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Abstract
In environmental and ecological surveys, well spread samples can be easily
obtained via widely adopted tessellation schemes, which yield equal first-order
inclusion probabilities in the case of finite populations of areas or constant
inclusion density functions in the case of continuous populations. In the litera-
ture, many alternative schemes that are explicitly tailored to select well spread
samples have been proposed, but owing to their complexity, their use should
be preferred only if they allow us to achieve a valuable gain in precision with
respect to the tessellation schemes. Therefore, by means of an extensive simu-
lation study, the performances of tessellation schemes and several specifically
tailored schemes are compared under constant first-order inclusion probabilities
or constant inclusion density functions.
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1 INTRODUCTION

Assessing and monitoring natural resources and biodiversity is a pressing issue in environmental and ecological studies,
and for this purpose, the totals of interest attributes and the suitable functions of totals commonly constitute relevant
parameters to be estimated. For example, ecologists and foresters may be interested in the coverage of habitat types,
species richness and species abundance vectors, which can be suitably expressed as totals, and in quantifying diversity
indices, which invariably are functions of the species abundance vector.

Design-based inference has been widely adopted for estimating totals of attributes in environmental spatial popula-
tions (e.g., De Vries, 1986; Thompson, 2002; Gregoire and Valentine, 2008; De Gruijter et al., 2010), and in this framework,
spatial populations are constituted by fixed sets of locations in a study region with fixed values of the survey variable
attached to each location. Populations can be distinguished as continuous populations and finite populations of areas or
units, and totals can be expressed as integrals or summands, respectively.

In the case of populations of units, the list, and obviously the location, of the units (e.g., trees in a forest stand, shrubs in
a natural reserve) is rarely available and involves prohibitive efforts, especially over large areas. Accordingly, populations
of units are commonly sampled using points (eventually identifying plots or transects) selected in the study region in such
a way that the total can be expressed as the integral of a suitable function defined on the continuum of points. In this
case, total estimation can be reinterpreted as the estimation of the total of a continuous population (see, e.g., Gregoire
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& Valentine, 2007; Mandallaz, 2007; Stevens & Urquhart, 2000). Therefore, in this article, only the total estimation of
continuous and finite populations of areas is considered.

To increase the precision of total estimators, the sampling of locations that are “well spread” throughout the study
region plays an essential role in environmental surveys owing to the two major characteristics of spatial populations: i)
the presence of positive spatial autocorrelation, that is, the values of the survey variable in neighboring locations tend
to be similar, as they interact with one another and are influenced by the same factors (Stevens & Olsen, 2004); and ii)
the presence of spatial heterogeneity of the survey variable between different portions of the study region. Therefore, the
selection of neighboring locations should be avoided, and no portion of the study region should be over- or underrep-
resented in the sample. Grafström and Lundström (2013) make heuristic arguments regarding how spatially balanced
samples can increase the precision of the Horvitz–Thompson (HT) estimator in the framework of finite populations. A
more rigorous justification for the need for spatially balanced samples in the presence of positive spatial autocorrelation
and auxiliary information is given by Grafström and Tillé (2013).

Following Grafström et al. (2012) and Grafström and Matei (2018) we refer to a well spread sample as a spatially bal-
anced sample. well spread samples can be straightforwardly obtained using sampling schemes that are widely adopted
in environmental and ecological surveys, commonly implemented by suitably partitioning the study region or by super-
imposing a regular grid on it, and therefore referred to as tessellation sampling schemes (e.g., Tomppo et al., 2010 for
applications in forest inventories). In particular, for continuous populations, well spread samples are achieved adopting
tessellation stratified sampling or systematic grid sampling, while for finite populations of areas, they are achieved using
one-per-stratum stratified sampling or systematic sampling.

The achievement of well spread samples has long been the main target, and many schemes have been explicitly tailored
to this purpose (for a review, see, e.g., Benedetti et al., 2017; Kermorvant et al., 2019). The main goal of this paper is to
compare the performances, in terms of the precision of the estimates, of the tessellation schemes and of several specifically
tailored schemes. Indeed, owing to their complexity, specifically tailored schemes should be implemented only if they
guarantee a valuable gain in precision with respect to tessellation schemes. We considered only schemes implemented in
R open packages, which make their use possible for field scientists and practitioners. Moreover, as tessellation schemes
generally yield equal first-order inclusion probabilities or constant inclusion density functions, more complex schemes
will also be implemented with constant inclusion probabilities or inclusion density functions, even though some of them
can perform well when unequal probabilities are used. However, in environmental surveys, the selected sample is often
adopted to estimate the total of several variables of interest. Therefore, the auxiliary variable considered for selecting
unequal probability samples may be different for each total of interest in such a way that the choice may be problematic.
On the other hand, under tessellation schemes, auxiliary variables could be alternatively adopted at the estimation level.

In this paper, we perform a comparison of sampling schemes without considering any auxiliary information. In
Section 2, some preliminaries are given, and in Section 3, definitions of spatial balance and spatial balance measures are
discussed. In Section 4, schemes explicitly tailored for achieving spatial balance and the tessellation sampling schemes
are briefly described. Section 5 is devoted to an extensive simulation study, and concluding remarks are given in Section 6.

2 PRELIMINARIES AND NOTATION

2.1 Continuous populations

Continuous populations are continuous sets of locations with a surface giving the values of the density of a survey variable
(e.g., density of the aboveground biomass, density of soil or water pollutants) at each location. Let y be a Borelian and
bounded function on the study region, where y(p) is the value of the density at the location p ∈ , and the population
total is given by

T =
∫


y(p)𝜆(dp), (1)

where 𝜆 is the Lebesgue measure in R2
.

Let {P1, … ,Pn} be a sample of locations selected according to a probabilistic sampling design giving rise to the inclu-
sion density function 𝜋(p) and pairwise inclusion density function 𝜋(p,q), for any p,q ∈ . If 𝜋(p) > 0 for any p ∈ ,
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an unbiased estimator of T is the continuous analogue of the HT estimator (Cordy, 1993)

T̂ =
∑

j∈S

y(Pj)
𝜋(Pj)

, (2)

where S is the set of indices that identify the sampled locations.
Moreover, if ∫


1∕𝜋(p)𝜆(dp) < ∞, the variance is

V(T̂) =
∫


y2(p)
𝜋(p)

𝜆(dp) +
∫
2

{
𝜋(p,q)
𝜋(p)𝜋(q)

− 1
}

y(p)y(q)𝜆(dp)𝜆(dq),

which is unbiasedly estimated if 𝜋(p,q) is strictly positive for any p,q ∈  by using the continuous analogue of the HT
variance estimator or, if the sample size is fixed, of the Sen–Yates–Grundy estimator (Cordy, 1993; Stevens & Olsen, 2003).
When a scheme for selecting spatially balanced samples is considered, thus avoiding the selection of neighboring loca-
tions, the pairwise inclusion density function is not strictly positive, and conservative estimators can be adopted (Stevens
& Olsen, 2003).

2.2 Finite populations of areas

Finite populations of areas are obtained by partitioning the study region into regular polygons (such as satellite pixels) or
irregularly shaped areal units (such as administrative districts), and the survey variable is the total amount of an attribute
(e.g., species abundance, aboveground biomass, growing stock volume, mineral contaminants, soil or water pollutants)
within each area.

Formally, let U be the population of N areas, indexed by the N first integers, and let1, … ,N be the N areas. In this
framework, two cases are distinguished: a fixed density function of an attribute of interest is defined for any location of
the study region, or a finite population of units is located in the study region, equipped with a fixed value of an attribute
of interest. Let yj denote the total amount of the attribute of interest in the jth area. In particular, in the first case, yj is
obtained as the integral of the density function on j, while in the second case, it is the sum of the attribute values for
the units located in the jth area. The population total is given by

T =
∑

j∈U
yj. (3)

Notably, finite populations of areas can be regarded as with-list finite populations of units, where each area is a unit whose
location is given by the centroid of the area.

Let S ⊂ U be a probabilistic sample of size n, and 𝜋j is the first-order inclusion probability of the jth area (j = 1, … ,N),
and the HT estimator of the total

T̂ =
∑

j∈S

yj

𝜋j
(4)

with variance

V(T̂) =
∑

j∈U

(1 − 𝜋j

𝜋j

)
y2

j + 2
∑

j>h∈U

(
𝜋jh

𝜋j𝜋h
− 1

)
yjyh,

where 𝜋jh is the second-order inclusion probability of areas j and h, j ≠ h = 1, … ,N.
If all the second-order inclusion probabilities are strictly positive, V(T̂) can be unbiasedly estimated by using the HT

variance estimator or, if the sample size is fixed, the Sen–Yates–Grundy estimator. When some second-order inclusion
probabilities are equal to zero, such as when considering designs that avoid the selection of contiguous areas, conservative
estimators can be adopted (see e.g., Wolter, 2007).
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3 MEASURING SPATIAL BALANCE

According to some authors (Benedetti et al., 2017; Grafström & Lundström, 2013; Grafström et al., 2012; Grafström &
Schelin, 2014), a sample is said to be well spread or spatially balanced if the number of selected units is close to what is
expected on average in every part of the study region. As first suggested by Stevens and Olsen (2004), the spatial balance of
a realized sample can be quantified by using Voronoi polytopes. In particular, in the case of continuous populations, the
Voronoi polygon j associated with the jth sampled location pj (j ∈ S) is the set of all the locations with smaller distances
to pj with respect to any other sampled location and

vj =
∫
j

𝜋(p)𝜆(dp)

represents the expected number of locations selected into the polygon under the considered sampling scheme. Analo-
gously, in the case of finite populations of areas whose locations are identified via the area centroid, the Voronoi polygon
j is the set of all the areas whose centroids are closer to the centroid of the jth sampled area than to those of all the other
sampled areas and

vj =
∑

i∈j

𝜋i

is the expected number of areas in the polygon selected under the implemented scheme.
Thus, more formally (see, e.g., Grafström & Matei, 2018; Grafström & Lundström, 2013), a sample is said to be spatially

balanced if each vj is equal to (or close to) 1. When addressing continuous populations, if the sampling scheme ensures
constant inclusion density functions, a sample is spatially balanced if all the polygons are approximately equal in size.
Similarly, if equal first-order inclusion probability designs are considered for sampling populations of areas, a sample is
spatially balanced if each polygon is formed by approximately the same number of areas.

To quantify the degree of spatial balance of a selected sample, Stevens and Olsen (2004) introduced the following
straightforward measure

B = 1
n
∑

j∈S
(vj − 1)2, (5)

which is probably the most widely adopted (e.g., Grafström & Lundström, 2013; Grafström, Zhao, et al., 2017). Notably,
lower values indicate higher degrees of spatial balance, and B = 0 when the sample is spatially balanced.

Recently, referring to finite populations, Tillé et al. (2018) noted that the feasible range of B depends on the spatial
pattern of the population and hence differs among different populations. Therefore, B can be successfully employed to
compare the level of spatial balance of different samples from the same population. Tillé et al. (2018) proposed an alter-
native approach for measuring the spatial balance of a realized sample based on a standardized version of the Moran
index, with spatial weights taking into account both the distance among units and their first-order inclusion probabilities.
Alternatively, Jauslin and Tillé (2020) suggested the use of different weight specifications.

All these measures allow us to quantify the degree of spatial balance of an already selected sample, and to assess
whether a given sampling scheme succeeds in producing spatially balanced samples, the expected value of those measures
must be computed by means of a simulation.

On the other hand, Fattorini, Marcheselli, Pisani, and Pratelli (2018) and Fattorini, Marcheselli, and Pratelli (2018)
proposed a definition of asymptotically spatially balanced sampling schemes in the framework of the infill paradigm
(Cressie, 1993). In the case of continuous populations, the population is held fixed such that T, as defined in (1), is also
fixed. Then, for any natural number k, a fixed-size design is considered to select a sample of increasing nk locations with
nk → ∞ as k increases. Let Zk(p, 𝛿) be the number of sampled locations in the closed disc of radius 𝛿 centered at p. A
sampling scheme is asymptotically spatially balanced if, for any p ∈  and any 𝜀 > 0, there exist C > 0 and an integer k0
such that

Pr{Zk(p,C∕
√

nk) = 0} < 𝜀 ∀ k > k0. (6)



DI BIASE et al. 5 of 21

Then, a sampling scheme is defined to be asymptotically spatially balanced if, as the sample size increases, the scheme
is able to evenly spread the sample in such a way that any location of the study region is likely to have neighboring
locations sampled. Additionally, in the case of finite populations of areas, T, which is defined in (3), is fixed. In this case,
for any natural number k, the study region is partitioned into an increasing number Nk of areas where as k increases,
Nk →∞. Then, a sequence of fixed-size designs is considered to select samples of nk < Nk with nk → ∞ and a definition
of an asymptotically spatially balanced sampling scheme analogous to (6) can be given.

The definition of asymptotic spatial balance refers to the sampling scheme, unlike the previous definitions that apply
to a realized sample, and thus, in principle, allows us to determine if a sampling scheme is able to select asymptotically
spatially balanced samples before sample selection. In particular, tessellation sampling schemes have been proven to be
asymptotically spatially balanced (Fattorini, Marcheselli, Pisani, & Pratelli, 2018; Fattorini, Marcheselli, & Pratelli, 2018).

4 SAMPLING SCHEMES EXPLICITLY TAILORED FOR SPATIAL BALANCE

Numerous studies are devoted to constructing spatially balanced sampling schemes for continuous and finite populations
of units. This section does not constitute an exhaustive and complete review of these sampling schemes, as we focused
on those implemented in R open packages, which make their use possible for field scientists and practitioners.

Generalized Random Tessellation Stratified (GRTS) sampling (Stevens & Olsen, 2004) is likely one of the most popular
scheme. GRTS sampling recursively partitions a grid superimposed on the study region into quadrants and hierarchi-
cally attaches an ordered spatial address to each quadrant. The spatial addresses are reorganized and mapped into a
one-dimensional space, preserving proximity relationships as much as possible, and sampled via a systematic design.
GRTS sampling can be adopted for continuous and finite populations and allows the selection of samples with prescribed
first-order inclusion densities or probabilities, respectively.

Another spatially balanced sampling scheme for continuous and finite populations is Balanced Acceptance Sam-
pling (BAS) (Robertson et al., 2013; Robertson et al., 2017), which utilizes a quasirandom number sequence called the
random-start Halton sequence, to spread the sample across multiple dimensions. Target inclusion probabilities or inclu-
sion density functions can generally be achieved under BAS, which is suitable for continuous populations but can be
inefficient for certain finite populations (Robertson et al., 2018). Moreover, Robertson et al. (2018) proposed a sampling
scheme called Halton Iterative Partitioning (HIP), an alternative to BAS, which shares desirable properties without hav-
ing drawbacks in achieving target inclusion probabilities when sampling finite populations. This design uses structural
properties of the Halton sequence, rather than points from the sequence, to draw the sample. HIP can be applied to finite
and continuous populations and with equal or unequal inclusion probabilities and inclusion density functions.

In the framework of finite populations, Grafström (2012) suggested Spatially Correlated Poisson Sampling (SCPS), a
variation of Correlated Poisson Sampling (CPS), which was introduced by Bondesson and Thorburn (2008). CPS is a list
sequential scheme that allows for the achievement of prescribed first-order inclusion probabilities. In particular, each
population unit is considered according to its position in the list, its inclusion in the sample is randomly decided, and the
inclusion probabilities for the remaining units are updated by using weights. Under SPCS, weights take into account the
distances between units and are chosen to create a strong negative correlation between the sample inclusion indicators
of nearby units, to preclude units close to the previously sampled units from being selected.

The introduction of a distance between two population units also allows Grafström et al. (2012) to incorporate the
spatial component into the Pivotal Method (PM) by Deville and Tillé (1998), producing the Local Pivotal Method (LPM).
PM is a sequential sampling scheme that allows the achievement of prescribed first-order inclusion probabilities, where
at each step, the inclusion probabilities are updated for two units in such a way that the sampling outcome is decided
for at least one of the two units. As in SCPS, the main idea of LPM is to create a strong negative correlation between the
sample inclusion indicators of units that are close in distance. With the LPM, at each step, the inclusion probabilities
of two nearby units are updated so that either one unit enters the sample or one unit is excluded from the sample. As
only nearby units compete with each other for inclusion in the sample, LPM tends to produce locally spatially balanced
samples. Notably, the LPM has recently been adopted for selecting well spread samples in the framework of continuous
populations using some form of double sampling (Grafström, Schnell, et al., 2017; Grafström & Matei, 2018).

When addressing finite populations, Grafström and Tillé (2013) propose the use of a sampling scheme with prescribed
first-order inclusion probabilities and that can achieve a double property of balancing: the sample is both spatially bal-
anced and balanced on several auxiliary variables, that is, well spread and such that the HT total estimator is almost
equal to the population totals for these variables. This scheme, which is referred to as Doubly Balanced Spatial Sampling
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(DBSS), is obtained by combining a generalization of LPM and the cube method by Deville and Tillé (2004). The basic idea
of DBSS is to repeatedly apply the “flight phase” of the cube method to a cluster of nearby units, updating their first-order
inclusion probabilities while respecting the balancing conditions. For each cluster, the sampling outcome is determined
for at least one unit, which is either selected or excluded from the sample.

More recently, Jauslin and Tillé (2020) proposed a sampling scheme based on the definition of a spatial structure via
stratification, allowing the achievement of prescribed first-order inclusion probabilities. The sampling scheme, denoted as
Weakly Associated Vector Sampling, is implemented in the R package “WaveSampling” (Jauslin & Tillé, 2022). However,
its use can be precluded if the population size is greater that 500, which is quite common in large-scale surveys. In this
case, the time needed for sample selection can be unfeasible.

Notably, under spatially balanced sampling, second-order inclusion probabilities may be zero or very close to zero for
units that are close in distance, thus precluding unbiasedly estimating the variance of the HT estimator. Thus, to estimate
precision, conservative estimators (e.g., Stevens & Olsen, 2004) or ad hoc estimators (e.g., Fattorini, 2006; Grafström &
Schelin, 2014; Grafström & Tillé, 2013; Stevens & Olsen, 2003) must be adopted.

5 TESSELLATION SAMPLING SCHEMES

When a continuous population is considered, the most straightforward schemes for obtaining a well-spread sample are
tessellation stratified sampling (TSS) and systematic grid sampling (SGS), both of which have long been used in the
statistical literature (see e.g., Stevens, 1997). Under TSS, the study region is partitioned into n spatial subsets of equal
extent, and a location is randomly and independently selected in each subset. Alternatively, TSS can be performed by
covering the study region with a grid of regular polygons of equal size (Barabesi et al., 2012) and then randomly and
independently selecting a location in each polygon.

SGS is implemented by partitioning the study region into n regular polygons of equal extent or, more commonly, by
superimposing a grid of regular polygons on the study region (Barabesi et al., 2012). In particular, under SGS, a point is
randomly selected in one polygon and systematically repeated in the polygons. Both TSS and SGS are largely applied in
forest inventories, especially at large scales (such as national inventories), where they are commonly performed using
grids of regular polygons of equal size (e.g., quadrats in the Italian National Forest Inventory and hexagons in the US
Forest Inventory).

The theoretical properties of both designs were investigated by Barabesi et al. (2012). In particular, the authors proved
that under some smoothness conditions on y, TSS gives rise to an unbiased “superefficient” estimator of T with respect
to that obtained under uniform random sampling (URS), which consists of randomly and independently selecting the
locations on the study region and thus produces equal inclusion density functions. In particular, the variance of T̂ under
TSS is of order n−𝛾 , where 𝛾 ∈ (1, 2]. However, under URS, the variance of T̂ is of order n−1. Additionally, SGS may allow

F I G U R E 1 Estimated land use map in the square region located in South Tuscany: the integers from 1 to 5 identify forestland,
cropland, grassland, wetland and settlements, respectively.
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T A B L E 1 Mean values of B, percentage ERSE and efficiencies of the HT estimator of forestland, cropland and grassland
coverage with respect to TSS.

Forest land Cropland Grassland

Scheme n B ERSE (%) Eff ERSE (%) Eff ERSE (%) Eff

TSS 144 0.0639 4.14 1 10.97 1 43.11 1

361 0.0629 2.26 1 5.80 1 24.75 1

900 0.0622 1.17 1 3.05 1 11.81 1

SGS 144 0.0279 3.09 0.75 8.10 0.74 42.84 0.99

361 0.0176 1.40 0.62 3.54 0.61 20.79 0.84

900 0.0112 1.03 0.88 2.61 0.86 7.65 0.65

GRTS 144 0.1088 4.30 1.04 11.28 1.03 45.66 1.06

361 0.1066 2.47 1.10 6.41 1.11 26.09 1.05

900 0.1036 1.39 1.19 3.58 1.18 14.62 1.24

BAS 144 0.0522 3.76 0.91 9.49 0.87 47.64 1.11

361 0.0634 2.04 0.90 5.76 0.99 21.93 0.89

900 0.0563 1.07 0.91 3.03 0.99 11.31 0.96

HIP 144 0.0525 3.77 0.91 9.57 0.87 47.52 1.10

361 0.0634 2.03 0.90 5.74 0.99 21.48 0.87

900 0.0565 1.05 0.90 2.98 0.98 11.20 0.95

T A B L E 2 Mean values of B, percentage ERSE and efficiencies of the HT estimator of wetland and settlements coverage with
respect to TSS.

Wetland Settlements

Scheme n B ERSE (%) Eff ERSE (%) Eff

TSS 144 0.0639 112.71 1 89.77 1

361 0.0629 63.06 1 44.96 1

900 0.0622 36.00 1 22.64 1

SGS 144 0.0279 86.82 0.77 94.57 1.06

361 0.0176 41.88 0.66 29.46 0.66

900 0.0112 19.76 0.55 16.59 0.73

GRTS 144 0.1088 117.65 1.04 89.77 1

361 0.1066 64.71 1.03 51.16 1.14

900 0.1036 36.00 1.00 27.91 1.23

BAS 144 0.0522 139.53 1.24 88.37 0.99

361 0.0634 73.65 1.17 44.96 1

900 0.0563 31.29 0.87 22.33 0.98

HIP 144 0.0525 137.88 1.22 88.06 0.98

361 0.0634 74.35 1.18 45.27 1.01

900 0.0565 31.29 0.87 22.33 0.99
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F I G U R E 2 Artificial land use map: categories indexed by integers from 1 to 5.

F I G U R E 3 Artificial continuous population.

for a superefficient estimation, even though its variance tends to be extremely elevated if y exhibits particular periodicities
or regularities.

Under the previously introduced infill asymptotic framework, TSS and SGS are asymptotically spatially balanced
according to the definition by Fattorini, Marcheselli, Pisani, and Pratelli (2018) since, when the sample size increases,
the probability that any location of the region has no sampled locations in a suitable neighborhood becomes definitively
small. Moreover, TSS and SGS ensure that the continuous counterpart of the HT estimator is design-based consistent
(Fattorini et al., 2020). Under mild conditions, both TSS and SGS also guarantee the design-based consistency of the map
obtained by estimating y(p) using the inverse weighting interpolator (Fattorini, Marcheselli, Pisani, & Pratelli, 2018).

In the framework of finite populations of areas, spatial balance can be readily obtained by using one-per-stratum strat-
ified sampling (OPSS) and systematic sampling (SYS), both of which have a long history in the statistical literature (e.g.,
Breidt, 1995). Under OPSS, the areas are grouped into n strata of approximately the same number of contiguous areas,
and one area is randomly selected within each stratum. If the areas are regular polygons partitioning the study region,
SYS can also be performed by grouping them into n equally shaped blocks, randomly selecting a polygon in a stratum
and systematically repeating the selection in the remaining strata. Regarding the precision of the HT estimator, the rela-
tive efficiency of OPSS with respect to simple random sampling without replacement (SRSWOR), which is considered a
benchmark, can be straightforwardly obtained for sufficiently large strata sizes (see e.g., Hedayat & Sinha, 1991, p. 267). It
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T A B L E 3 Mean values of B, percentage ERSE and efficiencies of the HT estimator of the coverage of the first three categories with
respect to TSS.

Category 1 Category 2 Category 3

Scheme n B ERSE (%) Eff ERSE (%) Eff ERSE (%) Eff

TSS 144 0.0641 11.07 1 5.44 1 13.28 1

361 0.0630 5.55 1 2.79 1 6.98 1

900 0.0622 2.78 1 1.34 1 3.36 1

SGS 144 0.0280 7.77 0.70 5.73 1.05 7.52 0.57

361 0.0177 4.15 0.75 3.84 1.38 3.72 0.53

900 0.0111 2.49 0.89 1.89 1.41 1.85 0.55

GRTS 144 0.1090 14.25 1.29 6.99 1.28 15.12 1.14

361 0.1064 7.60 1.37 3.58 1.28 8.05 1.15

900 0.1035 3.82 1.37 1.83 1.26 4.23 1.26

BAS 144 0.0524 9.52 0.86 4.90 0.90 9.82 0.74

361 0.0631 5.29 0.95 2.82 1.01 6.27 0.90

900 0.0564 3.05 1.10 1.33 0.99 3.08 0.92

HIP 144 0.0524 9.54 0.86 4.85 0.89 9.94 0.75

361 0.0634 5.32 0.96 2.79 1.00 6.32 0.91

900 0.0565 3.06 1.10 1.30 0.97 3.05 0.91

T A B L E 4 Mean values of B, percentage ERSE and efficiencies of the HT estimator of the coverage of the last two categories with
respect to TSS.

Category 4 Category 5

Scheme n B ERSE (%) Eff ERSE (%) Eff

TSS 144 0.0641 27.13 1 3.07 1

361 0.0630 15.23 1 1.55 1

900 0.0622 7.65 1 0.75 1

SGS 144 0.0280 21.21 0.78 4.05 1.32

361 0.0177 8.12 0.53 2.51 1.62

900 0.0111 4.63 0.61 1.44 1.93

GRTS 144 0.1090 28.66 1.06 3.90 1.27

361 0.1064 16.11 1.06 2.04 1.32

900 0.1035 8.96 1.17 1.05 1.40

BAS 144 0.0524 25.28 0.93 2.51 0.82

361 0.0631 15.92 1.05 1.35 0.88

900 0.0564 7.19 0.94 0.66 0.89

HIP 144 0.0524 25.45 0.94 2.52 0.82

361 0.0634 15.88 1.04 1.37 0.89

900 0.0565 7.23 0.95 0.67 0.90
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T A B L E 5 Mean values of B, percentage ERSE and efficiencies of the HT estimator of the total of the interest variable with respect to
TSS for the continuous surface.

Scheme n B ERSE (%) Eff

TSS 144 0.0641 0.49 1

361 0.0630 0.20 1

900 0.0622 0.08 1

SGS 144 0.0280 4.13 8.43

361 0.0177 2.62 13.40

900 0.0111 1.65 20.94

GRTS 144 0.1090 1.19 2.44

361 0.1064 0.62 3.17

900 0.1035 0.32 4.04

BAS 144 0.0524 0.37 0.75

361 0.0631 0.26 1.31

900 0.0564 0.08 0.98

HIP 144 0.0524 0.34 0.69

361 0.0634 0.24 1.21

900 0.0565 0.06 0.82

F I G U R E 4 Population of 560 quadrats of 25-m side. Each quadrat is colored according to the total aboveground biomass (top left), the
number of trees (top right) and the red maple abundance (bottom).



DI BIASE et al. 11 of 21

F I G U R E 5 Population of 3500 quadrats of 10-m side. Each quadrat is colored according to the total aboveground biomass (top left), the
number of trees (top right) and the red maple abundance (bottom).

is well known that SYS performance greatly depends on the population characteristics and large losses of precision with
respect to SRSWOR may occur when spatial periodicities are present. OPSS and SYS satisfy the asymptotic spatial bal-
ance definition given by Fattorini, Marcheselli, and Pratelli (2018). Practically speaking, if the study region is partitioned
into an increasing number of areas, these schemes are able to evenly spread sampled areas in such a way that any area
is likely to have neighboring areas sampled. Fattorini, Marcheselli, and Pratelli (2018) also proved that under few mild
regularity conditions, the two schemes guarantee the design-based consistency of the map of the density of the interest
attribute obtained by using the inverse distance weighting interpolator.

If the population of areas arises from partitioning a study region where a fixed density function is defined, under
the previous asymptotic setting, the HT estimator is proven to be design-based consistent under OPSS and under SYS
(Fattorini et al., 2020, section 4.2). Alternatively, if a population of units is located in the study region, to prove consistency
of the HT estimator under OPSS, it is also necessary to consider a sequence of nested populations of units of increasing size
located in the study region and to suppose a sort of evenness in the enlargements of the nested populations in such a way
that population units do not aggregate into some areas. In this case, consistency under SYS cannot be proven (Fattorini
et al., 2020).

6 SIMULATION STUDY

To compare the performances of the specifically tailored spatially balanced sampling schemes reviewed in Section 4 with
those of the tessellation sampling schemes, an extensive simulation study is conducted on real and simulated populations.
The main goal is to check whether, under constant first-order inclusion probabilities or inclusion density functions, more
complex schemes allow for a valuable increase in precision with respect to tessellation schemes.
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F I G U R E 6 Populations of 1600 (top left), 2500 (top right), and 10,000 (bottom) quadrats obtained using the first artificial surface.

6.1 Continuous populations

A real continuous population and two simulated continuous populations are considered. The real population is a 10 ×
10 km2 region located between the provinces of Siena and Grosseto in southern Tuscany (central Italy), whose land use
map was estimated (Marcelli et al., 2023) via a sample survey based on TSS during the “Inventario dell’Uso delle Terre
d’Italia” (IUTI) project. In particular, the land use map (Figure 1) shows the 5 land use classes of forestland, cropland,
grassland, wetland and settlements, whose coverages constitute the parameters to be estimated. The coverage Tj of the jth
land use (j = 1, … , 5) can be expressed as a total since, denoted by j, the surface of the region covered by the jth land
use (j = 1, … , 5),

Tj =
∫


Ij(p)𝜆(dp),

where Ij denotes the indicator function ofj.
To obtain the surface values Ij(p) for any location p, the estimated map was digitalized and converted to a shape-

file using QGIS software (QGIS Development Team, 2023), resulting in coverages 70.46, 25.84, 2.63, 0.43, 0.64 km2 for
forestland, cropland, grassland, wetland, and settlements.

Sampling was performed by selecting n = 144,361, 900 locations using TSS, SGS, GRTS, BAS, and HIP. TSS and SGS
are implemented by partitioning the region into grids of 12 × 12, 19 × 19 and 30 × 30 quadrats. For the more complex
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F I G U R E 7 Populations of 1600 (top left), 2500 (top right), and 10,000 (bottom) quadrats obtained using the second artificial surface.

schemes, GRTS is performed by using the R (R Core Team, 2023) package “spsurvey” (Dumelle et al., 2023), and BAS and
HIP are performed using the R package “SDraw” (McDonald & McDonald, 2020). However, the package “SDraw” has
been removed from the CRAN repository (https://CRAN.R-project.org/package=SDraw), and has been installed from
GitHub.

For each combination of sampling scheme  and sample size n, R = 10,000 samples are independently selected, and
the coverage of each land use class j is estimated according to the HT estimator (2) as the ratio of the number of points in
a given class to the total number of points multiplied by the size of the study region. From the Monte Carlo distributions
of the HT estimates, the empirical standard error

ESE ,j =

√√√√ 1
R

R∑

r=1
(T̂ ,rj − Tj)2

is computed for each land use, where T̂ ,rj is the estimate achieved in the rth sample (r = 1, … , 10,000) selected using the
sampling scheme  . Moreover, the empirical relative standard error ERSE ,j = ESE ,j∕Tj is also obtained, and for each
land use j, the performance of the scheme  is compared to that of TSS by computing the efficiency

Eff ,j =
ESE ,j

ESETSS,j
.

https://CRAN.R-project.org/package=SDraw
https://CRAN.R-project.org/package=SDraw
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T A B L E 6 Mean values of B, percentage ERSE and efficiencies, with respect to OPSS, of the HT estimator of the total of the interest
variables for the finite population of 560 quadrats obtained from partitioning the Harvard Forest study region.

TAGB Ttrees Tacer

Scheme f B ERSE (%) Eff ERSE (%) Eff ERSE (%) Eff

OPSS 3.6% 0.0722 5.87 1 13.77 1 12.76 1

10% 0.0741 3.09 1 6.73 1 6.10 1

25% 0.0450 1.52 1 3.18 1 2.98 1

SYS 3.6% 0.0733 5.09 0.87 11.20 0.81 11.52 0.90

10% 0.0495 2.95 0.95 6.21 0.92 9.11 1.49

25% 0.0215 0.78 0.52 1.67 0.52 2.78 0.93

LPM 3.6% 0.0741 5.87 1.00 12.85 0.93 12.43 0.97

10% 0.0619 3.04 0.98 6.16 0.92 6.13 1.01

25% 0.0601 1.65 1.08 3.21 1.01 3.23 1.08

GRTS 3.6% 0.1186 5.95 1.01 13.77 1.00 13.62 1.07

10% 0.1077 3.21 1.04 7.25 1.08 6.84 1.12

25% 0.0944 1.76 1.16 3.86 1.21 3.59 1.20

SCPS 3.6% 0.0583 5.68 0.97 12.35 0.90 12.10 0.95

10% 0.0472 2.95 0.95 5.98 0.89 5.81 0.95

25% 0.0453 1.57 1.03 2.97 0.93 2.96 0.99

BAS 3.6% 0.1415 5.80 0.99 13.09 0.95 12.57 0.98

10% 0.1421 3.08 1.00 7.01 1.04 7.09 1.16

25% 0.1322 1.87 1.23 4.15 1.30 4.08 1.37

DBSS1 3.6% 0.0652 5.70 0.97 12.43 0.90 12.37 0.97

10% 0.0533 2.92 0.95 6.05 0.90 6.19 1.01

25% 0.0485 1.57 1.03 2.96 0.93 3.07 1.03

DBSS2 3.6% 0.0686 5.84 0.99 12.70 0.92 12.42 0.97

10% 0.0546 2.97 0.96 6.10 0.91 6.02 0.99

25% 0.0497 1.54 1.01 2.95 0.93 3.04 1.02

To quantify the degree of spatial balance of the samples selected under , (5) is computed for each sample, and the average
B, the percentage values of the ERSEs and the values of the efficiencies for forestland, cropland and grassland are reported
in Table 1. In all the tables, the efficiency is simply indicated as Eff to avoid unnecessarily burdening the notation. Table 2
reports the analogous values for wetland and settlements, which are the classes with coverage smaller than 1 km2.

The simulation results in Tables 1 and 2 highlight the superiority of SGS, with only a few exceptions when consid-
ering the estimation of settlements coverage with the smallest sample size (Table 2). The performance of TSS is lightly
better than that of GRTS and comparable to those of BAS and HIP, with efficiencies fluctuating between 0.86 and 1.24
with respect to BAS and HIP and many values quite close to 1. Notably, the lowest values of B are obtained under SGS.
However, in the remaining cases, the lowest values of B do not necessarily correspond to the schemes that achieve better
performances in terms of precision.

To consider different types of populations and trends, two artificial continuous populations in the unit square region
are also considered, with the surface values defined at any location by the densities of the bivariate normal distributions
with the following parameters: 𝜇1 = 0.2, 𝜎2

1 = 0.5, 𝜇2 = 0.21, 𝜎2
2 = 0.45, 𝜌 = 0.7 and 𝜇1 = 0.9, 𝜎2

1 = 0.47, 𝜇2 = 0.4, 𝜎2
2 = 0.5,

𝜌 = 0.5.
In the first case, the surface values were grouped into 5 classes to obtain a land use map with a notably different

distribution of land use categories compared to the IUTI map (see Figure 2). In particular, surface values smaller than
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T A B L E 7 Mean values of B, percentage ERSE and efficiencies of the HT estimator of the total of the interest variables for the finite
population of 3500 quadrats obtained from partitioning the Harvard Forest study region.

TAGB Ttrees Tacer

Scheme f B ERSE (%) Eff ERSE (%) Eff ERSE (%) Eff

OPSS 4% 0.0611 4.21 1 5.16 1 6.12 1

10% 0.0697 2.57 1 2.85 1 3.57 1

25% 0.0439 1.48 1 1.41 1 1.97 1

SYS 4% 0.0275 4.22 1.00 4.20 0.81 5.62 0.92

10% 0.0166 2.23 0.87 1.32 0.47 3.51 0.98

25% 0.0086 1.73 1.17 0.94 0.66 0.89 0.45

LPM 4% 0.0573 4.23 1.00 4.93 0.95 6.18 1.01

10% 0.0534 2.57 1.00 2.75 0.97 3.54 0.99

25% 0.0564 1.52 1.02 1.48 1.05 1.99 1.01

GRTS 4% 0.1093 4.30 1.02 5.53 1.07 6.54 1.07

10% 0.1040 2.64 1.03 3.08 1.08 3.83 1.07

25% 0.0906 1.51 1.02 1.60 1.13 2.15 1.09

SCPS 4% 0.0413 4.21 1.00 4.79 0.93 6.08 0.99

10% 0.0383 2.59 1.01 2.67 0.94 3.50 0.98

25% 0.0406 1.52 1.03 1.41 1.00 1.96 1.00

BAS 4% 0.1464 4.34 1.03 5.93 1.15 6.55 1.07

10% 0.1359 2.62 1.02 3.80 1.33 3.58 1.00

25% 0.1436 1.49 1.01 2.14 1.52 2.06 1.05

DBSS1 4% 0.0490 4.19 0.99 4.86 0.94 6.12 1.00

10% 0.0450 2.61 1.02 2.68 0.94 3.59 1.00

25% 0.0446 1.51 1.02 1.42 1.01 1.96 0.99

DBSS2 4% 0.0487 4.27 1.01 4.79 0.93 6.10 1.00

10% 0.0443 2.58 1.00 2.65 0.93 3.50 0.98

25% 0.0458 1.51 1.02 1.40 1.00 1.97 1.00

1 were assigned to the first category, values greater than or equal to 1 and smaller than 3 were assigned to the second
category, values greater than or equal to 3 and smaller than 4 were assigned to the third category, values greater than or
equal to 4 and smaller than 4.5 were assigned to the fourth category and values greater than 4.5 were assigned to the last
category. The coverage of category 1 is 0.08, that of category 2 is 0.30, that of category 3 is 0.14, that of category 4 is 0.06
and that of category 5 is 0.42. Additionally, in this case, the parameters of interest are the coverages of the five categories
and are estimated as in the case of the real continuous population. In the second scenario, the surface values (Figure 3)
represent the density of an attribute of interest, and the parameter is a total of type (1), which is estimated by means of (2).

For both artificial populations, the simulation is implemented as in the real population case. Indeed, R = 10,000 sam-
ples of size n = 144,361, 900 are selected according to TSS, SGS, GRTS, BAS, and HIP and the ERSEs, the efficiencies with
respect to TSS and the averages of the B values are reported in Tables 3 and 4 for the land use map and in Table 5 for the
continuous surface.

According to the results in Tables 3 and 4, when estimating coverages, SGS achieves the best performance in terms of
precision for categories 1, 3 (see Table 3) and 4 (see Table 4), while TSS yields lower ERSE values for the remaining two
categories. Moreover, TSS outperforms GRTS, sometimes achieving remarkable gains in precision. For BAS and HIP, their
efficiencies range between 0.74 and 1.04, with smaller values achieved for the smallest sample sizes. The lowest values
of B are achieved under SGS, which does not always yield the highest precision (see results for category 2 in Table 3 and
category 5 in Table 4).
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T A B L E 8 Mean values of B, percentage ERSE and efficiencies of the HT estimator of the total of the interest variable for the two
simulated populations partitioned into 1600 quadrats.

Surface 1 Surface 2

Scheme n B ERSE (%) Eff ERSE (%) Eff

OPSS 4% 0.0629 1 .29 1 1 .09 1

10% 0.0719 0.58 1 0.55 1

25% 0.0454 0.18 1 0.15 1

SYS 4% 0.0404 3.01 2.34 6.05 5.57

10% 0.0265 2.14 3.68 5.52 10.05

25% 0.0141 1.05 5.68 2.14 14.03

LPM 4% 0.0617 1.63 1.27 1.47 1.35

10% 0.0563 0.68 1.18 0.62 1.13

25% 0.0580 0.29 1.56 0.25 1.67

GRTS 4% 0.0630 1.29 1.00 1.08 0.99

10% 0.0971 0.86 1.48 0.72 1.31

25% 0.0922 0.41 2.22 0.34 2.21

SCPS 4% 0.0459 1.33 1.04 0.93 0.86

10% 0.0413 0.50 0.86 0.38 0.70

25% 0.0425 0.19 1.05 0.16 1.03

BAS 4% 0.2579 10.33 8.03 4.93 4.54

10% 0.1526 5.01 8.60 2.41 4.40

25% 0.1152 1.99 10.74 1.29 8.43

DBSS1 4% 0.0535 1.26 0.98 1.01 0.93

10% 0.0479 0.51 0.88 0.41 0.75

25% 0.0463 0.20 1.09 0.16 1.08

DBSS2 4% 0.0540 1.32 1.03 1.02 0.94

10% 0.0477 0.53 0.91 0.41 0.76

25% 0.0476 0.21 1.14 0.16 1.07

For the artificial continuous population, the results in Table 5 show that the lowest values of B are associated with the
worst performance in terms of precision, with the ERSE values under SGS being remarkably larger than those achieved
under TSS. Additionally, in this case, the TSS performances are superior to those of the GRTS and comparable to those of
the HIP and BAS.

6.2 Finite population of areas

Several finite populations of areas are obtained based on the Harvard Forest community of trees (Orwig et al., 2023) in
Massachusetts (USA), while to consider different spatial trends, other finite populations are derived from two artificial
surfaces.

The Harvard Forest community is a 35 ha rectangular portion (500 m × 700 m) of temperate forest, and consequently,
the dominant species include white pine (Pinus strobus), red oak (Quercus rubra), red maple (Acer rubrum) and eastern
hemlock (Tsuga canadensis). The first census was conducted from 2010 to 2014. During the summers of 2010 and 2011,
all woody stems with a diameter at breast height of at least 1 cm were enumerated, and their spatial coordinates were
recorded, while the dense shrubs in the swamp section located in the center of the area were censused when frozen during
the winters of 2012–2014. In particular, Ttrees = 77,536 living trees partitioned into 55 species were censused.
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T A B L E 9 Mean values of B, percentage ERSE and efficiencies of the HT estimator of the total of the interest variable for the two
simulated populations partitioned into 2500 quadrats.

Surface 1 Surface 2

Scheme n B ERSE (%) Eff ERSE (%) Eff

OPSS 4% 0.0620 0.82 1 0.69 1

10% 0.0712 0.38 1 0.35 1

25% 0.0442 0.12 1 0.10 1

SYS 4% 0.0319 2.37 2.88 4.84 6.98

10% 0.0209 1.69 4.45 4.38 12.46

25% 0.0151 0.84 7.02 1.72 17.57

LPM 4% 0.0591 1.07 1.30 0.97 1.40

10% 0.0548 0.45 1.19 0.41 1.17

25% 0.0576 0.19 1.57 0.17 1.70

GRTS 4% 0.1098 1.51 1.83 1.28 1.84

10% 0.1035 0.71 1.87 0.64 1.83

25% 0.0913 0.31 2.56 0.28 2.82

SCPS 4% 0.0429 0.85 1.03 0.60 0.86

10% 0.0397 0.31 0.82 0.24 0.68

25% 0.0421 0.12 1.05 0.10 1.01

BAS 4% 0.1428 3.04 3.69 3.13 4.52

10% 0.1296 1.73 4.56 2.12 6.01

25% 0.1296 1.13 9.44 1.51 15.44

DBSS1 4% 0.0506 0.81 0.98 0.66 0.95

10% 0.0464 0.33 0.86 0.26 0.75

25% 0.0462 0.13 1.10 0.10 1.07

DBSS2 4% 0.0506 0.87 1.05 0.66 0.95

10% 0.0458 0.34 0.90 0.26 0.75

25% 0.0472 0.14 1.14 0.11 1.08

Two finite populations of areas are obtained by considering two different partitions of the region: the first population
is composed of N = 560 quadrats of 25-m side, and the second population is composed of N = 3500 quadrats of 10-m
side. For each quadrat of each population, the total aboveground biomass was computed as the sum of the aboveground
biomass of the trees within the quadrat, and similarly, the total number of trees and the red maple abundance were
counted. Figures 4 and 5 show maps of the total aboveground biomass, the total abundance and the red maple abundance
for the first population and second population, respectively.

Sampling is performed by means of OPSS, SYS, LPM, GRTS, SCPS, BAS, and DBSS, all with equal first-order inclusion
probabilities. In the first population, increasing sampling fractions of 3.6%, 10%, and 25%, corresponding to sample sizes of
n = 20, 56,140, are considered, while in the second population, sampling fractions of 4%, 10%, and 25%, corresponding to
sample sizes of n = 140,350, 875, are considered. To implement OPSS and SYS in the first population, quadrats are grouped
into strata/blocks of 7 × 4, 2 × 5, and 2 × 2 quadrats, while in the second population, they are grouped into strata/blocks
of 5 × 5, 5 × 2, and 2 × 2 quadrats.

The R package “BalancedSampling” (Grafström et al., 2022) was used to select samples by means of LPM, SCPS, and
DBSS. In particular, LPM of type 1 (Grafström et al., 2012) and SCPS with maximal weights (Grafström, 2012) are per-
formed. For DBSS, balance is obtained using both inclusion probabilities and spatial coordinates (DBSS1) and inclusion
probabilities, spatial coordinates and their squared values (DBSS2). Additionally, in this case, GRTS is implemented by
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T A B L E 10 Mean values of B, percentage ERSE and efficiencies of the HT estimator of the total of the interest variable for the two
simulated populations partitioned into 10,000 quadrats.

Surface 1 Surface 2

Scheme n B ERSE (%) Eff ERSE (%) Eff

OPSS 4% 0.0601 0.21 1 0.17 1

10% 0.0687 0.10 1 0.09 1

25% 0.0440 0.03 1 0.02 1

SYS 4% 0.0161 1.18 5.65 2.45 14.07

10% 0.0105 0.84 8.76 2.20 24.56

25% 0.0056 0.42 14.07 0.86 34.82

LPM 4% 0.0535 0.29 1.40 0.26 1.48

10% 0.0512 0.12 1.26 0.11 1.21

25% 0.0555 0.05 1.72 0.04 1.80

GRTS 4% 0.1047 0.40 1.92 0.33 1.90

10% 0.0999 0.19 2.00 0.16 1.83

25% 0.0885 0.08 2.81 0.07 2.87

SCPS 4% 0.0372 0.19 0.93 0.14 0.83

10% 0.0358 0.08 0.78 0.06 0.65

25% 0.0394 0.03 1.04 0.02 1.00

BAS 4% 0.1326 1.30 6.24 1.22 7.04

10% 0.1393 0.82 8.52 0.75 8.38

25% 0.1361 0.39 13.15 0.38 15.42

DBSS1 4% 0.0450 0.20 0.98 0.17 0.95

10% 0.0427 0.08 0.85 0.07 0.73

25% 0.0437 0.03 1.10 0.03 1.06

DBSS2 4% 0.0440 0.22 1.04 0.16 0.95

10% 0.0415 0.09 0.90 0.07 0.74

25% 0.0448 0.03 1.15 0.03 1.08

means of the “spsurvey” package (Dumelle et al., 2023), and the “SDraw” package (McDonald & McDonald, 2020) is
adopted for BAS. Notably, HIP is not implemented because “SDraw” did not run properly with these populations.

For each combination of population, sampling scheme and sampling fraction, R = 10,000 samples are independently
selected, and the population total aboveground biomass TAGB, the population total number of trees Ttrees and the popula-
tion red maple abundance Tacer are estimated by means of (4). Then, the ERSE values are computed from the Monte Carlo
distributions of the estimates, and in this case, the efficiencies of the more complex schemes are computed with respect
to OPSS and obtained as the ratio of the corresponding empirical standard errors, with those of OPSS at the denominator.

The surfaces adopted to construct the artificial populations of areas are those already considered in the continuous
population setting. To construct three finite populations, the unit square is partitioned into N = 40 × 40, N = 50 × 50,
and N = 100 × 100 quadrats, and the total amount of the attribute of interest in each quadrat is obtained by using the R
package “raster” (Hijmans, 2023) and, in particular, its function “aggregate.” Figures 6 and 7 depict the populations of
quadrats when the first surface and second surface are considered, respectively. Additionally, in this case, sampling is per-
formed by means of OPSS, SYS, LPM, GRTS, SCPS, BAS, and DBSS, all with equal first-order inclusion probabilities, using
the packages “spsurvey” (Dumelle et al., 2023) and “SDraw” (McDonald & McDonald, 2020). DBSS is implemented as in
the real finite population case, and to perform OPSS and SYS, quadrats are grouped into strata/blocks of 5 × 5, 2 × 5 and
2 × 2. Increasing sampling fractions of 4%, 10%, and 25% are considered for each population size N, which corresponds
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to a sample size of n = 64,160, 400, n = 100,250, 625, and n = 400, 1000, 2500, respectively. For each combination of pop-
ulation, sampling scheme and sampling fraction, R = 10,000 samples are independently selected, and by means of the
Monte Carlo estimate distributions, the ERSE values and efficiencies with respect to OPSS are computed and reported in
Tables 8–10.

The simulation results in Tables 6–10 confirm the well-known characteristics of the SYS: there are cases where it can
work very well but also cases where it shows dramatically poor performance. OPSS outperforms GRTS and, generally,
BAS. The performances of OPSS, LPM, and DBSS are very similar for real populations (see Tables 6 and 7), while for
artificial populations (see Tables 8–10), OPSS is superior to LPM, while the efficiencies of DBSS are variable, ranging from
0.73 to 1.15. The performances of OPSS and SCPS are very similar for real populations, while for artificial populations,
SCPS can sometimes achieve better precision. In this case, better precisions do not necessarily correspond to lower values
of B, as evidenced by the results in Tables 8–10, in which SYS achieves the lowest values of B and the worst efficiencies.

7 CONCLUDING REMARKS

Many schemes for achieving spatial balance have been proposed in the literature. R packages are available only for some
of them, thus rendering their implementation less complex, even though it may be difficult, especially for practitioners,
to understand the sample selection process.

Not surprisingly, the simulation results show that none of the considered schemes performs markedly better than
the others for any combination of population, sample size or parameter of interest under constant first-order inclusion
probabilities or inclusion density functions. However, regarding the finite sample performance of the tessellation schemes,
SGS and SYS can achieve very high precision but sometimes yield poor performance, while the performances of TSS and
OPSS are generally comparable to, and sometimes better than, those of the specifically tailored spatially balanced schemes.
Moreover, the simulation results show that the lower values of the spatial balance measure by Stevens and Olsen (2004),
achieved under SGS and SYS, do not necessarily correspond to greater precision.

The asymptotic properties of the HT estimator (Fattorini et al., 2020) and of the estimated map of the density of the
attribute of interest (Fattorini, Marcheselli, Pisani, & Pratelli, 2018; Fattorini, Marcheselli, & Pratelli, 2018), which are
guaranteed by the tessellation schemes under suitable conditions, cannot be proven to hold for the specifically tailored
schemes, owing to their complexity. However, their effectiveness in providing spatial balance may lead to the presumption
that these properties also hold for these schemes. The use of TSS and OPSS for achieving spatial balance and improving
precision is supported by the simulation results, their asymptotic properties and the simplicity of the sampling selection
procedure, which, as noted by Tillé and Wilhelm (2017), is among the important aspects when choosing the sampling
design.

Complex schemes allow the use of additional auxiliary information to spread the sample in the auxiliary variable space
and/or to calibrate first-order inclusion probabilities, even if the complexity of their implementation obviously increases.
However, when the sample is spread in the auxiliary variable space, balance in the geographic space may be lost, while
there are situations such as national forest inventories, where it is an essential requirement. An alternative approach
to exploiting additional auxiliary information could be the use of model-assisted estimators and tessellation sampling
schemes, and further research should be devoted to evaluating the efficiency of these strategies.
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