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Abstract: This paper provides a formal proof of the conjecture stating that optimal colorings in max
k-cut games over unweighted and undirected graphs do not allow the formation of any strongly
divergent coalition, i.e., a subset of nodes able to increase their own payoffs simultaneously. The result
is obtained by means of a new method grounded on game theory, which consists in splitting the nodes
of the graph into three subsets: the coalition itself, the coalition boundary and the nodes without
relationship with the coalition. Moreover, we find additional results concerning the properties of
optimal colorings.
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1. Introduction

The problem of graph coloring is significant and current (see, for example, the recent
result [1]). We focus on the resilience of optimal colorings to strong deviations, which is
also linked to the max k-cut problem. The max k-cut problem consists in assigning colors to
the vertices of a graph with the aim of ensuring the highest heterogeneity of colors in the
graph, that is, by partitioning the vertices of the graph in such a way that each of them has
the largest possible number of nodes with a different color from its own.

This problem is particularly interesting not only from a theoretical point of view,
but also from the applicative perspective. Indeed, it is linked to significant real-life ap-
plications with a selfish agent. For instance, consider n agents communicating via radio
signals and assume that only two distinct frequencies are available. Such a scenario can be
modeled by a symmetric n× n matrix, which indicates, for each pair of agents, the strength
of the interference that they experiment if they select the same frequency. Assuming that
each agent chooses their frequency in order to minimize the sum of interference that they
experiment with, without worrying about the situation of others, we can use the max k-cut
game as a formal framework to study what would be the worst configuration that the
selfish agents can reach, compared to a solution where a central entity assigns frequencies
optimally. Another possible example is given by a set of companies that choose which good
to produce in order to maximize their revenue, and to do so, they have to minimize the
number of competitors represented by similar companies in the same geographic area.

Finding an optimal solution for the max k-cut game is NP-complete (see [2]). However,
using heuristic-based algorithms (some of them are reported in [3,4]), or approximation
ones (for instance, see [5,6]) it is possible to find a good enough solution, trading accuracy
for computational time.

A strategic version of the max k-cut problem is the so-called max k-cut game on an
undirected and unweighted graph with a set of k colors, where vertices represent players
and the edges indicate their mutual relations. Each player chooses one of the available
colors as its own strategy, and the corresponding payoff is the number of its neighbors that
have chosen a different color.
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One of the main problems for the max k-cut game is to prove the existence of strong
Nash equilibria (briefly, SE) [7], i.e., a refinement of the Nash equilibrium. A strong
equilibrium corresponds to assigned colorings in which no coalition, assuming the actions
of its complements as given, can cooperatively deviate in a way that benefits all of its
members, in other words, each player of the coalition strictly improves its utility. In fact,
in this direction of research, the most significant focus is on equilibrium concepts, which
are resilient to deviations of groups. Few results are known concerning the existence of
strong equilibria in max k-cut games. The authors of [8] proved that an optimal coloring,
i.e., a coloring that maximizes the sum of the players’ payoffs, is an SE for the max 2-cut
game. Later, they extended their results, showing that it is also a 3-SE, for the max k-cut
game, for any k ≥ 2, but an optimal strategy profile is not necessarily a 4-SE, for any k ≥ 3.

In [9], it was proved that, if the number of colors is at least equal to the number of
players minus two, then an optimal strategy profile is an SE, and it was conjectured that a
SE always exists for the max k-cut game. In particular, it is conjectured that any optimal
coloring is a SE.

The most important existing result was provided by the authors of [10,11], who
showed that on undirected unweighted graphs, optimal colorings are 5-strong equilibria
(5-SE), i.e., colorings in which no coalition of at most five vertices can profitably deviate.
These results were extended to 7-SE by the same authors of this work [12].

In this paper, we show that optimal colorings are strong equilibria by using a com-
pletely new approach based on the distinction between sets of nodes with optimal or not
optimal payoffs, where only the last ones are potentially interested to deviate. This makes
our approach fully different from the existing ones. Indeed, the results in the literature
use the relation between the number of available colors and the size of the coalition. This
approach is easy to use in the case of small coalitions, but it is difficult to generalize due to
the rapidly increasing number of cases to be considered. A step forward in this direction
has been made by us, since our reasoning is independent of the number of colors available
and the size of the coalition; in fact, it is based only on the topological proprieties of the
graph, such the degrees of the nodes.

Our approach considers a max k-cut game played by n individuals or players. The in-
dividuals are assumed to be arranged on an undirected and unweighted graph. Specifically,
nodes of the graph represent the individuals, while the edges describe the connections
among them. The strategy space of each player is composed by a set of k available colors,
K = {1, . . . , k}. For the sake of simplicity, we assume that the color set is the same for
each player. Given a strategy profile or a coloring, represented by the sequence of colors
chosen by players, the payoff of a player v is the sum of the weights of all edges {v, w}
incident to w, such that the color chosen by w is different from the one chosen by v. When
all weights associated to links are equal to 1, then the payoff corresponds to the number of
neighbors with a color different from its color. Each player is selfish, and then its objective
is to maximize its own utility. The main problem concerning a max k-cut game is related to
the possibility for players to achieve autonomously a social optimum (i.e., maximize the
cut value by themselves) rather than forcing individuals by an external regulator. Indeed,
in such games on graphs, it is beneficial for players to anti-coordinate their choices with
the ones of their neighbors by selecting different colors. Therefore, the players may attempt
to increase their utility by coordinating their choices in groups, called coalitions.

Our Results

In our work, we extend the main results of [10,12] since we show important properties
of minimal subsets and strong deviation. Moreover, we prove that there does not exist
any subsets of nodes able to increase their own payoffs simultaneously. This means that
optimal colorings in max k-cut games over unweighted and undirected graphs do not allow
the presence of any strongly divergent coalition. These results were recently conjectured
in [12].
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These results have many relevant conceptual consequences and applications. Indeed,
we extend previous results by showing that optimal colorings are robust and resilient
against coalitions of any dimension aimed at forcing groups of players to selfishly diverge
from the optimal equilibrium.

The article is structured as follows. First, in the next section, we give the definitions
useful for our study and we introduce the main problem. In Section 3, we provide some
results concerning the properties of optimal colorings. Then in Section 4, we prove that,
in the monochromatic case, optimal colorings in max k-cut games over unweighted and
undirected graphs do not allow the formation of any strongly divergent coalition. We
conclude the article dealing with issues stemming from the approach used to prove our
main results and pointing out some open problems, in Section 5.

2. Preliminaries

In this section, we introduce the main concepts we use below. The notions are divided
into subsections.

2.1. The Graph

We investigate the max k-cut game, that is played on an undirected unweighted graph
G = (V , E) where the elements of the set of nodes V = {1, . . . , N}, with N ≥ 2, correspond
to the players, and the edges indicates their mutual relations. We are assuming that no self-
loops are present, and that, given two nodes, there is at most one edge connecting them. The
graph G can be represented by the undirected adjacency matrix A = {av,w} ∈ {0, 1}N×N ,
where av,w = 1 if there is an edge connecting v and w. The adjacency matrix of such a graph
is symmetric, A = A>. For v ∈ V , the degree of the vertex v is δv = ∑

w∈V
av,w. Additionally,

we introduce δv(S) = ∑
w∈S

av,w, with S ⊂ V as the number of connections of v restricted to

the set S. Notice that, given S ⊆ T, then

δv(T \ S) = ∑
w∈T\S

av,w = ∑
w∈T

av,w − ∑
w∈S

av,w = δv(T)− δv(S). (1)

2.2. The Colorings

Each player chooses its own color in the set K = {1, . . . , M} of M ≥ 2 colors as
strategy space. For the sake of simplicity, we assume that the color set is the same for each
player. Precisely, σv will indicate the color of v in the coloring σ. Given a set S ⊆ V , the set
of colors in S is K(S) ⊆ K. A coloring σ ∈ KN is an assignment of colors to each node of
the graph. Given such σ and a color b ∈ K, we define the monochromatic set S ⊆ V of
nodes of V having color b as

Sb(σ) = {v ∈ S : σv = b}. (2)

2.3. The Payoff

Given a coloring, the payoff of a player is the number of neighbors that have a color
different from its own. In symbols, the payoff of node v ∈ V is

µv(σ) = ∑
w∈V

σw 6=σv

av,w. (3)

Moreover, µv(S, σ) = ∑
w∈S

σw 6=σv

av,w is the payoff of node v gained with players in S ⊆ V .

Notice that

µv(S, σ) = ∑
w∈S

σw 6=σv

av,w = ∑
w∈S

av,w − ∑
w∈S

σw=σv

av,w = δv(S)− δv(Sσv(σ)). (4)
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Considering a partition of V in m subsets S1, . . . , Sm and a coloring σ, we have that

µv(V , σ) = ∑
i=1,...,m

µv(Si, σ). (5)

In addition, given S ⊆ T and D = T \ S, following Equations (1) and (4), we obtain

µv(D, σ) = δv(D)− δv(Dσv(σ))

= δv(T)− δv(S)− [δv(Tσv(σ))− δv(Sσv(σ))]

= δv(T)− δv(Tσv(σ))− [δv(S)− δv(Sσv(σ))]

= µv(T, σ)− µv(S, σ). (6)

Additionally, µ(S, σ) = ∑
v∈S

µv(σ) is the payoff of the set S ⊆ V . As a consequence,

µ(V , σ) is the payoff of the whole population V which is using the coloring σ.
The payoff variation of a node v on a set S ⊆ V will be denoted by ∆µv(S, γ, σ) =

µv(S, γ)− µv(S, σ). If S = V , then the payoff variation is indicated by ∆µv(γ, σ) = µv(γ)−
µv(σ).

Using Equation (4), the following holds:

∆µv(S, γ, σ) = µv(S, γ)− µv(S, σ)

= δv(S)− δv(Sγv(γ))− (δv(S)− δv(Sσv(σ)))

= δv(Sσv(σ))− δv(Sγv(γ)). (7)

The cut difference between the coloring σ and another coloring γ is

∆µ(S, γ, σ) = ∑
v∈S

∆µv(S, γ, σ) = µ(S, γ)− µ(S, σ). (8)

It expresses the variation of payoff of players in S ⊆ V when the coloring changes
from σ to γ. In particular, the global variation of payoff is ∆µ(V , γ, σ). Moreover, if V is
partitioned in m subsets S1, . . . Sm, we have

∆µ(V , γ, σ) = ∑
i=1,...,m

∆µ(Si, γ, σ). (9)

A coloring σ is optimal if and only if µ(V , σ) is maximum, or equivalently

∆µ(V , γ, σ) ≤ 0 ∀γ ∈ KN .

The equal sign holds if and only if γ is also an optimal coloring.

2.4. The Max k-Cut Problem

The max k-cut problem consists of partitioning the vertices of G into M subsets of
different colors, denoted by V1, . . . , VM, such that the number of nodes having neighbors in
different sets is maximized. The max k-cut game constitutes a strategic version of the max
k-cut problem.

The next two definitions refer to the notion of coalition, which is a subset of the set of
vertices, C ⊆ V .

Definition 1 (Deviating coalition). Given two colorings σ and γ and a coalition C, we say that C
deviates from σ to γ if and only if σv = γv ∀v 6∈ C and σv 6= γv ∀v ∈ C.

Definition 2 (Strong deviation). Given two colorings σ and γ and a coalition C, we say that C
strongly deviates from σ to γ if and only if C deviates from σ to γ and

∆µv(γ, σ) > 0 ∀v ∈ C.
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3. Results on Optimal Colorings

We remark that if σ is an optimal coloring, according to the definition of profit reported
in Equation (3), two situations are feasible: µv(σ) = δv or µv(σ) < δv. In the first case,
each player w connected to v is such that σw 6= σv. In the second case, v is connected to at
least one player w such that σw = σv. No node with µv(σ) = δv can belong to a strongly
deviating coalition.

Starting from this observation, we consider the following partition of V with respect
to the optimal coloring σ:

• C(σ) = {v ∈ V : µv(σ) < δv} is the set of the nodes candidate to belong to a strong
deviation;

• B(σ) = {v ∈ V : µv(σ) = δv ∧ ∃w ∈ C(σ) : av,w = 1} is the boundary set of C(σ),
i.e., it contains all nodes not in C(σ) which are connected to some node in C(σ);

• E(σ) = {v ∈ V : µv(σ) = δv ∧ av,w = 0 ∀w ∈ C(σ)} is set of the nodes which are not
connected to C(σ) (external set).

Clearly, V = C(σ) ∪ B(σ) ∪ E(σ).
For example, consider a graph G = (V , E) as depicted in Figure 1, referred to an

optimal coloring σ. Note that vertex v1 belongs to the set C(σ), since its profit, 5, is less than
its degree, 6. Similarly we reason for the vertices v2, v3 and v7. Instead, vertex v5 belongs to
set B(σ) since its profit is exactly equal to its degree, i.e., 3, and v5 is the neighbor of at least
one vertex in C(σ), e.g., v1. Similarly we reason for the vertices v4 and v8. Finally, v9 belongs
to E(σ), as its profit is exactly equal to its degree, i.e., 1 and has no neighbors in C(σ).

Figure 1. An example of a graph with an optimal coloring partitioned in C(σ) = {v1, v2, v3, v7} (bold
line nodes), B(σ) = {v4, v5, v6, v8} (dashed line nodes) and E(σ) = {v9, v10} (dotted line nodes).
The numbers in bold are the label, while the ones in the brackets indicate the degrees and the payoffs
of nodes, respectively.

Using the definition of the monochromatic set given in Equation (2), the next proposi-
tion states that nodes in C(σ) are not connected to nodes of B(σ), having their own color.
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Proposition 1. Let σ ∈ KN be an optimal coloring. Then, for all v ∈ C(σ) the following properties
hold:

δv(Bσv(σ)) = 0 (10)

δv(Cσv(σ)) ≥ 1. (11)

Proof. Suppose that for a player v ∈ C(σ), there exists w ∈ Bσv(σ) connected to v. How-
ever, this means that µw(σ) < δw, since it is connected to v, which has the same color. This
is in contradiction with the membership of w in the set B(σ). Hence,

δv(Bσv(σ)) = 0 ∀v ∈ C(σ).

Similarly, from the definition of C(σ), inequality (11) follows.

Below, we report a remark where the case C(σ) = ∅ is considered.

Remark 1. Concerning the case C(σ) = ∅, we can make the following topological observations.

• If a graph is a star, then two colors are enough to have C(σ) = ∅. In fact, it is sufficient to
color the central vertex of one color and the remaining nodes of the other.

• If a graph is bipartite, then two colors are enough to have C(σ) = ∅. Indeed, the vertices of
such a graph can be partitioned into two sets, and it will be sufficient to color the nodes in one
of the two sets of one color and the other one with the remaining color.

• If a graph is complete, since each node is connected to all the others, the only possibility to have
C(σ) = ∅ is that the number of colors is greater than or equal to the number of nodes.

• If a graph is such that each node has a degree less than the number of colors, then there exists
an optimal coloring such that C(σ) = ∅.

Since C(σ) contains all the players that are incentivized to change their colors in order
to increase their payoff, in the rest of this work, we will not consider the cases where C(σ) =
∅, since it is trivially impossible to form strong deviating coalition in such situations.

Theorem 1. Let σ ∈ KN be an optimal coloring. Then

∀v ∈ C(σ), ∀b ∈ K \ {σv}, δv(Cb(σ)) + δv(Bb(σ)) ≥ 1.

Proof. Suppose that there exists a node v in C(σ) such that it has no neighbors in C(σ) and
in B(σ) with color b ∈ K \ {σv}, i.e., δv(Cb(σ)) = 0 and δv(Bb(σ)) = 0. Consider a coloring
γ, where only the node v in C(σ) changes its color to b. Then,

• v in γ increases its payoff of δv(Cσv(σ)), since now its color is different from the colors
of all other connected members of C(σ);

• Each node w ∈ Cσv(σ) \ {v} connected to v increases its payoff of exactly 1, since v
changed its color.

• Nodes in B(σ) connected to v do not vary their payoff. Indeed, for Equation (10),
none of them have color σv, i.e., δv(Bσv(σ)) = 0, nor the color b by hypothesis.

Summarizing, the global payoff variation from σ to γ is

∆µ(V , γ, σ) = δv(Cσv(σ))︸ ︷︷ ︸
Contribution

of v

+ 1 · δv(Cσv(σ))︸ ︷︷ ︸
Contribution

of neighbors of
v in C(σ)

=

= 2δv(Cσv(σ)) > 0,

since from (11), δv(Cσv(σ)) ≥ 1.

However, ∆µ(V , γ, σ) > 0 contradicts the optimality of σ. Then, for each color b ∈
K \ {σv}, each node v in C(σ) has at least one link connecting it to a node with color b in
C(σ) and/or in B(σ) in the coloring σ.
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Theorem 2. Let σ ∈ KN be an optimal coloring. Then,

∀v ∈ C(σ), ∀b ∈ K \ {σv}, δv(Cσv(σ)) ≤ δv(Cb(σ)) + δv(Bb(σ)).

Proof. Suppose that there exists a color b ∈ K \ {σv}, and a node v ∈ C(σ), such
that δv(Cσv(σ)) > δv(Cb(σ)) + δv(Bb(σ)). Consider a new coloring γ where only a node
v ∈ C(σ) changes its color to b.

In γ, we observe a change of payoff for the node v, for all nodes w ∈ Cσv(σ) \ {v}
connected to v, and for all nodes in Cb(σ) and Bb(σ) connected to v. In particular, we have
the following:

• v increases its payoff of δv(Cσv(σ)) and it loses δv(Cb(σ)) + δv(Bb(σ));
• Each node w ∈ Cσv(σ) \ {v} connected to v gains exactly 1;
• Each node w ∈ Cb(σ) ∪ Bb(σ) connected to v loses 1.

Summarizing, the global payoff variation is

∆µ(V , γ, σ) = δv(Cσv(σ))− δv(Cb(σ))− δv(Bb(σ))︸ ︷︷ ︸
Contribution

of v
+ 1 · δv(Cσv(σ))︸ ︷︷ ︸

Contribution
of neighbors of

v in Cσv (σ)

+ (−1 · δv(Cb(σ))− 1 · δv(Bb(σ)))︸ ︷︷ ︸
Contribution
of nodes in

Cb(σ)∪Bb(σ)

= 2(δv(Cσv(σ))− δv(Cb(σ))− δv(Bb(σ))).

For Theorem 1 it holds that δv(Cb(σ)) + δv(Bb(σ)) ≥ 1. Additionally, thanks to
Equation (11), δv(Cσv(σ)) ≥ 1. By the hypothesis that δv(Cσv(σ)) > δv(Cb(σ)) + δv(Bb(σ)),
we can conclude that ∆µ(V , γ, σ) > 0. However, this contradicts the optimality of σ,
and hence this concludes the proof.

4. Results on Strong Deviations

Theorem 2 asserts that in the neighborhood of each node v ∈ C(σ) (i.e., the set of all
the vertices connected to v), the number of nodes having the same color σv of v is lower
than the number of neighbors with colors different from σv. As a consequence, any color
different from σv will give v a worse or equal payoff, thus preventing it from changing
unilaterally its own strategy to improve its profit. This is in agreement with the fact that an
optimal coloring is also a Nash equilibrium, as stated by the following proposition.

Proposition 2. Optimal colorings are Nash equilibria.

Proof. First, we recall that, if σ is a Nash equilibrium, then for all v ∈ V and γ ∈ KN , we
have

µv(σ) ≥ µv(γ), (12)

where γ is such that for all w 6= v, γw = σw and γv 6= σv.
Equation (12) is obviously true for any v ∈ B(σ) or v ∈ E(σ), since these nodes have

already their maximum payoff in σ. Consider a generic node v ∈ C(σ) with γv 6= σv and
γv = b, from the definition of payoff variation and Equation (9), we obtain

∆µv(γ, σ) = ∆µv(C(σ), γ, σ) + ∆µv(B(σ), γ, σ) + ∆µv(E(σ), γ, σ)

Furthermore, from Equation (7) we obtain
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• ∆µv(C(σ), γ, σ) = δv(Cσv(σ)) − δv(Cb(γ)) = δv(Cσv(σ)) − δv(Cb(σ)), since only v
changed color moving from σ to γ;

• ∆µv(B(σ), γ, σ) = δv(Bσv(σ)) − δv(Bb(γ)) = −δv(Bb(γ)) = −δv(Bb(σ)), since no
node in B(σ) connected to v has the same color of v, then δv(Bσv(σ)) = 0. The last
equality holds since no node in B(σ) changed color from σ to γ;

• ∆µv(E(σ), γ, σ) = 0 since v has no connection in E(σ).

Thus for Theorem 2 it follows that

∆µv(γ, σ) = δv(Cσv(σ))− δv(Cb(γ))− δv(Bb(σ)) ≤ 0.

in accordance with the fact that σ is a Nash equilibrium (12).

In the following proposition, we evaluate the degree of nodes belonging to the sets
C(σ), B(σ) and E(σ).

Proposition 3. Let σ ∈ KN be an optimal coloring. Then, we have

(i) ∀v ∈ C(σ), δv ≥ |K|.
(ii) ∀v ∈ B(σ), δv ≥ |K(C(σ))|.
(iii) ∀v ∈ E(σ), δv ≥ 0.

Proof. The proof acts as follows:

(i) Suppose that there is a node v ∈ C(σ) such that δv < |K|. By definition of C(σ), there
exists a color b different from σv and σw for all w ∈ V connected to v. Let γ be a
coloring such that γw = σw, for all w 6= v and γv = b. In this case, v is able to improve
unilaterally its own payoff, contradicting the fact that the optimal colorings are Nash
equilibria (see Proposition 2).

(ii) From the definition of the set C(σ), it is clear that each vertex v in B(σ) must have at
least one neighbor in C(σ) for each color present in C(σ); otherwise a node in C(σ)
not connected to v could take the color of v and increase its profit.

(iii) A vertex in E(σ) could be an isolated point, which means having a degree equal
to zero.

We now give a technical lemma, which will be useful in the sequel.

Lemma 1. Let σ be an optimal coloring and a set F ⊆ C(σ). Moreover, let γ be a coloring with
γv 6= σv ∀v ∈ F and γv = σv ∀v 6∈ F. Then the payoff variation of node v when the coloring
changes from σ to γ is

∆µv(γ, σ) = δv(Fγv(σ))− δv(Fγv(γ)) + δv(Cσv(σ))− δv(Cγv(σ))− δv(Bγv(σ)). (13)

Proof. The payoff of a generic player v ∈ F when coloring σ is used is

µv(σ) = µv(C(σ), σ) + µv(B(σ), σ). (14)

According to Equation (4), the payoff collected by v in C(σ) over coloring σ is

µv(C(σ), σ) = δv(C(σ))− δv(Cσv(σ)). (15)

Similarly, the payoff collected by v in Bσ over coloring σ is

µv(B(σ), σ) = δv(B(σ))− δv(Bσv(σ)) = δv(B(σ)). (16)

since δv(Bσv(σ)) = 0 for Equation (10). Joining Equations (14)–(16), we obtain

µv(σ) = δv(C(σ))− δv(Cσv(σ)) + δv(B(σ)). (17)



Mathematics 2022, 10, 2781 9 of 14

On the other hand, the payoff of a generic player v ∈ F when coloring γ is used is

µv(γ) = µv(C(σ), γ) + µv(B(σ), γ) = µv(F, γ) + µv(C(σ) \ F, γ) + µv(B(σ), γ), (18)

where for the last equality we used Equation (6). Notice that, using Equation (1), we obtain

µv(F, γ) = δv(F)− δv(Fγv(γ)). (19)

Thanks to Equation (6), the payoff collected by v in γ with respect to the members of
D = C(σ) \ F is

µv(C(σ) \ F, γ) = µv(D, γ) = δv(D)− δv(Dγv(γ)). (20)

Since no player in the set D changes its color, δv(Dγv(γ)) = δv(Dγv(σ)). Additionally,
using Equation (1), we obtain

δv(Dγv(σ)) = δv(Cγv(σ))− δv(Fγv(σ)). (21)

Using (1) and (21), Equation (20) becomes

µv(C(σ) \ F, γ) = δv(D)− δv(Cγv(σ)) + δv(Fγv(σ))

= δv(C(σ))− δv(F)− δv(Cγv(σ)) + δv(Fγv(σ)). (22)

Finally, thanks to Equation (4), the payoff of v in B(σ) with the coloring γ is

µv(B(σ), γ) = δv(B(σ))− δv(Bγv(γ)). (23)

Joining Equations (18), (19), (22) and (23), we obtain

µv(γ) = δv(F)− δv(Fγv(γ))

+δv(C(σ))− δv(F)− δv(Cγv(σ)) + δv(Fγv(σ))

+δv(B(σ))− δv(Bγv(γ)).

= δv(Fγv(σ)) + δv(C(σ)) + δv(B(σ))− δv(Fγv(γ))− δv(Cγv(σ))− δv(Bγv(γ)). (24)

The payoff difference is obtained upon Equations (17) and (24):

∆µv(γ, σ) = µv(γ)− µv(σ)
= δv(Fγv(σ)) + δv(C(σ)) + δv(B(σ))− δv(Fγv(γ))− δv(Cγv(σ))
−δv(Bγv(γ))− [δv(C(σ))− δv(Cσv(σ)) + δv(B(σ))]

= δv(Fγv(σ)) + δv(Cσv(σ))− δv(Fγv(γ))− δv(Cγv(σ))− δv(Bγv(γ)).

Corollary 1. Suppose F = C(σ), then Equation (13) of Lemma 1 simplifies to

∆µv(γ, σ) = δv(Cσv(σ))− δv(Cγv(γ))− δv(Bγv(σ)). (25)

Moreover, the global payoff variation on V is

∆µ(V , γ, σ) = ∑
v∈C(σ)

δv(Cσv(σ))− ∑
v∈C(σ)

δv(Cγv(γ))− 2 ∑
v∈C(σ)

δv(Bγv(σ)). (26)

Proof. Equation (25) follows directly from Equation (13) when F = C(σ):

∆µv(γ, σ) = δv(Cγv(σ)) + δv(Cσv(σ))− δv(Cγv(γ))− δv(Cγv(σ))− δv(Bγv(σ))
= δv(Cσv(σ))− δv(Cγv(γ))− δv(Bγv(σ)).
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The global payoff variation is given by

∆µ(V , γ, σ) = ∑
v∈V

∆µv(γ, σ)

= ∑
v∈C(σ)

δv(Cσv(σ))− ∑
v∈C(σ)

δv(Cγv(γ))

−2 ∑
v∈C(σ)

δv(Bγv(σ)). (27)

The next theorem is one of the main results of this paper. Indeed, it proves that when
the nodes of C(σ) have all the same color, i.e., |K(C(σ))| = 1, then strongly deviating
coalitions do not exist.

Theorem 3. Let σ ∈ KN be an optimal coloring. Then, any set F ⊆ C(σ) such that σv = f , ∀v ∈
F does not strongly deviate.

Proof. Let v ∈ F and let γ be a coloring such that γv 6= σv = f . From Lemma 1, it follows
that the payoff of node v when the coloring changes from σ to γ is

∆µv(γ, σ) = δv(Fγv(σ)) + δv(Cσv(σ))− δv(Fγv(γ))
− δv(Cγv(σ))− δv(Bγv(σ)).

(28)

According to Theorem 2, we have that

δv(Cσv(σ)) ≤ δv(Cγv(σ)) + δv(Bγv(σ)),

and hence from Equation (28), we obtain

∆µv(γ, σ) ≤ δv(Fγv(σ))− δv(Fγv(γ)).

Since no node in F has color γv 6= f by hypothesis, we have that δv(Fγv(σ)) = 0, it
follows that the global payoff variation on F is

∆µv(γ, σ) = −δv(Fγv(γ)) ≤ 0.

For the generality of v, it follows that no member of F can improve its own payoff
from σ to γ. Then F does not strongly deviate from σ to γ.

Remark 2. Theorem 3 can be proved under the weaker hypothesis on the colors, which can be
assumed by the nodes of set F ∈ C(σ) in the deviating coloring γ. Indeed, it is sufficient that any
generic node v in F will not assume in γ any color already present in F in the coloring σ. This
weakens the hypothesis of monochrome nodes of F.

It is worth noticing the following.

Corollary 2. Let σ ∈ KN be an optimal coloring. Then, F = C(σ) such that σv = f , ∀v ∈ C(σ)
does not strongly deviate.

Now, we are able to prove a theorem which constitutes a first step in proving the
conjecture for the multi-color case. In particular, we show that if the sum of the degrees of
the nodes v ∈ C(σ) has colors σv and γv, which is a property fulfilled by permutations of
colors within C(σ), then C(σ) is not able to form any strong deviations.

A mapping on colors in C(σ) is defined as π : K(Cσ)→ K(Cσ). Starting from π, we
build a new coloring γ such that

1. γv = σv, ∀v 6∈ C(σ),
2. γv = π(σv), ∀v ∈ C(σ),
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3. given v, w ∈ C(σ) such that σv = σw, then π(σv) = π(σw).

Since π is a bijective function, it holds

π(x) = π(y) ⇐⇒ x = y. (29)

We remark that π is a permutation of colors, but constrained by the fact that nodes of
the same color must keep the same color in the image.

Moreover,

∑
v∈C(σ)

δv(Cσv(γ)) = ∑
v∈C(σ)

∑
w∈C(σ)
γw=γv

av,w = ∑
v∈C(σ)

∑
w∈C(σ)

π(σw)=π(σv)

av,w

= ∑
v∈C(σ)

∑
w∈C(σ)
σw=σv

av,w = ∑
v∈C(σ)

δv(Cσv(σ)), (30)

where the penultimate equality derives from the application of Equation (29).

Proposition 4. Let σ ∈ KN be an optimal coloring and γ a deviating coloring. If γ satisfies the
property

∑
v∈C(σ)

δv(Cγv(γ)) = ∑
v∈C(σ)

δv(Cσv(σ)), (31)

then C(σ) is not a strong deviation.

Proof. From the definition of deviating coloring, we have that γv 6= σv, ∀v ∈ C(σ), γv = σv,
∀v 6∈ C(σ). If C(σ) would be a strong deviation then for all of its nodes v

∆µv(γ, σ) ≥ 1,

and this implies that
∑

v∈C(σ)
∆µv(γ, σ) ≥ |C(σ)|. (32)

Using (25) and (32), we obtain

∑
v∈C(σ)

δ(Cσv(σ))− ∑
v∈C(σ)

δ(Cγ(γ))− ∑
v∈C(σ)

δ(Bγ(σ)) ≥ |C(σ)| (33)

For the Hypothesis (31), we have that the previous becomes

− ∑
v∈C(σ)

δ(Bγ(σ)) ≥ |C(σ)| ⇒ |C(σ)|+ ∑
v∈C(σ)

δv(Bγ(σ)) ≤ 0,

and this is absurd. Therefore, the generic deviating coloring γ does not allow C(σ) to form
a strong deviation.

The case F ⊆ Cσ can be proved similarly to Theorem 4, starting from Equation (28).

Theorem 4. Let σ ∈ KN be an optimal coloring. If

∑
v∈C(σ)

δv(Cσv(σ)) < 2|C(σ)|, (34)

then C(σ) is not a strong deviation.

Proof. Suppose that C(σ) is a strong deviation, thanks to the deviating coloring γ ∈ KN .
In this case

∆µv(γ, σ) ≥ 1 ∀v ∈ C(σ)⇒ ∑
v∈C(σ)

∆µv(γ, σ) ≥ |C(σ)|. (35)
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According to (25), we have that

∑
v∈C(σ)

∆µv(γ, σ) = ∑
v∈C(σ)

δv(Cσv(σ))− ∑
v∈C(σ)

δv(Cγv(γ))− ∑
v∈C(σ)

δv(Bγv(σ)) ≥ |C(σ)|,

which yields

∑
v∈C(σ)

δv(Cγv(γ)) ≤ ∑
v∈C(σ)

δv(Cσv(σ))− ∑
v∈C(σ)

δv(Bγv(σ))− |C(σ)|. (36)

On the other hand, according to Equation (26), the global payoff variation is

∆µ(V , γ, σ) = ∑
v∈C(σ)

δv(Cσv(σ))− ∑
v∈C(σ)

δv(Cγv(γ))− 2 ∑
v∈C(σ)

δv(Bγv(σ)).

For the optimality of σ, we have that ∆µ(V , γ, σ) ≤ 0, and hence

∑
v∈C(σ)

δv(Cσv(σ))− ∑
v∈C(σ)

δv(Cγv(γ))− 2 ∑
v∈C(σ)

δv(Bγv(σ)) ≤ 0,

or alternatively

∑
v∈C(σ)

δv(Cγv(γ)) ≥ ∑
v∈C(σ)

δv(Cσv(σ))− 2 ∑
v∈C(σ)

δv(Bγv(σ)). (37)

Joining the inequalities (36) and (37), we get that:

∑
v∈C(σ)

δv(Cσv(σ))− 2 ∑
v∈C(σ)

δv(Bγv(σ))

≤ ∑
v∈C(σ)

δv(Cσv(σ))− ∑
v∈C(σ)

δv(Bγv(σ))− |C(σ)|,

then, we have that
∑

v∈C(σ)
δv(Bγv(σ)) ≥ |C(σ)|. (38)

Using Hypothesis (34) and Equation (38) and plugging them into the Equation (36),
we obtain

∑
v∈C(σ)

δv(Cγv(γ)) ≤ ∑
v∈C(σ)

δv(Cσv(σ))− ∑
v∈C(σ)

δv(Bγv(σ))− |C(σ)|

< 2|C(σ)| − |C(σ)| − |C(σ)| = 0,

which is a contradiction. Hence, C(σ) does not strongly deviate with any deviation γ.

Summarizing, Theorems 3 and 4 state that in general, undirected, unweighted graphs,
strong deviations do not exist in the monochromatic case, i.e., when all nodes of the
coalition have the same color (see Theorem 3). On the other hand, when the coalition is
polychromatic, Theorem 4 states that strong deviations do not exist, provided that the
connectivity of the nodes of C(σ) is small enough. A general result on the polychromatic
case with unbounded connectivity is under development by the authors.

5. Conclusions and Future Developments

In this paper, a formal proof of the well-known conjecture stating that optimal colorings
in max k-cut games over unweighted and undirected graphs do not allow the existence of
any strongly divergent coalition is proposed.

In particular, we prove that in undirected unweighted graphs, strong deviations do
not exist in the monochromatic case. Moreover, when the coalition is polychromatic, we
show that strong deviations do not exist, provided that the connectivity of the nodes of
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the divergent coalition is small enough. A general result on the polychromatic case with
unbounded connectivity is under investigation by the authors.

Although the result is grounded in the framework of game theory, we have proved
it using an entirely new approach to that adopted in the literature for sub-results of the
current one. Specifically, it is obtained by splitting the vertices of the graph into three
subsets: the coalition itself, the coalition boundary and the nodes without relationship with
the coalition.

In order to refine the present findings, it would be interesting to investigate how
the conditions vary for graphs with particular properties, such as regular, planar graphs,
and so on. Alternatively, one could try to exploit defective colorings [13]: a (k, m) defective
coloring (or (k, m)-coloring) for a graph G is a coloring of G with k colors, such that each
node has at most m neighbors of the same color as itself. We conjecture that any optimal
coloring that is a (k,1)-coloring (respectively, (k,2)-coloring) for a (k,1)-colorable graph that
is not k-chromatic (respectively, for a (k,2)-colorable graph that is not (k,1)-colorable) is a
strong equilibrium.

Moreover, since in [14] the max k-cut game was extended to hypergraphs, by exam-
ining two possible extensions of the payoff function, it could be interesting to investigate
hypergraphs using an approach similar to that proposed in this paper.

Lastly, it would be interesting to analyze how strong an optimal coloring is in games
which are similar to the max k-cut game, e.g., the generalized graph k-coloring games [11],
and the efficient and strategic graph colorings [15,16].

Author Contributions: Formal analysis, C.M., G.P. and S.R.; Methodology, D.M., C.M., G.P. and
S.R.; Software, D.M.; Supervision, C.M.; Validation, G.P.; Writing—original draft, D.M. and G.P.;
Writing—review & editing, C.M. and S.R. All authors have contributed equally to the research and
the paper writing. All authors have read and agreed to the published version of the manuscript.

Funding: The study was financially supported by the University of Siena and the Research Project
Science without Borders, Program of CNPq/Brazil, grant number 313773/2013-0.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, Y.; Zhao, D.; Ma, M.; Xu, J. Domination Coloring of Graphs. Mathematics 2022, 10, 998. [CrossRef]
2. Karp, R.M. Reducibility among Combinatorial Problem. In Complexity of Computer Computations; Springer: Boston, MA, USA,

1972; pp. 85–103.
3. Boros, E.; Hammer, P.L.; Tavares, G. Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO). J.

Heuristics 2007, 13, 99–132. [CrossRef]
4. Wu, Q.; Hao, J.K. A Memetic Approach for the Max-Cut Problem. In PPSN 2012: Parallel Problem Solving from Nature—PPSN XII;

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 297–306.
5. Frieze, A.; Jerrum, M. Improved Approximation Algorithms for Max k-Cut and Max Bisection. Algorithmica 1997, 18, 67–81.

[CrossRef]
6. de Klerk, E.; Pasechnik, D.V.; Warners, J.P. On Approximate Graph Colouring and Max k-Cut Algorithms Based on the ϑ-Function.

J. Comb. Optim. 2004, 8, 267–294. [CrossRef]
7. Aumann, R.J. Acceptable points in games of perfect information. Pac. J. Math. 1960, 10, 381–417. [CrossRef]
8. Gourvès, L.; Monnot, J. On Strong Equilibria in the Max Cut Game. In WINE 2009: Internet and Network Economics; Lecture Notes

in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; pp. 608–615.
9. Gourvès, L.; Monnot, J. The Max k-Cut Game and its Strong Equilibria. In TAMC 2010: Theory and Applications of Models of

Computation; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 234–246.
10. Carosi, R.; Fioravanti, S.; Gualá, L.; Monaco, G. Coalition Resilient Outcomes in Max k-Cut Games. In SOFSEM 2019: Theory and

Practice of Computer Science; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; pp. 94–107.
11. Carosi, R.; Monaco, G. Generalized Graph k-coloring Games. In COCOON 2018: Computing and Combinatorics; Lecture Notes in

Computer Science; Springer: Cham, Switzerland, 2018; pp. 268–279.
12. Madeo, D.; Mocenni, C.; Palma, G.; Rinaldi, S. Optimal colorings of Max k-Cut game. Pure Math. Appl. 2022, 30, 82–89. [CrossRef]
13. Cowen, L.; Cowen, R.; Woodall, D.R. Defective colorings of graphs in surfaces: Partitions into subgraphs of bounded valency. J.

Graph Theory 1986, 10, 187–195. [CrossRef]
14. Smorodinski, R.; Smorodinski, S. Hypergraphical Clustering Games of Mis-Coordination. arXiv 2017, arXiv:1706.05297.

http://doi.org/10.3390/math10060998
http://dx.doi.org/10.1007/s10732-007-9009-3
http://dx.doi.org/10.1007/BF02523688
http://dx.doi.org/10.1023/B:JOCO.0000038911.67280.3f
http://dx.doi.org/10.2140/pjm.1960.10.381
http://dx.doi.org/10.2478/puma-2022-0013
http://dx.doi.org/10.1002/jgt.3190100207


Mathematics 2022, 10, 2781 14 of 14

15. Panagopoulou, P.N.; Spirakis, P.G. A Game Theoretic Approach for Efficient Graph Coloring. In ISAAC 2008: Algorithms and
Computation; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 183–195.

16. Escoffier, B.; Gourvès, L.; Monnot, J. Strategic Coloring of a Graph. In CIAC 2010: Algorithms and Complexity; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 155–166.


	Introduction
	Preliminaries
	The Graph
	The Colorings
	The Payoff
	The Max k-Cut Problem

	Results on Optimal Colorings
	Results on Strong Deviations
	Conclusions and Future Developments
	References

