimated from the RNA-
seq data using the computational deconvolution method
EPIC.12 The signature matrix was constructed using the
publicly available human immune cell dataset available
in Gene Expression Omnibus (GEO) with accession
number GSE6042413 and the online tool CIBERSORTx.14

The dataset contains TMM-normalised RNA-seq data
from FACS-sorted whole-blood samples with neutro-
phils, monocytes, B cells, CD4+ T cells, CD8+ T cells,
and NK cells across different diseases.

Uniform manifold approximation and projection15

was applied to the gene ratios between baseline and
1-year follow-up visit, implemented using the uwot R
package. The number of neighbours was set to 15, and
the minimum distance was set to 0.001. Associations of
the gene expression ratios to clinical variables were
estimated using Pearson’s or point-biserial correlation
for continuous and dichotomous variables, respectively,
using only complete pairs of observations. For clinical
data, glycated haemoglobin (HbA1c) measurements
higher than 100 were discarded as outliers. Ranked gene
set enrichment analyses were performed for the results
against the Hallmark sets from Molecular Signature
Database (MSigDB, version 6.2) using R package fgsea,
with p-value <0.01 considered significant.

Individuals were classified as rapid and slow pro-
gressors based on the change in their fasted C-peptide/
glucose ratio between baseline and 2-year follow-up
visits. The individuals were divided into three clusters
with hierarchical clustering using Euclidean distances
and the complete linkage approach. The group with the
largest decrease in their ratios (<−30) was considered as
rapid progressors, and the group with increase in their
ratios (>5) as slow progressors. The rest of the in-
dividuals were classified as intermediate. Gene expres-
sion ratios between baseline and 1-year follow-up visits
were calculated and their differences between the rapid
and slow groups were tested using reproducibility opti-
mized test statistic.16 Paired test was used, number of
bootstrap and permutation samplings was set 1000, and
the number of top list size to be considered was set as
10,000. The score for each individual was defined using
the 16 differentially expressed genes (p < 0.01) and
calculated as the difference between mean expression of
downregulated genes and mean expression of upregu-
lated genes, following a similar procedure as in.17
www.thelancet.com Vol 92 June, 2023
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Validation data
Validation data were downloaded from Gene Expres-
sion Omnibus with accession number GSE124400.
Samples that did not pass the QC threshold were
removed.8 The data were CPM-scaled with TMM-
normalisation factors and log2-transformed using the
edgeR R package.10 Genes with mean CPM <1 across
the samples were filtered out. For validation, gene
expression ratios between the baseline and 1-year
measurement (±30 days) were calculated. A total of
57 patients had transcriptomics data from comparable
timepoints. Similarly, as with the discovery data, mean
ratios of downregulated signature genes minus mean
ratios of upregulated genes were defined as a score per
individual, using the 16 signature genes from the
discovery cohort.

Changes in AUC C-peptide levels from 2-h mixed-
meal tolerance test between the baseline and 2-year
follow-up visits were estimated using the first and last
available AUC C-peptide measurement. The individuals
were divided into six groups with hierarchical clustering
using Euclidean distances and Ward’s linkage approach.
Two clusters with the largest decrease over time were
considered as rapid progressors, and two clusters with
the smallest decrease as slow progressors.

Role of funders
The funders had no role in the study design, data
collection, analysis and interpretation of data, in the
writing of the article, or in the decision to submit the
paper for publication.
Results
Evolution of whole-blood transcriptome during
type 1 diabetes progression
To identify gene expression changes during the first
year after diagnosis, we performed RNA-seq of 141
whole-blood samples collected at diagnosis (baseline
samples, n = 92) and at a 1-year follow-up visit (n = 49)
(Fig. 1a). Linear mixed effects modelling of the RNA-seq
data revealed 187 differentially expressed genes between
the baseline and 1-year follow-up (Fig. 1b, Table S2). Of
the top 10 differentially expressed genes (p < 0.001 and
coefficient > |0.05|), seven (DEF4A, RETN, CR1L,
EMC2, ALG5, ABRACL, NAPA-AS1) were down-
regulated, and three (ZNF713, LTK, TOX2) were
upregulated in the follow-up samples (Fig. 1c and d:
illustrating some examples).

To identify biological functions among the differen-
tially expressed genes, we performed separate Gene
Ontology (GO) enrichment analysis for the upregulated
(n = 61) and downregulated (n = 126) genes. None of the
terms was enriched among the upregulated genes.
However, analysis of the downregulated genes revealed
16 enriched terms, including pathways involved in the
immune response to bacteria, peptide biosynthetic
www.thelancet.com Vol 92 June, 2023
process, and oxidative phosphorylation (OXPHOS)
(Table 1).

To determine whether proteins encoded by the
differentially expressed genes are functionally related to
each other and if they form modules of functionally
related genes, we formed a network of these genes
taking the protein–protein functional interaction data
from STRING database.18 Of the 187 differentially
expressed genes, 110 were found to have one or more
interactions in the STRING database (Fig. 1e). The
molecular complex detection algorithm MCODE19

identified four modules in the network, which were
related to defense against bacteria, translation,
OXPHOS, and oxygen transport. All the genes in the
“defense against bacteria” and “oxygen transport”
modules had reduced expression over time, suggesting
that they were downregulated as the disease progressed
(Fig. 1e, Table S2).

Association of gene expression changes with the
types of autoantibodies
We next assessed whether gene expression correlated
with types of autoantibodies (IAA, GADA, IA-2A, and
ZnT8A) detected at the baseline visit. We found signif-
icant associations between changes in gene expression
and ZnT8A autoantibody positivity (FDR < 0.05,
Table S3) but not with other autoantibodies. Among the
patients, 64 tested positive for ZnT8A antibodies, and
421 genes showed point-biserial correlation (FDR <
0.05, |r| > 0.4) with ZnT8A autoantibody positivity
(Fig. 2a, Table S3). Among these genes, five (IL6R,
RBPJ, SKAP2, SIRPG, UBASH3A) harbour a nearby
type 1 diabetes-associated SNP.20 Further, IL6R, RBPJ,
SKAP2, CD274 and RAB20 correlated positively with the
ZnT8A autoantibody positivity (i.e., their expression
increased in individuals positive for ZnT8A) while it
decreased in ZnT8A-negative patients at the follow-up
timepoint (Fig. 2b). On the other hand, SIRPG, UBA-
SH3A and STXBP1 had inverse correlations (Fig. 2b).

Association of gene expression changes with
C-peptide levels
We next determined whether gene expression changes
during the 1-year follow-up correlated with a clinical
measure of disease progression (i.e., C-peptide/glucose
ratio) (Fig. 3a). We used the change in fasted C-peptide
between the baseline and 2-year follow-up visit, instead
of 1-year follow-up visit, as a measure of rate of decline
in C-peptide because in some patients, partial remission
(also known as “honeymoon phase”) lasts 3–9 months
after starting insulin therapy,21 making 1-year C-peptide
measurements less stable. Indeed, for some individuals,
the fasted C-peptide levels varied considerably between
the 1- and 2-year follow-up visits: 392 genes were asso-
ciated (p < 0.05, |r| > 0.4) with the change in fasted
C-peptide/glucose ratio between the visits (Fig. 3a,
Table S4).
5

www.thelancet.com/digital-health


GO biological process term Fold enrichment FDR

GO:0051673 membrane disruption in other organism 66.98 0.000848

GO:0070944 neutrophil-mediated killing of bacterium 55.81 0.016200

GO:0002227 innate immune response in mucosa 36.4 0.000628

GO:0019731 antibacterial humoral response 23.92 0.000016

GO:0050832 defense response to fungus 19.7 0.000863

GO:0050829 defense response to Gram-negative bacterium 16.38 0.000028

GO:0006119 oxidative phosphorylation 16.3 0.000003

GO:0042775 mitochondrial ATP synthesis coupled electron transport 15.76 0.000143

GO:0019646 aerobic electron transport chain 14.65 0.000799

GO:0009205 purine ribonucleoside triphosphate metabolic process 13.72 0.015900

GO:0061844 antimicrobial humoral immune response mediated by antimicrobial peptide 11.49 0.002140

GO:0050830 defense response to Gram-positive bacterium 11.38 0.002200

GO:0071222 cellular response to lipopolysaccharide 6.44 0.040000

GO:0022618 ribonucleoprotein complex assembly 6.3 0.043800

GO:0043043 peptide biosynthetic process 4.32 0.039600

GO:0010467 gene expression 2.19 0.044500

Table 1: Functional enrichment analysis of the downregulated genes (n = 126) in patients with recent-onset type 1 diabetes during the first year of
follow-up ranked by fold enrichment.
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Three genes positively associated with the change in
fasted C-peptide/glucose ratio are particularly note-
worthy (Fig. 3b, upper panel). CXCR4 and its ligand
CXCL12 are important in autoimmune diabetes in
mice.22 In addition, CXCR4 in B cells and CD4+ T cells
was upregulated more in patients with systemic lupus
erythematosus than in controls.23 BTN3A2, a gene of the
extended class I region of the major histocompatibility,
is associated with type 1 diabetes.24 It was upregulated in
peripheral blood mononuclear cells of children at risk of
the disease before the appearance of type 1 diabetes-
associated autoantibodies.25 IFNGR2 encodes the non-
ligand-binding beta chain of the human interferon
gamma receptor heterodimer.
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Genes negatively associated with the change in fasted
C-peptide/glucose ratio were also of interest (Fig. 3b,
lower panel). GIMAP7 was upregulated in peripheral
blood CD8+ T cells before any autoantibodies appeared
in children at risk.25 A long, non-coding RNA IFNG-AS1
enhances IFNG expression in NK cells.26 The associa-
tion of C-peptide decline with IFNG-AS1 and IFNGR2
suggests a link with IFNγ signalling and disease
progression.

Gene expression signature predicting C-peptide
decline
Next, we examined whether alterations in gene expres-
sion during the first follow-up year predict the rate of
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C-peptide/glucose ratio between baseline and follow-up. (a) Uniform manifold approximation and projection (UMAP) of all gene ratios (n = 46).
(b) Scatterplots of selected gene ratios with C-peptide/glucose ratios (n = 32).
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disease progression at 2 years after the diagnosis. We
stratified the patients into three groups (Fig. 4a): those
with an increase of >5 in their fasted C-peptide/glucose
ratio between the baseline and the 2-year visits were
considered as slow progressors (n = 8), and those with a
decrease of >30 were considered rapid progressors
(n = 13). The rest of the patients represented the inter-
mediate category. Out of these, 7 patients in the rapid
group and 6 patients in the slow group had gene
expression data both from the baseline and 1-year follow-
up visits. Statistical testing using reproducibility-
optimized test statistic16 between the rapid and slow
groups revealed 16 signature genes (Fig. 4b). A prog-
nostic score calculated as in our previous study,17 using
the transcriptomics data at baseline and 1-year, predicted
the rate of disease progression at two years (Fig. 4c).
Interestingly, individual gene expression changes be-
tween baseline and 1-year follow-up visit for the rapid and
slow progressors (Fig. 4d), show that changes in expres-
sion (either up or down) of the signature genes display
opposite expression profiles in the two patient groups,
and not just have different rates of change to the same
direction.

To validate our model in an independent cohort of
patients affected by type 1 diabetes, we used published
data on the whole-blood transcriptome analysis of 137
new-onset type 1 diabetes patients,8 of which 57 had
gene expression measurements from comparable time-
points (baseline and 1-year follow-up). Based on
expression of the 16 genes in our present study, we
calculated the prognostic scores for the 57 patients of
the validation cohort (Fig. 4e). With the 2-year delta
AUC C-peptide based classification of rapid and slow
progressors and using 1-year RNA-seq based score
±0.25 as a cutoff for predicting individuals to these
classes, there were 7 rapid and 3 slow individuals in the
predicted rapid group, and 10 slow and 1 rapid
www.thelancet.com Vol 92 June, 2023
individuals in the predicted slow group. The difference
in the AUC C-peptide decline between the predicted
groups was statistically significant (Wilcoxon rank sum
test p < 0.01, Fig. 4f).

Neutrophils were the cell type most strongly
associated with the disease progression
Finally, we estimated the contribution of different cell
types to the RNA-seq data to understand whether the
cell-type proportions were different between the
individuals. Reliability of the cell-type proportion esti-
mates was assessed by comparing them with measured
proportions, which were available for some samples.
Measurements were reliable for neutrophils, mono-
cytes, and B cells (Pearson correlation 0.69, 0.53, and
0.72 respectively; Fig. S3). Neutrophil abundance
showed a positive correlation with the score of disease
progression for 4 of the 16 signature genes: LOC644936,
NCF1, C4BPA and PRRG4 (Spearman correlation 0.50,
0.71, 0.65, and 0.76 respectively, p < 0.001). Monocytes
showed an inverse correlation with the change in fasted
C-peptide/glucose ratio and the score of disease pro-
gression (Spearman correlation −0.62 and −0.59
respectively, p < 0.001). Further, the estimated propor-
tion of B cells revealed a strong inverse correlation with
neutrophils (Spearman correlation −0.69, p < 0.001)
(Fig. 5a, Fig. S4), consistent with earlier observations
where high B cell proportions were associated with fast
progression.

We performed gene set enrichment analysis on the
ranked list of genes based on their correlation with
clinical parameters, cell-type proportions, and the
prognostic score, using Hallmark gene sets from mo-
lecular signature database (MSigDB).27 Several immune-
related signalling pathways (e.g., TNFα, IL-6/JAK/
STAT3, and IL-2/STAT5 signalling) were enriched
among genes positively correlated with the fasted
7
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C-peptide/glucose ratio and neutrophil abundance
(Fig. 5b). These pathways were not enriched among
genes correlating with age or sex. Other enriched path-
ways included interferon alpha and gamma responses,
androgen response, and protein secretion pathways,
which were enriched among the genes positively corre-
lating with fasted C-peptide/glucose. Pathways of
OXPHOS and Myc targets were enriched among genes
inversely correlating with the fasted C-peptide/glucose
ratio. As expected, pathway enrichment showed an
opposite trend with neutrophil and monocyte levels.
Discussion
To study the disease progression after the diagnosis of
type 1 diabetes, we examined gene expression changes
in peripheral blood of type 1 diabetes patients during the
first year after the diagnosis and studied their correla-
tions with the fasted C-peptide/glucose ratio after
2 years. We found numerous changes 1 year after dis-
ease onset, particularly in genes related to the immune
response to bacteria, oxidative phosphorylation
(OXPHOS), and RNA processing and translation. Gene
expression changes were associated with ZnT8A auto-
antibody positivity but not with the other autoantibodies.
Importantly, we identified a 16-gene signature with
changes between baseline and 1-year follow-up that was
associated to the rate of decline in insulin secretion
2 years after diagnosis. We also assessed that gene
signature in an independent published dataset. How-
ever, additional validation in a larger cohort is needed to
confirm our findings.

Interestingly, the immune response to bacteria,
including the neutrophil-mediated response, was
www.thelancet.com Vol 92 June, 2023
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among the most enriched processes among the genes
downregulated when progressing to disease. Diabetes
has been associated with an increased risk of infectious
diseases,28–30 and the prevalence of bacterial infections is
higher in individuals with type 1 diabetes than in their
non-diabetic controls.31 Recent research showed neu-
trophils might be implicated in pathogenesis of type 1
diabetes. For instance, decreased neutrophil numbers
were reported in patients with recent-onset type 1 dia-
betes as well as in presymptomatic autoantibody-positive
individuals.32,33 Further, reduction of neutrophils in
presymptomatic at-risk individuals and type 1 diabetes
patients was associated with poor beta cell function and
increased pancreatic neutrophil infiltration.34 In addi-
tion, the results demonstrating the role of neutrophils in
initiation of beta-cell autoimmunity are consistent with
the observations reported earlier in murine studies.35

Studies both in man and mouse34,35 showed that neu-
trophils infiltrating pancreas release neutrophil extra-
cellular traps, which might directly lead to the
disturbance of beta cell function and initiation of the
disease.

Among the 16 genes predicting disease progression,
LOC644936, NCF1, PRRG4, and C4BPA, were primarily
expressed by neutrophils and correlated positively with
the change in fasted C-peptide/glucose ratio. NCF1 is a
part of the NOX2 complex that transfers electrons from
www.thelancet.com Vol 92 June, 2023
NADPH to oxygen generating reactive oxygen species
(ROS) and plays a crucial role in host defence. C4BPA
inhibits the classical and lectin pathways of complement
as well as phagocytosis of apoptotic cells.36 However, the
precise role of C4BPA and PRRG4 in neutrophils is not
well known. Rapid progressors have earlier been re-
ported to have lower levels of neutrophil-related gene
expression.8

Genes related to OXPHOS were downregulated at
1-year post-onset in our data. Further, OXPHOS genes
predicted progression of the disease and were upregu-
lated as the disease progressed in rapid progressors
(Fig. 4b) while they were downregulated in slow pro-
gressors. OXPHOS efficiently generates large amounts
of ATP in mitochondria. In a cross-sectional microarray
study of whole blood samples, genes of this pathway
were upregulated in patients with newly diagnosed type
1 diabetes compared to non-diabetic controls.7 Accord-
ing to our results, UQCRB and COX7C were down-
regulated at one year post onset as compared to baseline
and they were upregulated in newly diagnosed type 1
diabetes patients compared to non-diabetic controls in
Reynier et al. (2010) study. Interestingly, COX7C along
with COX7B were among the signature genes predicting
the rate of progression; both genes were upregulated
during disease progression in rapid progressors but
were downregulated in slow progressors. Higher
9

www.thelancet.com/digital-health


Articles

10
expression of OXPHOS genes in rapid progressors is
perhaps consistent with higher energy expenditure in
C-peptide negative type 1 diabetes patients.37 Further
work is needed to understand the regulation of
OXPHOS in progression to type 1 diabetes.

Similarly, the genes associated with RNA processing
and translation were downregulated 1-year post-
diagnosis. Further, splicing-related genes were part of
the signature predicting the rate of progression. LSM3, a
member of the Lsm (Like Sm) protein family, is
involved in pre-mRNA splicing and mRNA degrada-
tion.38 SNRPE, encoding the small nuclear ribonucleo-
protein polypeptide E, is a key component of the
pre-mRNA spliceosome. Similarly, SAPNP (also
known as CIP29) is a ribonucleoprotein participating in
mRNA splicing. Pre-mRNA splicing may contribute to
the pathogenesis of type 1 diabetes by affecting splice
variant expression of susceptible genes.39

We found positivity for ZnT8A, but not for other
islet-associated autoantibodies (i.e., IAA, GADA and IA-
2A) to be associated with the progression of type 1
diabetes. Lack of associations of C-peptide status with
GADA, ICA and IA-2A was also reported earlier in a
previous 6-year follow-up study of young adults with
type 1 diabetes.40 A previous study showed that in chil-
dren with type 1 diabetes, positivity for ZnT8A at diag-
nosis correlated with low C-peptide levels 2 years later,
which resulted in a higher daily insulin requirement in
these patients.41 Thus, the appearance of ZnT8A may
indicate a more severe disease phenotype in children
with early disease onset. However, in young adults
(15–34 years old) with type 1 diabetes, high C-peptide
levels at diagnosis were correlated with sustained levels
of ZnT8A during the 5 subsequent years.42

We found SKAP2, CD274 and RAB20, among
others, to correlate positively with the ZnT8A autoanti-
body positivity. A variant in SKAP2 was predictive of
beta cell function in newly diagnosed patients.43 More-
over, a gain-of-function variant in SKAP2 resulted in
enhanced activity of integrin pathways and migratory
phenotype of macrophages, which likely contributed to
type 1 diabetes development.44 CD274 encodes PD-L1,
the ligand for inhibitory receptor of B7 family
expressed on T cells. Under inflammatory conditions
(e.g., high IFNγ), pancreatic beta cells upregulate PD-L1
expression to limit the T-cell response.45 RAB20, a
member of the RAS oncogene family, is highly
expressed in monocytes and neutrophils (Human Pro-
tein Atlas). In mouse macrophages, RAB20 expression
is induced by IFNγ in the phagosomes, a process lead-
ing to phagosome maturation delay, which is critical for
efficient antigen presentation.46,47

On the other hand, SIRPG, STXBP1 and UBASH3A
had inverse correlations with the ZnT8A autoantibody
positivity. The type 1 diabetes associated SNP near SIRPG
was shown to modulate the risk of the disease by con-
trolling the alternative splicing of the gene.48 It encodes
syntaxin-binding protein 1, which regulates docking and
fusion of vesicles with the plasma membrane during
exocytosis. STXBP1 is important in cytotoxic activity of
CD8+ T cells and NK cells.49 A genetic variant in UBA-
SH3A is linked to type 1 diabetes development in children
from the DAISY and BABYDIAB cohorts.50 The type 1
diabetes-associated variants in UBASH3A in human
CD4+ T cells resulted in higher levels of gene expression
and decreased NF-kB signalling and IL2 expression.51

We found gene expression changes in the whole
blood of patients with recent-onset type 1 diabetes and
identified a gene signature that predicted the rate of type
1 disease progression and validated the predictive model
in an independent cohort. Given the heterogeneity of
type 1 diabetes in terms of risk groups, types of auto-
antibodies and potential triggers and drivers of the dis-
ease, the number of individuals in the study is an
important limitation and the results need to be validated
in a larger cohort or with more homogenous cohort of
similar size. As the study was conducted on Caucasian
population it remains to be seen if the findings wil be
valid also for other populations. The predictive model, if
validated further, may assist in patient stratification for
developing personalised therapeutic strategies.
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