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Abstract: Olive leaves are an abundant by-product of olive oil production. Olive leaf extracts
(OLEs) are rich in polyphenols, which can be used for health benefits. As polyphenols are the main
antioxidant molecules in plants, plants typically increase their polyphenol content when exposed to
drought stress. However, the phenolic profile of OLEs can vary in relation to the origin and variety of
the plant material. In this work, olive leaf extracts from three different Italian olive cultivars (Giarraffa,
Leccino, and Maurino) both exposed and not exposed to drought stress were studied in terms of
antioxidant properties and profile, intestinal permeation, and protection against oxidative stress of
human umbilical vein endothelial cells (HUVECs), since HUVECs are considered a model to study a
wide range of diseases. OLEs from stressed Maurino and Giarraffa plants showed the highest increase
in antioxidant capacity compared to controls. The phenolic profile of Maurino’ was mainly increased
by water deficit, with a large increase in the compounds oleuropein and luteolin-7-O-rutinoside. All
tested extracts exposed to a water deficit protected HUVECs against oxidative stress by reducing ROS
production, and this effect was more pronounced in OLEs from Giarraffa and Maurino exposed to
drought stress compared to all other extracts. Finally, OLE from the stressed Giarraffa group showed
a higher apparent permeability of antioxidant molecules than that of Maurino.

Keywords: OLE; HUVECs; polyphenols; antioxidants; oleuropein; drought stress

1. Introduction

The olive tree (Olea europaea L.) is one of the most widespread plants; in fact, more than
8 million hectares of olive trees are cultivated worldwide, 98% of them in the Mediterranean
area [1]. The plant is mainly cultivated for the economically and culturally rewarding
production of olive oil. Even though olive leaves have high nutraceutical properties, both
branches and shoots from pruning and harvesting are discarded in large quantities without
considering the possibility of them being a valuable source of nutraceuticals. For every
liter of olive oil produced, about 6 kg of leaves are discarded [2] and are usually burned or
ground and spread on the fields [3].

Numerous reports have described the importance of olive leaf by-products as a rich
source of bioactive compounds [4]. The antioxidant activity of olive leaf extracts (OLEs)
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is due to the presence of polyphenols [5], which makes them an ideal candidate in the
medical, cosmetic, and pharmaceutical fields [6]. For example, OLEs’ protective effects
against oxidative stress were found in endothelial cells [7], in renal cells exposed to cad-
mium [8], and in bronchial epithelial cells affected by cystic fibrosis [9]. Oleuropein is the
most abundant compound in OLE [10] and is thought to be primarily responsible for its
pharmacological effects. However, OLE contains a wide variety of flavonoids, which is the
most abundant group of polyphenols in olive leaves. Therefore, the use of whole extracts
may provide greater antioxidant capacity and health benefits than isolated compounds,
thanks to the synergistic effects of all the polyphenols present [11].

In plants, polyphenols are involved in tolerance to various abiotic stresses, such as heat,
drought, flood, light, salinity, and heavy metals [12]. Thanks to its long-term adaptation to
the dry conditions of the Mediterranean, the olive tree is considered a woody plant model
to study drought stress responses [13]. Several studies report the variation of phenolic
compounds in response to drought [14–16]. The increase in the content of total polyphenols
as a consequence of drought stress contributes to an increase in the antioxidant properties
of the extracts [17]. However, the phenolic profile of OLE varies depending on the origin
and the variety of the plant material [18]. The Italian National Register has catalogued as
many as 700 olive cultivars (as defined in D.M. 7521 4 March 2016).

We previously analyzed three Italian olive cultivars under drought stress conditions,
selected on the basis of their geographical origin [19]. The cultivars Leccino’ and ‘Maurino’
are thought to be derived from a local oleaster of central Italy [20]. The former is cultivated
worldwide thanks to its resistance to the bacterium Xylella fastidiosa [21]; the latter is mainly
distributed in central Italy. Giarraffa is genetically distant from other Italian olive cultivars
and was probably introduced from Spain and Morocco [20]. It is mainly cultivated in Sicily.
The cultivars showed different physiological responses to drought.

In this work, OLEs from Giarraffa, Leccino, and Maurino, both exposed and not
exposed to drought stress, were studied in terms of antioxidant properties and profile,
protection against the oxidative stress of HUVEC cells, and intestinal permeation. HUVECs
are an excellent model to investigate a wide range of diseases, such as cardiovascular and
metabolic diseases; therefore, several studies have evaluated antioxidant molecules from
natural products on HUVECs through in vitro experiments related to vascular dysfunc-
tion [22]. In this manuscript, we perform a thorough analysis of the antioxidant capacity
of OLEs from three Italian olive cultivars to determine the one with the most relevant
effects on HUVEC cells. In order to better discriminate between the cultivars, the latter
were drought stressed and the phenolic profile of OLEs was determined to unravel their
different protection against reactive oxygen species (ROS) in human cells. Since, in this
study, drought stress was primarily used to discriminate the potential antioxidant response
of olive cultivars, we focused on molecules that provide protection against ROS in HU-
VEC cells rather than on their biochemical role in olive tree metabolism. The outcome of
this research could potentially convert the agricultural by-product of olive leaves into a
high-value nutraceutical compound.

2. Materials and Methods
2.1. Materials

Olive leaf extracts of the Giarraffa (OLE-G), Leccino (OLE-L), and Maurino (OLE-M)
varieties and the extracts obtained from the same cultivars subjected to water deficit (OLE-
GS, OLE-LS, OLE-MS) were collected from the Life Sciences Department of the University
of Siena, Siena (SI), Italy. The HUVEC cells were purchased from Lonza (Basel, Switzerland).
MCDB 131 Medium was purchased from Gibco-Thermo Fischer (Waltham, MA, USA).
Fetal bovine serum (FBS), L-glutamine, and heparin sodium salt from porcine intestinal mu-
cosa were purchased from Sigma-Aldrich (Darmstadt, Germany). Human FGF-basic and
Human EGF (animal free) were purchased from Peprotech (Waltham, MA, USA). Cell pro-
liferation reagent (WST-1) was provided by Roche diagnostic (Mannheim, Germany). The
fluorescent probe 2,7-dichloro-dihydro-fluorescein diacetate, acetyl ester (CM-H2DCFDA),
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was provided by Invitrogen (Carlsbad, CA, USA). Gallic acid (GA), ferrous chloride, and
Folin–Ciocalteu reagent were purchased from Merck (Darmstadt, Germany).

Leaf Sampling and Stress Condition

Leaves were collected from certified 18-month-old olive trees (Olea europaea L., cultivars
Leccino, Maurino and Giarraffa) provided by Spoolivi (Società Pesciatina di Orticoltura,
Pescia, PT, Italy). Growing conditions, drought treatments, and the plants’ water status
have been described in detail by Parri et al. (2023) [19]. Briefly, for each cultivar, 10 plants
were completely water deprived for 4 weeks (OLE-GS, OLE-LS, and OLE-MS for the
Giarraffa, Leccino, and Maurino water deficit stress groups, respectively) and 10 plants
were fully watered (OLE-G, OLE-L, and OLE-M for the Giarraffa, Leccino, and Maurino
control groups, respectively). For each experimental group, a pool of about 40 leaves was
sampled at t0, t1, t2, t3, and t4, corresponding to the start of withholding watering and
the first, second, third, and fourth weeks of water deprivation, respectively. Leaves were
collected, immediately frozen at −80 ◦C, and used for the following analysis.

2.2. Determination of the Antioxidant Capacity and Polyphenol Content

The extracts were prepared following the procedure described by De la Ossa (2021) [23]
but slightly modified. In detail, frozen leaves (1 g) were ground in liquid nitrogen and
the powder was resuspended in 3 mL of 70% acetone. Samples were homogenized with
Ultra-Turrax T-25 basic (IKA®-Werke GmbH & Co. KG, Staufen Germany) for 3 min and
sonicated with an ultrasonic bath (Transsonic T 460/H Elma, Singen, Germany) for 20 min.
The homogenate was centrifuged at 4000× g for 5 min at 4 ◦C. The supernatants, which
contained the antioxidant extracts, were collected and used for the antioxidant power and
polyphenol content determination. Another aliquot of the same supernatants was filtered
through a 0.45 µm cellulose acetate membrane filter (Sartorius, Göttingen, Germany),
frozen, and freeze-dried for 48 h (freeze dryer LIO 5P, 5 Pascal, Italy). The lyophilized
olive supernatants were used for the cell viability test via WST-1 assay, ROS production
analysis, and assessment of the permeation of antioxidants contained in the OLE across
excised rat intestine.

2.3. Ferric Ion-Reducing Antioxidant Power (FRAP)

The FRAP method was carried out to determine the antioxidant capacity [24]. For
each reaction, 20 µL of extract were mixed with 2040 µL of 300 mM acetate buffer pH 3.6,
200 µL of 10 mM TPTZ (2,4,6-tripyridyl-s-triazine), and 200 µL of 20 mM FeCl3. After
1 h of incubation at 37 ◦C, the absorbance of the samples was measured using a UV-Vis
spectrophotometer (wavelength set at 563 nm). The absorbance values were interpolated
on a standard curve using known ferrous sulfate solutions. The antioxidant power of each
group was expressed in mmol of ferrous chloride equivalent per 100 g of matter.

2.4. Folin–Ciocalteu Method

The total polyphenol content was determined by the Folin–Ciocalteu colorimetric
assay [25]. For each reaction, 500 µL of extract were mixed with 3950 µL of distilled water,
250 µL of Folin–Ciocalteu reagent, and 750 µL of a sodium carbonate-saturated solution
(Na2CO3) for each reaction. After a 30 min incubation at 37 ◦C, the absorbance of each
sample was measured at 795 nm using a UV-Vis spectrophotometer. The absorbance value
was interpolated using a standard curve of a known gallic acid solution. Total phenolic
content was measured in milligrams of gallic acid equivalent (GAE) per 100 g of matter.

2.5. Leaf Metabolite Extraction and Ultra-High-Performance Liquid Chromatography–Mass Spectrometry

Only the leaves sampled at t4 were used for this extraction. Approximately 4 g of
frozen olive leaves were dried for 7 days at 40 ◦C. The leaves were then grinded in a
small mill and the powder was used for metabolite extraction. Two extraction cycles were
performed with methanol (1:10, w:v). The dry extract obtained (50 mg) was dissolved
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in 1 mL of pure and filtered methanol (nylon membrane with a pore size of 0.2 µm,
Whatman, Merck, Darmstadt, Germany). A sample with a concentration of 10 mg/mL
was prepared and 4 µL were injected into a Thermo Scientific Ultimate 3000RSLC Dionex
(Waltham, MA, USA) equipped with a Dionex UltiMate 3000 RS diode array detector
coupled with a mass spectrometer operating in negative ion mode. A Hypersil GOLD
column (1.9 µm particle diameter, Thermo Scientific, Lenexa, KS, USA) was used. Analysis
and compound identification were performed as described in Dias et al. (2019) [26]. The
UV-Vis spectral data were collected between 250 and 500 nm, and the chromatogram profile
was recorded at 280 nm. A semi-quantitative analysis was performed via peak integration
through the standard external method. The identification of the peaks was performed
by comparing the retention times, UV-Vis spectra, and spectral data obtained from the
reference compounds. The detection and quantification limits were determined through
calibration curves calculated with the reference compounds (quercetin for flavonoids and
oleuropein for secoiridoids). The calibration curves were obtained via injection of different
concentrations of quercetin (y = 4 × 106x − 390882 and R2 = 0.99, where x is the amount of
the compound expressed in mg/mL and y is the peak area obtained in the chromatogram)
and oleuropein (y = 106x − 6948 and R2 = 0.98, where x is the amount of the compound
expressed in mg/mL and y is the peak area obtained in the chromatogram) using the same
conditions as for the sample analysis. The results are expressed in mg of the compound/g
of tissue DW and presented as the mean ± standard deviation of 3 independent analyses
per sampling time and treatment.

2.6. Cell Viability Test by WST-1 Assay

The viability of the HUVECs was assessed with the WST-1 assay. For this purpose,
2 × 104 cells per well were seeded in 96-well plates and placed in an incubator for 24 h at
37 ◦C and 5% CO2. Fifteen hours after seeding, the cells were incubated for 4 h with the
OLEs at concentrations in the 1–50 µg/mL range. The samples to be tested were dissolved
in fresh medium and filtered through 0.45 µm cellulose acetate filter prior to contact with the
cells. Following the 4 h treatment, the cells were washed with fresh medium to completely
remove any residual extract, then incubated at 37 ◦C for 2 h with WST-1 reagent diluted
1:10. The amount of formazan produced was evaluated at 450 nm. After washing, some of
the cells were subjected to oxidative stress by incubating them for 1 h with 500 µM H2O2.
In this case, the WST-1 reagent was added after completely removing H2O2 from the wells
through suitable washing.

2.7. ROS Production

ROS production was evaluated as previously described [17]. During the last 30 min
of treatment with OLEs or H2O2, the HUVECs were incubated with the fluorescent probe
2,7-dichloro-di-hydro-fluorescein diacetate, acetyl ester (CM-H2DCFDA), dissolved in PBS
at a concentration of 10 µM in the dark at room temperature. At the end of the experiment,
ROS production was detected by measuring the increase in fluorescence at an excitation of
488 nm and an emission of 510 nm.

2.8. Permeation of Antioxidants Contained in OLE across Excised Rat Intestine

A well-known procedure [27,28] authorized by the scientific–ethical committee of the
Italian university and the Italian Ministry for Universities and Research was carried out.
Briefly, under veterinary supervision, the intestinal mucosa was excised from non-fasted
male Wistar rats with a weight of between 250 and 300 g. Longitudinal strips were obtained
from the intestine by cutting, rinsed to remove luminal contents, and then mounted in
Ussing-type cells with an exposed surface area of 0.78 cm2 while preserving the underlying
muscle layer. After 20 min of equilibration at 37 ◦C, OLE-G, OLE-GS, OLE-M, or OLE-MS
dispersed in phosphate buffer of pH 7.4 (0.13 M) was added to the apical chamber. The
experiment was performed with OLEs at the same extract concentration of 3 mg/mL and
the same GAE content of 0.16 mg/mL. Three mL of fresh phosphate buffer of pH 7.4
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(0.13 M) were added to the acceptor chamber. To ensure oxygenation of tissue and stirring,
both compartments were bubbled with a mix of Clioxicarb (95% O2 plus 5% CO2 mix).
The transport of OLEs from apical to basolateral was studied. At 30 min intervals for a
total of 150 min, 1 mL of sample was withdrawn from the acceptor and replaced with
fresh pre-thermostated medium. The amount of antioxidant molecules that permeated was
determined by analyzing the samples via the Folin–Ciocalteau method.

2.9. Statistical Analysis

All data are expressed as mean ± standard deviation (SD). When not stated otherwise,
six independent replicates were performed for each experiment. Data were tested for
normality of distribution using the Shapiro–Wilk test. Significant differences between the
extracts analyzed were determined by one-way ANOVA. When ANOVA showed p ≤ 0.05,
a post-hoc test (Bonferroni correction) was performed. p ≤ 0.05 was considered to indicate
a significant difference.

3. Results
3.1. Antioxidant Capacity and Polyphenol Content

Figure 1 shows the antioxidant capacity of leaves collected at different time points.
After two weeks of stress, the first difference between OLE-G and OLE-GS appeared
(Figure 1a). However, as the drought stress progressed, the antioxidant capacity increased
in all cultivars: OLE-GS, OLE-LS, and OLE-MS were significantly different from their
respective controls at t4. At this time point, OLE-GS and OLE-MS showed a higher
antioxidant value (22.6 mmol Fe2+ (100 g)−1 and 21.3 mmol Fe2+ (100 g)−1, respectively)
compared to OLE-LS (12.2 mmol Fe2+ (100 g)−1).
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Figure 1. Antioxidant capacity of (a) OLE-G and OLE-GS, (b) OLE-L and OLE-LS, and (c) OLE-M
and OLE-MS from t0 to t4. Asterisks indicate a statistically significant difference (****: p < 0.001)
between the stressed group and its respective control. In each panel, unstressed and stressed samples
are indicated by different colors, regardless of the time of analysis.

The polyphenol content of each group during the experimental period is shown in
Figure 2. The polyphenol content increased after four weeks of drought stress, when all the
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stressed groups differed significantly from their respective control. As shown in Figure 2a,
the polyphenol content in OLE-GS had already increased by t2 (39.4 mg GAE (100 g)−1),
but the highest value was reached at t4 (52.2 mg GAE (100 g)−1). Despite the different
antioxidant capacities, the polyphenol content in OLE-GS, OLE-LS, and OLE-MS was very
similar at t4 (51.3, 49.9, 50.3 mg GAE (100 g)−1, respectively).

The strongest response, in terms of both antioxidant capacity and polyphenol content,
was observed after four weeks of stress. Therefore, for all cultivars, leaves collected at t4
were selected for UHPLC characterization and analysis on human cells.

3.2. OLE Phenolic Characterization

In total, 16 compounds were quantified: 3 secoiridoids and 13 flavonoids. There
were some differences between the extracts of the three olive varieties. In OLE-L, only
one secoiridoid (aldehyde form of decarboxyl elenolic acid) was detected, whereas the
flavonoids chrysoeriol-7-O-glucoside and luteolin-7-O-glucoside were not detected in
either OLE-L or OLE-LS. In the same retention time (12.1 min), the extracts from Giarraffa
contained luteolin-7-O-rutinoside instead of 7-O-glucoside, as occurred in the extracts from
Leccino and Maurino. The total amount of phenolic compounds was higher in OLE-LS
(46.1 mg/g DW) and OLE-MS (79.1 mg/g DW) compared to their respective controls
(40.7 mg/g DW in OLE-L and 39.9 mg/g in OLE-M). In OLE-LS, the increase was mostly
due to the higher amount of detected secoiridoids (10.0 mg/g DW) compared to OLE-L
(4.3 mg/g DW). OLE-MS showed a higher detected amount of both secoiridoids (27.7 mg/g
DW) and flavonoids (51.4 mg/g DW) compared to OLE-M (3.2 mg/g DW and 36.7 mg/g
DW, respectively). Conversely, OLE-GS showed a decrease in the total amount of phenolic
compounds detected (29.4 mg/g DW) compared to OLE-G (33.2 mg/g DW) due to a lower
amount of flavonoids having been detected (30.4 mg/g DW in OLE-G, 26.7 mg/g DW
in OLE-GS).

The extracts from OLE-MS presented the largest (p < 0.05) amounts of oleuropein
and oleuropein aglicone, dihydroquercetin, luteolin-7-O-rutinoside, and chysoeriol-7-O-
glucoside, and OLE-M presented the largest (p < 0.05) amount of diosmetin (Table 1). In turn,
OLE-L showed the largest (p < 0.05) amount of the aldehyde form of decarboxyl elenolic
acid and OLE-LS the largest (p < 0.05) amount of apigenin-O-dideoxyhexoside-hexoside,
apigenin-7-O-rutinoside, and luteolin-7-O-glucoside (Table 1).

Figure 3 shows the heat map of the fold changes of the phenolic metabolites extracted
from the three cultivars. In the Giarraffa cultivar, drought stress caused, in general, a
decrease in the phenolic content of OLE-GS/OLE-G, except for the secoiridoid aldehyde
form of decarboxyl elenolic acid and oleuropein and the flavonoids dihydroquercetin,
luteolin-7-O-glucoside is. 1, and luteolin, which slightly increased. In contrast, a more
heterogeneous response profile was observed in OLE-LS/OLE-L, with a similar number of
compounds having increased and decreased due to drought stress. The phenolic pool of the
Maurino cultivar mostly increased with water deficit, with a large increase in oleuropein
and luteolin-7-O-rutinoside.
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Table 1. Phenolic profile (mg/g DW) of OLE-G, OLE-GS, OLE-L, OLE-LS, OLE-M, and OLE-MS extracts. Values are mean ± standard deviation (n = 3–4).
Rt—retention time; nd—not detected; is.—isomer. For each compound, different letters denote significant difference (p < 0.05) between the values.

Rt (min.) Compound [M-H]–(m/z) MS2 (m/z) Fragments OLE-G OLE-GS OLE-L OLE-LS OLE-M OLE-MS

Secoiridoids

10.3 Oleuropein
aglicone 377 197/153 1.140 ± 0.109 b 0.596 ± 0.025 d nd 1.244 ± 0.022 b 0.875 ± 0.024 c 1.797 ± 0.005 a

10.8
Aldehydic form

of decarboxyl
elenolic acid

215 197/153/
171/185 0.475 ± 0.118 b 0.752 ± 0.076 b 4.314 ± 0.681 a 0.708 ± 0.033 b 0.653 ± 0.184 b 0.973 ± 0.014 b

14.4 Oleuropein 539 377/307/275 1.228 ± 0.276 c 1.377 ± 0.106 c nd 8.095 ± 0.494 b 1.661 ± 0.845 c 24.897 ± 1.353 a

Flavonoids

11.9 Dihydroquercetin 303 285/177/
125 2.506 ± 0.145 c 2.722 ± 0.032 c 2.655 ± 0.014 c 2.391 ± 0.204 c 3.430 ± 0.048 b 5.279 ± 0.089 a

12.1 Luteolin-7-O-
rutinoside 593 447/285 nd nd 2.584 ± 0.015 d 4.261 ± 0.167 b 3.008 ± 0.046 c 10.366 ± 0.125 a

12.1 Luteolin-7-O-
glucoside is. 1 447 287/285 2.029 ± 0.070 2.305 ± 0.171 nd nd nd nd

12.4
Apigenin-O-

dideoxyhexoside-
hexoxide

449 269 1.826 ± 0.023 d 1.726 ± 0.016 d 2.628 ± 0.015 b 2.992 ± 0.015 a 2.250 ± 0.025 c 2.479 ± 0.174 b

12.8 Apigenin-7-O-
rutinoside is. 1 577 269 3.471 ± 0.125 c 2.350 ± 0.050 e 4.797 ± 0.090 b 5.364 ± 0.071 a 2.688 ± 0.023 d 3.621 ± 0.047 c

13.0 Apigenin-7-O-
rutinoside is. 2 577 269 2.485 ± 0.102 c 2.099 ± 0.107 d 2.849 ± 0.036 b 3.296 ± 0.199 a 2.283 ± 0.041 c 2.979 ± 0.037 b

13.3 Luteolin-7-O-
glucoside is. 2 447 285 3.737 ± 0.163 bc 3.035 ± 0.462 bc 2.762 ± 0.233 c 6.135 ± 0.250 a 4.039 ± 0.139 b 7.161 ± 0.638 a

13.5 Chrysoeriol-7-
O-glucoside 461 299/446 2.198 ± 0.099 c 1.669 ± 0.007 d nd nd 2.840 ± 0.112 b 4.111 ± 0.127 a

13.9 Luteolin-7-O-
glucoside is. 3 447 285 2.215 ± 0.145 b 1.741 ± 0.063 c nd nd 2.506 ± 0.173 ab 2.878 ± 0.187 a

15.7 Luteolin 285 285 2.668 ± 0.018 c 3.098 ± 0.290 c 7.160 ± 0.197 a 3.109 ± 0.014 c 4.905 ± 0.119 b 4.546 ± 0.200 b

16.7 Apigenin-7-O-
rutinoside 577 269 2.000 ± 0.004 c 1.651 ± 0.078 d 2.086 ± 0.034 c 2.262 ± 0.019 b 2.339 ± 0.073 b 2.619 ± 0.046 a

17.4 Apigenin 269 269/225 2.612 ± 0.041 d 2.010 ± 0.077 e 5.982 ± 0.089 a 3.956 ± 0.042 b 2.884 ± 0.012 c 2.701 ± 0.010 d

17.8 Diosmetin 299 284 2.637 ± 0.028 c 2.283 ± 0.049 d 2.877 ± 0.020 b 2.277 ± 0.005 d 3.537 ± 0.047 a 2.674 ± 0.014 c
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3.3. Cell Viability Test

Figure 4 shows the viability of HUVECs treated with increasing concentrations of
OLE-G and OLE-GS (Figure 4a), OLE-L and OLE-LS (Figure 4b), and OLE-M and OLE-
MS (Figure 4c). The data in Figure 4a show that OLE-G and OLE-GS were cytotoxic at
concentrations above 10 µg/mL. Figure 4b,c show that the olive leaf extracts of the Leccino
and Maurino varieties had a low cytotoxicity at all of the concentrations tested. Therefore,
the concentration of 10 µg/mL was chosen to carry out the subsequent experiments.
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3.4. OLE Protective Effect from Oxidative Stress

With this test, the influence of the treatment with OLEs on the viability of HUVECs
after oxidative stress induced by H2O2 was evaluated. The OLEs were obtained from
plants both subjected to and not subjected to water deficit stress. Figure 5 shows data
on the protection of HUVECs from oxidative damage after 2 h of pre-treatment with
OLEs at a non-toxic concentration of 10 µg/mL and subsequent treatment with 500 µM
of H2O2 for 1 h. The data show that oxidative stress significantly reduced the number of
viable cells compared to control (cells with medium only). Pre-treatment of HUVECs with
all the extracts under study at a concentration of 10 µg/mL reduced H2O2 cytotoxicity
significantly. Apparently, the extracts from the Giarraffa and Maurino varieties that were
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subjected to water deficit stress (OLE-GS and OLE-MS) were significantly more effective
than the corresponding extracts from olive trees that were not subjected to water deficit
stress (OLE-G and OLE-M).
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Figure 6 shows data on the protection of HUVECs from oxidative damage after 2 h
of pre-treatment with OLEs and gallic acid (GA) at the same polyphenol concentration
of 0.5 µg/mL and subsequent treatment with 500 µM of H2O2 for 1 h. Also in this case,
oxidative stress significantly reduced the number of viable cells compared to the control
(cells with medium). HUVEC cell pre-treatment with all extracts at a concentration of
0.5 µg/mL of GAE showed a significant protective effect against H2O2 oxidative damage
compared to GA pre-treatment. However, there were no statistical differences between the
various OLEs tested.
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OLE-MS, and GA (0.5 µg/mL GAE) in culture medium and subsequent 1 h treatment with 500 µM
H2O2. Data are expressed as % viable cells compared to negative control (H2O2). *, Significantly
different from H2O2 (p < 0.05).
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3.5. OLE Antioxidant Activity as Assessed by ROS Production

Figure 7 shows the data for ROS production in HUVECs pre-treated and not pre-
treated with the OLEs of interest and then subjected to oxidative stress. As can be seen, ROS
production after cell treatment with H2O2 was significantly higher than ROS production in
cells incubated with control (plain medium). All extracts tested, except OLE-M, significantly
reduced ROS production compared to cells treated with H2O2. It was apparent that OLE-
GS and OLE-MS significantly reduced ROS production compared to OLE-G and OLE-M,
respectively. On the other hand, no significant differences were observed between OLE-L
and OLE-LS. The results obtained with this test are in perfect agreement with those reported
in Figure 4. These results can be attributed to the fact that OLE-GS and OLE-MS had a
significantly higher content of polyphenols and antioxidants than all the other extracts and
were not significantly different from each other.
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Figure 7. Reactive oxygen species (ROS) level in HUVECs treated with OLE-G, OLE-GS, OLE-L,
OLE-LS, OLE-M, and OLE-MS (10 µg/mL) in culture medium and subsequent treatment with 500 µM
H2O2 for 1 h. Data are expressed as % ROS production on the basis of cells simply treated with
H2O2. *, Significantly different from control (p < 0.05); **, significantly different from H2O2 (p < 0.05);
a, significantly different from OLE-G (p < 0.05); b, significantly different from OLE-M (p < 0.05).

ROS level was also evaluated in HUVECs with OLEs at the same GAE concentration
(0.5 µg/mL GAE). GA was also tested as a positive control (Figure 8). All extracts tested
significantly reduced the ROS level compared to the H2O2-treated cells. Surprisingly, ROS
in OLE-GS-treated cells was significantly lower than that in OLE-G- and GA-treated cells.
This result demonstrates that extracts from olive leaves subjected to water deficit stress
contained antioxidant molecules with higher reducing power than those extracted from
non-stressed olive trees.

3.6. Permeation of Antioxidants Contained in OLEs across Excised Rat Intestine

The epithelium of the excised rat jejunal tract was selected among known ex vivo
intestinal models for studies of the permeability of antioxidant molecules because its tight
junctions are similar in size and number to those of the human jejunum [29]. Only the OLEs
extracted from the Maurino and Giarraffa varieties, which showed a greater antioxidant
ability than that of the Leccino variety, were tested for permeation through the intestinal
epithelium. The OLEs were tested while keeping constant either the concentration of the
extract or the amount of polyphenols present in the extracts, expressed in mg of GAE
per mL. Figure 9a,b report the percentage of antioxidant molecules permeating through
the intestinal epithelium over time. As can be seen, all the OLEs tested had the same
permeation profile regardless of the concentration or amount of antioxidant molecules
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applied. However, by comparing the data in Figure 9a with those in Figure 9b, it can be seen
that the OLEs obtained from the Giarraffa variety had a significantly higher permeability
than those obtained from the Maurino variety. These results, together with those shown
in Figure 8, allow us to conclude that the OLEs from the Giarraffa variety were more
permeable and, in particular, those obtained from plants subjected to water deficit stress
had higher antioxidant activity.
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4. Discussion

Olea europaea L. is one of the most abundant, ancient, and economically valuable
crops in the Mediterranean. Olive leaves are an unavoidable by-product of olive oil
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production, accounting for 25% of the dry weight of the total pruning residue (more
than 6 kg/L of olive oil produced) [30]. Olive leaves are known to be rich in phenolic
derivatives, mainly consisting of simple phenols, flavonoids, and secoiridoids, which
may have various beneficial biological effects thanks to their antimicrobial, antioxidant,
antiviral, and cardioprotective properties [11]. The accumulation of phenolic compounds
is a well-known response to various abiotic stresses. As drought will be one of the major
challenges in the Mediterranean region, research on cultivar-specific antioxidant properties
under controlled or stressful conditions may be useful to identify which cultivars have the
highest antioxidant content and potential health benefits, thus turning olive leaves from
agricultural waste into a health or pharmaceutical product.

In this work, the antioxidant effects of olive leaf extracts of the olive cultivars Giarraffa,
Leccino, and Maurino were compared with those of the same leaves subjected to water
deficit stress.

As reported in other studies [31,32], drought stress increased the antioxidant responses
of olive plants. In the present study, the antioxidant capacity (FRAP) and total phenols
(TPC) reached their highest levels in the drought-stressed plants by the end of the experi-
mental period after four weeks of total water deprivation. At this time point, in OLE-GS
and OLE-MS, the increase in the antioxidant capacity response was reflected by an accumu-
lation of polyphenols. OLE-LS maintained a lower antioxidant capacity, but the polyphenol
content increased. In fact, the antioxidant activity of an extract depends not only on the
quantity of the polyphenols but also on the type and the synergistic interactions that oc-
cur [33]. The chemical structure heavily determines the antioxidant properties of phenolics:
Catechol moieties, multiple hydroxyl groups, and conjugation with electron-donating
groups at the 4-position of the aromatic ring are factors that positively influence antioxidant
activity [33,34]. UHLC-MS characterization of the phenolic compounds present in the leaf
extracts revealed differences between cultivars on the basis of water supplementation. Oleu-
ropein, a 3,4-dihydroxyphenylethanol (hydroxytyrosol) ester with a-glucosylated elenolic
acid, is commonly reported as the main component of olive phenolic extracts [7,15,33],
and it is well known for its pharmacological effects related to its free radical-scavenging
properties [11]. In this study, oleuropein was found to be the main component of leaf phe-
nolic extracts in OLE-MS and OLE-LS. According to the antioxidant capacity calculated for
single phenolic compounds by Xie et al. (2015) [33] and Benavente-Garcia et al. (2000) [34],
OLE-MS is rich in high-performance compounds such as oleuropein, dihydroquercetin, and
flavon-7-glucosides of both luteolin and apigenin, with a probable consequent decrease in
the free form of these flavones. Similarly, OLE-LS showed an increase in the content of these
compounds compared to OLE-L; however, the constant level of high antioxidant perfor-
mance of dihydroquercetin and the lower increase in phenolics under stress conditions may
have contributed to the lower FRAP response of OLE-LS compared to OLE-MS. Synergistic
effects should be taken into account when considering the results of OLE-GS. The lower
levels of all phenolic compounds detected in OLE-GS compared to OLE-G (Figure 3) do not
justify its higher antioxidant capacity (Figure 1a). As suggested by Dias et al. (2019) [26],
this may have been due to several reasons: It is possible that the stress condition increased
the use in radical scavenging more than it affected the phenolic synthesis, in which case the
antioxidant phenolic molecules did not increase in quantity. Alternatively, the molecules
detected could have been in combination with some other antioxidant compounds not
detected by LC-MS analysis.

The antioxidant activity of the olive leaf extracts was evaluated on HUVEC cells. All
OLEs showed no cytotoxicity at the concentrations analyzed (1–50 µg/mL); however, it can
be observed in Figure 4 that the viability decreased slowly with increasing concentration,
especially with the OLE from Giarraffa both when subjected and not subjected to water
deficit stress. Similar results were found in [23] and indicate that a high concentration of
polyphenols present in olive extract exerts a cytotoxic effect, whereas a low concentration
increases cell proliferation, as already demonstrated [35,36]. Olive leaves demonstrate
scavenging activity against multiple ROS and could display cardiovascular protection
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ability. The ability of polyphenols presents in OLEs to inhibit ROS production was evaluated
in this study. All OLEs tested, in particular, the OLEs from Giarraffa and Maurino subjected
to water deficit stress, were able to reduce ROS production compared to untreated cells.
Considering that these extracts had a higher antioxidant activity and polyphenol content
than the others, these differences could be related to a synergic effect between the present
antioxidant compounds [37]. Therefore, the protective effect of the OLEs could be related
to a determined concentration and combination of antioxidants present in the extract.
Finally, in this study, we evaluated the ability of antioxidants present in the OLEs from
Giarraffa and Maurino to cross the excised intestinal wall. As reported in Figure 9b, the
OLE from Giarraffa had a significantly higher permeability than the OLE from Maurino.
In fact, a permeation of total polyphenols at 20% of the applied dose (0.16 mg/mL GAE)
was observed in the OLE from Giarraffa, whereas the OLE from Maurino demonstrated
permeation at about 10%. These results indicate that OLE from Giarraffa is more permeable
through the intestine compared to OLE from Maurino probably because it depends on the
permeation ability of the single molecules it contains. Indeed, various factors should be
considered in the study of the transport of bioactive compounds in the intestine, such as
concentration and degradation processes [38].

5. Conclusions

The extracts subjected to water deficit stress studied in this work, OLE-GS, OLE-MS,
and OLE-LS, have been shown to demonstrate antioxidant activity on HUVECs, thus
providing protection against oxidative damage. Among all the extracts, the OLEs from
Giarraffa and Maurino showed better performance on HUVECs than the OLE from Leccino.
Although OLE-GS showed a decrease in the total amount of phenolic compounds compared
to the same extract not subject to water deficit stress, it had more antioxidant capacity
and greater permeability across the rat intestine than OLE-MS. The results obtained allow
us to conclude that the antioxidant activity of extracts obtained from plants subjected to
water stress on HUVEC cells is greater than that of extracts obtained from control plants,
encouraging us to continue studies on OLEs subjected to water deficit.
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