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4 Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
5 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara e
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Abstract. The synergy between experiment, theory, and simulations enables
a microscopic analysis of spin-glass dynamics in a magnetic field in the vicinity
of and below the spin-glass transition temperature T g. The spin-glass correla-
tion length, ξ(t, tw ;T ), is analysed both in experiments and in simulations in
terms of the waiting time tw after the spin glass has been cooled down to a sta-
bilised measuring temperature T < T g and of the time t after the magnetic field
is changed. This correlation length is extracted experimentally for a CuMn 6 at.
% single crystal, as well as for simulations on the Janus II special-purpose super-
computer, the latter with time and length scales comparable to experiment. The
non-linear magnetic susceptibility is reported from experiment and simulations,
using ξ(t, tw ;T ) as the scaling variable. Previous experiments are reanalysed,
and disagreements about the nature of the Zeeman energy are resolved. The
growth of the spin-glass magnetisation in zero-field magnetisation experiments,
MZFC(t, tw ;T ), is measured from simulations, verifying the scaling relationships
in the dynamical or non-equilibrium regime. Our preliminary search for the de
Almeida–Thouless line in D = 3 is discussed.

Keywords: ergodicity breaking, memory effects, spin glasses
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1. Introduction

This paper examines in detail the dynamics of spin glasses in the vicinity of and
below their condensation temperature T g in the presence of a magnetic field, an explo-
ration relevant to many other condensed-matter glassy systems: fragile molecular glasses,
polymers, colloids, super-cooled liquids, and now even social science through ‘resource
dynamics on species packing in diverse ecosystems’ [1], to name a few. The advent
of realistic time and length scales on the Janus II dedicated supercomputer generates
a synergy between theory, experiment, and simulations that encompasses a thorough
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examination of spin-glass dynamics reaching from the low-temperature regime to the
vicinity of T g [2–4].

The special nature of this approach is the use of the spin-glass correlation length,
ξ(t, tw ;T ) as the primary factor in the analysis [4], where t is the time after a magnetic
field change, when measurements of the magnetisation take place; tw is the waiting time
after the system is quenched from above T g to temperatures within the condensation
regime, and before the change in magnetic field; and T is the temperature. This cor-
relation length can be extracted from experiment and simulations, under dynamical or
non-equilibrium configurations [5–8]. As such, it will be used for a detailed study of a
new powerful scaling law for the non-linear magnetisation near to and below T g. We shall
show that this law not only accounts for the experiments presented in this paper, but
also clears up some historical issues about the nature of the Zeeman, or magnetic-field,
energy in the spin-glass state [5, 9].

To be specific about the temperature and magnetic field protocol, we present an
analysis of the zero-field-cooled magnetisation, MZFC(t, tw ;H), as a function of t, tw and
magnetic field H at prescribed temperatures T � T g. The protocol is one where the
‘sample’ is quenched from a temperature T > T g to a measuring temperature T � T g

in zero magnetic field. The word quench means different things experimentally and in
simulations. In the former, there is a finite cooling rate as the system is brought from
above T g to the measurement temperature T . It is typically of the order of one to tens
of seconds per degree of cooling. In the case of simulations, it is instantaneous. Though
on the surface this would seem a difficult issue, in fact temperature chaos [10, 11] (which
we now know to be present in non-equilibrium dynamics as well [12]) makes the two
approaches similar if not identical. Experimentally, though the cooling rate is finite,
lowering the temperature sufficiently (δT larger than milli-Kelvins) creates new spin-
glass states without knowledge of previous history (a process termed rejuvenation [13]).
This is the reason that the magnetic susceptibility is reproducible from one experiment
to another, without recourse to the cooling rate. Thus, the final state reached upon an
experimental temperature quench is as fresh as the state arrived at in simulations upon
instantaneous quenching.

After the measurement temperature T is reached, the system is held for a time tw,
the waiting time, after which a magnetic field H is turned on. The resulting magneti-
sation, MZFC(t, tw ;H), is then measured over a time interval t. The response consists
of two terms: an instantaneous increase in magnetisation (the so-called reversible mag-
netisation), and a slowly increasing part termed the irreversible magnetisation. The
latter is found to depend upon all of the factors t, tw,H. The rise of the irreversible
term is typically very slow, taking literally times of the order of the age of the Uni-
verse to reach equilibrium. For this reason, a spin glass, once perturbed from a quasi-
equilibrium state, never reaches equilibrium, and an experiment is always in a dynamical
or non-equilibrium regime.

The sum of the reversible and irreversible magnetisations grows towards a well-
defined ‘target’, the so-called field-cooled magnetisation, MFC, for which the measuring
protocol is the opposite of the zero-field magnetisation. Namely, at T > T g, a magnetic
field H is turned on, and then the temperature is quenched to T � T g. Typically, MFC is
relatively constant, but not without its own dynamics. If the magnetic field is suddenly
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removed, the magnetisation immediately decays by its reversible part (the same as in the
zero-field case), followed by a slow decay termed the irreversible part or MTRM(t, tw ;H),
the thermo-remanent magnetisation dependent upon the waiting time tw. In general, it
is found that

MFC = MZFC(t, tw ;H) +MTRM(t, tw ;H). (1)

This is known as the extended principle of superposition [14]. There is an immense liter-
ature covering both MZFC(t, tw ;H) and MTRM(t, tw ;H) measurements, and the physical
insights gained from them [14–16].

Our approach is rather different, in that we choose to represent the dynamics in
terms of the spin-glass correlation length ξ(t, tw ;H). This quantity was first extracted
from experiment in the work of Joh et al [5], who developed a protocol based on the
relaxation function S(t, tw ;H) defined by

S(t, tw ;H) = d

[
−MTRM(t, tw ;H)

H

]
/d ln t. (2)

It is known that S(t, tw ;H) peaks at what is termed an effective waiting time, teffH ,
which is usually of the order of tw [17]. This time is characteristic of the decay
of MTRM(t, tw ;H), or, through equation (1), of the increase of MZFC(t, tw ;H) with
time t. As noted by Lederman et al [18] and Hammann et al [19] for states distributed
according to ultrametric symmetry, the dynamics is controlled by a largest free-energy
barrier height, Δmax, associated with the state that has the smallest overlap with the
initial state, qmin. Thus, t

eff
H can be associated with Δmax through the usual Arrhenius

law:

Δmax = kBT
(
ln teffH − ln τ0

)
, (3)

where τ 0 is a characteristic exchange time, τ 0 ∼ �/kBT g.
In order to extract a correlation length, Joh et al [5] used the notion that the free-

energy barrier heights were reduced in the presence of a magnetic field by the Zeeman
energy, EZ [5, 20–23], and that, for small magnetic fields H,

EZ =
(
Vcorr/a

3
0

)
χFCH

2, (4)

where χFC is the field-cooled magnetic susceptibility per spin, V corr is the correlated
volume, and a0 the average spatial separation of the magnetic ions, so that the number
of correlated spins is Ncorr = Vcorr/a

3
0. Joh et al took

Ncorr = Vcorr/a
3
0 ≈

4π

3
ξ3, (5)

where ξ is in units of a0. We now know that a more appropriate relationship would be

Ncorr = Vcorr/a
3
0 =

4π

3
ξ3−θ(x̃)/2 ≡ bξ3−θ(x̃)/2, (6)

where b is a geometrical factor, and θ(x̃) is the replicon exponent [23]. Using equation (2)
through (4), the experiments in [5] produced the plot in figure 1. The data in the limit
of small magnetic fields H were clearly linear in H2, allowing equation (4) through (6)
to set a value for ξ.
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Figure 1. A plot of ln teffH , extracted from the Zeeman energy EZ as in equation (4),
vs H2 for Cu:Mn 6 at. % (T/T g = 0.83, tw = 480 s) at fixed tw and T . Data taken
from [5].

The deviation from linearity in H2 was puzzling, leading to the authors’ stating: ‘we
do not have a satisfactory explanation for this change in slope. A different description
predicts a linear dependence of EZ upon H, which can be made to fit the data (. . . )
but with a significant deviation at small field changes’. It is the purpose of this paper to
analyse the entirety of the data considering non-linear terms in the spin-glass magneti-
sation according to a new scaling law. In addition to analysing magnetisation data from
new experiments, we shall also show that the data of figure 1, and subsequent exper-
iments of Bert et al [9] on the Ising spin glass Fe0.5Mn0.5TiO3, fit the new scaling law
well, obviating the need to question equation (4), and putting to rest the controversy
over the nature of the Zeeman energy in spin glasses.

This paper brings together a complete set of magnetisation measurements of a single
crystal of the prototypical spin glass, CuMn 6 at. %. The beauty of the experimental
results is that the correlated volume is most certainly spherical (as opposed to thin films
where the correlated volume is of pancake geometry [6]), and unlimited by finite-size
crystallites separated by grain boundaries [24, 25]. Accompanying these measurements
are the remarkable simulations of the Janus II dedicated supercomputer, which, for
the first time, yield spin-glass correlations that approach experimental time and length
scales. Indeed, the range of correlation lengths that we are able to achieve both experi-
mentally and numerically is itself a breakthrough. The current manuscript reports results
up to ξ ≈ 23.6a0 (a0 is the typical Mn–Mn distance), which represents a step forward
by a factor of three from previous work [23]. On the experimental side, we reach a
correlation length four times larger than in [5].

The synergy between these two approaches, combined with theory, opens up a new
vista for spin-glass dynamics. A direct outgrowth of this collaboration is the introduction
of the new magnetisation scaling law, which encompasses the full range of magnetic fields
for temperatures in the vicinity of the condensation temperature T g [4]. This scaling
law successfully describes both experimental and simulation results and, as noted above,
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Table 1. The values of the measuring temperatures Tm and waiting times tw for
the four experimental regimes, the respective correlation lengths at times tw (in
units of the average Mn–Mn spacing a0), and the effective replicon exponent θ(x̃)
obtained from equations (41) and (42) below (see also appendix B).

Tm (K) tw (s) ξ(tw)/a0 θ(x̃)

Exp. 1 28.50 10 000 320.36 0.337
Exp. 2 28.75 10 000 341.76 0.344
Exp. 3 28.75 20 000 359.18 0.342
Exp. 4 29.00 10 000 391.27 0.349

will resolve a nearly three-decade-old controversy concerning the nature of the magnetic
state.

Although our simulations were not designed to that end, we take the occasion as well
to attempt a preliminary search for the de Almeida–Thouless (dAT) line in the phase
diagram of the 3D spin glass.

The paper is organised as follows. Section 2 details the experimental measurements
of the non-linear magnetisation in the CuMn spin glass. Section 3 describes the nature
of our numerical simulations. Section 4 introduces the response function, equation (2),
and its extraction from experiment and simulations. Section 5 develops the new scaling
law, and applies it to both experimental and simulation results. In addition, section 5.6
shows the nature of the growth of the numerical correlation length ξ in the presence
of a magnetic field at temperatures close to the critical temperature T g. We observed
interesting overshoot phenomena that we prove to be general, as they are observed even
in ferromagnetic systems. Section 6 investigates the dAT phase boundary in D = 3.
Important technical details are provided in the appendices. Finally, section 7 summarises
our results, and points to future opportunities stemming from the synergy expressed in
this paper between theory, experiment, and simulations.

2. Experimental details

The experimental measurements were made with a CuMn∼6 at. % single-crystal sample,
prepared using a Bridgman method. The Cu and Mn were arc melted several times in
an argon environment and cast in a copper mould. The ingot was then processed in
a Bridgman furnace. Both x-ray fluorescence and optical observation showed that the
beginning of the growth is a single phase. More details can be found in appendix A of
[3]. The transition temperature, T g = 31.5 K, was determined from the temperature at
which MZFC(T ) first began to depart from MFC(T ).

The magnetisation measurements were made using a commercial DC SQUID. The
sample was quenched from 40 K at 10 K min−1 to the measuring temperature Tm in zero
magnetic field. After stabilisation of the temperature, the system was aged for a wait-
ing time tw before a magnetic field was applied, and the magnetisation MZFC(t, tw ;Tm)
recorded as a function of time t. The temperatures Tm were chosen as 28.5 K, 28.75 K,
and 29 K, so that Tm � 0.9T g. The magnetic fields ranged from 16 Oe to 59 Oe.

https://doi.org/10.1088/1742-5468/abdfca 7
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Table 2. Main parameters for each of our numerical simulations: T , tw, ξ(tw), the
longest simulation time tmax, the replicon exponent θ(x̃) (see appendix B) and the
value of Cpeak(tw) employed in equation (16). Here and in the rest of the paper,
error bars are one standard deviation.

T tw ξ(tw ;H = 0) tmax θ(x̃) Cpeak

Run 1 0.9 222 8.294(7) 230 0.455 0.533(3)
Run 2 0.9 226.5 11.72(2) 230.5 0.436 0.515(2)
Run 3 0.9 231.25 16.63(5) 233 0.415 0.493(3)
Run 4 1.0 223.75 11.79(2) 228 0.512 0.422(2)
Run 5 1.0 227.625 16.56(5) 230 0.498 0.400(1)
Run 6 1.0 231.75 23.63(14) 235 0.484 0.386(4)

Table 1 displays the relevant experimental parameters, including the effective replicon
exponent θ(x̃).

3. Some details of the simulations

We carried out massive simulations on the Janus II supercomputer [26] to study the
Ising–Edwards–Anderson (IEA) model in a cubic lattice with periodic boundary condi-
tions and size L = 160a0, where a0 is the average distance between magnetic moments,
see table 2 for the simulation details. The N = LD Ising spins, sx = ±1, interact with
their lattice nearest neighbours through the Hamiltonian:

H = −
∑
〈x,y〉

Jxysxsx −H
∑
x

sx, (7)

where the quenched disordered couplings are Jxy = ±1 with 50% probability. We name
a particular choice of the couplings a sample. In the absence of an external magnetic
field, H = 0, this model undergoes a spin-glass transition at the critical temperature
T g = 1.102(3) [27].

As we explained in the introduction, in order to simulate the experimental zero-
field-cooling (ZFC) protocol the following procedure was performed: we place the initial
random spin configuration instantaneously at the working temperature T and let it relax
for a time tw at H = 0. At time tw, we turn on the external magnetic field and we start
recording the magnetic density,

MZFC(t, tw ;H) =
1

1603

∑
x

sx(t+ tw ;H), (8)

as well as the correlation function,

C(t, tw ;H) =
1

1603

∑
x

sx(tw ; 0) sx(t+ tw ;H). (9)
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The non-equilibrium dynamics was simulated with a Metropolis algorithm; the numeri-
cal time unit being the lattice sweep, roughly corresponding to 1 ps of physical time [28].
For each temperature and waiting time, see table 2, several magnetic fields were simu-
lated. For computational reasons, one single independent sample was simulated for each
case. We checked, however, the robustness and the sample independence of our results
in a single case, studied in detail in appendix C.

According to reference [23], the value of the dimensionless magnetic field H used
in the numerical simulation can be matched to the physical field. This relation was
estimated from experimental Fe0.5Mn0.5TiO3 data [29]. We found that H = 1 in the IEA
model corresponded to ≈5× 104 Oe physically. Hence, our experimental range (16 Oe to
59 Oe) corresponds to magnetic field 0.0003 � H � 0.0012 in the IEA model. However,
the signal-to-noise ratio, which scales linearly in H for small fields [30], limited our
simulation to H � 0.005, equivalent to a physical H = 250 G.

In order to match the experimental and numerical scales, we exploited dimensional
analysis [31] to relate H and the reduced temperature t̂ = (Tg − T )/Tg through the
scaling

t̂num ≈ t̂exp

(
Hnum

Hexp

) 4
ν(5−η)

, (10)

where ν = 2.56(4) and η = −0.39(4) are H = 0 critical exponents [27], while sub-
scripts exp and num stand for experiment and simulation, respectively. According to
equation (10), and minding signal-to-noise limitations, we can match the experimen-
tal and numerical scales by increasing t̂num, resulting in 0.89 � T num � 0.99. Given our
pre-existing database of long simulations at H = 0 [2], it has been convenient to work
at temperatures T num = 0.9 and T num = 1.0. Table 2 displays the relevant numerical
parameters, including the effective replicon exponent θ(x̃) and the Cpeak(tw) values that
will be introduced and explained in section 4.2.

Let us finally remark that section 5.6 uses a different set of simulations from the rest
of the paper.

4. Measurements and computations of the relaxation rate

In this section we describe the relaxation function S(t, tw ;H) (section 4.1) and explain
how teffH is extracted from simulations (section 4.2).

4.1. Extracting the relaxation function S(t, tw; H)

The main quantity used in our experiments of [5] is the relaxation function S(t, tw ;H):

S(t, tw ;H) =
dMZFC(t, tw ;H)

d ln t
, (11)

which exhibits a local maximum at time teffH . Experimentally, measurements of
MZFC(t, tw ;H) enable the evaluation of the relaxation function S(t, tw ;H) directly. A
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Figure 2. Example of S(t, tw ;H) measurements for different magnetic fields. The
sample is a single crystal CuMn 6 at. %, and the measurements were taken at a
waiting time of tw = 10 000 s and at T = 28.5 K. The time at which S(t, tw ;H) peaks
defines teffH , the effective response time. The shift to shorter times as H increases
is the measure of the reduction of Δmax with increasing Zeeman interaction, and is
used to extract the linear and non-linear terms in the magnetic susceptibility.

representative set of data for Tm = 28.5 K and tw = 104 s is displayed in figure 2. Numer-
ically, the calculation of S(t, tw ;H) is sensitive to the relative errors of the magnetisation
density, which increase as

δMZFC(t, tw ;H)

MZFC
∝ 1

H
. (12)

We employ two tricks to extract the relaxation function S(t, tw ;H) from simulations.
On the one hand, we perform a de-noising method to regularise the magnetisation
density MZFC(t, tw ;H), exploiting the fluctuation–dissipation relations (FDRs) [32–36]

T

H
MZFC(t, tw ;H) = F(C ;H), (13)

where F(C ;H) behaves at large C(t, tw ;H) as F(C ;H) = 1− C(t, tw ;H). We report
the details in appendix A.1. On the other hand, we define S(t, tw ;H) as a finite-time
difference

S(t, tw, t
′ ;H) =

MZFC(t
′, tw ;H)−MZFC(t, tw ;H)

ln (t′/t)
. (14)

In simulations, time is discrete and we store configurations at times tn = integer-part-of
2n/4, with n an integer. Let us write explicitly the integer dependence of times t and
t′ as:

t ≡ tn, t′ ≡ tn+k, (15)

where k is an integer time parameter. The reader will note that there is a trade-off in
the choice of k. On the one hand, the smaller k is the better the finite difference in
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Figure 3. Time evolution of the relaxation rate S(t, tw, t
′ ;H) of equation (14) for

the six runs of table 2. All plots have the time parameter k = 8 in equation (15).

equation (14) represents the derivative. On the other hand, when k grows the statistical
error in the evaluation of equation (14) decreases significantly. In this section we report
only the case for k = 8 (more details about time discretisation are provided in appendix
A.3). The numerical S(t, tw, t

′ ;H) are exhibited in figure 3, where a local maximum in
the long-time region can be seen.

4.2. A different approach for the computation of teffH in simulations

As explained in the introduction, we are interested in the evaluation of the time when
the relaxation function S(t, tw, t

′ ;H) peaks, namely teffH . Two problems arise:
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(a) The reader will note two separate peaks in the S(t, tw, t
′ ;H) curves of figure 3:

namely the peak at microscopic times t ∼ 4, and the peak we are interested in at
t ∼ tw. Unfortunately, the distinction between the two is only clear at small H.
Previous numerical work [23] did not face this problem, probably because of their
smaller correlation length, ξ ≈ 8 (non-linear susceptibilities grow very fast with ξ,
see the next section).

(b) We are most interested in the limit H → 0, which is extremely noisy, as we have
explained above.

An interesting possibility emerges when plotting the relaxation function
S(t, tw, t

′ ;H) in terms of the correlation function C(t, tw ;H), rather than as a func-
tion of time (see figure 4). C(t, tw ;H) is a decreasing function of time, the long-time
region corresponding to small C(t, tw ;H), and vice versa. Hence, the physical peak in
which we are interested is the one that appears at small C(t, tw ;H) (see figure 4).
Analogously to figure 3, we report only the case for k = 8 in figure 4.

The simulation data strongly suggest that, when H → 0, the correlation function
C(t, tw ;H) approaches a constant value Cpeak(tw) at the maximum of the relaxation
function. Hence, our proposal is to define teffH in simulations as the time when C(t, tw ;H)
reaches the value Cpeak(tw):

C(teffH , tw ;H) = Cpeak(tw). (16)

As the reader can see, equation (16) is applicable also at H = 0, solving the problem of
the vanishing magnetisation in this limit. The crucial point for our new teffH definition,
see equation (16), is, hence, the computation of Cpeak(tw). Two problems arise:

(a) The constant-value Cpeak(tw) is well defined only for small magnetic field H.

(b) The relaxation function as a function of the correlation, S(C ;H), is an implicit
function of a reparametrised time,

tnew =
1

2
ln

(
tn+k

tn

)
(17)

(see appendix A.3 for details).

Our strategy has been to study, for each run, the behaviour of S(C ;H) for the
two smallest magnetic fields H and for three different time parameters k. We report in
figure 5 a closeup of the peak region for S(C ;H), used for the evaluation of Cpeak(tw).
We report our estimates for Cpeak(tw) in table 2.

The relaxation function S(tnew, tw ;H) depends on the correlation length ξ(tw), and
on the applied magnetic field H, equation (2). We observe, however, that S(tnew, tw ;H)
has a temperature dependence, which we extract by comparing runs 4 and 2 in figure 5.
These two cases are characterised by

(a) A similar starting correlation length ξ(tw ;H = 0) ≈ 11.7 (see table 2),

(b) The same set of applied magnetic fields, namely H = 0.005 and H = 0.01.
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Figure 4. S(t, tw, t
′ ;H) as a function of C(t, tw ;H). The peak region is enlarged in

figure 5 below. The physically relevant peak is the one for small C, corresponding
to long times. We consider the reparametrised tnew with k = 8 in equation (17).

Yet, there appear to be two different scenarios in the data plotted in figure 5. In
run 2, the peak of S(C ;H) is almost the same for all the rescaled time curves. In run
4, however, the peaks separate for different k. As will be explained in section 5.5, this
difference in behaviour is caused by increasing non-linear effects in the magnetisation,
MZFC(t, tw ;H).

In conclusion, equation (16) solves our two problems at once. We no longer need to
resolve the short-time and the long-time peaks in figure 3 and it bypasses the problem
of the vanishing magnetisation as H goes to zero.
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Figure 5. Enlargement of the peak region of S(t, tw, t
′ ;H) as a function of

C(t, tw ;H) for several values of time parameter k in equation (15). The dashed
black lines indicate the Cpeak(tw) positions.

5. Scaling law

We address here three different aspects of the scaling law. The assumptions that led us to
our scaling law are given in section 5.1. Next, in section 5.2, we use the scaling law in the
analysis of our experimental data (previous data are also reanalysed in section 5.3), with
the corresponding analysis for our simulations given in section 5.4. Section 5.5 shows
our experimental and numerical results together, according to the new scaling law. In
section 5.6 we address the nature of the growth of the numerical correlation length
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ξ(tw) in the presence of a magnetic field at temperatures close to the condensation
temperature T g.

5.1. Non-linear scaling law

Scaling laws for the spin-glass susceptibility in the vicinity of the condensation tem-
perature have been proposed and analysed for decades. We first recall an important
early approach, and then develop the scaling law that we have employed to analyse our
experiments and simulations.

Non-linear magnetisation effects, and their scaling properties in spin glasses, were
first introduced by Malozemoff, Barbara, and Imry [37–39], who introduced the relation
for the singular part of the magnetic susceptibility,

χs = H2/δf
(
tr/H

2/φ
)
, (18)

where f(x) is a constant for x→ 0; f(x) = x−γ for x→∞; φ = γδ/(δ − 1) ≡ βδ; and tr
is the reduced temperature T/T g. This form was used by Lévy and Ogielski [40] and by
Lévy [41], who measured the AC non-linear susceptibilities of very dilute AgMn alloys
above and below T g as a function of frequency, temperature, and magnetic field. The
critical exponents of equation (18) were evaluated as β = 0.9, γ = 2.3, δ = 3.3, ν = 1.3,
and z = 5.4. They differ substantially from Monte Carlo simulations for short-range
Ising systems: β = 0.782(10), γ = 6.13(11), ν = 2.562(42) from [27]. The discrepancy in
the value of γ is very large, and most probably arises from the lack of an exact value for
T g in the experiments. This illustrates the value of and need for a different approach
for scaling the non-linear magnetisation of spin glasses in the vicinity of T g.

Our approach is to express the non-linear components of the magnetic suscepti-
bility in terms of ξ(t, tw), the spin-glass correlation length in a magnetic field H.21

This approach gives the non-linear magnetisation a direct connection to a measurable
quantity and obviates the need for an accurate value of T g.

The argument goes as follows. Let M(t, tw ;H) be the magnetisation per spin, where
explicit attention is paid to the waiting (ageing) time tw in the preparation of the spin-
glass state. The generalised susceptibilities χ1,χ3,χ5, . . . are defined through the Taylor
expansion

M(H) = χ1H +
χ3

3!
H3 +

χ5

5!
H5 +O(H7). (19)

where, for brevity’s sake, we omit arguments t and tw.
Under equilibrium conditions, and for a large-enough correlation length ξeq, there

is a scaling theory for the magnetic response to an external field H [42, 43]. Our main
hypothesis in this work is that this scaling theory holds not only at equilibrium, but
also in the non-equilibrium regime for a spin glass close to T g and in the presence of a
small external magnetic field H:

M(t, tw ;H) = [ξ(t+ tw)]
yH−DF

(
H[ξ(t+ tw)]

yH ,
ξ(t+ tw)

ξ(tw)

)
. (20)

21 The correlation length ξ(t, tw) is of course also a function of the temperature T , but here we are only interested in the non-linearity
of the magnetisation.
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According to full-aging spin-glass dynamics (see, e.g. [44]), equation (20) tells us that
ξ(t+ tw)/ξ(tw) will be approximately constant close to the maximum of the relaxation
rate (see figure 2), so we shall omit this dependence. Hence, combining equations (19)
and (20), one can express the generalised susceptibilities χ1,χ3,χ5, . . . in terms of the
spin-glass correlation length ξ(t, tw ;H):

χ2n−1 ∝ |ξ(tw)|2n yH−D, (21)

where we have omitted the arguments t,H for convenience, and

2yH = D − θ(x̃)

2
, (22)

with θ(x̃) the replicon exponent [23].
The first term of M(H ) in equation (19) is χ1, which contains the linear term as

well as the first non-linear scaling term [4], so we write

χ1 =
Ŝ

T
+

a1(T )

ξθ(x̃)/2
. (23)

where Ŝ is the function appearing in the FDRs [45] and a1(T ) is some unknown constant
(hopefully smoothly varying with temperature).

The free-energy variation per spin in presence of a magnetic field can be obtained
by integrating the magnetic density, equation (19), with respect to the magnetic field:

ΔF = −
[χ1

2
H2 +

χ3

4!
H4 +

χ5

6!
H6 +O

(
H8

)]
. (24)

Substituting the scaling behaviour from equations (21) and (23), the free energy ΔF
can be written as (we drop the x̃ dependence of θ for brevity)

ΔF = −
[
Ŝ

2T
H2 +

a1(T )

ξθ/2
H2 + a3(T )ξ

D−θH4 + a5(T )ξ
2D−(3θ/2)H6 +O

(
H8

)]
, (25)

where again the an(T ) are unknowns and (again, hopefully) smoothly varying functions
of temperature. We use the effective response time, teffH , to reflect the total free-energy
change at magnetic field H and H = 0+:

ln

[
teffH

teffH→0+

]
= NcorrΔF , (26)

where N corr is the number of correlated spins, Ncorr = Vcorr/a
3
0, with V corr the correlated

spins volume and a0 the lattice constant or average distance between magnetic moments.
Combining equation (26) with equations (6) and (24) leads to

ln

[
teffH

teffH→0+

]
= −b

[(
Ŝ

2T
+

a1(T )

ξθ/2

)
ξD−(θ/2)H2

+a3(T )ξ
2D−(3θ/2)H4 + a5(T )ξ

3D−2θH6 +O
(
H8

) ]
, (27)
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Figure 6. A plot of the peak times teffH for the single-crystal CuMn 6 at. % vs H2

for the four values of Tm and tw listed in table 1. The slope for small H2 is used
to extract ξ(tw) in table 1, and the lines come from the fits to the scaling law
introduced in section 5.1.

where coefficient b is a geometrical factor, see equation (6), and we have absorbed the
kBT term in the an(T ) coefficients. The correction term a1(T )/ξ

θ(x̃)/2 is small compared

to Ŝ/T , so it will be dropped in subsequent expressions. Equation (27) shows that the
higher-order terms have the functional form

χ2n−1
H2n

(2n)!
= a2n−1(T )ξ

−θ(x̃)/2
[
ξ2yHH2

]n
, (28)

where

2yH = D − θ(x̃)

2
. (29)

This leads to the new scaling relation,

ln

[
teffH

teffH→0+

]
=

Ŝ

2T
ξD−θ(x̃)/2H2 + ξ−θ(x̃)/2G

(
T , ξD−θ(x̃)/2H2

)
, (30)

where the geometrical factor b has been absorbed into the scaling function G. Comparison
with the previous, more classical, relation, equation (18), evinces the simplicity and
power of our approach to scale the non-linear magnetisation in the vicinity of T g.

5.2. Experimental non-linear magnetisation

We extract the effective waiting time teffH in equation (3) from the time at which
S(t, tw ;H) is a maximum, as before. Our results for all four conditions in table 1 are
exhibited as a function of H2 in figure 6. The slope of the data in figure 6 at small val-
ues of the magnetic field H generates the spin-glass correlation length ξ(tw ;Tm) from
equations (4) and (5), see table 1, which also lists the employed values for the replicon
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Figure 7. Plots of the peak time teffH for the single-crystal CuMn 6 at. % vs H2 for
the four experimental regimes of table 1. The straight lines are extrapolations of
the linear term in the magnetisation, and the dashed lines are fits to equation (27).

exponent θ(x̃). These results will allow us to express the non-linear susceptibility in
terms of ξ(tw).

An example of the measured relaxation function S(t, tw ;H) is plotted for
Tm = 28.5 K and tw = 10 000 s in figure 2 for five different magnetic fields, while the
effective response times, ln teffH , are plotted in figure 6 for all four experiments listed
in table 1. Note the remarkable similarity in shape of the original experimental results
for ln teffH in figure 1 with our results in figure 6. Also, note the fits of all four of our
results for ln teffH in figure 6 to the scaling relationship for the non-linear magnetisation,
equation (27), which will be described in more detail below.

Because the scaling relationship, equation (30), depends upon the magnitude of the
waiting time in ξ(t, tw ;Tm), two different values of tw were used at the same intermediate
temperature Tm = 28.75 K, among the three temperatures (28.5 K, 28.75 K, and 29.0 K)
listed in section 2 and in table 1, to test equation (30) at a given temperature. This
allows us to discriminate between the influence of temperature and of waiting time on
ξ(t, tw ;Tm). In this way, we are able to demonstrate explicitly that ξ(t, tw ;Tm) is the
control parameter.

It is useful to display teffH against H2 individually for each of the four values of Tm

and tw. They are exhibited above in figure 7. The data for ln teffH is fitted to the function

f(x) = c0 + c2x+ c4x
2 + c6x

3 +O(x4), (31)
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Table 3. Parameters from our fits to equation (31) of our experimental data for
ln teffH , as a function of Tm and tw (data from figure 7). The uninteresting fit
parameter c0 is not included in the table.

Tm (K) tw (s) Coefficient Numerical value

28.5 10 000
c2 −1.55(10) × 10−3

c4 4.0(7) × 10−7

c6 −4.4(13) × 10−11

28.75 10 000
c2 −1.82(20) × 10−3

c4 4.6(13) × 10−7

c6 −4.6(25) × 10−11

28.75 20 000
c2 −2.10(12) × 10−3

c4 5.9(8) × 10−7

c6 −7.0(15) × 10−11

29 10 000
c2 −2.61(13) × 10−3

c4 1.02(8) × 10−6

c6 −1.49(16) × 10−10

where x ≡ H2 and the cn coefficients, according to equation (27), correspond to:

c0 = ln
(
teffH→0+

)
, (32)

c2 =

[
Ŝ

2Tm

]
ξD−θ(x̃)/2, (33)

c4 = a3(Tm)ξ
2D−3θ(x̃)/2, (34)

c6 = a5(Tm)ξ
3D−2θ(x̃). (35)

Notice that we have absorbed the geometrical prefactor b of equation (27) in the non-

linear coefficients an(Tm) and in the linear coefficient Ŝ, and we neglect the sub-leading
coefficient a1(Tm)/ξ

θ(x̃)/2.
The effect of increasing temperature with waiting time held constant can be seen

in the difference between the measured teffH and the extrapolated value of the linear
magnetisation term (quadratic in H2) for the largest magnetic field (H = 59 Oe) in
exps. 1, 2 and 4 in figure 7. Non-linear effects grow for larger tw, hence larger ξ(t, tw ;Tm)
at the same temperature, which can be seen by comparing experiments 2 and 3. The
linear and non-linear coefficients of equation (27) can be extracted from fits of the data
in figure 7 (dashed lines), whose resulting coefficients are listed in table 3.

To test the scaling relationship of equation (30) we first consider the fits of the data
at Tm = 28.75 K for the two waiting times, tw = 2× 104 s and tw = 104 s. The linear
term is proportional to ξD−θ(x̃)/2. The ratio of the two correlation lengths from table 3
is, hence,

ξ(tw = 20 000 s)

ξ(tw = 10 000 s)
=

[
c2(tw = 20 000 s)

c2(tw = 10 000 s)

]1/[D−θ(x̃)/2]

≈ 1.0535. (36)
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Should scaling hold according to equation (30), then consistency requires that the ratios
of the correlation lengths from the non-linear terms be the same as that for the linear
term. They are:

ξ(tw = 20 000 s)

ξ(tw = 10 000 s)
=

[
c4(tw = 20 000 s)

c4(tw = 10 000 s)

]1/[2D−3θ(x̃)/2]

≈ 1.0476, (37)

and

ξ(tw = 20 000 s)

ξ(tw = 10 000 s)
=

[
c6(tw = 20 000 s)

c6(tw = 10 000 s)

]1/[3D−2θ(x̃)]

≈ 1.0526. (38)

The equality (within experimental error) of equations (36)–(38) is an impressive exper-
imental verification of scaling relationship (30). Another check is the growth of the
correlation length itself. At temperature Tm = 28.75 K and for the two waiting times,
it is possible to calculate the ratio of the two values of the correlation length directly,
using the expression for power-law growth [5, 46],

ξ(tw ;Tm) = a0Ĉ1

(
tw
τ0

)Ĉ2(Tm/Tg)

≡ a0Ĉ1

(
tw
τ0

)Tm/(zcTg)

, (39)

where Ĉ1 and Ĉ2 are constants, by definition Ĉ2 ≡ 1/zc, and τ 0 is a characteristic
exchange time, here taken as �/kBT g.

Using the growth-rate parameter zc = 12.37(107) [2, 3] one finds

ξ(tw = 20 000 s)

ξ(tw = 10 000 s)
≈

(
2× 104

104

)Tm/(12.37Tg)

= 228.75/(12.37×31.5) ≈ 1.0525. (40)

Comparing the ratio of ξ(tw ;Tm) for the two different waiting times, equation (40), from
the growth law, equation (39), with the ratios from fitting to the scaling relationship,
equations (36)–(38), is remarkable evidence for the consistency of our physical picture.
It explicitly demonstrates the power of using the spin-glass correlation length as the
primary factor for evaluating the spin-glass non-linear magnetisation in the vicinity of
the transition temperature T g.

The lingering issue from equations (6) and (30), according to Zhai et al [3] ‘is that
the replicon exponent [θ(x̃)] (. . . ) depends upon both the temperature and ξ through
the crossover variable [x̃]’, with

x̃ =
J

ξ(tw ;Tm)
. (41)

From the notation of table 3 and equation (6) the number of correlated spins is

Ncorr =
kBTm c2
χFC

= ξD−θ(x̃)/2 = ξD−[θ(J/ξ)/2]. (42)

The left-hand side is a number, the right-hand side is an implicit function of ξ and θ.
Using the definition of the Josephson length J and of the replicon θ(x̃)22, one can solve

22 The reader will find all the necessary details in appendix B.

https://doi.org/10.1088/1742-5468/abdfca 20

https://doi.org/10.1088/1742-5468/abdfca


J.S
tat.

M
ech.

(2021)
033301

Spin-glass dynamics in the presence of a magnetic field: exploration of microscopic properties

Figure 8. Non-linear coefficients a3 and a5, as defined in equation (27), calculated
using the extracted values of ξ and θ for the different measuring temperatures Tm

and waiting times tw in our experiments.

for ξ and θ at each of the four values of Tm and tw explored experimentally. The results
are displayed in table 1.

The ageing rate zc varies as a function of ξ. Using the data at Tm = 28.75 K,
the approximate aging-rate factor is zc = 12.37(107) at ξ ∼ 200 lattice spacings a0 [3].
Although the correlation length extracted at 28.75 K is larger than that at 28.5 K,
the higher temperature sets the crossover variable x = J(Tm)/ξ = 0.11 for tw = 20 000
s and x = 0.12 for tw = 10 000 s, in the range of the crossover variable obtained by us
previously at Tm = 28.5 K [47]. Both measurements have exhibited slowing down of
the spin-glass correlation growth rate near the critical temperature at large correlation
lengths.

Using the average value of θ from table 1, θ = 0.343, and setting zc = 12.37, the values
exhibited in equations (36)–(40) are altered to 1.053, 1.048, 1.052, and 1.051, respec-
tively. Using the values from table 1, the temperature-dependent coefficients a3(Tm) and
a5(Tm) of equation (27) can be calculated for each of the four values of Tm and tw. They
are displayed in figure 8.

From figure 8, one sees that the ‘hope’ expressed after equation (25), i.e. that the
temperature dependence of the coefficients an(Tm) appearing in equation (25) be weak,
is realised in this set of experiments. For a3(Tm), within the experimental error bars,
there is little or no change with temperature. The situation for a5(Tm) is not as nice,
but there appears to be little change with temperature at the two highest temperatures.

It is interesting to test the scaling relationship [4]

χ2n−1(tw ;Tm) ∝ a2n−1[ξ(tw ;Tm)]
(n−1)D−nθ(x̃)/2. (43)

Thus,

χ3 ∝ ξD−θ(x̃) a3, χ5 ∝ ξ2D− 3θ(x̃)
2 a5. (44)
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Figure 9. Non-linear susceptibilities χ3(tw ;Tm) and χ5(tw ;Tm) from equation (42),
plotted as a function of temperature for the four experimental regimes of table 1.

The measured non-linear susceptibilities are exhibited below for the three temperatures
28.5 K, 28.75 K and 29.0 K.

One can test the scaling relationships (43) and (44) by using the measured values for
the spin-glass correlation length ξ, the replicon exponent θ(x̃) from table 1, and the val-
ues of c2 and c4 from temperatures 28.5 K and 29 K and tw = 10 000 s. For Tm = 28.5 K,
we have ξ = 320.36a0, θ(x̃) = 0.337 (from table 1), and c4 = 4.0× 10−7 (from table 3,
note that we have ignored the error bars). Similarly, for Tm = 29.0 K and tw = 10 000 s
we have ξ = 391.27a0, θ(x̃) = 0.349, and c4 = 10.2× 10−7. Using equations (31) and (34)
and the just quoted values of c4(tw ;Tm) one finds

χ3(tw = 10 000 s ;Tm = 28.5 K)

χ3(tw = 10 000 s ;Tm = 29.0 K)
≈ 0.666. (45)

This ratio is well within the error bars of the measured non-linear susceptibilities in
figure 9. A similar result is also found for χ5.

With these scaling observations in hand, it is interesting to wonder about using
them to estimate the condensation temperature T g. In principle, determination of T g

would require an infinite tw, because ξ(Tm)→∞ when Tm → T g. One expects that any
experiment at finite tw would yield a maximum for the non-linear susceptibility at a
temperature we shall call T g(tw) because tw is finite.

In principle, then, by measuring T g(tw) for ever larger tw, one could extrapolate to
the true tw →∞ condensation temperature T g. If nothing else, measurements at large
values of tw on laboratory time scales could establish a lower bound for T g.

The non-linear susceptibility χ3 diverges as

χ3(tw →∞ ;Tm) = χ0
Tg(tw →∞)

|Tg(tw →∞)− Tm|γ
, (46)

where χ0 is a constant independent of temperature, and γ = 6.13(11) [27]. For finite tw,
χ3(tw ;Tm) only has a maximum as a function of temperature. A way of arriving at this
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maximum would be to fit the data to the function

χ3(tw ;Tm) = χ0
Tg(tw)

|Tg(tw)− Tm|γ
, (47)

and then use the data points from just two or three temperatures to extract T g(tw). For
larger and larger tw, one could in principle extrapolate to the true T g. We emphasise
that, though equation (47) suggests χ3(tw ;Tm) diverges at Tm = T g(tw), it does not,
arriving only at a maximum value for finite tw. Nevertheless, equation (47) is a way of
estimating T g(tw) for use in an extrapolation procedure.

To test whether this trick has any validity, consider the data exhibited in figure 9.
Here, tw = 10 000 s and, taking χ3(tw ;Tm) at the centre of the error bars for the two tem-
peratures 28.5 K and 29 K, one finds T g(tw = 10 000 s) = 32 K. This value is too high,
as magnetisation measurements suggest T g(tw →∞) = 31.5 K. More accurate determi-
nation of the parameters in table 3 would diminish the error in T g(tw), but it does
suggest a feasible process for taking laboratory data for finite tw and extrapolating to
find T g(tw →∞).

5.3. Reanalysis of previous data

Given the above analysis of our recent data, it is convenient to revisit the work of Joh
et al [5] and of Bert et al [9], to examine whether the Zeeman energy is proportional
to H2 or to H (alternatively, to the number of correlated spins or to the square root
of the total number of spins, respectively). We have already alluded to the results of
these works as displaying the effect of magnetisation non-linearity. We now explore this
assertion in detail using the analysis of subsection 5.2.

Figure 1 of Joh et al and figure 3 of Bert et al are reproduced in figures 1 and 10 in
this paper. Both exhibit significant deviations from an H2 dependence of the ln teffH with
increasing values of H. Bert et al [9] go on to assert a linear dependence, as exhibited in
their figure 3, reproduced here in figure 10. The magnetic fields in [9] are quite large, and
the scale of their plot does not cover the dependence on H2 for small H. Nevertheless,
they claim their data fits a linear dependence of ln teffH on H. A glance at the left panel
of figure 10 suggests how they could rationalise their conclusion.

Yet, as noted by the authors of the experiments in figure 1 [5], a linear dependence
on H is a poor fit to the data at small H. Further, the argument for the magnetisation’s
growth with

√
Ncorr is supposedly valid at small H [48], while the dependence on the

number of correlated spins is argued to be proportional to
√
Ncorr, rather than linear

in N corr, as from equation (4). On the other hand, the data exhibited in figure 10 uses
magnetic fields that are substantially larger than those considered in our experiments.

We assert that the departure from linearity in H2 as H increases observed in
[9] is simply the effect of non-linearity. To prove this, we apply the scaling relation,
equation (30), to their data, doing our best to extract their measured values from their
figure. Our fit to equation (31) is shown in the right panel of figure 10 and the resulting
cn are listed in table 4.

Although only 1–2 digits are significant in table 4, we write more digits, for the
sake of reproducibility. The fitting quality for tw = 10 000 s and tw = 30 000 s is better
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Figure 10. (Left) Effective waiting times (in log scale) derived from field-change
experiments on an Ising sample (Fe0.5Mn0.5TiO3) as a function of the magnetic
field H. The plot reproduces figure 3 of Bert et al [9] (solid lines are linear inter-
polations to data with same tw). (Right) The same data plotted against H2. The
dashed lines are fits to equation (31), with fit parameters listed in table 4.

Table 4. We report, as a function of tw, the parameters from fits to equation (31)
of the data obtained by Bert et al [9] for ln teffH . Their data correspond to
Fe0.5Mn0.5TiO3 at Tm = 0.72T g (see figure 3 of [9]). The fits are shown in our
figure 10. The uninteresting fit parameter, c0, is not included in the table.

tw (s) Coefficient Value

1000
c2 −6.184 × 10−6

c4 7.193 × 10−12

c6 −2.784 × 10−18

3000
c2 −5.154 × 10−6

c4 2.322 × 10−12

c6 −0.269 × 10−18

10 000
c2 −8.977 × 10−6

c4 7.052 × 10−12

c6 −2.075 × 10−18

30 000
c2 −11.600 × 10−6

c4 9.440 × 10−12

c6 −3.004 × 10−18

than for the other two waiting times. Note that the coefficients cn listed in table 4 are
considerably smaller than in our table 3 for our current experiments on a CuMn 6 at. %
single crystal. We believe this is because our measurements are for Tm ≈ 0.9T g whereas
Bert et al [9] worked at 0.72T g, where non-linear terms are expected to be much smaller.

Using the fitting coefficients from table 4 and θ(x̃) = 0.3, we obtain

ξ(tw = 30 000 s)

ξ(tw = 10 000 s)
=

[
c2(30 000 s)

c2(10 000 s)

]1/[D−θ(x̃)/2]

≈ 1.094, (48)
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Figure 11. The numerical time ratio ln(teffH /teffH→0+) for the six runs of table 2. The
data were fitted as a polynomial of H2 as reported in table 5. Continuous lines are
fits for data at T = 1.0; dashed lines correspond to the data at T = 0.9.

ξ(tw = 30 000 s)

ξ(tw = 10 000 s)
=

[
c4(30 000 s)

c4(10 000 s)

]1/[2D−3θ(x̃)/2]

≈ 1.054, (49)

ξ(tw = 30 000 s)

ξ(tw = 10 000 s)
=

[
c6(30 000 s)

c6(10 000 s)

]1/[3D−2θ(x̃)]

≈ 1.045. (50)

The three ratios, equations (48)–(50) do not agree with one another perfectly, but
again, considering the rawness of the analysis, they are certainly suggestive. In summary,
we believe that the assessment of [9] that their data is evidence for EZ ∝ H is in error.
Rather, we believe the departure they observe from linearity inH2 arises from non-linear
terms in the magnetisation as a result of the large magnetic fields utilised in their study.

5.4. Numerical study of the ratio of the effective times at H and H = 0+

We have exploited our proposed relation (16) to extract effective times teffH , as explained
in appendix A.3. Our results are displayed in figure 11. In the subsequent analysis in
section 5.5, we shall need the derivative of ln

(
teffH /teffH→0+

)
with respect to H2, evaluated

numerically at H2 = 0. Our main scope here will be evaluating this derivative.
An obvious strategy would be to fit the numerical data for ln

(
teffH /teffH→0+

)
as we did

for the experimental data in equation (31). Note that our sought derivative at H2 = 0 is
just the c2 coefficient in the fit. A welcome simplification in the analysis of the numerical
data is that we can explicitly put c0 = 0 in the fit to equation (31) (indeed, we are able
to carry out the fit for ln

(
teffH /teffH→0+

)
thanks to equation (16)). Our fitting parameters

are reported in table 5. Unfortunately, as the reader will note from figure 11, these fits
predict unphysically wild oscillations that are not observed in the numerical data. A
plausible explanation for these oscillations relies on the very large magnetic fields used
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Table 5. Results of the fits to equation (31) of the numerical data for the time ratio
ln(teffH /teffH→0+). Note that, in order to stabilise the fits, we needed to include an extra
terms in equation (31) for two cases. In the table, ξ stands for ξ(t = 0, tw ;H = 0)
and the fitting range is 0 � H2 � H2

max.

T tw ξ c2(tw ;T ) c4(tw ;T ) c6(tw ;T ) c8(tw ;T ) H2
max

0.9 222 8.294(7) −6.01(6) × 102 3.45(13) × 104 −1.31(9) × 106 1.998(19)× 107 0.025
0.9 226.5 11.72(2) −1.589(19) × 103 1.98(6) × 105 −1.41(6) × 107 3.86(18) × 108 0.015
0.9 231.25 16.63(5) −4.380(15) × 103 1.34(8) × 106 −1.33(10) × 108 0 0.010
1.0 223.75 11.79(2) −1.39(6) × 103 2.2(4) × 105 −1.8(5) × 107 0 0.008
1.0 227.625 16.56(5) −3.36(9) × 103 9.4(6) × 105 −9.1(8) × 107 0 0.008
1.0 231.75 23.63(14) −7.91(15) × 103 3.29(11) × 106 −3.56(13) × 108 0 0.008

(recall that H = 1 for the IEA model roughly corresponds to 5× 104 Oe in physical
units). These huge magnetic fields probably exceed the radius of convergence of the
Taylor expansion of equation (30). At any rate, the oscillations cast some doubts on the
determination of the derivative at H2 = 0. This is why we have turned to a different
strategy in order to validate our computation.

Our starting point, recall [2] and equation (27), is the expected scaling behaviour for
the coefficient c2(tw ;T ) listed in table 5. The non-linear coefficient c2(tw ;T ), reported
in table 5, behaves as [4]

c2(tw ;T ) = ξD−θ(x̃)/2

(
Ŝ

2T
+

a1(T )

ξθ(x̃)/2

)
, (51)

using the scaling of the susceptibility χ1 from equation (23). Here, Ŝ is the function
appearing in the FDR [45] and a1(T ) is a smooth function of temperature, and we have

absorbed the geometrical prefactor b of equation (27) in a1(T ) and Ŝ(T ). Notice that

the a1(T )ξ
−θ(x̃)/2 term is sub-leading compared to Ŝ/(2T ) and it was neglected in the

previous analysis.
We rewrite equation (51) as:

c2(tw ;T )

ξD−θ(x̃)/2
=

Ŝ

2
+ Ta1(T )ξ

−θ(x̃)/2, (52)

and we study this quantity as a function of [ξ(tw)]
−θ(x̃)/2 in figure 12. Note that in

the above expression ξ was not obtained from the response to the magnetic field.
Instead, we computed ξ from the correlation functions at H = 0 (see appendix A.5 and
[7]). The data exhibit a constant value, except for the point correspondent to tw = 231.75

at T = 1.0 (run 6). Therefore, we shall accept the numerical estimation of the derivative
at H2 = 0 through the coefficient c2 for all cases but for our run 6. In order to clarify
what is going on with run 6, we report in the right panel of figure 12 an enlargement of
figure 11 in the small-magnetic-field regime for this case. As it could be guessed from
the left panel, the fitting procedure clearly underestimates the slope of the curve at
H2 = 0. Therefore, in order to estimate the derivative for run 6, we have instead relied
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Figure 12. (Left) Behaviour of the rescaled quantity c2(tw ;T )T/[ξ(tw)]
D−θ(x̃)/2 as

a function of ξ(tw)
−θ(x̃)/2, see equation (52). (Right) An enlargement of figure 11 in

the small-field regime, for the case tw = 231.75 at T = 1.0 (run 6 of table 2) and its
fit reported in table 5.

on equation (52) by averaging the constant value found in figure 12 over all other runs
and by multiplying this averaged constant value by [ξ(tw)]

D−θ(x̃)/2 (see equation (52)).

5.5. Non-linear scaling

In order to test the scaling form, equation (30), the data for all of the non-linear con-
tributions to the magnetisation, experimental and numerical, are plotted according to
the functional form

ξ−
θ(x̃)
2 G(T , ξD− θ(x̃)

2 H2) (53)

in figures 13 and 14. The fit to scaling relationship (30) is remarkable and testimony to
the agreement for both the experimental and numerical data.

5.6. Overshooting phenomena

We first address the dynamical scaling law for a system in presence of a magnetic field
at temperatures close to T g in section 5.6.1. Then, in section 5.6.2, we analyse the
dynamical scaling for ferromagnetic systems, either Ising or Heisenberg, in the presence
of an external magnetic field.

5.6.1. Dynamical scaling close to T g. We evaluate the growth of the correlation length
ξ(t, tw ;H) in simulations that mimic the experimental field-cooling protocol (FC), where
the temperature is lowered from above to below T g in the presence of a constant magnetic
field H.

We performed two independent simulations on Janus II at the critical temperature
T g = 1.102(3) [27] (in IEA units) and at T = 1.05 for several external magnetic fields
and 16 samples. A protocol equivalent to FC, but convenient for simulations, is to place
a random spin configuration instantaneously at the working temperature T , and turning
on the external magnetic field at the same instant, so that tw = 0.
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Figure 13. The non-linear parts from the experimental response time data, [ln teffH −
c2(tw ;Tm)H

2]ξθ(x̃)/2, plotted against (ξD−θ(x̃)/2H2)2. The deviations of the data at
Tm = 29 K may be caused by a shift in T g as the temperature begins to approach
T g(H ). The small-x range is enlarged in the inset.

Figure 14. The non-linear parts from the numerical response time data,
[ln(teffH /teffH→0+)− c2(tw ;Tm)H

2]ξθ(x̃/2), plotted against (ξD−θ(x̃)/2H2)2. The abscissa
of the main panel is in linear scale and shows a closeup for small values of
(ξD−θ(x̃)/2H2)2. The abscissa of the insert is in log scale in order to report all our
numerical data.

According to equation (20), at the critical temperature T g, and for small external
magnetic fields H, there exists a scaling behaviour that connects ξ(t, tw ;H) with the
external magnetic field H:

[ξ(t, tw ;H) H2/yH ] ∝ const. (54)

The correlation length ξ(t, tw ;H) grows as

ξ(tw) ∝ tw
1/z(T ), (55)
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Table 6. The aging-rate factors z(T ) used in figure 15.

T z(T )

1.1 6.60
1.05 7.00
1.0 7.30
0.9 8.12

Figure 15. Critical dynamical scaling according to equations (54) and (57). We
show data for T = 1.1 ≈ T g [27] and for T = 1.05.

with an exponent that, in a first approximation, is expected to behave near the critical
temperature as [2]:

z(T )  zc
Tg

T
, where zc = z(Tg) = 6.69(6). (56)

Hence, using equations (55) and (56) in the scaling argument of equation (54), we have
equivalently,

[t ×H2z(T )/yH ] ∝ const. (57)

In table 6 we list the aging-rate factors z(T ) used in our analysis. We plot our rescaled
data in figure 15.

The agreement with the scaling prediction, evinced by the data collapse, is striking.
Our plots also exhibit overshooting, as evidence for the paramagnetic phase when the
magnetic field is turned on.

The reader could wonder why we have used equation (54) for the scaling analysis at
the temperature T = 1.05 < T g, and whether this implies evidence of the absence of the
dAT line in finite dimension. We shall address these questions in section 6.
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Table 7. Parameters of our ferromagnetic simulations for the Ising and Heisenberg
models.

System L H Number of runs

Ising 256
0 2200

0.001 2600
0.003 1700
0.005 1200

Heisenberg 200
0 2660

0.003 1000
0.004 1600
0.005 2400

5.6.2. Overshooting in a ferromagnetic system. By studying two ordered systems we
can show that the overshooting phenomenon is, in fact, general. To demonstrate gener-
ality, we have simulated the three-dimensional Ising and Heisenberg models in a cubic
lattice with periodic boundary conditions and size L at the critical point T c. TheN = LD

(D = 3) Heisenberg spins interact with their lattice nearest neighbours through the
Hamiltonian

H = −
∑
〈r,r′〉

Sr · Sr ′ +H ·
∑
r

Sr, (58)

where Sr are unit vector spins and H is an external magnetic field. The connected
correlation function is

C(r, t) =
1

L3

∑
x

Sx(t) · Sr+x(t)− [m(t)]2, (59)

with

m(t) =
1

L3

∑
x

Sx(t). (60)

We only write equations for the Heisenberg model, equations (58)–(60), but the Ising
analogues can be obtained trivially by just dropping the vector symbol in the spins. Fur-
thermore, the correlation function C(r, t) will be averaged over different initial conditions
(runs). We report the simulation details in table 7.

The Ising and Heisenberg model have different symmetry properties, so they belong
to two distinct universal classes. In other words, each model has a distinct value for
the critical temperature and exponents. The Ising model has η = 0.036 297 8(20) [49],
z = 2.0245(15) [50] and βc = 0.221 654 626(5) [51]. Instead, for the Heisenberg fer-
romagnet η = 0.378(3) [52, 53], z = 2.033(5) [54] and βc = 0.693 001(10) [55] (βc ≡
1/T c).

As explained in appendix A.5, the correlation length ξ(t, tw ;H) can be calculated
with integral estimators [7, 8],

Ik(T , tw) =

∫ ∞

0

dr rkC(r, tw ;T ), ξk,k+1(tw ;T ) =
Ik+1(tw ;T )

Ik(tw ;T )
. (61)
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Figure 16. The log–log plots show the behaviour of ξ23 versus time for the Ising
(left) and Heisenberg (right) models for three magnetic fields. All simulations were
performed at the critical temperature T c appropriate to each model. The saturation
at long times exhibited by the Ising model at H = 0 is a finite-size effect.

In this section, we evaluate the correlation length ξ23(t, tw ;H). As the reader can notice,
the growth of ξ23(t) overshoots before reaching equilibrium for any external magnetic
field for both ferromagnetic models, see figure 16.

According to equation (20), at the critical temperature T c, and for small external
magnetic fields H, there exists a scaling law that connects ξ(t, tw ;H) with the external
magnetic field H in ferromagnetic system:

[ξ(t, tw ;H) H1/yH ] ∝ const. (62)

As the reader can notice, equation (62) differs from equation (54) in the power of the
magnetic field. In the ferromagnetic system, the relevant external variable is H and not
H2 as it would be for spin glasses [42, 43]. Analogously to equation (57), we can rescale
time as

[t ×Hz(T )/yH ] ∝ const. (63)

We plot our rescaled data in figure 17. The agreement with the scaling prediction, both
for the Heisenberg and for the Ising model, is remarkable.

In conclusion, the overshooting phenomenon is general and we have observed it both
in ferromagnetic systems, figures 16 and 17, and in disordered ones, figure 15.

6. Investigation of the dAT line in D = 3

The existence (or not) of the spin-glass condensation in the presence of a magnetic field
remains the subject of some controversy (see, e.g. [56–59]). In a mean-field treatment, de
Almeida and Thouless [60] showed that, for the Sherrington–Kirkpatrick infinite-range
mean-field model [61], there would be a phase transition according to the following
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Figure 17. Critical dynamical scaling for ferromagnetic models. The data from
figure 16 for the Ising (left) and Heisenberg (right) models for the three non-
vanishing magnetic fields are rescaled following the predictions of the renormali-
sation group (see equations (62) and (63)). In this case the relevant variables are
ξH1/yH and tHzc/yH , with yH = (D + 2− η)/2 with D = 3.

relationship for Ising spin glasses,(
1− Tg(H)

Tg(0)

)3

=
3

4
h2, (64)

with

h =
μH

kBTg(0)
, (65)

where μ is the spin magnetic moment. Conversely, the droplet model [62, 63] would
predict no phase transition except exactly at H = 0. This dispute was addressed by
Lefloch et al [64]. Their final conclusion bears repetition: ‘thus, even if the spin glass
does not exist in a magnetic field, at least it looks the same as in zero field , as far as we
experimentalists can see’.

In finite dimension and for T very close to the critical temperature T g(H = 0), the
dAT line, provided it exists, should be governed by the Fisher–Sompolinsky [31] relation:(

1− Tg(H)

Tg(0)

)
∝ H4/ν(5−η), (66)

where we have specialised to D = 3.23 Rather than through T g(H ), we are interested in
describing the dAT line geometrically by the inverse function of T g(H ), namely Hc(T ).
Hence, we rewrite equations (64) and (66) as

Mean− field: Hc(T ) ∝
(
1− T

Tg

)aMF

, aMF = 1.5, (67)

23 Notice this is the same relation used for matching the numerical and experimental scales in section 3.
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3D : Hc(T ) ∝
(
1− T

Tg

)a3D

, a3D =
ν(5− η)

4
→ a3D = 3.45(5), (68)

where we have taken the 3D critical exponents ν and η from [27]. The following
considerations, based on equations (67) and (68), will be useful:

• Hc(T ) is a decreasing function of T (remember T � T g) and Hc(T g) = 0. This means
that, upon approaching T g from below, one eventually crosses the dAT line for any
H > 0, no matter how small H is.

• When H > Hc(T ) the system is above the dAT line, in its paramagnetic phase: the
correlation length, ξ(t, tw ;H), reaches asymptotically its equilibrium value ξeq(H )
for very long time t.

• When H < Hc(T ) we are in the spin-glass phase and one expects to observe a power-
law growth of the correlation length, see equation (55).

• The a3D exponent is much larger than the mean-field (MF) one, a3D ≈ 2.3× aMF.
This implies that, in D = 3, the dAT line is very flat when one approaches the
critical temperature T � T g.

In particular, our last item above suggests an interpretation of the somewhat sur-
prizing results in figure 15, where data for T = 1.05 were successfully scaled with the
scaling law appropriate for T g (recall that 1.05 < T g = 1.102(3) and that at T = T g we
are in the paramagnetic phase for any H > 0). Assuming that the proportionality coef-
ficient is of order unity, let us estimate the critical magnetic field at T = 1.05 exploiting
equation (68):

Hc(T = 1.05) ∼ 3× 10−5. (69)

Considering, now, that the smallest magnetic field in figure 15, namely H = 0.02, is
larger than Hc(T = 1.05) by a factor of 1000 or so, there is little surprize in that a
scaling law assuming Hc(T = 1.05) = 0 works with our data.

Our focus in this section will be an exploration of the growth of the spin-glass
correlation length, ξ(t, tw ;H), under conditions that mimic the experimental protocol
for measurement of the zero-field-cooled magnetisation, MZFC(t, tw ;H) for tw �= 0, recall
section 3.

In figure 18 we plot ξ(t, tw �= 0 ;H) as a function of time for different mag-
netic fields H. We compute ξ from the microscopic correlation function C4(r) (see
appendix A.5), which requires that we compute error bars from the sample-to-sample
fluctuations. We have simulated different samples only for some values of H and tw
because of the enormous computational effort involved. We show error bars in figure 18
only in those cases where they can be computed.

The time evolution of the spin-glass correlation length ξ(t, tw ;H) depends markedly
on the interplay between the waiting time tw and the value of the magnetic field H, see
figure 18. The system needs several time steps before responding to the switching on of
the magnetic field. Different scenarios appear.

On the one hand, for the largest magnetic fields, namely H > 0.04 both at
T = 0.9 and T = 1.0, the correlation length displays a non-monotonic time behaviour,
just as we found in section 5.6.1 for the dynamics in the paramagnetic phase (recall
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Figure 18. Growth of ξ(t, tw �= 0 ;H) in simulations that mimic the experimental
ZFC protocol. Plots are in log–log scale.

that tw = 0 in section 5.6.1). In particular, for those cases when the starting correla-
tion length, ξ(t = 0, tw ;H), is larger than the equilibrium value ξeq(H ), the correlation
length decays. Otherwise, we observe an overshooting phenomenon reminiscent of our
findings in section 5.6.1, see figure 18.

On the other hand, for H < 0.08, we observe that the correlation length ξ(t, tw ;H)
appears to follow the same power-law growth for all the different waiting times. Here we
must distinguish between the mean-field HMF

c (T ) and the Fisher–Sompolinsky scaling
H3D

c (T ), i.e. between equations (67) and (68). Using equation (64) for the former, one
finds

HMF
c (T = 0.9) ≈ 0.0675 and HMF

c (T = 1.0) ≈ 0.02421. (70)

Interestingly, the scaling result, equation (68), yields

H3D
c (T = 0.9) ≈ 0.003 and H3D

c (T = 1.0) ≈ 0.0003. (71)

For the magnetic fields used in our simulations, therefore, one is presumably in the con-
densed state for 0.005 � H < 0.08 from the perspective of the MF solution of the
Sherrington–Kirkpatrick model [61], while from the perspective of the
Fisher–Sompolinsky scaling [31] one is always in the paramagnetic state since
H > H3D

c (T = 0.9, 1.0). Though this latter region is not accessible experimentally
through magnetic measurements, one can argue that the simulation results should be
symmetric around T c(H ). This is the basis for the comparison between experiment and
simulations contained in section 5 of this paper.

Let us now attempt a scaling analysis similar to the one in section 5.6.1 for those
magnetic field values for which the asymptotic ξeq(H ) can be at least guessed from
figure 18. We start by modifying scaling relationship (54) to

ξ(t, tw ;H) |H2 −H2
c (T )|1/yH ∝ const. (72)

Next, using equation (55) in the scaling argument of equation (72), we have, equivalently,(
t× |H2 −H2

c (T )|z(T )/yH
)
∝ const. (73)
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Figure 19. Search for the dAT line in D = 3 using MF scaling. Plots are in log–log
scale and show the behaviour of the rescaled quantities defined in equations (72)
and (73) for the mean-field estimatorsHc(T )MF, see equation (70). The ageing rates
z(T ) used in this scaling are listed in table 6, to be found in section 5.6.

We replot our rescaled data in figure 19 for the mean-field values of HMF
c (T ), see

equation (70). As seen in the panel for T = 0.9, there is nearly perfect scaling for
H � 0.08 but not for H = 0.04, though the curves do seem to coalesce for the three
different waiting times.

It is tempting to suggest that, for this value of magnetic field, one is in the condensed
phase. Glancing at figure 18, however, the growth of ξ(t, tw ;H) forH = 0.04 breaks away
from the curves for the larger magnetic fields, so that it is very possible that it would
join the equilibrium curves (i.e. the paramagnetic regime) at times longer than those
accessible in our simulations. This ambiguity softens the interpretation that we have
broached the dAT line in our simulations, as would be predicted from a MF approach.

However, if we replot our data using the scaling result of equation (71), as exhibited in
figure 20, for the values of H3D

c (T ) for T = 0.9, the data appear to collapse for all of the
magnetic fields, including H = 0.04 [H3D

c (T = 0.9) � 0.04]. The Fisher–Sompolinsky
scaling would, therefore, support the conjecture that at T = 0.9, our simulation results
for H = 0.04 are in the paramagnetic regime.

As to the rescaled T = 1.0 data in figures 19 and 20, they are of low quality, limiting
the magnetic fields to relatively large values. The three values (H = 0.04, 0.08, 0.16)
for which it is feasible to rescale are all above the HMF, 3D

c (T = 1.0) values given by
equations (70) and (71). All are, hence, in the paramagnetic regime, as can seen from
the shape of the curves in both figures.

Thus, though the data of figure 18 suggests that, for the lowest magnetic fields and
T = 0.9, ξ(t, tw ;T ) may be growing as a power law, and thus be in the condensed phase,
our limited time scale for the simulations is unable to conclude that we have, in fact,
straddled the dAT line. If one assumes Fisher–Sompolinsky scaling, equation (71), all
of our simulation results would be in the paramagnetic region. Until much longer times
scales become reachable (either at lower temperatures, or smaller magnetic fields), even
our powerful Janus II simulations are unable to arrive at a definitive conclusion regarding
the existence, or non-existence, of the dAT line for D = 3 Ising spin glasses.
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Figure 20. Search for the dAT line in D = 3 with Fisher–Sompolinsky scaling.
Plots are in log–log scale and show the behaviour of the rescaled quantities defined
in equations (72) and (73) for the Fisher–Sompolinsky estimators Hc(T )3D, see
equation (71). We report the ageing rates z(T ) used in this scaling in table 6 to be
found in section 5.6.

7. Conclusions

This paper demonstrates the unique and powerful combination of experiment, theory,
and simulations addressing complex dynamics. The use of single crystals enables exper-
iments to exhibit the consequences of very large spin-glass correlation lengths. The
power of a special-purpose computer, Janus II, in combination with theory, is sufficient
to extend simulation time and length scales to values explored experimentally. Together,
these approaches unite to develop new and important insights into spin-glass dynamics.

Previous work [5, 23] explored the reduction of the free-energy barrier heights respon-
sible for ageing in spin glasses by the Zeeman (magnetic fieldH) energy. Observations for
small magnetic fields, proportional to H2, were used to extract a quantitative value for
the spin-glass correlation length and its growth rate with time. As the magnetic field was
increased, however, departures from proportionality to H2 were observed. This paper
presents detailed experimental observations of this behaviour and, together with theory
[4], is able to demonstrate the applicability of a new non-linear scaling law for the mag-
netisation in the vicinity of the spin-glass condensation temperature T g. Remarkably,
Janus II simulations were able to generate comparable values for the magnetisation
dynamics, with the added value of direct measurement of the characteristic response
time.

The combination of these two approaches has put to rest a decades-old controversy
concerning the nature of the Zeeman energy. We have shown that the departures from
proportionality to H2 are caused by non-linear terms in the magnetisation, and not
by fluctuations of the magnetisation that lead to a Zeeman energy proportional to H.
Further, the departure from anH2 behaviour that was used to justify the proportionality
to H is shown to be a consequence of non-linear behaviour of the magnetisation in H,
and fully accounted for using the new scaling law. This is an important finding, because
otherwise the extraction of the spin-glass correlation length from the Zeeman-energy
reduction in the barrier height would have been in error.
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One of the most interesting findings in the paper is the extraction of the characteristic
response time for spin glasses, teffH , from simulations. It has been made possible by noting
that the spin-glass correlation function reaches a peak at the response time. That is,

C(teffH , tw ;H) = Cpeak(tw). (74)

Thus, by extracting Cpeak(tw) one can determine the characteristic response time teffH . It
is this observation that enables simulations to give quantitative values for the non-linear
magnetic susceptibility that can be compared with the new scaling law.

In addition, we have explored the microscopic behaviour of the magnetic states
through the growth of the correlation lengths under two experimental protocols: ZFC
and FC. We have proved that in a system close enough to the condensation temperature
T g, the Fisher–Sompolinsky scaling relation holds under out-of-equilibrium conditions
(see section 5.5). This will enable us in future simulations to compare the magnitude and
growth of the spin-glass correlation length under two experimental protocols: the dynam-
ics of zero-field-cooled and thermo-remanent magnetisations. The important point here
is that this paper shows that our analysis will be valid under these non-equilibrium
conditions.

We have discovered an overshooting phenomenon that is shown to be general for both
ordered and disordered magnetic systems. And finally, we have explored the nature of
the spin-glass condensation at T g as a function of the external magnetic field, the so-
called dAT line. We have presented preliminary evidence for its existence as a true
condensation transition, but this conclusion should be regarded as provisional.

In conclusion, this paper has explored the nature of the spin-glass state in the vicin-
ity of its condensation temperature T g. We displayed the power of combining insights
from both experiment and simulations, coupled together by theory. We look forward to
continued investigation of spin-glass dynamics using this relationship as we examine the
microscopic nature of such phenomena as rejuvenation and memory. Finally, because
spin-glass dynamics has applications in many diverse fields (ecology, biology, optimisa-
tion, and even social science), our work demonstrates that modelling complex systems
is feasible in finite dimensions.
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Appendix A. Technical details about our simulations

A.1. Smoothing and interpolating the data

Our numerical data for the magnetisation at small magnetic fields are rather noisy, which
complicates the process of taking its derivative with respect to ln t. This derivative is the
response function S(t, tw ;H) (recall equation (11)). This is why, before differentiating,
we have followed a de-noising method first proposed in [45]. Because we work at larger
correlation lengths (and closer to T g) than in that work, however, we have found it
preferable to change some technical details. We explain below the precise de-noising
method that we have followed in this work.

Our starting observation is that the derivative of both MZFC(t, tw ;H) and
TMZFC(t, tw ;H)/H peak at exactly the same time teffH . However, TMZFC(t, tw ;H)/H
enjoys the advantage of being a very smooth function of the correlation C(t, tw ;H).
This smooth function is named the FDR [32–36]. The key point is that, at variance
with the magnetisation, C(t, tw ;H) can be computed with high accuracy for any value
of the fieldH, includingH = 0. Thus, we follow a simple two-step de-noising algorithm:

(a) We fit our data for TMZFC(t, tw ;H)/H as a function of C(t, tw ;H), see
equation (A.1).

(b) We replace our data for TMZFC(t, tw ;H)/H by the just-mentioned fitted function
evaluated at C(t, tw ;H).

Our chosen functional form is as follows. Let the quantity TMZFC(t, tw ;H)/H be
approximated by f(x̂), where for notational simplicity we do not write the explicit
dependence on t, tw and H,

f(x̂) = fL(x̂)
1 + tanh[Q(x̂)]

2
+ fs(x̂)

1− tanh[Q(x̂)]

2
(A.1)

with Q(x̂) = (x̂− x∗)/w. The function f(x̂) has distinct behaviour for large and small x̂.
The crossover between the two functional forms is smoothed by the tanh[Q(x̂)] functional
term, where x∗ is the crossover point and w is the crossover rate. The functional form
for small x̂ is

fs(x̂) = a0 +
N∑
k=1

ak
(x̂− x̂min)

k

k!
. (A.2)
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Figure 21. The behaviour of TMZFC(t, tw ;H)/H is exhibited as a function of
C(t, tw ;H). (Top) T = 1.0, tw = 231.75. (Bottom) T = 0.9, tw = 231.25. We do not
report all the magnetic values for simplicity.

For the large-x̂ region, we choose a polynomial expansion in terms of (1− x̂):

fL(x̂) = (1− x̂) +
N ′+1∑
k=2

bk
(1− x̂)k

k!
. (A.3)

The polynomial expansion in 1− x̂ is quite natural in the large-x̂ region [45], as a
deviation from the fluctuation–dissipation theorem. This theorem, which holds only
under equilibrium conditions, predicts N ′ = 0 for equation (A.3) and x∗ = w = 0
for equation (A.1) (so that, in equilibrium, one would have f(x̂) = (1− x̂) in
equation (A.1)). In the small-x̂ region, there is not a strong justification (other than
convenience) for our choice of fs(x̂). In fact, the choice of [45] for fs(x̂) was a Padé approx-
imant. The quantity TMZFC(t, tw ;H)/H turns out to be affected by strong non-linear
effects that increase with increasing external magnetic field H and upon approaching
the glass temperature T g (see figure 21).

As we discuss in appendix A.2, it is necessary to select the appropriate order for the
polynomials in equations (A.2) and (A.3). Our preferred choices are given in table 8.

Errors are computed using a jackknife procedure. We perform an independent fit for
each jackknife block, and compute errors from the jackknife fluctuations of the fitted
f(x̂). In figure 22 we show a comparison between the original and smoothed data for the
case T = 1.0 and tw = 231.75. As expected, the de-noising technique is most important
for the smallest magnetic fields.

A.2. Over-fitting problem

A difficulty in our fits to equation (A.1) is that we can use only the diagonal part
of the covariance matrix in the computation of the goodness-of-fit indicator χ2. This
is the reason underlying the very small values for χ2 that we show in table 8. As a
consequence, we cannot trust the χ2 test for selecting the appropriate order for the
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Table 8. For each of our fits to equation (A.1) we report: the order of the polynomial in
equation (A.2) N , the number of fitted parameters in equation (A.3) N ′, [N ′ = 0 means fL(x̂) =
(1− x̂)], the crossover parameters x∗ and w, and the fit’s figure of merit χ2/d.o.f. (d.o.f. stands
for degrees of freedom). Note that we can only compute the so-called diagonal χ2, which takes
into account only the diagonal elements of the covariance matrix. Because of this limitation, we
find a value of χ2 significantly smaller than the number of degrees of freedom for many of our
fits.

tw H N N ′ x∗ w χ2/d.o.f.

T = 0.9

222

0.010 1 1 0.583(11) 0.128(1) 45.721/110
0.020 1 1 0.604(6) 0.1264(6) 49.874/110
0.040 3 2 0.589(4) 0.099(4) 27.991/107
0.080 3 2 0.576(7) 0.164(11) 64.344/107
0.100 3 2 0.681(12) 0.187(4) 33.133/99
0.120 3 3 0.665(18) 0.0725(5) 31.709/98
0.160 4 4 0.62(4) 0.052(1) 65.326/104

226.5

0.005 2 0 0.530(17) 0.100(7) 28.518/112
0.010 1 1 0.520(10) 0.115(4) 37.343/112
0.020 2 0 0.535(3) 0.091(3) 35.535/112
0.040 2 0 0.653(2) 0.033(2) 59.325/112
0.080 3 2 0.585(7) 0.161(11) 55.006/109
0.100 3 2 0.674(12) 0.176(4) 32.874/103
0.120 3 3 0.68(6) 0.078(11) 42.782/102
0.160 4 4 0.623(15) 0.034(8) 77.297/106

231.25

0.005 1 0 0.503(8) 0.074(7) 35.145/123
0.010 1 1 0.520(12) 0.139(2) 32.331/118
0.020 1 2 0.550(7) 0.0335(3) 31.219/121
0.040 2 0 0.554(16) 0.080(2) 75.790/116
0.080 3 2 0.598(6) 0.152(8) 38.439/115
0.100 3 2 0.688(10) 0.170(4) 29.904/107
0.120 3 3 0.655(14) 0.062(4) 32.396/98
0.160 4 4 0.549(22) 0.077(6) 67.296/112

T = 1.0

223.75

0.005 1 0 0.371(18) 0.178(12) 60.709/103
0.010 1 0 0.411(4) 0.129(4) 46.709/103
0.020 1 0 0.397(2) 0.138(2) 76.009/103
0.040 2 0 0.457(2) 0.146(2) 49.401/102
0.080 4 0 0.589(6) 0.066(1) 36.384/100
0.160 4 3 0.639(12) 0.061(6) 48.338/98

227.625

0.005 1 0 0.37(2) 0.157(1) 34.6242/101
0.010 1 0 0.400(8) 0.128(5) 45.169/111
0.020 1 0 0.389(2) 0.132(2) 53.121/111
0.040 3 0 0.559(11) 0.049(4) 32.738/109
0.080 3 1 0.638(8) 0.023(11) 491.701/108
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Table 8. continued

0.160 3 1 0.667(2) 0.023(3) 140.853/108

231.75

0.005 2 0 0.357(9) 0.170(12) 41.854/127
0.010 1 0 0.114(10) 0.114(10) 39.202/123
0.020 2 0 0.488(8) 0.116(7) 40.968/118
0.040 3 0 0.534(12) 0.070(4) 33.579/109
0.080 3 1 0.631(4) 0.023(5) 271.914/108
0.160 4 0 0.686(9) 0.080(3) 160.490/108

Figure 22. Comparison between the original and smoothed data at T = 1.0 and
waiting time tw = 231.75. One can clearly see the advantage of the de-noising method
for the lowest magnetic field.

polynomial expansions in equations (A.2) and (A.3). Hence, we follow a different
strategy.

Fortunately, we can also compare the statistical errors that we find for the de-noised
TMZFC(t, tw ;H)/H with different choices of the polynomial expansion (remember that
these errors are not computed from χ2, but from the jackknife fluctuations). As an
example, consider the case at T = 0.9 for a waiting time tw = 231.75 and H = 0.002,
which is exhibited in figure 23. The figure compares the statistical errors of the original,
non-de-noised data with the errors found with two possible choices for the polynomial
fits in equations (A.2) and (A.3). Although both fits are indistinguishable from the point
of view of the χ2 test, see table 9, the resulting errors are very different. In one case,
we find statistical errors that evolve rather smoothly with t. For the second choice, we
find wild oscillations in the size of the errors as t varies. When in doubt, we have always
taken the choice that provides the smoother t evolution for the errors. As we said above,
our final choices are reported in table 8.
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Figure 23. Comparison between the errors for the original and the de-noised data
for TMZFC(t, tw ;H)/H (with T = 0.9, tw = 231.75 and H = 0.002), for the two
different fitting functions f(x̂) reported in table 9.

Table 9. Details about the two fits shown in figure 23. We follow the same
notational conventions of table 8.

Case N N ′ x∗ w χ2/d.o.f.

Over-fitted 1 1 0.547(6) 0.132(1) 28.059/122
Our choice 2 0 0.550(7) 0.0335(3) 31.219/121

A.3. Time discretisation and the calculation of the relaxation function S(t, tw; H)

As explained in the main text, the quantity used in experiment [5] to extract teff(H )
is the relaxation function S(t, tw ;H) of equation (11). We calculate S(t, tw ;H) as a
finite-time difference:

S(t, tw, t
′ ;H) =

MZFC(t
′, tw ;H)−MZFC(t, tw ;H)

ln
(
t′

t

) . (A.4)

In simulations, time is discrete and we have stored configurations at tn = integer-part-of
2n/4, with n an integer. Let us write the integer dependence of times t and t′ explicitly as:

t ≡ tn, t′ ≡ tn+k, (A.5)

where k is an integer time parameter. Hence, time is rescaled as

tnew =
1

2
ln

(
tn+k

tn

)
. (A.6)

We expressed our observables as functions of tnew:

S(t, tw, t
′ ;H) → S(tnew, tw ;H), (A.7)

C(t, tw ;H) → C(tnew, tw ;H). (A.8)
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The relaxation function S(tnew, tw ;H) is trivial to construct, see equation (A.4).
However, the correlation function C(tnew, tw ;H) needs to be calculated using a linear
interpolation. For any given value of tnew, we looked for our original discrete time tn
such that

ln(tn) < ln(tnew) � ln(tn+1). (A.9)

Using a linear interpolation, we obtain

C(tnew) =
ln(tnew)− ln(tn+1)

ln(tn)− ln(tn+1)
C(tn)−

ln(tnew)− ln(tn)

ln(tn)− ln(tn+1)
C(tn+1). (A.10)

Finally, one can express the relaxation function, S(tnew, tw ;H), as a function of the
correlation function, S(C ;H), in much the same manner as equation (A.10).

A.4. The teffH calculation

As explained in the main text, the extraction of teffH from equation (16) is delicate
because the Cpeak(tw) are implicit functions of the rescaled time tnew. In order to solve
equation (16), we calculate the teffH values through a quadratic interpolation. First, we
calculate the original discrete time tn such that:

C(t+ tn+1, tw ;H) < Cpeak � C(t+ tn, tw ;H). (A.11)

Then, we solve the three-equation system:

C(t+ tn−1) = α0 + α1xn−1 + α2x
2
n−1, (A.12)

C(t+ tn) = α0 + α1xn + α2x
2
n, (A.13)

C(t+ tn+1) = α0 + α1xn+1 + α2x
2
n+1, (A.14)

where xn = ln tn and, for brevity’s sake, we omit the arguments tw and H. The solution
generates the αi coefficients:

α2 =
C(tw, tw + tn−1)− C(tw, tw + tn)

xn−1 − xn

− C(tw, tw + tn+1)− C(tw, tw + tn)

(xn−1 − xn+1)(xn+1 − xn)
, (A.15)

α1 =
C(tw, tw + tn+1)− C(tw, tw + tn)

xn+1 − xn

− α2(xn + xn+1), (A.16)

α0 = C(tw, tw + tn)− α1xn − α2x
2
n. (A.17)

We can then calculate the teffH solving the equation:

Cpeak = α0 + α1 ln
(
teffH

)
+ α2

[
ln
(
teffH

)]2
, (A.18)

where only the solution verifying tn � teffH < tn+1 is physical.
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A.5. The construction of ξ(t, tw; H)

We shall explain here our computation of the spin-glass correlation length in the presence
of a magnetic field. For the simpler case of H = 0, we refer the reader to [2, 65].

The most informative connected correlator we can construct with four replicas is the
replicon propagator [60, 66]. Extending the replicon propagator to the off-equilibrium
regime we have:

GR(r, t
′) =

1

V

∑
x

(〈sx,t′ sx+r,t′ 〉 − 〈sx,t′ 〉〈sx+r,t′ 〉)2, (A.19)

where t′ = tw + t. To compute GR(r , t
′), we calculate the four-replica field

Φ
(a,b ; c,d)
x,t′ =

1

2

(
s
(a)
x,t′ − s

(b)
x,t′

)(
s
(c)
x,t′ − s

(d)
x,t′

)
, (A.20)

where indices a, b, c, d indicate strictly different replica. Notice that

〈Φ(a,b ; c,d)
x,t′ Φ

(a,b ; c,d)
y,t′ 〉 = (〈sx,t′sy,t′ 〉 − 〈sx,t′ 〉〈sy,t′ 〉)2. (A.21)

Therefore, we obtain GR(r , t
′) by taking the average over the samples

E
(
Φ

(a,b ; cd)
x,t′ Φ

(a,b ; c,d)
y,t′

)
= GR(x− y, t′). (A.22)

With 512 replicas at our disposal, there are 3× 512!/(508!× 4!) ways of choosing the
replica indices a, b, c, and d. We have found an efficient way for averaging over (roughly)
one third of this astronomic number of possibilities [67]. We define the correlation
function, C(r , t′) , as the replicon propagator, GR(x − y , t′), where we consider the
difference x − y as the lattice displacement r = (r, 0, 0). Of course, we can align the lat-
tice displacement vector r along any of three coordinate axes, so we average over these
three choices. The replicon correlator GR decays to zero in the large-distance limit. We,
therefore, computed the correlation length ξ(t, tw ;H) exploiting the integral estimators
[7, 8]:

Ik(t
′ ;T ) =

∫ ∞

0

dr rkC(r, t′ ;T ), ξk,k+1(t
′ ;T ) =

Ik+1(t
′ ;T )

Ik(t′ ;T )
. (A.23)

In the main text, we always refer to the ξ12(t
′ ;T ) correlation length except for

section 5.6.2, where we evaluate ξ23(t
′ ;T ).

Appendix B. The Josephson length

For the reader’s convenience, we reproduce here the interpolation proposed in [3] of the
data obtained in [2] for the replicon exponent as a function of the Josephson length and
the correlation length.
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Figure 24. Plots show the behaviour of S(C ;H) for four independent samples for
H = 0.005, tw = 231.25 at T = 0.9. The peak area is enlarged in the inset after a
vertical shift.

The Josephson length, J(T
(J)), scales as

J
(
T (J)

)
=

b0 + b1

(
Tc

(J) − T (J)
)ν

+ b2

(
Tc

(J) − T (J)
)ων

(
Tc

(J) − T (J)
)ν , (B.1)

where T (J) is the temperature in IEA units,

T (J) =
T

Tc
T (J)
c T (J)

c = 1.102(3), (B.2)

and we have included analytic (b1) and confluent (b2) scaling corrections with ω =
1.12(10) and ν = 2.56(4) [27]. The numerical coefficients are:

ω = 1.12(10), ν = 2.56(4), b0 ≈ 0.1015, b1 ≈ 0.3725, b2 ≈ 0.1997. (B.3)

The replicon exponent θ(ξ ;T ) depends on both the temperature and the correlation
length ξ through the crossover variable

x̃ =
J(T )

ξ(tw ;T )
. (B.4)

In fact, θ (x̃(ξ ;T )) can be well interpolated as,

θ(x) = θ0 + d1

(
x

1 + e1x

)2−θ0

+ d2

(
x

1 + e2x

)3−θ0

, (B.5)

where

θ0 ≈ 0.30398, e1 ≈ 1.38179, d1 ≈ 2.72489, (B.6)

e2 ≈ 2.12634, d2 ≈ −9.98389. (B.7)
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Table 10. Values of teffH and Cpeak(tw) for four independent samples in the case
H = 0.005, tw = 231.25 and T = 0.9.

Sample log2
(
teffH

)
Cpeak(tw)

S0 30.434(21) 0.493
S1 30.196(23) 0.493
S2 30.546(24) 0.505
S3 30.327(21) 0.505

Figure 25. Behaviour of the scaling law for the case tw = 231.25 at T = 0.9 for the
two different Cpeak values in table 10. The main figure is in semi-log scale whereas
the insert is amplified in a log–log scale. It can be seen that the data points for the
two values of Cpeak are equivalent within their respective error bars.

Appendix C. Sample dependence of the non-linear scaling results

We demonstrate that the non-linear scaling results are sample independent for the case
H = 0.005, tw = 231.25, at T = 0.9. We simulate four independent samples and, for each
one, we build the relaxation function S(C ;H), see section 4.2 and appendix A.3. We
exhibit them in figure 24 where we report only the case for k = 8. To compare peak
regions of the relaxation function, S(C,H), we shift the lowest curves, namely S0 and
S2, vertically. An amplification of the peak region is shown in the inset of figure 24.
As one can observe, there is a sample dependence of the peak position. We report the
estimates of Cpeak(tw) for each sample in table 10. Note that the sample S0 is the one
analysed in the main text. We extract the effective time teffH for each sample, according
to equation (16). They are listed in table 10. The sample dependence found for the
CSi

peak(tw) values is seen in the teffH values too. Accordingly, we repeat the analysis of

section 5.4 using, as input parameter for extracting teffH , the CS2
peak(tw) value shown in

table 10. We analyse the effective time ratio ln teffH

teff
H→0+

according to equation (30). We
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then compare the scaling behaviour for the two values of CSi
peak(tw). The two sets of data

are statistically compatible, see figure 25. This implies that the physical scenario is not
affected by the small uncertainty in the determination of Cpeak(tw). We therefore assert
that the scaling results are sample independent.
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(Berlin: Springer)

[16] Vincent E 2007 Ageing, rejuvenation and memory: the example of spin glasses Ageing and the Glass Transition
(Lecture Notes in Physics No 716) ed M Henkel, M Pleimling and R Sanctuary (Berlin: Springer)

[17] Nordblad P, Svedlindh P, Lundgren L and Sandlund L 1986 Phys. Rev. B 33 645–8
[18] Lederman M, Orbach R, Hammann J M, Ocio M and Vincent E 1991 Phys. Rev. B 44 7403–12
[19] Hammann J, Lederman M, Ocio M, Orbach R and Vincent E 1992 Physica A 185 278
[20] Guchhait S and Orbach R 2014 Phys. Rev. Lett. 112 126401
[21] Bouchaud J P 1992 J. Phys. I France 2 1705–13
[22] Vincent E, Bouchaud J P, Dean D S and Hammann J 1995 Phys. Rev. B 52 1050–60
[23] Baity-Jesi M et al (Janus Collaboration) 2017 Phys. Rev. Lett. 118 157202
[24] Rodriguez G F 2004 PhD Dissertation University of California, Riverside (https://researchgate.net/publication/

252531893 Initial conditions and long time dynamics for a complex system Hierarchical properties of the
spin glass decay)

[25] Rodriguez G, Kenning G and Orbach R 2013 Phys. Rev. B 88 054302
[26] Baity-Jesi M et al (Janus Collaboration) 2014 Comput. Phys. Commun. 185 550–9
[27] Baity-Jesi M et al (Janus Collaboration) 2013 Phys. Rev. B 88 224416
[28] Mydosh J A 1993 Spin Glasses: An Experimental Introduction (London: Taylor and Francis)
[29] Aruga Katori H and Ito A 1994 J. Phys. Soc. Japan 63 3122–8
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[36] Franz S, Mézard M, Parisi G and Peliti L 1999 J. Stat. Phys. 97 459–88
[37] Malozemoff A P, Barbara B and Imry Y 1982 J. Appl. Phys. 53 2205
[38] Malozemoff A P, Imry Y and Barbara B 1982 J. Appl. Phys. 53 7672
[39] Chandra P, Coleman P and Ritchey I 1993 J. Phys. I France 3 591–610
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