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Abstract: This paper investigates the degree of efficiency for the Moscow Stock Exchange. A market 1

is called efficient if prices of its assets fully reflect all available information. We show that the degree 2

of market efficiency is significantly low for most of the months from 2012 to 2021. We calculate the 3

degree of market efficiency by (i) filtering out regularities in financial data and (ii) computing the 4

Shannon entropy of the filtered return time series. We have developed a simple method for estimating 5

volatility and price staleness in empirical data, in order to filter out such regularity patterns from 6

return time series. The resulting financial time series of stocks’ returns are then clustered into different 7

groups according to some entropy measures. In particular, we use the Kullback–Leibler distance 8

and a novel entropy metric capturing the co-movements between pairs of stocks. By using Monte 9

Carlo simulations, we are then able to identify the time periods of market inefficiency for a group of 10

18 stocks. The inefficiency of the Moscow Stock Exchange that we have detected is a signal of the 11

possibility of devising profitable strategies, net of transaction costs. The deviation from the efficient 12

behavior for a stock strongly depends on the industrial sector it belongs. 13

Keywords: Shannon entropy; market efficiency; volatility estimation; price staleness; stock market 14

clustering; Kullback-Leibler divergence 15

1. Introduction 16

When prices reflect all available information, the market is called efficient [1]. One way 17

to claim the efficiency of a market is by testing the Efficient Market Hypothesis (EMH). In 18

the weak form, the EMH considers that the last price incorporates all the past information 19

about market prices [2]. If the weak form of EMH is rejected, previous prices help to 20

predict future prices. For traders, market efficiency means that analyzing the history of 21

previous prices does not help to design a strategy that gives an abnormal profit. For a 22

company issuing shares, market efficiency means that the cost of its share already reflects 23

all information about the valuation and decisions of the company. The EMH is of great 24

interest also in research. Mathematical models of an asset price are usually based on the 25

assumption that the price follows a martingale: the expected value of a future price is the 26

current value of the price. If the EMH is rejected, there should be an estimation of the future 27

price better than its current value. In such a case, new models should be thought. 28

The review of works confirming the EMH was presented by Fama in 1970 [2] and 29

then in 1991 [3]. The martingale hypothesis was also tested later. It was shown that the 30

efficiency of a market depends on the development of the country [4]. Also, the martingale 31

hypothesis was confirmed on short time intervals, but may be violated on longer intervals 32

[5]. In addition, there is a range of strategies designed to increase an expected profit. High- 33

frequency and algorithmic trading strategies are discussed in [6]. Statistical and machine 34

learning methods for high frequency trading are reviewed in [7]. The existence of such 35

profitable strategies contradicts the Efficient Market Hypothesis. According to Grossman 36

and Stiglitz [8], the degree of market inefficiency determines the effort investors are willing 37

to expend to gather and trade on information. 38

The goal of this paper is to investigate the degree of stock market efficiency of the 39

Moscow stock Exchange using the Shannon entropy. We quantify the degree of market 40
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inefficiency and the degree of price randomness. We aim to distinguish between price 41

predictability due to stylized facts of financial time series [9] and due to market inefficiency. 42

In particular, we consider volatility clustering and price staleness as data regularities 43

needed to be filtered out. Based on the behavior of stock prices, we group them into clusters 44

using several measures. Combining stocks into one cluster means a common price behavior 45

that moves prices away from complete randomness. 46

A range of methods is used to measure a degree of market efficiency. In particular, 47

Cajueiro and Tabak used the Hurst exponent and R/S statistics to rank efficiency of markets 48

[10,11]. The Hurst exponent was measured on Bitcoin data to compare it with mature 49

markets [12]. A generalized version of the use of the Hurst exponent, multifractal detrended 50

fluctuation analysis, was applied to investigate the efficiency of stock and credit markets 51

[13]. The algorithmic complexity of return time series was applied to measure the efficiency 52

of financial markets [14] and to check the Efficient Market Hypothesis [15]. Finally, the 53

Shannon entropy as a measure of randomness is used in a range of articles, see [16–18]). 54

The general idea of these methods is to compare the characteristic of the time series with 55

the value corresponding to a completely random process. In our work, we use Monte 56

Carlo simulations to determine which deviations from a completely random process are 57

statistically significant. 58

Before estimating the degree of market efficiency, we need to get rid of regularities 59

that make prices more predictable, but do not imply any profitable strategies. The method 60

for filtering regularities was introduced in [19]. However, such a filtering has not usually 61

been applied in other research works. In fact, deviations of price behavior from perfect ran- 62

domness may be the result of some known regularity pattern, such as volatility clustering 63

or daily seasonality, but not a signal of market inefficiency. One of the innovations of this 64

article is a new method for filtering data regularities allowing to estimate volatility and a 65

degree of price staleness minute by minute. 66

We process data by filtering regularities of financial time series including volatility 67

clustering and price staleness. Price staleness is defined as a lack of price adjustments 68

yielding 0-returns. Traders may trade less because of high transaction costs and so the price 69

does not update. See [20] for more details. The price staleness produces an extra amount 70

of 0-returns called excess 0-returns. The other source of 0-returns in the time series is price 71

rounding. Estimations of volatility and degree of price staleness are mutually connected: 72

excess 0-returns appearing due to price staleness tend to underestimate volatility. At the 73

same time, volatility estimation is needed to calculate the expected amount of 0-returns 74

due to rounding. 75

One way to estimate volatility in the presence of excess 0-returns was presented in 76

[21]. It uses expectation-maximization algorithm [22] to estimate returns in the places of 77

all 0-returns and uses GARCH(1,1) model to estimate volatility [23]. The maximization 78

of the likelihood function appearing at each step of the considered algorithm requires 79

several parameters for numerical optimization. If the estimation of volatility is sensitive 80

to these parameters, that are user-defined, then they may affect the entropy of returns 81

standardized by volatility and the amount of 0-returns in the time series. In this article we 82

suggest a modification of moving average volatility estimation that requires adjusting of 83

the only parameter that can be defined using out-of-sample testing. The idea is to adopt a 84

simple method for volatility estimation, so that price staleness is taken into consideration. 85

Moreover, while estimating volatility, we filter out excess 0-returns. 86

The degree of market efficiency has been measured for many countries. Stock indices 87

for 20 countries were considered in [24]. The efficiency of 11 emerging markets, the US 88

and Japan markets was measured in [10]. US stock markets were considered in a recent 89

paper [25]. The review of articles about Baltic countries was presented in [26]. A degree of 90

uncertainty of Chinese [27], Tunisian [28], Mexican [29], and Portuguese [30] stock markets 91

was also considered using entropy measures. However, the efficiency of the Russian stock 92

market has not yet been analyzed. In this paper, we present an analysis of market efficiency 93
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based on the estimation of Shannon entropy for a group of 18 stocks of Russian companies 94

from five industries. 95

Our paper introduces four original contributions in the field. First, we construct the 96

method of filtering out heteroskedasticity and price staleness. This filtering process helps 97

to identify a true degree of market inefficiency. Second, we calculate the degree of market 98

inefficiency for the previous decade using monthly intervals. We conclude that the degree 99

of market inefficiency for the Moscow Stock Exchange was greater than 80%. Third, we 100

determine which pair of stocks exhibits the largest amount of inefficiency, as measured 101

by estimating Shannon’s entropy on their high frequency price time series. We show that 102

months where the predictability of stock prices attains its maximum cluster together. We 103

find out what behavior of stocks repeats most often for inefficient time periods. Finally, 104

we estimate the closeness of price movements using two measures of entropy. Based on 105

these results, we cluster together groups of stocks for which the efficient market hypothesis 106

is rejected, thus pointing out how market inefficiency display some dependence from the 107

financial sector they belong. 108

The article is organized as follows. Section 2 describes the dataset and the method 109

for filtering data regularities and calculating the Shannon entropy. Section 3 presents the 110

results on simulated and real data. Section 4 concludes the paper. 111

2. Materials and methods 112

Our main goal is to measure a degree of efficiency of the Moscow Stock Exchange. 113

The data taken for the study are reviewed in the next section. All data processing and 114

computing can be divided into three stages. First, we filter data regularities from financial 115

time series. Then, we calculate the degree of efficiency of the market using the Shannon 116

entropy. Finally, we use the resulting time series to cluster stocks using Kullback–Leibler 117

distance discussed in Section 2.4. 118

2.1. Dataset 119

We study the Moscow Stock Exchange. We consider close prices aggregated at one- 120

minute time scale. In particular, we select only minutes of the main trading session from 121

10:00 to 18:40. The time interval covers ten years from 2012 to 2021. The time period is 122

divided into monthly time intervals. We take 18 companies, 16 of them are from five sectors: 123

oil industry, metallurgy, banks, telecommunications, electricity. All stocks are listed in the 124

Table 11. All data are provided by Finam Holdings2. 125

2.2. Apparent inefficiencies 126

To estimate a degree of market efficiency, we first should eliminate the known patterns 127

of predictability, such as a daily seasonality. Financial agents operating in the market 128

tend to trade less in the middle of a day. It is reflected in prices, but again this pattern 129

in trading volume should be filtered out to detect genuine patterns of inefficiency. Other 130

known regularities are volatility clustering, price staleness, and microstructure noise. See 131

Appendix A for the guide of filtering out apparent inefficiencies. The contribution of this 132

article is devising a simple method for filtering volatility clustering and price staleness. 133

One of the methods to estimate volatility is the exponentially weighted moving average 134

(EWMA). It is described in the next section. 135

1 There are 2520 trading days. Assuming that there are 520 minutes in each trading day, there are 1310400
trading minutes in total. We use the Brownlees and Gallo’s algorithm of an outlier detection [31]. See details in
Appendix A.1

2 https://www.finam.ru/
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Table 1. Stocks of Russian companies traded at Moscow Exchange.

Ticker Company Sector Size Outliers
GAZP Gazprom Oil 1307427 50
LKOH Lukoil Oil 1287582 192
ROSN Rosneft Oil 1270592 130
SNGS Surgutneftegaz Oil 1211809 11
TATN Tatneft Oil 1191390 174
SBER Sberbank Bank 1309402 37
VTBR VTB Bank Bank 1287330 0
CHMF Severstal Metal 1214735 157
NLMK Novolipetsk Steel Metal 1194324 58
GMKN Nornikel Metal 1272769 197
MTLR Mechel Metal 1084990 161
MAGN Magnitogorsk Iron and Steel Works Metal 1106771 13
MTSS Mobile TeleSystems Telecommunications 1153527 260
RTKM Rostelecom Telecommunications 1140798 134
HYDR RusHydro Electric utility 1252584 0
RSTI Rosseti Electricity 1094244 0
AFLT Aeroflot Airline 1083552 123
MGNT Magnit Food retailer 1184223 544

For each company, we specify the ticker of stock, its sector, the size of data, and the amount of outliers
removed. The size is given in the amount of minutes with trading activity.

2.2.1. EWMA 136

We define price returns as rt = ln
(

Pt
Pt−1

)
, where Pt is the last price available at time t 137

and ln() is the natural logarithm. In order to estimate volatility σn, we apply exponentially 138

weighted moving average [32] of the values µ−1
1 |ri|, i < n, where µ1 =

√
2
π . 139

σ̄n = Sig1(α, rn−1, σ̄n−1) = αµ−1
1 |rn−1|+ (1− α)σ̄n−1 (1)

This form of exponential moving average was used in [19]. Here, the fact that E[|rn|] = 140

µ1σn is used assuming that returns are normally distributed, rn ∼ N(0, σn). More weights 141

are given for the more recent data. An alternative formula based on the expectation 142

E[r2
n] = σ2

n is 143

σ̄2
n = Sig2(α, rn−1, σ̄n−1) = αr2

n−1 + (1− α)σ̄2
n−1. (2)

A large value of return increases the value of volatility. The current value of volatility 144

reflects all available values of returns and changes slowly if the value of α is small. 145

We follow the approach suggested by [33] (p. 97) to find optimal values of α in 146

Equations 1 and 2. The value of α is selected so that it minimizes the error Erσ(α) = 147

∑i(σ̄
2
i − r2

i )
2. In order to minimize Erσ(α) as a function of the only parameter 0 < α < 1, 148

we apply Brent’s algorithm [34]3. We modify the exponential moving average method in 149

Section 2.2.3 so that it removes a bias due to the effect of price staleness discussed in the 150

next Section. 151

2.2.2. Estimation of price staleness 152

Let’s define an efficient price, Pe, as a continuous process following a Geometric 153

Brownian Motion. 154

3 The method is available in Python by using the function scipy.optimize.minimize_scalar. Alternatively, we
could use the golden-section search [35] that requires the boundary of search and the only parameter for the
stopping criteria.
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Pe
t = Pe

0 +
∫ t

0
σsPe

s dWs

An observed price moves along a discrete grid. Possible price values are multiples of 155

the tick size, d. 156

Pt = d ·
[

Pe
t

d

]
If the efficient price changes insignificantly, the return of the rounded price will be 157

equal to 0. Analogically, if the return of rounded price is 0, the return of efficient price has 158

a value close to 0. We use Equation 3 to estimate the probability that a return of rounded 159

price has zero value: 160

pi = er f (Ri−1) +
1

Ri−1
√

π
(exp (−R2

i−1)− 1), (3)

where Ri =
d

P̄i σ̄i
√

2∆
and er f (x) is the Gaussian error function; d is a tick size 4, ∆ is a 161

time step5, P̄ is a rounded price, and σ̄ is an estimation of volatility [36]. It is obtained by 162

considering the probability that a price following a Geometric Brownian Motion moves 163

less than one tick size, assuming that price increments are normally distributed. 164

There is another source of getting 0-returns, namely price staleness. Price staleness 165

represents a regularity pattern of the dynamics, namely the fundamental (efficient) price of 166

an asset is not updated because of a number of reasons, such as no transactions because 167

of high cost, which makes the trading as unprofitable for agents. See [20] for more details. 168

This results in a persistence pattern of ("excess") 0-returns. Such a pattern, for example, 169

tends to reduce any estimation of the volatility. Therefore, we need to filter out 0-returns 170

due to price staleness, while keeping 0-returns due to rounding, for a genuine estimation 171

of the volatility. 172

We save 0-returns in the amount of the sum of past values of the probability in Eq. 3 173

[36]. We set other 0-returns as missing values. We adopt this method to estimate the degree 174

of price staleness together with volatility in the next section. 175

2.2.3. Modification of EWMA 176

In this Section, we present a modification of the EWMA that takes into consideration 177

the effect of price staleness. Our modification of the EWMA is based on the suggestion to 178

estimate volatility σn as σ̄n−1 (i.e., by setting α = 0), if the value of rn−1 is missing because 179

of price staleness. That is, there is no new information from returns to update the value of 180

volatility. 181

Initially, the expected amount of 0-returns due to rounding is Nsave = 0. Thus, each 182

appearance of 0-returns does not affect the value of volatility. A 0-return is defined as a 183

value due to rounding and is saved in the sequence if the sum of all pi (Eq. 3) moves to a 184

new integer value. Other details and the algorithm of volatility estimation can be found in 185

Appendix B. 186

We update the estimation of volatility and price staleness minute by minute. This 187

method has the clear advantage of making possible the online inference by processing data 188

in real time. 189

4 We estimate the tick size using 2-steps procedure for each month. First, we find the amount of significant
digits in price. Then, we determine the most frequent increment in ordered prices.

5 The time step between the end and start of the main trading session is set as 1 minute. Also, we consider
any time gap without trading more than 2 hours as the closure of the market. We set the time step equal to 1
minute for these gaps.
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2.3. Calculating a degree of market inefficiency 190

2.3.1. The Shannon entropy 191

A degree of randomness of price returns is assessed by the Shannon entropy. The 192

entropy of a source is an average measure of the randomness of its outputs [37]. 193

Definition 1. Let X = {X1, X2, . . . . } be a stationary random process with a finite alphabet A
and a measure µ. An n-th order entropy of X is

Hn(µ) = − ∑
xn

1∈An
µ(xn

1 ) log µ(xn
1 )

with the convention 0 log 0 = 0. The process entropy (entropy rate) of X is

h(µ) = lim
n→∞

Hn(µ)

n
.

2.3.2. Discretization 194

The Shannon entropy is computed over a finite alphabet. To measure the Shannon en-
tropy, we need to keep the length of blocks of symbols, k, sufficiently large. The predictable
behavior of returns can be seen on blocks of greater length and may not be noticeable on
blocks of smaller length. For this reason, we consider 3-symbols and 4-symbols discretiza-
tions using empirical quantiles.

s(3)t =


1, rt ≤ θ1,

0, θ1 < rt ≤ θ2,

2, θ2 < rt,

s(4)t =



0, rt ≤ Q1,

1, Q1 < rt ≤ Q2,

2, Q2 < rt ≤ Q3,

3, Q3 < rt,

where θ1 and θ2 are tertiles and Q1, Q2, Q3 are quartiles. The tertiles divide data into
three equal parts. The quartiles divide data into four equal parts. Q2 is also the median of
the empirical distribution of returns. For the later analysis, we will need a discretization
describing the behavior of a pair of stocks.

s(p)
t =



0, r(1)t ≤ m1 and r(2)t ≤ m2,

1, r(1)t ≤ m1 and r(2)t > m2,

2, r(1)t > m1 and r(2)t ≤ m2,

3, r(1)t > m1 and r(2)t > m2,

(4)

where r(1)t and r(2)t are two time series of price returns and m1 and m2 are their medians. 195

2.3.3. The estimation of entropy 196

Let xn
1 ∈ An be the sequence of length n generated by an ergodic source µ from the 197

finite alphabet A, where xi+k−1
i = xi . . . xi+k−1. There are possible missing values in the 198

sequence generated independently from xn
1 . We consider all blocks of length k that do not 199

contain missing values. We take 200

k = max(K : K < blog(nb(K))c), (5)

where nb(k) is the number of blocks of length k.6 The base of the logarithm is the size 201

of the alphabet A (3 or 4). 202

6 The restriction on a value of k allows to have enough blocks to estimate probabilities appearing in k-th order
entropy [38].
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For each ak
1 ∈ Ak empirical frequencies are defined as 203

f (ak
1|xn

1 ) = #{i ∈ [1, n− k + 1] : xi+k−1
i = ak

1}.

Empirical frequencies are the actual amount of each block from Ak in the data. By
considering an empirical k-block distribution as

µ̂k(ak
1|xn

1 ) =
f (ak

1|xn
1 )

nb
, (6)

an empirical k-entropy is defined by

Ĥk(xn
1 ) = −∑

ak
1

µ̂k(ak
1|xn

1 ) log (µ̂k(ak
1|xn

1 )) = log(nb)−
1
nb

M

∑
i=1

fi log fi.

The estimation of the process entropy is 204

ĥk =
Ĥk
k

.

See [38] for the proof of the consistency of this estimator and [36] for the case of missing 205

values. Since the sequence is finite, the estimation of entropy is underestimated. To remove 206

this bias, we use the correction for the entropy estimation introduced in [39,40]. 207

ĤG
k = log(nb)−

1
nb

M

∑
i=1

fi log (exp G( fi)), (7)

where the sequence G(i) is defined recursively as 208

G(1) = −γ− ln(2)

G(2) = 2− γ− ln(2)

G(2n + 1) = G(2n)

G(2n + 2) = G(2n) +
2

2n + 1
, n ≥ 1

with the Euler’s constant γ = 0.577215 . . . . 209

2.3.4. Detection of inefficiency 210

We need to do three steps to determine if the time interval is efficient or not. First, 211

we filter out apparent inefficiencies (see Appendix A). Then, we estimate the entropy of 212

the filtered return time series using Eq. 7. Finally, we determine if the value of entropy is 213

significantly low relative to the case of perfect randomness. We detect inefficiency in the 214

time interval using Monte Carlo simulations. We regard a Brownian motion as absolutely 215

unpredictable. First, we define the length of sequences as l = nb(k) + k − 1. Then, we 216

simulate 104 realizations of Brownian motions with Gaussian increments and the length l. 217

For each realization, we calculate entropy using 3- and 4-symbols discretizations. Then, we 218

find the first percentile of the obtained entropies for each discretization. These percentiles 219

are the bounds of 99% of the Confidence Interval (CI) for testing market efficiency. Finally, 220

we define an efficiency rate as the ratio of the entropy of the time interval and the bound of 221

CI. If the efficiency rate is less than 1 for at least one type of discretization, we define the time 222

interval as inefficient. We provide testing for inefficiency twice using different discretizations 223

because the unique testing may not be robust. See an example in Appendix C. 224



Version September 7, 2022 submitted to Entropy 8 of 21

2.4. Kullback–Leibler distance 225

In addition to estimating the entropy of one time series, we can also consider the 226

difference between two time series. The Kullback–Leibler divergence [41] is used to 227

measure similarity between two distributions. For two discrete probability distributions P 228

and Q. 229

KL(P|Q) = ∑
i

pi log
pi
qi

We use pi and qi as empirical probabilities obtained in Eq 6. Since the Kullback–Leibler
divergence is asymmetric, we consider the distance between two time series proposed in
[42].

D(P, Q) =
KL(P|Q)

HG(P)
+

KL(Q|P)
HG(Q)

(8)

The greater the distance D(P, Q), the more probability distributions P and Q differ. 230

3. Results 231

3.1. Simulations 232

The aim of this section is to assess the accuracy of the estimation of volatility and
the degree of price staleness. We will choose the method that gives the least error of the
estimation for further analysis on real data. We take the following model of an observed
price P̃t, t = 1 . . . 2N.

Pt =
∫ t

0
σsPsdW1

s

P̃i = Pi(1− Bi) + P̃i−1Bi

qt = q0 +
∫ t

0
µsds +

∫ t

0
νdW2

s

Bi =

{
1 with probability qi

0 with probability 1− qi

where W1 and W2 are two independent Brownian motions with the length of 2N, N = 105,
price P0 = 100, and ν = 10−4. B = 1 stands for the case when price is not updated due to
price staleness (see [20,43]). Prices are rounded to two digits, thus the tick size is d = 0.01.
We consider 4 choices for qt and σt listed below.

q1
t = 0

q2
t = 0.1 +

∫ t

0
νdW2

s

q3
t = 0.2 +

∫ t

0
νdW2

s

q4
t = 0.2 +

∫ t

0
µ4

s ds +
∫ t

0
νdW2

s

µ4
t = 0.8π/N cos(8tπ/N)

σ1
t = 5× 10−4

σ2
t ∼ ARCH(1.75× 10−7, 0.2, 0.1)

σ3
t ∼ GARCH(1.25× 10−8, 0.1, 0.85)

σ4
t ∼ GARCH(1.25× 10−8, 0.15, 0.8)

For price staleness, we consider 4 cases: the absence of price staleness; two stochastic 233

probabilities with different constant means; a periodic mean. For all four cases of volatility, 234

the unconditional expected value of σt is 5× 10−4. The first choice of volatility is a constant. 235

Then, we consider the ARCH model [44] with two lagged values, where 0.2 and 0.1 236

correspond to the first and the second lags, respectively. Volatility values directly depend 237

only on the previous returns values. The dependency on the previous return should be 238
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reflected in the value of smoothing parameter. The third and fourth choices are GARCH(1,1) 239

models [23], where the last parameter (0.85 or 0.8) stands for the coefficients for lagged 240

variances. We consider two sets of parameters for a GARCH model, giving less persistence 241

to the fourth model. 242

We divide data into two equal parts with the size N. The first part is a training set 243

for finding optimal values of α from Equations 1 and 2. The second part is a testing set 244

for calculating errors represented in Tables 2 and 3 below. We compare two methods that 245

use Sig1 and Sig2 for volatility estimation. For each method we find the optimal value of 246

α. In addition, we set a fixed value of alpha, α = 0.05, as a benchmark for the comparison. 247

We also apply non-modified EMWA estimation from Section 2.2.1 with selected optimal 248

value of α to show the contribution of 0-filtering to the accuracy of volatility estimation. 249

We simulate 103 prices for each model. 250

Table 2 represents a mean absolute percentage error (MAPE) that is 1
N ∑i |

σ̄i−σi
σi
| for 251

six different approaches. These approaches differ in the choice of a function for volatility, 252

the value of α, and the presence of missing values. Table 3 represents three values for 253

each of two methods using Sig1 and Sig2 for the volatility estimation. The first value is 254

the optimal value of α. The second is ErN = |Nround NA
N0 N − 1| where NA is the amount of 255

remaining non-missing returns, Nround is the amount 0-returns that would appear due to 256

rounding (before adding the effect of staleness in the simulated data); NA is the amount of 257

non-missing returns; and N0 is the amount of 0-returns. ErN represents the absolute error 258

of the proportion of 0-returns that remain in the data and are defined as 0-returns due to 259

rounding. The third value is the proportion of data set as missing values, that is 1− NA
N . 260

It can be seen from Table 2 that the method that more often gives the lowest value of 261

MAPE is with fixed α = 0.05 and Sig1 used for volatility estimation. Moreover, for almost 262

all cases, 0-filtering makes the volatility estimate more accurate. The error of the amount of 263

0-returns due to rounding is smaller for the function Sig1 than for the function Sig2 for all 264

16 cases. 265

After the comparison of the two functions of volatility estimation, we decide to use 266

Sig1, that uses absolute values of returns, in the next sections. For the rest of the paper, we 267

fix the value of α as 0.05 for the simplicity of further analysis. 268

3.2. Moscow Stock Exchange 269

We calculate 18 · 120 = 2160 efficiency rates for each type of discretization, where 18 270

is the amount of stocks and 120 is the amount of months in 10 years. We define a degree 271

of inefficiency as the fraction of 2160 months which are defined as inefficient according to 272

Section 2.3.4. The degree of inefficiency for the chosen group of stocks traded at Moscow 273

Exchange is 0.823.7 The degree of inefficiency for each stock and discretization is presented 274

in Table 4. We notice that the 4-symbols discretization contributes to the larger amount of 275

inefficient months than the 3-symbols discretization. That is, the 4-symbol discretization 276

appears to have a more predictable structure than the 3-symbols discretization. 277

Figure 1 shows the minimum value of efficiency rate among all months for each stock. 278

7 In our previous work, [36] we found that the degree of inefficiency for the U.S. ETF market is about 0.11 for
monthly time intervals and the 3-symbols discretization only. This difference in the degrees of inefficiency can
be explained by the hypothesis that developed markets have a high level of efficiency. W. A. Risso reached this
conclusion in the article [24].
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Table 2. Results on volatility estimation.

model MAPE,
method v1

MAPE, v2 MAPE with
α = 0.05, v1

MAPE with
α = 0.05, v2

MAPE w/o
0-filtering, v1

MAPE w/o
0-filtering, v2

σ1, q1 0.0193
(0.0007,0.0507)

0.017
(0.0014,0.0406)

0.0975
(0.0955,0.0995)

0.0897
(0.0878,0.0915)

0.0193
(0.0007,0.0507)

0.017
(0.0014,0.0406)

σ1, q2 0.0607
(0.0245,0.1017)

0.0629
(0.0293,0.1057)

0.095
(0.093,0.0972)

0.0914
(0.0893,0.0936)

0.0862
(0.0459,0.131)

0.0674
(0.0294,0.1154)

σ1, q3 0.0737
(0.0333,0.1278)

0.0756
(0.033,0.1338)

0.0948
(0.0928,0.0971)

0.0915
(0.0894,0.094)

0.138
(0.0917,0.1863)

0.0888
(0.0368,0.1592)

σ1, q4 0.0716
(0.0323,0.1213)

0.0739
(0.0354,0.1268)

0.0949
(0.0926,0.0973)

0.0913
(0.089,0.0937)

0.1404
(0.1022,0.1875)

0.0873
(0.0405,0.1516)

σ2, q1 0.1121
(0.1082,0.121)

0.1183
(0.1146,0.1244)

0.1459
(0.1438,0.1481)

0.1446
(0.1422,0.147)

0.1118
(0.108,0.1207)

0.1179
(0.1144,0.1243)

σ2, q2 0.1359
(0.1163,0.1715)

0.1411
(0.1237,0.1765)

0.1462
(0.1439,0.1487)

0.1489
(0.1457,0.1526)

0.1341
(0.1043,0.1819)

0.1407
(0.1193,0.1832)

σ2, q3 0.146
(0.1198,0.1958)

0.1519
(0.1266,0.1981)

0.1473
(0.1449,0.1499)

0.1496
(0.1464,0.1534)

0.1649
(0.1196,0.2271)

0.1589
(0.123,0.222)

σ2, q4 0.146
(0.1205,0.1912)

0.15
(0.1256,0.1986)

0.1472
(0.1447,0.1498)

0.1494
(0.1463,0.1532)

0.1696
(0.1274,0.2261)

0.1571
(0.1223,0.2239)

σ3, q1 0.1479
(0.1446,0.1513)

0.1473
(0.1442,0.1505)

0.1495
(0.1467,0.1522)

0.1473
(0.1442,0.1502)

0.1479
(0.1446,0.1513)

0.1472
(0.1441,0.1503)

σ3, q2 0.1592
(0.1485,0.1891)

0.1613
(0.1508,0.1857)

0.1529
(0.149,0.1574)

0.1546
(0.1497,0.1598)

0.1622
(0.144,0.2033)

0.1628
(0.1491,0.1978)

σ3, q3 0.1681
(0.1528,0.2048)

0.171
(0.1556,0.2178)

0.1567
(0.1525,0.1616)

0.1584
(0.1536,0.1639)

0.1904
(0.154,0.2477)

0.1815
(0.1546,0.2464)

σ3, q4 0.1668
(0.1527,0.1997)

0.1701
(0.1555,0.2178)

0.1568
(0.1525,0.1613)

0.1583
(0.1537,0.1633)

0.192
(0.1591,0.246)

0.181
(0.1556,0.2455)

σ4, q1 0.1897
(0.1856,0.1952)

0.1873
(0.1838,0.1911)

0.1881
(0.1844,0.1918)

0.1924
(0.1879,0.1968)

0.1897
(0.1856,0.1952)

0.1873
(0.1837,0.1911)

σ4, q2 0.2035
(0.1906,0.2454)

0.2057
(0.1921,0.2474)

0.1954
(0.1891,0.2022)

0.2037
(0.1961,0.2119)

0.2049
(0.1836,0.2617)

0.2079
(0.1902,0.2642)

σ4, q3 0.2146
(0.1965,0.2623)

0.2166
(0.1996,0.2757)

0.2015
(0.1951,0.2077)

0.2101
(0.2026,0.2177)

0.2318
(0.1912,0.307)

0.2294
(0.1988,0.3082)

σ4, q4 0.214
(0.1967,0.2591)

0.2155
(0.1986,0.2689)

0.2013
(0.1951,0.2088)

0.2097
(0.2023,0.2185)

0.2338
(0.1976,0.3064)

0.2286
(0.1988,0.306)

The first column indicated a model. Columns 2 and 3 represent results for two methods described in Section 2.2.3.
Columns 4 and 5 are for the same methods but with the fixed value of α. Columns 6 and 7 shows the error of the
standard EMWA approach with the optimal selected value of α. 95% CI is presented below each averaged statistic.
v1 stands for using Sig1; v2 stands for using Sig2.
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Figure 1. Minimum of efficiency rates for 18 stocks using 3- and 4-symbols discretizations.

There are two most notable deviations from 1 for stocks MLTR (Mechel, mining and 279

metals company) and RSTI (Rosseti, power company). We investigate them in the next 280
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Table 3. Results on filtering out 0-returns.

model α for v1 α for v2 ErN , v1 ErN , v2 Fraction of
data deleted,
v1

Fraction of
data deleted,
v2

σ1, q1 0.0027
(0.0,0.0137)

0.0022
(0.0,0.0103)

0.0006
(0.0,0.0)

0.0015
(0.0,0.0259)

0.0001
(0.0,0.0)

0.0003
(0.0,0.0052)

σ1, q2 0.0228
(0.0033,0.0569)

0.0259
(0.0044,0.067)

0.0094
(0.0004,0.026)

0.011
(0.0005,0.0295)

0.2005
(0.0814,0.3244)

0.2008
(0.0818,0.3247)

σ1, q3 0.0335
(0.006,0.0902)

0.0379
(0.0058,0.1063)

0.0106
(0.0005,0.0288)

0.0121
(0.0005,0.0336)

0.3661
(0.2474,0.481)

0.3659
(0.246,0.4797)

σ1, q4 0.0314
(0.0056,0.0824)

0.036
(0.007,0.0966)

0.0104
(0.0004,0.0283)

0.0122
(0.0007,0.0355)

0.3628
(0.2521,0.4717)

0.3626
(0.2515,0.4713)

σ2, q1 0.0039
(0.0,0.0161)

0.0037
(0.0006,0.0146)

0.0149
(0.0,0.0438)

0.035
(0.0,0.0586)

0.0029
(0.0,0.0092)

0.0067
(0.0,0.0134)

σ2, q2 0.035
(0.0059,0.0903)

0.0367
(0.0054,0.1021)

0.0209
(0.0012,0.0448)

0.0319
(0.0039,0.0601)

0.2016
(0.0856,0.3249)

0.2032
(0.0878,0.3263)

σ2, q3 0.0489
(0.0079,0.1326)

0.0556
(0.0091,0.1476)

0.0217
(0.001,0.0473)

0.0275
(0.0022,0.0603)

0.3706
(0.25,0.4835)

0.371
(0.2518,0.4836)

σ2, q4 0.049
(0.0093,0.1268)

0.0525
(0.0082,0.1484)

0.0206
(0.0012,0.0443)

0.0274
(0.0013,0.0571)

0.3645
(0.2495,0.4695)

0.3651
(0.2491,0.4692)

σ3, q1 0.0424
(0.0349,0.0527)

0.048
(0.0392,0.0603)

0.0034
(0.0,0.0337)

0.0089
(0.0,0.0402)

0.0007
(0.0,0.0067)

0.0018
(0.0,0.0085)

σ3, q2 0.0672
(0.0267,0.1456)

0.0767
(0.0249,0.1592)

0.0155
(0.0006,0.0404)

0.02
(0.0009,0.0551)

0.1995
(0.0826,0.3248)

0.1997
(0.0826,0.3251)

σ3, q3 0.0825
(0.0264,0.1734)

0.0985
(0.0301,0.2371)

0.018
(0.0011,0.0477)

0.0243
(0.0008,0.0702)

0.3678
(0.2444,0.4746)

0.3671
(0.2421,0.4751)

σ3, q4 0.0788
(0.0266,0.163)

0.0969
(0.0325,0.2362)

0.0178
(0.001,0.0463)

0.0222
(0.0007,0.067)

0.3623
(0.2466,0.476)

0.3615
(0.2486,0.4739)

σ4, q1 0.0819
(0.0696,0.1037)

0.0904
(0.0757,0.119)

0.0013
(0.0,0.0248)

0.0047
(0.0,0.0329)

0.0003
(0.0,0.0052)

0.0011
(0.0,0.0075)

σ4, q2 0.1132
(0.0534,0.2359)

0.1339
(0.0576,0.2925)

0.0185
(0.0007,0.0564)

0.0265
(0.0008,0.087)

0.1993
(0.0765,0.3287)

0.1982
(0.077,0.3257)

σ4, q3 0.1338
(0.0557,0.2678)

0.1596
(0.0597,0.3734)

0.0214
(0.0009,0.0621)

0.0321
(0.001,0.1119)

0.3687
(0.2419,0.4823)

0.3669
(0.2378,0.4817)

σ4, q4 0.1317
(0.0571,0.263)

0.1556
(0.0613,0.3541)

0.0211
(0.0008,0.0667)

0.0315
(0.0011,0.108)

0.3641
(0.2599,0.4823)

0.3625
(0.2564,0.4822)

Values of α, errors of the number of 0-returns due to rounding, and fraction of data set as missing values. The first
column indicated a model. 95% CI is presented below each averaged statistic. v1 stands for using Sig1; v2 stands for
using Sig2.

section. For the other 16 stocks, the minimum value of efficiency rate is attained for the 281

stock AFLT and is equal to 0.933 (0.964) for 3 (4) symbols. 282

3.2.1. Analysis of MLTR and RSTI 283

We plot the values of efficiency rates for monthly intervals for the MLTR and RSTI 284

stocks. See Fig. 2 and Fig. 3. 285

Both types of discretization show coherent results. For MLTR, there are two notable 286

decreases in the efficiency rates at the beginning of 2014 and in the middle of 2016. For both 287

types of discretizations, eight months with the lowest efficiency rate (in the ascending order 288

of time) are Jan-Feb and May-Oct of 2014. For each month we write down the most frequent 289

block of symbols in Table 5. Note that block 1111 for the 4-symbols discretization appears 290

as the most frequent for 6 months out of 8 for MLTR. The block denotes a slight decrease in 291

the price for 4 minutes in a row. The meaning of the last two columns is discussed later. 292

For RSTI, there are two sharp decreases in 2014 and 2015. There are 11 months that 293

have the lowest efficiency rates in common for both discretizations. These months are 294

Apr-Sep of 2014 and Jun-Oct of 2015. Note that these inefficient months cluster together 295

and are not distributed uniformly among the entire time period of 10 years. This is the 296

signal of a market condition that affects the inefficiency of the stocks for more than one 297

month. 298
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Table 4. The degree of inefficiency for each stock.

Ticker Degree of inefficiency For 3 symbols only For 4 symbols only
GAZP 0.725 0.392 0.675
LKOH 0.65 0.342 0.542
ROSN 0.742 0.392 0.708
SNGS 0.725 0.4 0.625
TATN 0.617 0.392 0.525
SBER 0.725 0.433 0.658
VTBR 0.842 0.592 0.792
CHMF 0.858 0.55 0.692
NLMK 0.8 0.467 0.692
GMKN 0.733 0.475 0.608
MTLR 0.992 0.783 0.975
MAGN 0.833 0.65 0.758
MTSS 0.967 0.7 0.942
RTKM 0.942 0.683 0.908
HYDR 0.892 0.75 0.8
RSTI 0.917 0.742 0.875
AFLT 0.983 0.775 0.95
MGNT 0.842 0.667 0.742

Fraction of inefficient months using 3-symbols and 4-symbols discretization. Each value in the last
two columns is calculated using 120 efficiency rates.

We construct a simple trading strategy on discretized returns to test the predictability 299

of future returns. We consider blocks of length 4 obtained by the 4-symbols discretization. 300

For each month, we divide blocks into two halves. The discretization is made using only 301

the first half of a month. We consider the sequences of the first 3 symbols of each block. If 302

the empirical probability of getting 0 or 1 after the sequence of 3 symbols in the first half is 303

greater than 0.5 , this sequence is from group D (decreasing). If the empirical probability of 304

getting 2 or 3 after the sequence of 3 symbols is greater than 0.5, this sequence is from group 305

I (increasing). Then, for the second half of the month, we determine a success if symbols 0 306

or 1 follow a sequence from group D or if symbols 2 or 3 follow a sequence from group I. 307

Then, we calculate the fraction of successes. Thus, it is the probability of making a profit: 308

sell after group D or buy after group I. In the case of market efficiency, this probability is 309

equal to 0.5. For example, we expect that after 111 the next symbol would be 1 according to 310

Table 5. The most frequent blocks appearing for the Stock MLTR and probabilities of success.

Months of
2014

The most fre-
quent block,
3-s

The most fre-
quent block,
4-s

prob. of suc-
cess, filtered

prob. of suc-
cess, original

Jan. 00000 1111 0.64 0.75
Feb. 00000 2222 0.64 0.74
May 00000 1111 0.61 0.73
June 22222 1111 0.60 0.73
July 11111 1111 0.62 0.74
Aug. 00000 1111 0.61 0.76
Sep. 00000 1111 0.63 0.74
Oct. 120120 0303 0.55 0.6

The first column represents months with the lowest efficiency rates. Columns 2 and 3 are the most
frequent blocks in 3- and 4-symbols discretization. Columns 4 and 5 are the probability of the success
of the simple trading strategy for filtered and original price returns.
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Figure 2. Efficiency rate for the MLTR stock using 3- and 4-symbols discretizations.
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Figure 3. Efficiency rate for the RSTI stock using 3- and 4-symbols discretizations.

Table 5. That is, after this block, a trader can sell a stock. The fourth column of the Table 5 311

shows the results for filtered return time series. The fifth column stands for the original 312

return time series. 313

For all cases the probability is greater than 0.5. Obviously, the probabilities for the 314

original return time series are greater than those for the filtered return time series. The 315

reason is that predictability for the original return time series follows from the sources of 316

apparent inefficiencies. 317

The same analysis is done for the RSTI stock. Eleven months with the lowest efficiency 318

rates are presented in Table 6. For the RSTI stock, the simple trading strategy gives the 319

fraction of successes (of predicting increases and decreases of the price) greater than 0.5 for 320

all 11 months. The frequent behavior of the price of RSTI during the chosen months is a 321

slight increase in price for several minutes in a row denoted by symbol 2. 322

The simple trading strategy is an illustrative example of market inefficiency. In fact, 323

such a strategy could result in no profit when used in practice because it does not take into 324

account the costs of transaction and other trading frictions. Moreover, the filtering of daily 325

seasonality pattern is made by using the whole period of analysis. That is, this method 326

cannot be applied in real time. Finally, we consider blocks containing only observed returns, 327

by neglecting the missing values from the analysis. Thus, the application of such a strategy 328
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Table 6. The most frequent blocks appearing for the Stock RSTI and probabilities of success.

Months The most fre-
quent block,
3-s

The most fre-
quent block,
4-s

prob. of suc-
cess, filtered

prob. of suc-
cess, original

Apr.2014 212121 0111 0.63 0.77
May.2014 00000 1111 0.61 0.73
June.2014 00000 1111 0.6 0.73
July.2014 00000 2222 0.62 0.74
Aug.2014 00000 2222 0.61 0.76
Sep.2014 000000 22222 0.63 0.74
June.2015 00000 2222 0.54 0.61
July.2015 00000 1111 0.55 0.6
Aug.2015 00000 2222 0.54 0.6
Sep.2015 00000 2222 0.55 0.61
Oct.2015 11111 0111 0.56 0.62

The first column represents months with the lowest efficiency rates. Columns 2 and 3 are the most
frequent blocks in 3- and 4-symbols discretization. The length of a block is defined using Eq. 5.
Columns 4 and 5 are the probability of the success of the simple trading strategy for filtered and
original price returns.

in practice should be integrated with the case when a missing value follows a sequence of 3 329

symbols. 330

3.3. Stock market clustering 331

Most of the month-long time intervals are identified as inefficient. But is there some 332

dependence between two stocks that are inefficient at the same time? 333

3.3.1. Kullback–Leibler distance 334

We measure the similarity of discretized filtered returns by using the Kullback–Leibler 335

(KL) distance (Eq. 8). We use k, the length of blocks, as the maximum value suitable for both 336

sequences according to Eq. 5. The 4-symbols discretization is used. The Kullback–Leibler 337

divergence DL(P|Q) is calculated using empirical frequencies. The entropy rates are 338

calculated using Eq. 7. Using the Kullback–Leibler distance for all pairs of stocks, we 339

cluster them in three groups using hierarchical clustering with UPGMA algorithm [45]8. 340

The result is in Fig. 4. Combining companies into one cluster means that their stocks have a 341

common behavior that is not related to the value of volatility, the degree of price staleness 342

and the structure of microstructure noise. 343

It can be seen that banks and oil companies are clustered together (right). There is a 344

group of four stocks RTKM, HYDR, AFLT, MGNT, that have nothing in common at first 345

glance. The remaining group (left) mainly consists of metallurgy companies. However, 346

there is no visible distinction between the stocks of banks and oil companies. According 347

to the clustering tree, two telecommunications companies differ significantly, as well as 348

electricity companies. 349

Finally, two stocks with the lowest efficiency rates, RSTI and MLTR, are the furthest 350

(in the sense of KL distance) from any other stock. That is, there are no stocks that behave 351

similarly to these two stocks. 352

3.3.2. Entropy of co-movement 353

Now, we consider another measure of difference between two stocks, the entropy 354

of co-movement. We calculate the Shannon entropy of the discretization describing the 355

8 This algorithm is implemented using the python function cluster.hierarchy.dendrogram with the argument
distance=average.
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Figure 4. Hierarchical clustering tree using KL distance. The threshold for clustering into groups is
0.035.

movement of a pair of prices presented in Eq. 4. We consider only minutes that are in 356

common for both stocks. For these minutes we consider values of residuals obtained after 357

ARMA fitting. The result is in Fig. 5. 358
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Figure 5. Hierarchical clustering tree using the entropy of co-movement. The threshold for clustering
into groups is 0.989.

Two companies related to telecommunications are a separate cluster. Three metallurgy 359

companies MAGN, CHMF, NLMK also cluster together. Stocks relating to oil and bank 360

companies form the other cluster. The same cluster, with the exception of the TATN (oil 361

industry), was also formed in the previous section. The "closeness" of stocks GAZP and 362

SBER is detected either in this and in the previous section. The three stocks on the left that 363

join other stock clusters last are the stocks with the lowest efficiency rates. 364

Some clusters may form on the basis that companies belong to the same industry. 365

The division of companies into industries is noticeable from the dendrogram in Figure 5. 366

However, this criterion does not explain all clusters. For instance, GMKN from metallurgy 367

is in the cluster of oil companies and banks. 368
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4. Discussion and conclusions 369

We have investigated the predictability of the Moscow Stock Exchange. We are 370

interested in a measure of market inefficiency that is not related to known sources of 371

regularity in financial time series. Usually, these sources are not filtered out and, accordingly, 372

their impact is taken into account in the degree of price predictability (see, e.g. [16–18]). 373

We have focused on two sources of regularity, namely volatility clustering and price 374

staleness [20]. Filtering of volatility clustering was made in [19] by estimating volatility 375

using the exponentially weighted moving average. We have developed a modification of 376

the volatility estimation by taking into consideration the effect of price staleness. Price 377

staleness produces excess 0-returns that affect the estimation of volatility. Another approach 378

of estimating volatility in the case of presence 0-returns was proposed in [21] where all 379

0-returns are reevaluated during an expectation-maximization algorithm. In our approach, 380

we separate 0-returns that may have resulted from rounding and from price staleness. Thus, 381

we also filter out apparent inefficiency due to price staleness. Our approach combining 382

the estimates of volatility and the degree of staleness can be used for a real-time causal 383

analysis, since only past observations are used. 384

One of the clear advantage of the proposed approach relies in its simplicity: there is 385

only one smoothing parameter in the method which can be optimized using historical data. 386

We fix the value of smoothing parameter equaled 0.05. In the literature, the smoothing 387

parameter α is usually taken close to 0. Using the principle of the best one-step forecasting, 388

the smoothing parameter is set to 0.06 for the daily data and to 0.03 for the monthly data 389

[33]. The value of the parameter α is set to be equal 0.12 for in-sample testing and 0.22 for 390

out-of-sample testing in [46]. Hunter [32] suggests to use α = 0.2± 0.1. 391

We used the Shannon entropy as a measure of randomness to infer the degree of 392

(in)efficiency of the Moscow Stock Exchange. We used two types of the discretization 393

of return time series to test efficiency more reliably for each month. The 4-symbols dis- 394

cretization helps to find more price movements that lead to market inefficiency than the 395

3-symbols discretization. There are 80% of months over the period from 2012 to 2021 that 396

are defined as inefficient. According to Risso [24], a higher level of efficiency corresponds 397

to more developed markets. Deviation from efficiency is a frequent phenomenon in various 398

markets. For example, the authors of work [14] conclude that the Colombo Stock Exchange 399

is only 10.5% efficient while the Pakistan Stock Exchange is 23.7% efficient. Cajueiro and 400

Tabak [10] have shown that Asian markets are less efficient than Latin American markets. 401

The article [28] estimates the efficiency of the Tunisian stock market as 97%. There are 402

periods of inefficiency for some stocks traded at Tel-Aviv stock exchange as stated in [15]. 403

Short periods of inefficiency were also detected for US stock markets in [25]. 404

By investigating the discretized values of filtered price returns, we came to the follow- 405

ing conclusions: 406

• Even after filtering out all known sources of regularity, most of the months contain 407

signals of market inefficiency. 408

• The most inefficient months are grouped together for two stocks exhibiting the lowest 409

efficiency rates. 410

• For such months, discretized price returns before and after filtering out apparent 411

inefficiencies are predictable. 412

• We introduced the entropy of co-movement. Stock prices display common patterns 413

that have an interpretation in terms of the sector the stocks belong to. 414

• The stocks of banks and oil companies cluster together in terms of co-inefficiency for 415

the case of the Moscow stock exchange. 416

One possible improvement to stock clustering is to modify the entropy of co-movement 417

such that it is possible to define a proper distance function. This is left for future research. 418

The proposed method for measuring market efficiency using the Shannon entropy can be 419

applied in other markets of different countries. In this work, we use monthly time intervals 420

for entropy calculation. Our future work will be related to the optimization of the length of 421
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return time series. One of the problems is to find a significant decrease in entropy without 422

using Monte Carlo simulations. We also plan to switch to a higher frequency (less than one 423

minute) to analyze the predictability of financial time series. 424
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Appendix A. Data cleaning and whitening 433

Appendix A.1. Outliers 434

We use the method of an outlier detection introduced in [31]. The algorithm finds price
values that are too far from the mean in relation to the standard deviation. The algorithm
deletes a price Pi if

|Pi − P̄i(k)| ≥ csi(k) + γ,

where P̄i(k) and si(k) are respectively a δ-trimmed sample mean and the standard deviation 435

of the k price records closest to time i. The δ% of the lowest and the δ% of the highest 436

observations are discarded when the mean and the standard deviation are calculated from 437

the sample. The parameters are k = 20, δ = 5, c = 5, γ = 0.05. 438

Appendix A.2. Stock Splits 439

We check the condition |r| > 0.2 in the return series to detect unadjusted splits9. There 440

are no unadjusted splits found. 441

Appendix A.3. Intraday Volatility Pattern 442

The volatility of intraday returns has periodic behavior. The volatility is higher near
the opening and the closing of the market. It shows an U-shaped profile every day. The
intraday volatility pattern from the return series is filtered by using the following model.
We define deseasonalized returns as

R̃d,t =
Rd,t

ξt
,

where

ξt =
1

Ndays
∑
d′

|Rd′ ,t|
sd′

,

Rd,t is the raw return of day d and intraday time t, sd is the standard deviation of absolute 443

returns of day d, Ndays is the number of days in the sample. 444

Appendix A.4. Heteroskedasticity 445

Different days have different levels of the deviation of the deseasonalized returns R̃.
In order to remove this heteroskedasticity, we estimate the volatility σ̄t in Appendix B. We
define the standardized returns by

rt =
R̃t

σ̄t
.

9 A split is a change in the number of company’s shares and in the price of the single share, such that a market
capitalization does not change.

https://www.finam.ru/profile/moex-akcii/gazprom/export/
https://www.finam.ru/profile/moex-akcii/gazprom/export/
https://www.finam.ru/profile/moex-akcii/gazprom/export/
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Appendix A.5. Price staleness 446

If a transaction cost is high, the price is updated less frequently, even if trading volume 447

is not zero. This effect is called price staleness and is discussed in Section 2.2.2. We identify 448

0-returns appearing due to rounding (and not due to price staleness) using the Equation 3. 449

Other 0-returns are set as missing values as shown in Appendix B. 450

Appendix A.6. Microstructure noise 451

The last step in filtering apparent inefficiencies is filtering out microstructure noise. 452

The microstructure effects are caused by transaction costs and price rounding. We consider 453

the residuals of an ARMA(P,Q) model of the standardized returns after filtering out 0- 454

returns. We apply the method introduced in [47] to find the residuals of an ARMA(P,Q) 455

model by using the Kalman filter. We select the values of P and Q that minimize the value 456

of BIC [48], so that P + Q < 6. The values of P and Q are chosen for each calendar year 457

and are used for the next year. For the year 2012 we select P = 0 and Q = 1 corresponding 458

to an MA(1) model. 459

Appendix B. Algorithm 460

The aim of the algorithm is to estimate volatility and filter out excess 0-returns due to 461

price staleness. Some 0-returns appear due to price rounding. These 0-returns will be saved 462

in the data. First, we set the number of 0-returns "to save" Nsave = 0 and the first value of a 463

cumulative function Z1 = 0. The cumulative function is updated Zt = Zt−1 + pt, if rt−1 is 464

not defined as missing due to staleness. Each time when bZ(t)c − bZ(t− 1)c = 1, Nsave is 465

increased by 1. 466

We notice that the first non-zero return after a row of 0-returns due to staleness is the 467

sum of all missing returns generated by a hidden efficient price. This return is also set as 468

missing. However, the value of return used for estimating volatility is calculated as its 469

expected value: r̂n−1 = rn−1√
N0+1 , where N0 is the amount of missing values strictly before 470

the non-zero return rn−1. The same is also referred to initially missing values, e.g., due to 471

no-trading or errors in collecting the data. 472

Another assumption is that a 0-return appears due to staleness if the previous return 473

had the 0-value and was defined to appear due to staleness. We include this rule, since we 474

assume that it is more likely that two consecutive 0-returns appear due to high transaction 475

costs than due to rounding (that is, simply speaking, two outcomes of generating Gaussian 476

random variables are less than a tick size). 477

Generally, for the estimation of volatility at time t we should consider three cases: Pt−1 478

was missing (or minute t− 1 is non-trading), rt−1 = 0, rt−1 6= 0. Thus, the algorithm is the 479

following. We give the algorithm for the case of Sig1 which is used in the application for 480

the real data. We remove all 0-returns that start the sequence. 481

Appendix B.1. Pseudocode 482

Step 0: σ̄1 = |r1|/µ1; Z1 = 0, Nsave = 0; N0 = 0. 483

For t from 2 to N, where N is the length of time series: 484

Step 1: 485

• If rt−1 is missing: σ̄t = σ̄t−1; Increase N0 by the amount of consecutive missing prices 486

• Else if rt−1 = 0: 487

– If Nsave > 0 and N0 = 0: Nsave = Nsave − 1, σ̄t = Sig1(α, 0, σ̄t−1) 488

– Else: σ̄t = σ̄t−1, N0 = N0 + 1, rt−1 = missing 489

• Else: σ̄t = Sig1(α, rn−1√
N0+1 , σ̄t−1), N0 = 0 490

Step 2: 491

• Calculate pt (Eq. 3) 492

• If rt−1 is not missing, Zt = Zt−1 + pi 493

• If bZ(t)c − bZ(t− 1)c = 1, Nsave = Nsave + 1 494
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Finally, we check if the effect of staleness really exists in the price time series:

p̂ =
∑i pi

N
q̂ = 1− p̂

Var = p̂q̂N

If Nreal ≤ ∑i pi + 1.96
√

Var, we leave time series without putting any missing values, 495

where Nreal is the initial amount of 0-returns. The value of α can be selected using a training 496

set. The optimal value of α minimizes the mean of (σ̄2
t − r2

t )
2. 497

Appendix C. A predictable time series with entropy at maximum 498

The goal of this section is to construct a price model where entropy is high because of 499

discretization. This model shows that a high entropy value may be caused by discretization, 500

but not because of the randomness of a return time series. 501

There are equal probabilities of having symbols 0, 1 and 2. 1 corresponds to log- 502

returns, r, equal to −0.4, 2 corresponds to log-returns equal to 0.4. The structure of symbol 503

0 is more complicated. It covers three other symbols 3, 4, 5. They correspond to log- 504

returns −0.3, 0.1, 0.2, respectively. One of the symbols 3, 4 or 5 appears with probabilities 505

depending on the previous value of these symbols. The probabilities are presented in the 506

Table A1. Having a symbol presented in a column, there are probabilities of getting a 507

symbol presented in a row. 508

Table A1. Transition probabilities

first symbol ·3 ·4 ·5

3· 1
6

1
3

1
2

4· 1
2

1
6

1
3

5· 1
3

1
2

1
6

Rows stand for the first symbol of a block, columns stand for the second symbol.

The model implies an average zero return. However, a trading strategy that increases a 509

profit exists. After 3 a trader should buy, and after 4 and 5 the trader should sell. However, 510

the entropy of 3-symbols series is at maximum, that should imply absence of profitable 511

strategies. 512

Considering the same example with 4-symbols discretization we get that Q1 = −0.4,
Q2 = 0.1, and Q3 = 0.4. Therefore, we have the following discretization of returns:

s =


0, r = −0.4,
1, r = −0.3 or r = 0.1,
2, r = 0.2,
3, r = 0.4.

Thus, we can distinguish returns r = 0.2 from others the using 4-symbols discretization.
Table A1 gives the following probabilities for the blocks of two symbols from the 4-symbols
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discretization: p(11) = 7
162 , p(12) = p(21) = 5

162 , p(22) = 1
162 . Noting that p(0) = p(3) =

1
3 , p(1) = 2

9 , and p(2) = 1
9 , we calculate that

H1 = −2
3

log
(

1
3

)
− 2

9
log
(

2
9

)
− 1

9
log
(

1
9

)
≈ 0.946 < 1

and

H2 = −1
2
(

7
162

log
(

7
162

)
+

5
81

log
(

5
162

)
+

1
162

log
(

1
162

)
+

+
4
9

log
(

1
9

)
+

8
27

log
(

2
27

)
+

4
27

log
(

1
27

)
) ≈ 0.944 < H1
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