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Abstract

Two likely causative mutations in the RYR1 gene were identified in two patients

with myopathy with tubular aggregates, but no evidence of cores or core-like

pathology on muscle biopsy. These patients were clinically evaluated and under-

went routine laboratory investigations, electrophysiologic tests, muscle biopsy

and muscle magnetic resonance imaging (MRI). They reported stiffness of the

muscles following sustained activity or cold exposure and had serum

creatine kinase elevation. The identified RYR1 mutations (p.Thr2206Met or

p.Gly2434Arg, in patient 1 and patient 2, respectively) were previously identified

in individuals with malignant hyperthermia susceptibility and are reported as

causative according to the European Malignant Hyperthermia Group rules. To

our knowledge, these data represent the first identification of causative muta-

tions in the RYR1 gene in patients with tubular aggregate myopathy and extend

the spectrum of histological alterations caused by mutation in the RYR1 gene.

Abbreviations: ASPH, aspartyl/asparaginyl beta-hydroxylase encoding gene; ATP2A1, ATPase sarcoplasmic/endoplasmic reticulum Ca2+

transporting 1 gene; CACNA1S, calcium voltage-gated channel subunit alpha1 S coding gene; CASQ1, calsequestrin1 coding gene; CCD, central core
disease; CFTD, congenital fibre-type disproportion; CK, creatine kinase; CNM, centronuclear myopathy; DHPR, dihydropyridine receptor; DuCD,
dusty core disease; FXYD1, FXYD domain containing ion transport regulator 1 gene encoding or Phospholemman; HRC, histidine rich calcium
binding protein coding gene; JPH1, junctophilin 1 coding gene; JPH2, junctophilin 2 coding gene; KCNA1, potassium voltage-gated channel subfamily
A member 1 coding gene; MHS, malignant hyperthermia susceptibility; MmD, multiminicore disease; MRI, magnetic resonance imaging; MYH7,
myosin heavy chain 7 coding gene; NADH-TR, NADH-tetrazolium reductase; ORAI1, (CRAMC1) calcium release-activated calcium channel protein
1 coding gene; RYR1, ryanodine receptor 1 coding gene; SDH, succinate dehydrogenase; SEPN1, selenoprotein N coding gene; SERCA,
sarcoendoplasmic reticulum calcium ATPase; SLN, sarcolipin coding gene; SOCE, store-operated calcium entry; SPEG, striated muscle enriched
protein kinase coding gene; SRL, sarcalumenin coding gene; STAC3, SH3 and cysteine-rich domain 3 gene; STIM1, stromal interaction molecule
1 coding gene; TA, tubular aggregates; TAM, tubular aggregate myopathy; TRDN, triadin coding gene; TRPC3, transient receptor potential cation
channel subfamily C member 3 coding gene.
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1 | INTRODUCTION

Tubular aggregates (TA) were initially identified in
human biopsies as membrane tubules, which may or not
contain dense material, and have since been described in
different muscle disorders (Chevessier et al., 2005; Engel
et al., 1970; Schiaffino, 2012). In cryostat sections, TA
appear as irregular bright red inclusions on modified
Gomori trichrome technique and stain darkly with
NADH-tetrazolium reductase (NADH-TR) but are nega-
tive for succinate dehydrogenase (SDH) staining
(Chevessier et al., 2005; Schiaffino, 2012). These tubules
strongly react with antibodies against sarcoplasmic retic-
ulum proteins including SERCA1, STIM1, CASQ1 and
RYR1, but also for some sarcolemmal proteins participat-
ing in Ca2+ signalling such as DHPR and ORAI1. At the
ultrastructural level, TA appear as stacks of parallel
straight tubules, arranged in a honeycomb-like structure
when observed in transverse sections (Brady et al., 2016;
Schiaffino, 2012). The causal mechanisms underlying the
formation of TA are not known, but they have been
suggested to represent an adaptive response of the sarco-
plasmic reticulum to a variety of conditions including
unbalances in Ca2+ homeostasis, metabolic alterations,
or protein aggregation and have been occasionally
observed in several unrelated myopathies, which
strengthen the hypothesis that they occur as a secondary
non-specific response to distressing injuries (Chevessier
et al., 2004, 2005; Schiaffino, 2012).

The presence of TA in the absence of additional histo-
pathological features identifies a distinct muscle disorder
known as tubular aggregate myopathy (TAM), a rare
genetic disease characterized by a wide clinical spectrum
ranging from muscle weakness, myalgia and cramps to
asymptomatic creatine kinase elevation. TAM often
begins in childhood and may then worsen over time,
although initial diagnosis in adult age is also reported. At
the genetic level, TAM is predominantly caused by gain-
of-function mutations in STIM1 and ORAI1 genes (Böhm
et al., 2017; Böhm & Laporte, 2018; Endo et al., 2015;
Lacruz & Feske, 2015; Misceo et al., 2014; Nesin
et al., 2014; Silva-Rojas et al., 2020). STIM1 codes for a
Ca2+ sensor localized in the sarcoplasmic reticulum, that
once activated by low intraluminal Ca2+ levels, interacts
with ORAI1 a Ca2+ channel localized on the plasma
membrane to activate the store-operated Ca2+ entry
(SOCE), a mechanism that operates in all cell types to

refill the intracellular Ca2+ stores from the extracellular
environment. Given the wide expression of ORAI1 and
STIM1, patients with mutations in these genes may also
present additional signs such as thrombocytopenia, hypo-
splenism, miosis and ichthyosis. The full clinical presen-
tation of these symptoms corresponds to the Stormorken
syndrome (Böhm & Laporte, 2018; Feske, 2019; Misceo
et al., 2014). More recently, mutations in CASQ1 have
been also identified in some patients with TAM (Barone
et al., 2017; Böhm et al., 2018). CASQ1 codes for cal-
sequestrin, the major Ca2+ binding protein in the sarco-
plasmic reticulum lumen, which has also been shown to
participate, together with STIM1 and ORAI1, in the regu-
lation of SOCE (Barone et al., 2017; Shin et al., 2003;
Wang et al., 2015; Zhao et al., 2010). Altogether, available
data indicate that increased SOCE activity, caused by
mutations in STIM1, ORAI1 or CASQ1, represents the
primary causative event of TAM. Furthermore, results
from the functional characterization and a transcriptomic
analysis of muscles of a mouse model carrying the
pR304W STIM1 mutation have provided evidence of the
pathogenic mechanisms activated in TAM (Silva-Rojas
et al., 2021). Indeed, this study identified changes in the
expression pattern of several genes encoding proteins
participating in regulation of Ca2+ homeostasis that
would contribute to the altered muscle contractile kinet-
ics observed in these mice. In parallel, muscle fibres from
Stim1R304W/+ mice expressed higher levels ER-stress
response genes and reduced levels of some mitochondrial
genes accompanied by lower oxygen consumption and
ROS production. Histological analysis revealed evidence
of muscle fibres degeneration and regeneration, in addi-
tion to fibres undergoing apoptosis (Silva-Rojas et al.,
2021). Overall, these results help identifying a series of
events that, triggered by an increase in SOCE activity,
cause structural and functional alterations that lead to
the onset of myopathy.

However, in a significant number of patients with a
TAM diagnosis, mutations in STIM1, ORAI1 or CASQ1
are not present, leaving these cases without a molecular
genetic diagnosis.

The ryanodine receptor type 1 (RYR1) gene codes for
the Ca2+ release channel of the sarcoplasmic reticulum
in skeletal muscle cells (Meissner, 2017). Mutations in
RYR1 were initially identified in individuals with
Malignant Hyperthermia Susceptibility (MHS), a phar-
macogenetic disorder triggered by volatile anaesthetics
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and succinylcholine (Lawal et al., 2020). Shortly thereaf-
ter, RYR1 mutations were identified in patients with cen-
tral core disease (CCD) and in other myopathies
collectively referred to as RYR1-related myopathies which
include multiminicore disease (MmD), centronuclear
myopathy (CNM), congenital fibre-type disproportion
(CFTD) and dusty core disease (DuCD). These diseases
are classified based on the presence, at the histological
analysis, of distinctive structures like central cores,
minicore, nemaline rods, fibre-type disproportion and
dusty cores (Lawal et al., 2018). RYR1-related myopathies
are generally non-progressive or slowly progressive and
are characterized by a wide range of symptoms including
mild muscle weakness, hypotonia, motor developmental
delay, orthopaedic complications, including scoliosis and
foot deformities, and, more rarely, to cases with wheel-
chair dependence and respiratory failure (Dowling
et al., 2014; Jungbluth et al., 2018; Lawal et al., 2020).
More recently, RYR1 variants have also been associated
with other atypical phenotypes including exercise-
induced rhabdomyolysis (Knuiman et al., 2019), some
forms of periodic paralysis (Jungbluth & Hanna, 2018),
adult-onset distal myopathy (Machnicki et al., 2021;
Pietrini et al., 2004; Zhou et al., 2010), mild calf-
predominant myopathy (Jokela et al., 2019), foetal
akinesia deformation sequence syndrome/arthrogryposis
multiplex congenital and lethal multiple pterygium syn-
drome (Alkhunaizi et al., 2019).

Here, we report on the identification of causative
dominant RYR1 variants in two patients with a history of
myopathy characterized by the presence of tubular aggre-
gates in muscle biopsy and negative for mutations in
STIM11, ORAI1 and CASQ1.

2 | MATERIALS AND METHODS

2.1 | Muscle biopsy staining

Muscle biopsies from vastus lateralis muscle were per-
formed for diagnostic purposes after written informed
consent. Muscle samples were snap frozen in liquid
nitrogen-cooled isopentane and stored at �80�C. Serial
10-μm-thick cryosections were stained with haematoxylin
and eosin, modified Gomori trichrome, adenosine
triphosphatase (ATPase, pre-incubation at pH 4.3, 4.6
and 9.4), nicotinamide adenine dinucleotide tetrazolium
reductase (NADH-TR) and succinate dehydrogenase
(SDH).

A small fragment of muscle tissue from patient 1 was
fixed in 4% glutaraldehyde in phosphate buffer, post-fixed
in 2% osmium tetroxide, dehydrated and embedded in
Spurr resin. Ultrathin sections were stained with uranyl

acetate and lead citrate and examined with a Philips
Morgagni transmission electron microscope (FEI
Company Italia Srl, Milan, Italy) operating at 80 kV and
equipped with a Megaview II camera for digital image
acquisition.

Biochemical analysis of glycolytic enzymes including
myophosphorylase, phosphofructokinase, phosphoglycer-
ate kinase, phosphoglycerate mutase and lactate dehydro-
genase was performed on muscle homogenates, as
previously described (Filosto et al., 2007).

Immunohistochemistry was done on serial 8-μm-
thick sections with antibodies to sarcoplasmic/
endoplasmic reticulum Ca2+ ATPase 1 (SERCA1) (1:500;
Santa Cruz Biotechnology), sarcoplasmic/endoplasmic
reticulum Ca2+ ATPase 2 (SERCA2) (1:100, Santa Cruz
Biotechnology), stromal interaction molecule 1 (STIM1)
(1:100, Abcam) and ryanodine receptor 1 (RYR1) (1:500;
Rossi et al., 2014). Immunofluorescence was performed
as previously described (Guglielmi et al., 2013). Image
acquisition was performed with an Axiolab fluorescence
microscope equipped with an AxioCam HRm digital
camera (Carl Zeiss).

2.2 | Genetics

Mutation screening was performed by Next Generation
Sequencing technology using the Ion GeneStudio S5 Sys-
tem technology (Thermo Fisher Scientific) and the Ion
Ampliseq Designer software (Thermo Fisher Scientific) to
design a multiexon amplicon panel containing a total of
20 genes known to be associated with myopathies and
including RYR1, CACNA1S, MYH7, SEPN1, ATP2A1,
STAC3, ASPH, TRDN, KCNA1, TRPC3, HRC, JPH1,
JPH2, CASQ1, STIM1, ORAI1, FXYD1, SLN, SPEG and
SRL. Gene coverage of this panel was >99%. To analyse
the data obtained, a routine bioinformatic pipeline that
adopts the S5 Torrent Server VM was applied (Thermo
Fisher Scientific). Identified variants were validated by
PCR-based standard capillary Sanger sequencing. Muta-
tions were annotated based on RYR1 transcript
(NM_000540.3 GRCh37).

3 | RESULTS

3.1 | Patient description

3.1.1 | Patient 1

A 30-year-old Caucasian (Italian) man was referred for
asthenia and persistent increase of serum creatine kinase
(CK) levels (2- to 4-folds the normal values) started
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8 years before. Since childhood he complained of hand
stiffness with repetitive movements and during exposure
to cold. He denied cardiac or respiratory problems.
His father had mild serum CK increase (2-fold above
the control value) and from 10 years complained of
muscle cramps. On clinical evaluation, the patient
had a normal gait and could easily get up from a chair
or squat. Muscle strength and sensation were normal
at four limbs as well as deep tendon reflexes.
Cranial nerves examination showed a mild right eyelid
ptosis. Routine laboratory tests and muscle MRI were
unremarkable, while needle electromyography docu-
mented myopathic changes at four limbs. At age 35, the
patient referred the same symptoms, and the neurological
examination was unchanged.

3.1.2 | Patient 2

A 39-year-old Caucasian (Italian) man came to our atten-
tion because of persistent CK increase (2–4 times normal
values). From early adulthood, he complained of muscle
stiffness that gets worse with repeated movements and
after cold exposure. At age 20 he experienced a single epi-
sode of pigmenturia after strenuous physical effort, how-
ever biochemical analysis of glycolytic enzymes ruled out
a metabolic myopathy. Neurological examination was

normal, and no muscle weakness was observed. Routine
laboratory tests, nerve conduction studies and needle
electromyography were normal. The patient’s symptoms
and neurological examination did not change during the
8-year follow-up.

3.2 | Pathological findings

In both patients, muscle biopsy showed the presence of
granular inclusions with the distinctive histochemical
features of tubular aggregates in 4 and 10% of muscle
fibres from patient 1 and patient 2, respectively
(Figure 1). Tubular aggregates were often multiple and
almost exclusively located in the subsarcolemmal area of
type 2 muscle fibres. Increased fibre size variation and
reduced number of type 1 fibres were also observed.
Immunostaining of serial cross-sections from patients’
biopsies with antibodies against SERCA1 (Figure 2b,f),
STIM1 (Figure 2c,g) and RYR1 (Figure 2d,h) confirmed
the SR origin of these aggregates. In agreement with pref-
erential presence in type 2 fibres, no signal was observed
with antibody to SERCA2 in muscle fibres presenting
tubular aggregates (Figure 2i–l). Electron microscopy
analysis was performed on specimen from patient 1 and
confirmed the presence of single or multiple areas
with large bundles of parallel membrane tubules

F I GURE 1 Histochemical staining of

muscle biopsies. Muscle biopsies from patient

1 (a–c) and patient 2 (d–f) show a muscle fibre

with tubular aggregates which appear basophilic

on haematoxylin and eosin (a, d), stain bright

red with the modified Gomori trichrome (b, e)

and dark blue with NADH-TR (c, f). Muscle

biopsies from patient 1 (g, i) and patient 2 (h, j)

show several muscle fibres with multiple tubular

aggregates strongly reactive in NADH-TR

staining (g and h) and negative to SDH reaction

(i and j). Bar: 20 μm (a–f); bar: 50 μm (g–j)
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(Figure 2m,n). No muscle tissue was available from
patient 2 for ultrastructural investigations. Activity of gly-
colytic enzymes was normal in both patients (data not
shown).

3.3 | Genetic analysis findings

Sanger sequencing excluded the presence of mutations in
STIM1, ORAI1 and CASQ1 coding sequences in the two
patients. Genetic analysis was performed using a targeted
next generation sequencing (NGS) panel including
20 genes participating in regulation of excitation-
contraction coupling/Ca2+ signalling in skeletal muscle
and known to be causative of myopathy. This analysis
resulted in the identification of causative variants in the
RYR1 gene in these two patients. In patient 1, we identi-
fied a previously reported missense variant in RYR1,
c.6617C > T in exon 40 (MAF 1:47102). This variant
results in the substitution of a threonine with a methio-
nine at codon 2206 (p.Thr2206Met). The p.Thr2206Met
mutation has been previously associated with MHS
(Carpenter et al., 2009; Wehner et al., 2002) and is
included in the list of causative mutations by the EMHG

(https://www.emhg.org). This mutation is located in the
bridging solenoid, a domain of the RYR1 channel struc-
ture where most causative mutations are located (des
Georges et al., 2016; Woll et al., 2021; Woll & Van
Petegem, 2022). In patient 1, a second variant, c.2371C >
A in exon 20 (MAF 1:83,830), was identified in the RYR1
gene. This variant results in the substitution of a leucine
with an isoleucine at codon 791 (p.Leu791Ile). The L791
residue is localized within the core of the Sp1A kinase-
ryanodine receptor (SPRY1) domain of RYR1 (des
Georges et al., 2016). The function of this domain has not
been completely defined. In silico analysis of the p.-
Leu791Ile variant was ambiguous, since, according to
PolyPhen-2 it is “probably damaging” (score 0.999), but
with other programs the score is less severe (SIFT: 0.088;
Provean: �1.79; REVEL: 0.468). Accordingly, this second
variant is to be considered benign.

In patient 2, we also identified a known causative het-
erozygous variant in RYR1. This variant, c.7300G > A in
exon 45 (MAF 1:25,696) results in the amino acid substi-
tution of a glycine with an arginine at codon 2434
(p.Gly2434Arg) (Murayama et al., 2016). This variant is
considered pathogenic and causative for MHS based on
the EMHG guidelines. The pGly2434Arg mutation is also

F I GURE 2 Characterization of tubular

aggregates. NADH-TR and immunofluorescence

staining for SERCA1, RYR1 and STIM1 (a–h).
Muscle biopsy from patient 1 (a–d) and patient

2 (e–h) were stained with NADH-TR (a, e) and

decorated with antibodies for SERCA1 (b–f),
RYR1 (c, g) and STIM1 (d, h). Images were

obtained with objective �40. Bar: 20 μm.

NADH-TR and immunofluorescence staining for

SERCA2. Muscle biopsies from patient 1 (i–j)
and patient 2 (k–l). No signal for SERCA2 (j, l)

was detected in tubular aggregates found in type

2 muscle fibres (I, K; NADH-TR). Arrowheads

point to type 1 muscle fibres. Images were

obtained with objective �20, scale bar: 20 μm.

Transmission electron micrographs of muscle

biopsy of patient 1 (m–n). Electron microscopy

analysis of muscle fibres from patient 1 shows

large tubular aggregates (m, n). In (n), the

aggregate is composed of bundles of tubules

running in various directions. N, nucleus; *,

tubular aggregate. Bars: 500 nm (m), 200 nm (n)
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located in the bridging solenoid. Patient 2 also carries a
second heterozygous missense variant, c.10747G > C in
exon 73 of RYR1. This variant results in the amino acid
substitution of a glutamic acid for a glutamine at codon
3583 (p.Glu3583Gln) a residue located in the bridging
solenoid domain. However, considering the high fre-
quency (MAF 1:68) and the results of software for in sil-
ico prediction of pathogenicity (PolyPhen: 0.532; SIFT:
0.23; Provean: �0.75; REVEL: 0.32), this variant is con-
sidered benign.

4 | DISCUSSION

Here we report the first identification of mutations in
RYR1 in two unrelated patients with clinical symptoms of
a mild myopathy and the presence of tubular aggregates
as the sole pathological abnormality on muscle biopsy. In
the absence of symptoms reminiscent of a specific form
of myopathy and because of morphological features, they
were diagnosed as having TAM. Both patients had a mild
increase in serum CK levels and reported episodic stiff-
ness triggered by repetitive muscle contraction or expo-
sure to cold, a clinical phenotype not typical for TAM.
Patient 2 also experienced a single episode of pigmenturia
in his youth after strenuous physical effort; biochemical
analysis of glycolytic enzymes was performed to rule out
a metabolic myopathy. Indeed, type X glycogenosis was
reported in patients whose muscle biopsy showed tubular
aggregates (Naini et al., 2009; Vissing et al., 1999). Identi-
fication of mutations in RYR1 represents an unexpected
finding, since myopathies caused by RYR1 mutations are
usually associated with the presence of cores of different
morphologies in muscle biopsy of these patients
(Knuiman et al., 2019; Lawal et al., 2020). Indeed, despite
in the last years the list of RYR1-related myopathies has
been further expanded with the inclusion of novel histo-
logical findings such as dusty cores (Garibaldi
et al., 2019) and protein aggregate inclusions (Machnicki
et al., 2021), RYR1 mutations have never been identified
in patients with TAM. In the past, patients with exercise-
related transient muscle stiffness and TA (Müller
et al., 2001) and a single case report of MHS with tubular
aggregates in muscle biopsy have been reported (Reske-
Nielsen et al., 1975), but no genetic diagnosis was avail-
able for those patients. Even though both patients carry a
second variant (p.Leu791Ile or p.Glu3583Gln, in patient
1 and patient 2, respectively), these additional variants
are considered benign based on literature reports, fre-
quency in gnomAD data base and the results from soft-
ware for in silico prediction of pathogenicity.
Accordingly, considering the results of the genetic analy-
sis and that the father of patient 1 reported similar

symptoms, the disease observed in these two patients
appears to have a dominant inheritance pattern.

Of note, both patients are carriers of causative muta-
tions (p.Thr2206Met or p.Gly2434Arg, in patient 1 and
patient 2, respectively) that previously were mainly
detected in MHS individuals, which makes them suscep-
tible to MH crisis, although they have not report the
occurrence of MH episodes in their families. The
p.Thr2206Met mutation, identified in patient 1, was pre-
dominantly associated with the MHS phenotype and
shown, by in vitro functional characterization, to exhibit
an enhanced sensitivity to caffeine and 4-chloro-cresol,
a reduced sarcoplasmic reticulum Ca2+ content, and a
small increase in resting cytoplasmic Ca2+ level
(Murayama et al., 2016; Wehner et al., 2002). The
p.Thr2206Met mutation was also reported, in a homozy-
gous state, in a patient with CCD (Garibaldi
et al., 2019) and in a family with CCD where it was in
association with an additional variant potentially affect-
ing the splicing processing of RYR1 mRNA (Snoeck
et al., 2015). The p.Gly2434Arg identified in patient
2 represents the causative mutation most frequently
associated with MHS in the UK (Robinson et al., 2006)
and with exertional heat stroke (Butala &
Brandom, 2017; Kraeva et al., 2017). Accordingly, mice
carrying the Gly2434Arg mutation showed an increase
in death rate following exposure to halothane or to
increased ambient temperature, indicating that this
mutation is potentially associated to environmental heat
stroke (Lopez et al., 2018). Functional characterization
of the p.Gly2434Arg mutation showed an increased sen-
sitivity to caffeine and 4-chloro-m-cresol (Richter
et al., 1997). Both p.Thr2206Met and p.Gly2434Arg
mutations are located in the bridging solenoid, a
domain of RYR1 structure where several causative
mutations are found (des Georges et al., 2016; Woll
et al., 2021; Woll & Van Petegem, 2022).

Certainly, the finding that mutations mostly associ-
ated to MHS may also cause a myopathy with TA, repre-
sents an intriguing question. On the other hand, it is
known that RYR1 mutations, although present in differ-
ent regions of the RYR1 sequence (Amburgey et al., 2013;
Galli et al., 2006; Robinson et al., 2006) do not show any
correlation between mutation location, RyR1 channel
activity and clinical phenotype (Amburgey et al., 2013;
Todd et al., 2018). An additional intriguing aspect emerg-
ing from the data we are reporting is that the allele fre-
quency in the general population of the two causative
RYR1 mutations (1:47,102 and 1:25,696 for p.Thr2206Met
and p.Gly2434Arg, respectively) is much higher than the
frequency of a very rare disease such as TAM (Conte
et al., 2021; Silva-Rojas et al., 2020). This apparent contra-
diction could be, at least in part, explained by considering
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that causative RYR1 mutations may have reduced pene-
trance (Ibarra Moreno et al., 2019; Shaw &
Hopkins, 2019). However, it is important to note that the
two TAM patients reported here have a mild phenotype
compared to the more severe phenotype of most TAM
patients carrying mutations in STIM1 and ORAI1. The
latter observation therefore suggests the possibility that
the frequency of RYR1-related TAM can be under-
estimated. Therefore, even considering that we
sequenced only 20 genes, all of the above suggest that the
Gly2434Arg and p.Thr2206Met mutations are likely caus-
ative of the observed tubular aggregates myopathy
observed in these two patients.

5 | CONCLUSION

In conclusion, these findings reinforce the view that,
regardless that the mutated genes encode proteins that
participate in SOCE or excitation-contraction coupling
mechanisms, altered Ca2+ homeostasis represents a
key event in the development of myopathies, even
though there is a wide variability in clinical symptoms
and histological features induced by mutations in these
genes.

The identification of mutations in RYR1 in two
patients with TAM further extends the number of TAM-
related genes and provides additional evidence that
mutations in different genes may converge in inducing
the development of tubular aggregates. Accordingly,
these data suggest that RYR1 should be considered for
genetic analysis in a myopathy with TA where STIM1,
ORAI1 and CASQ1 mutations have been excluded. On
the other hand, these results also expand the spectrum of
non-core myopathies within the larger family of RYR1-
related myopathies.
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