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Optical lattices with a large spacing between the minima of the optical potential can be created
using the angle-tuned geometry where the 1-D periodic potential is generated by two propagating
laser beams intersecting at an angle different from π. The present work analyzes the coherent
transport for the case of this geometry. We show that the potential depth can be kept constant
during the transport by choosing a magic value for the laser wavelength. This value agrees with
that of the counterpropagating laser case, and the magic wavelength does not depend of the optical
lattice geometry. Moreover, we find that this scheme can be used to implement controlled collision
experiments under special geometric conditions. Finally we study the transport of hyperfine-Zeeman
states of rubidium 87.

PACS numbers: 03.75.Lm, 32.80.Pj

I. INTRODUCTION

Neutral atoms trapped in an artificial periodic po-
tential formed by laser light, the so called far detuned
optical lattice, have been proposed as the individual
qubits for quantum information processing. In an
optical lattice, neutral atoms can be trapped in the
intensity maxima (or minima) of a standing wave light
field owing to the optical dipole force. A configuration
with one single atom trapped in each site of the optical
lattice is realized in the configuration of a Mott-insulator
transition associated to the loading of Bose-Einstein
condensates (BECs) in optical lattices[1]. In order to
realize quantum gates with neutral atoms within the
ideal environment of the Mott insulator several schemes
have been proposed. The common idea is to control
the quantum atomic states through the preparation and
coherent manipulation of atomic wave-packets by means
of application of standard laser cooling and spectroscopic
techniques. By using spin dependent, or more precisely
state dependent, optical lattice potentials, the control
can be applied independently to multiple atomic qubits
based on different internal states. A state dependent
potential may be created for a one dimensional optical
lattice in the so-called lin-θ-lin configuration, where
the travelling laser beams creating the optical lattice
are linearly polarized with an angle θ between their
polarizations [2, 3, 4]. In this configuration the op-
tical potential can be expressed as a superposition of
two independent optical lattices, acting on different
atomic states. By appropriately choosing the atomic
internal states, the atoms will be trapped by one of the
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two potentials depending on their internal state. By
changing the angle θ between the linear polarizations
of the two laser beams producing the optical lattice,
the wavepackets corresponding to orthogonal atomic
states can be coherently transported relative to each
other [5, 6, 7]. Once the atomic qubits are brought
together they interact through controlled collisions. In
the coherent transport experiment of Mandel et al [8],
by a proper control of the angle θ the wavepacket of
an atom initially localized at a single lattice site was
split into a superposition of two separate wave packets,
and delocalized in a controlled and coherent way over a
defined number of lattice sites of the optical potential.
In an optical lattice created by the counterpropagating

standing wave configuration, the spacing between neigh-
boring minima of the optical lattice potential is one half
the wavelength of the lasers creating the optical lattice.
Optical lattices with more widely separated wells can be
produced using long wavelength lasers, as CO2 lasers
[9]. Alternatively, optical lattices with a larger spacing
between the minima/maxima of the optical potential
are formed using the angle-tuned geometry. There
the periodic potential is created by two laser beams
propagating at an angle φ and the lattice constant is
d = π/ [k sin(φ/2)],with k = 2π/λ the laser wavenumber
[10, 11, 12, 13].
The aim of the present work is to analyze the co-

herent transport associated to the lin-θ-lin polarization
configuration for the angle-tuned lattice geometry. We
analyze rubidium atoms in a given Zeeman level of a
hyperfine state loaded within a 1-D optical-lattice. The
1-D geometry of the Bose gas may be generated by a
tight confinement along the orthogonal directions. For
instance a two-dimensional array of 1-D Bose gases
(tubes) is produced by confining the atoms through a
two-dimensional optical lattice generated by independent

http://arxiv.org/abs/cond-mat/0602048v3
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lasers, as realized in Ref. [14].
Section II defines the geometry of the angle-tuned

optical lattice. In Section III we analyze the effective
optical potential created by an optical lattice in the
angle-tuned configuration. The potential contains a
component with a vectorial symmetry described through
an effective magnetic field, as derived in [15]. The
dependence of the potential depth on the angles defining
the lattice geometry is analyzed in Section IV. Section V
reexamines the coherent transport for the counterpropa-
gating laser geometry. Section VI extends the coherent
transport to the angle-tuned geometry and determines
the condition for a constant optical lattice depth during
transport. The application to the hyperfine-Zeeman
states of rubidium is presented in Sec VII, and in the
following Section the minimum time required to realize
the coherent transport in the adiabatic limit is briefly
discussed.

II. LASER GEOMETRY

The lasers generating the 1-D lin-θ-lin configuration
are composed by two phase-correlated propagating elec-
tric fields with frequency ω and amplitude E0. Their
wavevectors

kf
1 = k(0, cos (φ/2) , sin (φ/2)),

kf
2 = k(0, cos (φ/2) ,− sin (φ/2))

(1)

lying on the (y, z) plane create the angle-tuned geometry
with angle φ, as shown in Fig. 1. The spatio-temporal
dependencies of the electric fields are

E f
j(x, t) = Ef

j(x)e
−iωt+c.c. =

E0

2
ei(k

f

jx−ωt)êfj+c.c. , (2)

for j = 1, 2, with polarizations êfj defined in the follow-
ing. This geometry creates a 1D optical lattice along the
z-axis. The laser fields confining along the transverse di-
rections are not required for the following analysis and
not listed here.

The above laser geometry is obtained by applying
proper spatial rotations to a 1D optical lattice initially
created by two counterpropagating laser fields along the
z axis. Let’s introduce the rotation Rx(α) of an angle α
around the x axis

Rx(α) =





1 0 0
0 cosα − sinα
0 sinα cosα



 (3)

and the rotation Rz(α) of an angle α around the z axis

Rz(α) =





cosα − sinα 0
sinα cosα 0
0 0 1



 . (4)

e
f,1

e
f,2 kf,2

k
f,1

e
 i,1

e
 i,2θ

θ1

φ/2

φ/2

x

z

y

FIG. 1: Laser configuration determining the angle tuned ge-
ometry. The laser fields propagate within the (y, z) plane with
wavevectors kf

i at an angle φ between them, and polarizations
ê
f
j , with (j = 1, 2). These wavevectors and polarizations are

generated applying the rotations described in the text to two
laser fields counterpropagating along the z axis and with po-
larizations ê

i
j , with (j = 1, 2) within the (x, y) plane.

In the lin-θ-lin counterpropagating configuration the
laser wavevectors are

ki
1 = k(0, 0, 1), ki

2 = k(0, 0,−1), (5)

and their polarizations, êij for j = (1, 2), are

êi1 = Rz (θ1)





1
0
0



 ,

êi2 = Rz (θ1 + θ)





1
0
0



 .

(6)

Notice that, in addition to the angle θ between the two
polarization directions, we have introduced the angle θ1
between the polarization vector êi1 and the x axis. The
wavevectors kf

1,2, given by Eq. (1), are obtained applying
the following rotations:

kf
1 = Rx(

φ− π

2
)ki

1 , kf
2 = Rx(

π − φ

2
)ki

2 (7)

Such rotations are applied as well to the polarization vec-
tors [16]

êf1 = Rx(
φ − π

2
)êi1

êf2 = Rx(
π − φ

2
)êi2

(8)

The electric fields Ef
1(x), E

f
2(x) are obtained by substi-

tuting Eqs. (7) and (8) into Eq. (2), and the total electric
field is given by

EL(x) = Ef
1(x) +Ef

2(x) =
E0√
2
eL(x) + c.c., (9)

where eL(x) defines the local polarization, not necessarily
unit norm.
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III. OPTICAL POTENTIAL

The optical potential experienced by the atoms is ob-
tained from the analysis of ref. [15]. For alkali atoms,
in the limit that the laser detuning is much larger than
the hyperfine splittings in both the P1/2 and P3/2 excited
states, the optical potential has the following form [17]:

Û = UJ Î +Beff σ̂, (10a)

UJ = V 0
∣

∣e2L(x)
∣

∣ , (10b)

Beff = −iV 1 [e∗L(x)× eL(x)] , (10c)

where, in order to simplify the notation, we introduced
the following quantities:

V 0(ω) =
E2

0

2

(

2α̂D2

3
+

α̂D1

3

)

,

V 1(ω) =
E2

0

2

(

α̂D1

3
− α̂D2

3

)

.

(11)

representing the scalar and vector polarizabilities, de-
rived for instance in [18]. The operators Î , σ̂ are the
identity and Pauli operators in the electron ground-state
manifold. The polarizabilities α̃D1

and α̃D2
correspond-

ing to the excitations to the P 1

2

and P 3

2

excited states

respectively, depend on the dipole operator reduced ma-
trix element 〈J ′‖d‖J = 1

2
〉 with J ′ = 1

2
, 3
2
:

α̃D1
=

|〈J ′ = 1
2
‖d‖J = 1

2
〉|2

~∆D1

,

α̃D2
=

|〈J ′ = 3
2
‖d‖J = 1

2
〉|2

~∆D2

.

(12)

Here ∆D1,2
is the detuning of the laser frequency ω

from the resonance between the states |Fmax = 2〉 and
|F ′

max = 2〉 or |F ′
max = 3〉, for the D1 or D2 lines of 87Rb

respectively.
The substitution of Eqs. (8) for the local polarization

in the right sides of Eqs. (10b) and (10c) leads to

UJ = V 0
[

1 + u(θ1, θ, φ) cos(2π
z

d
)
]

,

e∗L × eL = ib(θ1, θ, φ) sin(2π
z

d
)

(13)

where d = π(k sin φ
2
)−1 is the period of the optical lat-

tice. The u(θ1, θ, φ) parameter describes the spatial de-
pendence of the scalar part of the optical lattice

u(θ1, θ, φ) = cos(θ+2θ1) cos
2(
φ

2
)+cos(θ) sin2(

φ

2
) . (14)

The spatial components of the effective magnetic field are
given by

bx(θ1, θ, φ) = − sin(θ1) sin(θ1 + θ) sin(φ),

by(θ1, θ, φ) = sin(2θ1 + θ) cos(
φ

2
),

bz(θ1, θ, φ) = − sin(θ) sin(
φ

2
),

(15)

determining also the module b = |b|. u and b satisfy the
following useful relations:

u2(θ1, θ, φ) + b2(θ1, θ, φ) = 1, (16)

and

u(θ1 = 0, θ, φ) = cos(θ). (17)

The effective magnetic field Beff [19] varies spatially
with a d period. Its components along the three axes
have amplitudes depending on the angles defining the
lattice geometry. If the light field is everywhere linearly
polarized, θ1 = θ = 0, the effective magnetic field van-
ishes and the light shift is independent of the magnetic
atomic sublevel: Û(x) = UJ(x)Î . For the counterprop-
agating geometry, i.e. φ = π, investigated by [5, 6] and
implemented in [8], the effective magnetic field is oriented
along z-axis.

IV. HAMILTONIAN EIGENVALUES

Making the assumption of neglecting the kinetic en-
ergy of the atoms, the effective potential corresponds to
the full hamiltonian acting on the atomic states, and the
position z can be treated as an external parameter. If we
consider the two-dimensional subspace characterized by
the electron spin component, i.e., |S = 1

2
,mS = 1

2
〉 and

|S = 1
2
,mS = − 1

2
〉, the eigenvalues of the hamiltonian

are

ǫ+ = V 0u cos(2π
z

d
) + V 1b sin(2π

z

d
),

ǫ− = V 0u cos(2π
z

d
)− V 1b sin(2π

z

d
),

(18)

with a constant term V 0 left out. These quantities rep-
resent the optical potential experienced by the atoms. In
an equivalent description, ǫ± define the energies of the
|S,mS = ± 1

2
〉 atomic states when the electron spin is

aligned along the local direction of the magnetic field,
i.e., σ̂ = ±b/b. In fact we write

ǫ+ = UJ + |Beff |,
ǫ− = UJ − |Beff |.

(19)

The eigenvalues ǫ± of Eqs (18) can be expressed as

ǫ+(θ1, θ, φ, z) = U0 cos(2π
z

d
+ γ0),

ǫ−(θ1, θ, φ, z) = U0 cos(2π
z

d
− γ0).

(20)

The potential depth U0(θ1, θ, φ) and the relative phase
2γ0(θ1, θ, φ) are given by

U0 = V 0
√

η2 + (1− η2)u2, (21a)

γ0 = − arctan

(

η

√

1

u2
− 1

)

, (21b)
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where we have introduced

η(ω) =
V 1(ω)

V 0(ω)
. (22)

Eq. (20) demonstrates the spatial periodicity of the po-
tentials experienced by the atomic eigenstates. Ultra-
cold atoms are trapped at the spatial positions corre-
sponding to the minima of the optical lattice potentials.
For positive U0, the z+ and z− minima positions for the
|S = 1

2
,mS = 1

2
〉 and |S = 1

2
,mS = − 1

2
〉 states respec-

tively are given by

z+
d

=
1

2

(

1− γ0
π

)

+ l ,

z−
d

=
1

2

(

1 +
γ0
π

)

+ l ,

(23)

with l an integer. For instance at γ0 = π/2, the |+〉
atoms are localized at z+ = (l + 1

4
)d and the |−〉 atoms

at z− = (l+ 3
4
)d. At γ0 = 0 both species are localized at

the (l + 1
2
)d positions.

V. COUNTERPROPAGATING GEOMETRY

We consider the case φ = π of an optical lattice created
by two counterpropagating laser fields. Then the func-
tions u and bj determining the optical lattice potential
reduce to

u = cos(θ)

bx = by = 0

bz = − sin(θ)

(24)

For this geometry the functions u and bj do not depend
on the angle θ1 but only on the relative angle θ. This is
a consequence of the symmetry of the system. Since the
two beams forming the optical lattice propagate along
the direction z, the system is invariant under rotations
around that axis.
At φ = π the potential depth U0(θ) and the phase shift

γ0(θ) become

U0(θ) = V 0
√

η2 + (1− η2) cos2(θ)

γ0(θ) = − arctan (η tan(θ))
(25)

Fig. (2) reports the two eigenvalues of Eqs. (20) as a
function of z for different values of the relative angle θ
between the two linear polarizations. The laser frequency
is chosen such that V 1 = −0.5V 0, that is η = −0.5. At
θ = 0 with the laser polarizations parallel, ǫ+ and ǫ−
coincide. By increasing |θ|, the minima of the potential
curves ǫ+ and ǫ− move in opposite directions along the
z axis, and the potential depth decreases. At θ = π/2
the minima of ǫ+ coincide with the maxima of ǫ−, and
their amplitudes are at the minimum. Let us suppose to
start at θ = π/2 preparing a |+〉 atom at the site id and
a |−〉 atom at the site (i − 1

2
)d. Varying adiabatically θ

-1.0

-0.5

0.0

0.5

1.0

3.02.01.00.0

z/d

-1.0

-0.5

0.0

0.5

1.0

ε +,
−/

V
0

3.02.01.00.0
z/d

-1.0

-0.5

0.0

0.5

1.0

3.02.01.00.0

z/d

FIG. 2: Eigenvalues ǫ+ (continuous line) and ǫ− (dashed line),
in units of V 0, plotted for different values of θ (0, π/3 and
π/2 from left to right) in the case of the counterpropagating
geometry corresponding to φ = π and for the value η = −0.5.

from π/2 to 0 (or to π) the two particle will occupy the
same site. This protocol was used to transport the atoms
from one site to the other in order to produce controlled
collisions [5, 6, 8]. We recall that in this counterpropa-
gating geometry the effective magnetic field is oriented
along the z axis and is equal to zero for θ = 0, when the
atoms collide.
Fig. 3 shows that the potential depth does not remain

constant by varying θ. As pointed in refs [6, 7], this dif-
ficulty is avoided for a particular choice of the parameter
η. In fact for η2 = 1, the term cos2 θ disappear in Eq.
(25) and U0 becomes a constant independent of θ and
equal to V 0.

2.0

1.5

1.0

0.5

0.0

U
0/

V
0

2.01.51.00.50.0

θ/π

|η|=0

|η|=2

FIG. 3: Potential depth U0 as a function of θ for |η| ranging
between 0 and 2 in steps of 0.2, from bottom to top. For
|η| = 1 the potential is a constant independent of θ.

By assuming equal dipole moments for the D1 and D2

lines
∣

∣〈J ′ = 1
2
‖d‖J = 1

2
〉
∣

∣

2
=
∣

∣〈J ′ = 3
2
‖d‖J = 1

2
〉
∣

∣

2
[20],

the parameter η(ω) becomes:

η(ω) =
∆D2 −∆D1

∆D2 + 2∆D1

. (26)

Fig. 4 reports the parameter η versus the laser wave-
length λ. The constraint η2 = 1 implies η = 1 or η = −1.
The first condition is satisfied for ∆D1 = 0 which is not
an acceptable value, since the whole treatment for the
optical lattice potential is valid only for detunings ∆D1,2

large with respect to the typical hyperfine splitting. The
η = −1 relation is satisfied if the laser wavelength is equal
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to the magic value λ∗

1

λ∗
=

1

3

(

1

λD1

+
2

λD2

)

(27)

where λD1 and λD2 denote the resonant wavelengths for
the D1 and D2 lines. For η = −1 the relative phase γ0
becomes

γ0 = θ for 0 < θ < π

γ0 = 2π − θ for π ≤ θ ≤ 2π
(28)

Therefore for the magic wavelength λ∗ the potential
depth is independent on θ and the phase γ0 varies lin-
early with the relative angle θ.

2.0

1.5

1.0

0.5

0.0

η2

800795790785780775770

λ

FIG. 4: Plot of the dimensionless parameter η2 as a func-
tion of the laser wavelength λ. The two continuous vertical
lines denote the position of the resonant wavelengths λD2 and
λD1, respectively. The dashed vertical line indicates the magic
wavelength λ∗.

1.0

0.8

0.6

0.4

0.2

0.0

γ 0,
1/π

2.01.51.00.50.0

θ/π

           γ1
  θ1=0,  any φ  

             γ0
 θ1=π/4, φ=3π/4

 θ1=0,  any φ  

FIG. 5: Optical lattice phase shifts γ0 and γ1 versus θ for the
laser at the magic wavelength, corresponding to η = −1. For
γ0 the continuous line corresponds to θ1 = π/4 and φ = 3π/4.
The dashed line plots γ0 at θ1 = 0 whichever value of φ. The
same γ0 values are obtained for φ = π whichever value of θ1.
For γ1 the dotted line corresponds to θ1 = 0 whichever value
of φ. The coherent transport requires for the phase shift π/2
as initial value and 0 as final value. A complete transport
cannot be realized for the conditions corresponding to the
continuous line, but instead can be realized for the dashed
and dotted lines.

VI. ANGLE-TUNED CONFIGURATION

For φ different from π the potential depth U0 and the
phase γ0 depend on the angle θ1 as well. This reflects
the fact that for φ 6= π the system is not invariant under
rotations around the z axis.
For the U0 dependence on θ1 the magic wavelength λ∗

plays again a key role. In fact by choosing η = −1 Eqs.
(21) reduce to

U0 = V 0 ,

γ0(θ1, θ, φ) = arctan

√

1

u2
− 1.

(29)

Therefore the potential depth U0 depends only on the
laser wavelength.
The remaining dependence of γ0 on the angles (θ1, θ, φ)

defining the optical lattice represents a difficulty for the
coherent transport operation. For instance for the values
of θ1 = π/4 and φ = 3π/4 the phase shift γ0 versus θ is
plotted as a dashed line in Fig. 5 and is compared to the
value corresponding to the counterpropagating geometry,
plotted as a continuous line. For those values of φ and θ1
the range of variation of γ is smaller than π. This means
that by varying θ the two potential curves corresponding
to the two atomic eigenstates are shifted by a quantity
smaller than the spatial period d. Thus the minima of the
potentials for the two atomic eigenstates do not coincide
and a complete transport is not realized. However under
the special condition of θ1 = 0 Eq. (17) holds, and the
phase γ0 becomes

γ0(θ) = θ for 0 < θ < π,

γ0(θ) = 2π − θ for π ≤ θ ≤ 2π.
(30)

Therefore by choosing λ = λ∗ and θ1 = 0, the phase shift
becomes fully equivalent to that of the counterpropagat-
ing case. Thus, it is possible to move the two potential
curves of Eqs. (20) without changing the potential depth,
and a spatial coherent transport with amplitude d can
be produced by varying the angle θ of the laser polar-
izations. For this angle-tuned configuration, even if the
effective magnetic field is null at θ = 0 where the atoms
collide, it includes a component along the y axis at other
values of θ.

VII. TRANSPORT OF RUBIDIUM STATES

The vector component and the total potential of Eqs.
(10) experienced by the atoms depend on the projec-
tion of the electron magnetic moment or, equivalently,
of the total angular momentum F̂ along the local mag-
netic field. Different effective potentials are experienced
by different Zeeman levels of the ground hyperfine state,
and the laser parameters required for the coherent con-
trol depend on the atomic computational basis. Here we
consider two different hyperfine-Zeeman states |F,mF 〉 of
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the 87Rb atom as in the analysis of [5, 6, 8]. As described
in [6] the potential experienced by the atoms in these in-
ternal states is derived from the potential of Eq. (10a)
by considering the components of the electron spin for
these states. However in the angle tuned geometry with
φ 6= π, the effective magnetic field also includes compo-
nents oriented along the x and y axes. As a consequence
the potential experienced by the atomic states depend
on the optical lattice loading process and the occupation
amplitudes for the Zeeman states. In fact Raman coher-
ences of the type |F,m〉 → |F ′,m± 1〉 are created by the

effective magnetic field. As pointed out in ref. [22], in
the tight binding regime where each lattice site can be
considered as an independent potential well, the Wannier
states constituting an orthonormal basis within each well
in general become spinors.
For simplicity we analyze the case of an adiabatic load-

ing of the |F,mF 〉 states in the lattice so that their mF

component is oriented along the local magnetic field Beff .
Thus we impose the atomic states under consideration to
be the |F,mF 〉 eigenstates along the local magnetic field.
Let’s consider the following states:

|0 > = |F = 2,mF = 2〉 = |I =
3

2
,mI =

3

2
〉|S,mS =

1

2
〉 ,

|1 > = |F,mF 〉 = c+|I =
3

2
,mI = mF − 1

2
〉|S,mS =

1

2
〉+ c−|I =

3

2
,m′

I = mF +
1

2
〉|S,mS = −1

2
〉 ,

(31)

the coefficients c± defining the normalized superposition. For the |F,mF = 1〉 state of the explorations in refs. [5, 6, 8]

the coefficients are c+ = 1/2 and c− =
√
3/2. The energies E0,1 of the states |0, 1〉 at a fixed position z within the

optical lattice are given by

E0 (θ1, θ, φ, z) = ǫ+ (θ1, θ, φ, z) = U0 cos(2π
z

d
+ γ0) ,

E1 (z, θ1, θ, φ) = |c+|2ǫ+ (θ1, θ, φ, z) + |c−|2ǫ− (θ1, θ, φ, z) = V 0u cos(2π
z

d
) + V 1b

(

|c+|2 − |c−|2
)

sin(2π
z

d
)

= U1 cos(2π
z

d
− γ1).

(32)

While U0 and γ0 are given by Eq. (21), the potential
depth U1(θ1, θ, φ) and the phase γ1(θ1, θ, φ) are given by

U1 = V 0
√

η2∆2
c + (1 − η2∆2

c)u
2, (33a)

γ1 = − arctan

(

η∆c

√

1

u2
− 1

)

, (33b)

where

∆c = |c−|2 − |c+|2. (34)

We obtain two different effective lattice potentials trap-
ping the atoms in the|0〉 and |1〉 hyperfine-Zeeman states.
Because Eqs. (33) have the same structure as Eqs.

(29), the coherent transport is determined by the u(θ)
dependence at fixed values θ1 and φ. By using this anal-
ogy we conclude that, in order to perform a controlled-
collisions experiment, the potentials seen by the two hy-
perfine states |0, 1〉 must move in opposite direction when
θ is varied. The comparison Eq. (33b) to Eq. (21b) in-
dicates that this condition is satisfied when the |1〉 state
is chosen such that ∆c > 0, that is, when |c−| > |c+|.
For the states |F = 2,mF = −2〉, |F = 2,mF = −1〉,
|F = 1,mF = 1〉 this inequality is satisfied.
The optimal coherent transport is obtained when the

potential depth is constant by varying the θ control pa-
rameter. In Section V the constance of the optical depth

was realized by fixing the laser wavelength at the magic
value. For the present case of two hyperfine states a
unique magic wavelength where the U0 and U1 poten-
tial depths are both independent of θ does not exist.
While the U0 constance imposes η2 = 1 and produces
the magic wavelength Eq. (27), the U1 constance im-

poses (η∆c)
2
= 1 leading to a different laser wavelength.

For instance, at θ1 = 0 and fixing the laser wavelength to
the λ∗ value of Eq. (27) such that η = −1, the potential
depths for the |0, 1〉 states become

U0 = V 0 ,

U1(θ) = V 0
√

∆2
c + (1−∆2

c) cos
2 θ,

(35)

while their phases γ0,1 are

γ0(θ) = θ ,

γ1(θ) = arctan (∆c tan θ) .
(36)

When θ is varied from π
2
to 0 or π, while the U0 potential

depth is independent of θ, the U1 potential depth de-
pends on θ and its range is determined by ∆c, whence by
the c± values. Therefore, when θ is varied the potentials
experienced by the |0, 1〉 states move with different
velocities. The phase γ0 is linearly dependent of θ,
while the dependence of γ1 on θ has a more complicated
behavior. For the case of the |F = 1,mF = 1〉 state the
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γ1 dependence is shown by the dotted line in Fig. 5. The
coherent transport condition of phase shifts γ0,1 varying
from π/2 to 0 is realized for both the hyperfine-Zeeman
states. Different results for the change in the potential
depth and for the phase dependence on θ, and therefore
for the displacements of the two potentials, are obtained
for a laser wavelength different from the magic one.

VIII. ADIABATIC TRANSPORT

In order to realize an efficient quantum gate, the time
dependence of polarization angle θ should be chosen so
that the transport of the atomic states is realized in the
adiabatic limit, i.e. the atoms remain in the ground state
of local optical potential. For an analysis of the adia-
baticity constraint necessary for the coherent transport
we approximate the atomic potential of Eq. (20) with a
harmonic one. For non interacting atoms experiencing a
harmonic potential moving with respect to the laboratory
frame, the Hamiltonian may be written as [23]

H =
p2

2m
+

1

2
mΩ2z2 +Mz̈hp(t)z, (37)

where z denotes the coordinate of the atom in the har-
monic potential frame, z̈hp represents the acceleration of
the harmonic potential in the laboratory frame, and the
oscillation frequency Ω of the harmonic oscillator is

Ω =

√

U0

M

4π

λ
sin(φ/2). (38)

If we consider the last term of the above Hamiltonian as
a time-dependent perturbation, the probability of trans-
ferring an atom to the first excited level of the harmonic
potential is

Pf,i =
1

2a2hoΩ
2

∣

∣

∣

∣

∣

∫ T

0

z̈hp(t)e
iΩtdt

∣

∣

∣

∣

∣

2

, (39)

where aho =
√

~/Mω is the ground state radius for the
harmonic potential, and T is the time required for the
coherent transport process.
The amplitude of the transfer probability of Eq. (39)

depends greatly on the time dependence of the z̈hp accel-
eration. At first we will suppose that, as in the theoretical
analysis of ref. [6] and in the experimental investigation
of ref.[8], the potential moves at a constant speed, by
imposing an infinite acceleration at t = 0 and t = T .
For this transformation the adiabatic condition for the
atomic transformation requires

T ≫ d

aho

1

Ω
=

1

2

(

λ6M3

(4π)2~2U0

)1/4

sin (φ/2)−
3

2 . (40)

Owing to this dependence on φ, for a constant speed
of the potential the time T required to realize an adia-
batic coherent transport in the angle-tuned configuration

is much longer than in the counterpropagating case, for
a given depth of the optical potential . Such result could
impose a strong constraint for performing quantum com-
putation with angle-tuned lattices.
However, the condition on T for realizing the adia-

batic limit becomes less restrictive if we assume a differ-
ent motion for the lattice harmonic potential confining
the atoms. For instance, let us assume that the lattice
is constantly accelerated from t = 0 to t = T

2
and con-

stantly decelerated from t = T
2

to t = T . Thus the
adiabatic condition becomes

T ≫
√

d

aho

1

Ω
=

1√
2

(

λ10M5

(4π)6~2U3
0

)1/8

sin (φ/2)−
5

4 .

(41)
Therefore using this motion of the potential, the depen-
dence of the minimum time for the coherent transport on
the angle φ is modified causing a decrease in the time by
a factor which for φ ∼ 5◦ is larger than 2. Moreover the
additional dependence on λ, U0, and the physical con-
stants of Eq. (41) contributes to the decrease of the time
scale, so that for the experimental conditions of ref. [8]
transport times around 10 µs can be achieved.

IX. CONCLUSIONS

In quantum computation experiments with neutral
atoms loaded in optical lattices, a crucial aspect is the
single site addressability. In the angle-tuned configura-
tion where the lattice constant could be large, the ques-
tion of the single site addressability is shifted to a frame
of more accessible dimensions. For this geometry the co-
herent transport protocol requires specific conditions of
the laser beam polarizations, linked to the breaking of
the rotational symmetry associated to the counterpropa-
gating geometry. An additional request is the constance
of the optical potential depth during the coherent trans-
port. This constance is realized by choosing a magic

wavelength for the laser fields producing the lattice. The
value of the magic wavelength is independent of the lat-
tice geometry. However an unique magic wavelength for
the transport of all hyperfine-Zeeman atomic states does
not exist.
Coherent transport within an optical lattice represents

a component of the process based on ultracold collisions
and leading to entanglement of neutral atoms and im-
plementation of quantum logic. By storing the ultracold
atoms in the microscopic potentials provided by optical
lattices the collisional interactions can be controlled via
laser parameters. At the low temperature associated to
the Mott insulator, the collisional process is described
through s-wave scattering. In the θ1 = 0 laser configura-
tion of the angle-tuned geometry, at θ = 0 the effective
magnetic field is null and the scattering potentials as-
sociated to the different atomic states have an identical
spatial dependence. However, as new feature brought by
the angle-tuned geometry, at θ 6= 0 the effective magnetic
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field is different from zero and oriented along different di-
rections for different hyperfine-Zeeman states. Therefore
during the whole collisional process the colliding atoms
may be oriented along different spatial directions. In or-
der to treat this collisional configuration, the atomic in-
teraction may be described through the pseudopotential
models introduced in refs. [24, 25] for asymmetric trap
geometries.
The atomic control is based on a the realization of a

Mott insulator phase, in which the number of atoms occu-
pying each lattice site is fixed. The physics of such a sys-
tem is described in terms of a Bose-Hubbard model whose
Hamiltonian contains the on-site repulsion resulting from
the collisional interactions between the atoms, and the
hopping matrix elements that take into account the tun-
neling rate of the atoms between neighboring sites. Both
the repulsive interaction and the hopping energy can be

tuned by adjusting the lasers setup, as reviewed in [26].
The Mott insulator phase is realized under precise con-
ditions between the on-site repulsion and the hopping
matrix elements. The dependence of these parameters
defining the angle-tuned lattice should be investigate in
order to realize a Mott insulator in an angle tuned geom-
etry.
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