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Abstract

Beta diversity describes how local communities within an area or region differ

in species composition/abundance. There have been attempts to use changes in

beta diversity as a biotic indicator of disturbance, but lack of theory and meth-

odological caveats have hampered progress. We here propose that the neutral

theory of biodiversity plus the definition of beta diversity as the total variance

of a community matrix provide a suitable, novel, starting point for ecological

applications. Observed levels of beta diversity (BD) can be compared to neutral

predictions with three possible outcomes: Observed BD equals neutral predic-

tion or is larger (divergence) or smaller (convergence) than the neutral predic-

tion. Disturbance might lead to either divergence or convergence, depending on

type and strength. We here apply these ideas to datasets collected on oribatid

mites (a key, very diverse soil taxon) under several regimes of disturbances.

When disturbance is expected to increase the heterogeneity of soil spatial prop-

erties or the sampling strategy encompassed a range of diverging environmental

conditions, we observed diverging assemblages. On the contrary, we observed

patterns consistent with neutrality when disturbance could determine homoge-

nization of soil properties in space or the sampling strategy encompassed fairly

homogeneous areas. With our method, spatial and temporal changes in beta

diversity can be directly and easily monitored to detect significant changes in

community dynamics, although the method itself cannot inform on underlying

mechanisms. However, human-driven disturbances and the spatial scales at

which they operate are usually known. In this case, our approach allows the

formulation of testable predictions in terms of expected changes in beta diver-

sity, thereby offering a promising monitoring tool.

Introduction

Ecological communities are not homogenous in space

and time for a number of reasons: dispersal processes,

stochastic demographic fluctuations, environmental filter-

ing, niche partitioning processes, and biotic interactions

within and between trophic levels interact to determine

variable patterns of covariation in species distribution

(Hubbell 2001; Chase and Leibold 2003; Morin 2011;

HilleRisLambers et al. 2012). Disturbance is one of the

processes that contribute to the spatial and temporal het-

erogeneity of communities (Walker 2012): If communities

are equilibrium assemblages of coexisting species (Chase

and Leibold 2003; Morin 2011), disturbance prevents

assemblages from reaching the equilibrium state. This

process can create a long-lasting state of nonequilibrium

conditions that promote diversity (e.g., the intermediate

disturbance hypothesis; Connell 1978). Communities can

also be governed by processes such as chaotic dynamics

(May 1973; Morin 2011) where populations are regu-

lated by deterministic factors but are very sensitive to

initial conditions: Even the smallest change in the initial

state leads to strongly diverging temporal trajectories of

population densities. In this case, disturbance can affect

initial conditions (e.g., the initial abundance of certain

species) by continually resetting them, thereby
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contributing to rendering the assembly process highly

uncertain and variable in terms of the species that

locally come together to form assemblages. Communi-

ties could also be assembled purely through stochastic

processes such as those assumed in neutral theories

(Bell 2001; Hubbell 2001). In this latter set of theories,

processes such as niche partitioning are just ignored

when predicting basic community properties such as

variation in species richness or species spatial turnover

(Condit et al. 2002). In this case, disturbance can take

the form of, for example, increased habitat fragmenta-

tion, which is expected to reduce dispersal, thereby

increasing beta diversity.

Recently, ecologists have become interested in the

effects of disturbance on the spatial distribution of coex-

isting species. Metacommunity frameworks (Leibold

et al. 2004) are useful as they consider a set of local

communities embedded in a landscape and connected

by dispersal processes within a matrix that might expe-

rience heterogeneous conditions, for example, but not

only, in terms of environmental gradients. In this

framework, local communities are assembled under dif-

ferent forces, and different assembly processes (species

sorting, mass effects, and patch dynamics) can be

described depending on the relative effects of these

forces, which interact as follows: The environment

locally filters dispersing species, which might interact

with each other under niche partitioning processes but

can also be supported by immigration if dispersal rates

are adequate. Disturbance might alter these processes

either via affecting dispersal (e.g., isolation of patches

via habitat fragmentation) or via increasing spatial het-

erogeneity in environmental conditions, or both. These

two effects of disturbance can take place at different

scales, as in the case of soil communities (Ettema and

Wardle 2002): In soil, local communities can be defined

at very fine scales such as the rhizosphere of a single

plant. Also, steep gradients in variables such as pH,

oxygen, and nutrients are observable already over a few

centimeters (Bardgett 2005). At larger scales, such as

those relevant to fire or agricultural practices such as

tillage, disturbance can either increase or decrease envi-

ronmental heterogeneity. For example, in the case of

high-temperature fire, the intensity of disturbance is

patchily distributed, increasing environmental heteroge-

neity within the extent of the fire. On the other hand,

agriculture is a homogenizing disturbance that mixes up

soil vertically while it horizontally reduces the diversity

of organic input, patchiness, or gradients in the distri-

bution of nutrients: For example, the establishment of

monocultures represents an homogenizing environmental

factor at a landscape scale (Wardle 2002; Bardgett 2005;

Walker 2012).

If spatial heterogeneity determines heterogeneity in the

composition of local assemblages, we also expect distur-

bance to increase beta diversity if it also increases envi-

ronmental heterogeneity (Dornelas et al. 2006; Caruso

et al. 2012a,b). For the same principle and on the other

hand, if disturbance homogenizes spatial properties, we

expect a decrease in beta diversity. In this sense, very dif-

ferent mechanisms such as a neutral assembly processes

versus niche assembly processes (as well as other processes

discussed above) can lead to the same pattern given the

factor causing the pattern (disturbance). This offers high

potential for applications such as environmental monitor-

ing and conservation (Anderson et al. 2006, 2011; Dorn-

elas et al. 2006; Caruso et al. 2012a,b) because

disturbance is expected to cause recurrent patterns in beta

diversity, regardless of the mechanisms governing the

assembly process. Thus, the simplest set of processes (e.g.,

neutral dynamics) can offer a baseline to detect distur-

bance, as we argue below.

However, two problems potentially hamper applica-

tions: First, beta diversity has proved to be a multifaceted

and even controversial concept (Legendre et al. 2005;

Tuomisto and Ruokolainen 2006; Anderson et al. 2011;

Legendre and De C�aceres 2013); second, testing for differ-

ences in beta diversity is complicated by the numerous

ways in which beta diversity can be measured, and the

statistical and dynamical (sensu community dynamics)

links between beta diversity and gamma diversity (Kraft

et al. 2011; Legendre and De C�aceres 2013; Myers et al.

2013).

We here propose two solutions, based on some of the

ideas that have been recently discussed in the field: (1)

We apply the recent definition of beta diversity as total

variance of the community matrix (Legendre and De

C�aceres 2013); (2) we use a general neutral model to cre-

ate a null prediction of beta diversity under the simplest

metacommunity scenario (Dornelas et al. 2006; Etienne

2007; Gotelli and Ulrich 2012). There are several advanta-

ges to this approach. Beta diversity is summarized in one

number that is easy to calculate and interpret. Most

importantly, this number is not computed from alpha

and gamma diversity while its statistical dependency on

gamma and alpha diversity (Kraft et al. 2011) is taken

into account through the use of a general neutral model.

We here use such a model to produce a statistical null

distribution of beta diversity based on fundamentals of

population dynamics (Rosindell et al. 2012). Observed

beta diversity can be compared to this distribution

(Fig. 1).

Here we test this approach on our own datasets that

describe soil oribatid mites under several disturbance

regimes and a range of natural, undisturbed environ-

ments. Oribatid mites together with collembolans
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represent the most diverse and abundant group of soil

microarthropods: These mites play a key role in soil

organic matter decomposition (Scheu 2002; Bardgett

2005; Maraun et al. 2011; Caruso et al. 2012b) and have

been studied extensively with regard to both testing gen-

eral assembly models in soil assemblages (Anderson 1975;

Lindo and Winchester 2009; Nielsen et al. 2010; Caruso

et al. 2012b) and investigating the response of soil ani-

mals to human activities (Behan-Pelletier 1999; Caruso

et al. 2008; Al-Assiuty et al. 2014). Soil assemblages pos-

sess interesting metacommunity properties: They are

assembled at multiple spatial scales, and several species

have limited dispersal capability (Ettema and Wardle

2002). For this reason, the assembly of taxa such as oriba-

tid mites has been studied in the framework of the debate

around neutral theories (Lindo and Winchester 2009;

Caruso et al. 2012b). We here quantify the beta diversity

of oribatid mite assemblages under several types and

regimes of disturbance and natural environmental hetero-

geneity. Given mechanisms that were already known to be

likely to operate, these different disturbances or condi-

tions were expected to produce variable levels of beta

diversity that, depending on disturbance type and/or envi-

ronmental conditions, could be lower than, higher than,

or consistent with beta diversity levels predicted by a

general neutral model. We here also provide our original

R scripts and relevant data to show how to apply the

method, and we discuss how results may inform about

ecological applications, in particular the monitoring of

communities subjected to disturbance regimes.

Material and Methods

Our original aim was to use results from a literature

search using the Web of Science and the following key

words: oribatid*, abundance, distribution* pattern*, soil,
community, structure* (in various combinations). We

wanted to include all studies on European oribatid soil

fauna in nonextreme habitats since 1950. Unfortunately,

after this search, at least as to August 2013, only very few

studies reported the species abundance table that is neces-

sary to fit neutral models, and very often, these few stud-

ies reported data for a low number of replicates. We

therefore decided to base our analysis on our own data-

sets, one of which is unpublished while the others were

the subject, to different extents, of previous publications

(Migliorini et al. 2002; Caruso et al. 2005, 2009; Caruso

and Migliorini 2006). Eventually we were able to compile

twelve datasets: Six of them were obtained from undis-

turbed areas (a beech forest, two grasslands, the thin,

rocky, undifferentiated soils of two arid Mediterranean

islands, the control plot of a Mediterranean maquis sub-

jected to experimental fires), the other six datasets were

obtained from metal-polluted soils, experimentally burned

plots, coppice, a badland and heathland resulting from

agriculture activities. In the case of metal-polluted soils,

the pollution gradient was very steep already at small

scales (Caruso et al. 2009), and we could expect diverging

assemblages in this case. Even moderate fires usually cause

very patchy disturbance regimes, due to the irregular dis-

tribution of fire intensity (Caruso and Migliorini 2006),

and therefore, we expected diverging assemblages also in

this case, and both within and between plots. In the case

of land management, we could expect either converging

assemblages (i.e., homogenized assemblages) given the

scale at which we sampled or diverging assemblages

depending on the land use.

The species abundance distribution of each sample

(i.e., the local community) was used to estimate the two

main parameters of neutral theory: theta (h), an index of

diversity, and immigration rate (I). We used the formula

for multiple samples by (Etienne 2007) to estimate neu-

tral parameters using the PARI/GP codes given in Etienne

(2007). With the estimated parameters, we used the Pari/

GP function urn2.gp (Etienne 2007) to create 4999 neu-

tral equivalents of each dataset, which eventually allowed

us to create a null distribution of beta diversity for each

dataset. For the estimate of neutral parameters and the
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Figure 1. This conceptual figure shows the qualitative idea behind

the method applied in this study: The beta diversity of a real set of

local assemblages (lines) can be similar to (blue line), higher than (red

line), or smaller than (black line) the mean of a distribution of beta

diversity values obtained from a neutral model. Neutral models

assume simple population dynamics that provide background levels of

beta diversity, with a mean and a variance. However, real dynamics,

based on processes such as environmental filtering, can make real

communities significantly diverge (red line) or converge (black line)

relative to their neutral counterpart.
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function urn2.gp, see Data S1. The output of this analysis

is the input for the R script reported in Data S2. Beta

diversity (BD) was quantified using the approaches pro-

posed by Legendre and De C�aceres (2013). These authors

propose to quantify beta diversity as the sum of species

variances in the species by site matrix (see Data S1 for a

full definition), the latter matrix being the typical out-

come of community studies. As this definition of beta

diversity implies that the ecological dissimilarity between

sites is Euclidean, data must be properly transformed to

be ecologically meaningful. Alternatively, meaningful eco-

logical distance matrices can be computed from the raw

data and used to estimate BD. This is the most impor-

tant, central aspect and advantage of this definition of

BD, which makes beta diversity a quantitative measure

capable of capturing the variation described in the past

through a multitude of often redundant dissimilarity indi-

ces (see also table 1 in Legendre and De C�aceres (2013).

The metric proposed by Legendre and De C�aceres (2013)

seems particularly useful because it fits well into two main

aspects of neutral models: Spatial changes in species com-

position are due to dispersal processes, and the variance

in species abundance is caused by stochastic demographic

fluctuations.

There are many options for both data transformation

and distance matrices (Legendre and De C�aceres 2013).

We here apply the Hellinger transformation, which has

several advantages (Legendre and De C�aceres 2013): (1)

The relevant Euclidean distance matrix can be analyzed

by principal component analysis (PCA) or canonical

redundancy analysis (RDA); (2) the calculation of BD on

raw data after transformation is straightforward; (3) BD

ranges from 0 to 1; and (4) Hellinger transformation

allows to calculate the “species contribution to beta diver-

sity” statistics. Additionally, the Hellinger transformation

does not inflate the weights of rare species (Legendre and

Gallagher 2001).

BD was calculated using the R function provided in

Legendre and De C�aceres (2013). This statistic was calcu-

lated on the real datasets, and each of the 4999 neutral

datasets simulated for each dataset. If the observed BD

was higher or lower than 95% of the simulated datasets,

the observed (real) community was considered to have

respectively higher or lower beta diversity than expected

under neutral assembly (Fig. 1). Otherwise, data were

consistent with neutral dynamics. Given the regime of

disturbance or degree of environmental heterogeneity was

known for each dataset, results could be interpreted in

terms of expected dynamics and outcomes.

Results

Six of twelve datasets had beta diversity (BD) significantly

higher (Fig. 2, see red line) than the null distribution

obtained by calculating BD on the 4999 datasets generated

with the neutral model of Etienne (2007). These datasets

were S1c (Coppice), S1d (Heathland), S3a and S3b

(Lampedusa and Linosa), S5a (Control Fire Experiment),

and S5b (High-intensity Fire). The effect sizes reported in

Table 1 were in these cases significant at P ≤ 0.05, meaning

that less than 5% of simulated BDs were larger than the

observed BD. In the other six cases, the effect size was not

significant: In two of these cases, the Dry Grassland and the

Metal polluted plots observed BD was smaller than the

Table 1. Characteristics of the twelve assemblages tested. Bold effect sizes were significant at P ≤ 0.05 (see Fig. 2).

Study1 N2 Habitat Spatial scale Beta diversity factors Effect size3

S1a 10 Beech forest stand 20 9 20 m plot Natural, undisturbed area 1.04

S1b 10 Grass stand 20 9 20 m plot Natural, undisturbed area 0.89

S1c 10 Coppice stand 20 9 20 m plot Disturbed by cutting 1.70

S1d 10 Heathland 20 9 20 m plot Heterogenous 1.99

S1e 10 Badland 20 9 20 m plot Homogeneous, dry 0.92

S2 36 Dry Grassland 15 9 15 m plot Natural, undisturbed �0.79

S3a 22 Lampedusa Is., rocky soil 20 km2 Very heterogeneous 2.49

S3b 10 Linosa Is., rocky soil 150 m transect Elevation gradient 4.36

S4 24 Grass stand 10 9 40 m plot Metal pollution �0.42

S5a 9 Mediterranean Maquis Three 10 9 5 m plots Control experimental fire 1.51

S5b 9 Mediterranean Maquis Three 10 9 5 m plots High-intensity fire 2.25

S5c 9 Mediterranean Maquis Three 10 9 5 m plots Low-intensity Fire 0.15

1References for major details on the study areas and methods: S1, Migliorini et al. 2002; S2, unpublished, see methods; S3, Caruso et al. 2005;

S4, Caruso et al. 2009; S5, Caruso and Migliorini 2006.
2N is the number of local communities (independent soil samples).
3Effect size was equal to [BD-Mean (simulated BDs)]/standard deviation (simulated BDs), BD being beta diversity and simulated BDs being the

distribution of BDs obtained for each of the 4999 simulated neutral communities (Fig. 2).
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mean of simulated BDs, while in the remaining four cases,

observed BD was larger.

Discussion

Disturbance generally is detrimental to soil biodiversity

(Walker 2012; Ponge and Salmon 2013), especially in

agroecosystems, where it is usually intense and frequent.

In fact, the spatial homogenization caused by activities

such as tillage reduces biological diversity in space and

time: A few species eventually dominate the system. On

the other hand, natural soils are highly heterogeneous at

multiple spatial scales (Ettema and Wardle 2002) and

already over a few centimeters (Wardle 2002; Bardgett

2005), and certain regimes of disturbance can actually

increase spatial heterogeneity (Walker 2012). Accordingly,

several soil taxa are characterized by high species turnover

and variance in abundance, that is to say high beta diver-

sity (Lindo and Winchester 2009; Caruso et al. 2012b;

Ponge and Salmon 2013). Here we show that six of the

twelve tested oribatid mite assemblages diverge relative to

the reference point provided by a general neutral model.

If we assume that background levels of beta diversity

depend on the basic processes postulated by neutral theo-

ries (dispersal and stochastic demographic fluctuations),

our result means that real communities have higher beta

diversity than expected under neutral dynamics. Note that

this fact does not imply that communities consistent with

neutrality have low beta diversity.

In the other six cases, beta diversity was consistent with

neutral predictions. When neutral models are used to

build a null distribution and data do not reject the null

hypothesis (Rosindell et al. 2012), nothing certain can

actually be said on underlying mechanisms (Gotelli and

Ulrich 2012). Communities could be neutrally assembled,

but possible issues of statistical power or inadequate sam-

pling strategy could also be invoked to explain the results.

Whatever the actual mechanism, the main point of our

results is that there is a clear qualitative, simple explana-

tion of why certain assemblages diverge relative to neutral

predictions: When disturbance is expected to increase the

heterogeneity of soil spatial properties or the sampling

strategy encompassed a range of diverging environmental

conditions, we observed diverging assemblages. On the

contrary, we observed patterns consistent with neutrality

when disturbance could determine homogenization of soil

properties in space or the sampling strategy encompassed

fairly homogeneous areas. Etienne (2007) suggested that

one of the reasons why currently available general neutral

models might fail in terms of predicting beta diversity is
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Figure 2. The observed beta diversity (red

line) is compared to the frequency distribution

of 4999 beta diversity values obtained from

simulated neutral communities. Beta diversity

is computed as the total community variance

of the Hellinger transformed species by sites

abundance table (Legendre and De C�aceres

2013; Data S1). The parameters used to

simulate neutral communities were estimated

from the real data using Etienne (2007).
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that these models are spatially implicit, even when they

allow estimating single dispersal rates for each local

assemblage. Disturbance and/or environmental heteroge-

neity can therefore contribute to the failure of neutral

models via affecting assemblages selectively in space, with

closer localities that are subject to similar disturbance

intensity and frequency. In this sense, it is interesting to

pinpoint specific results from disturbed or undisturbed

areas that were consistent with neutral expectations. The

metal-polluted plot and low-intensity fire, for example,

were consistent with neutral predictions. The metal-pol-

luted plot (Caruso et al. 2009) was 40 9 10 m, and

within this area, basic soil parameters (e.g., water content,

pH, C) and vegetation were fairly homogenous. Metals

such as Pb, Zn, and Cu did show steep gradients over

40 m, but we had previously shown that these gradients

did not correlate with oribatid mite distribution after

removing spatial autocorrelation (Caruso et al. 2009).

The collected local assemblages can therefore be seen as

random variation around the same core assemblage,

which might explain the consistency between neutral pre-

dictions of beta diversity and observed beta diversity. The

same applies to the data obtained from a 15 9 15 m plot

in a dry grassland plot. In theory, one direction of the

plot was aligned with an environmental gradient, and

assemblages might therefore be expected to diverge. In

practice, assemblages did not diverge significantly relative

to a neutral model, and we hypothesize that this depends

on the small scale of the sampling, not sufficient to

encompass the environmental divergence that could make

local assemblages significantly diverge. On the other hand,

we could have observed convergence: The environment is

fairly homogeneous, and the assemblage should therefore

converge to the equilibrium expected for the given envi-

ronmental condition. The observed negative effect size

(Table 1) indicated some degree of convergence, but the

difference was not statistically significant. Issue of statisti-

cal power may apply to this case. The same issue possibly

applies to data collected in natural beech and grass stands

which were not disturbed: Also in these two cases, the

spatial scale of the sampling was relatively small although

larger than that of the dry grassland plot. In this case, the

effect size indicated some degree of divergence, but again

results were not significant (Table 1).

We can therefore understand the nonrejection of neu-

tral models in terms of either the sampling scale of the

study and/or statistical power. This seems reinforced by

the cases where we did observe significant divergences: In

coppice and heathland that were sampled at the same

scale as the beech and grass stands, we did observe signifi-

cant divergence, which is consistent with the high hetero

geneity associated with the tree harvests and the manage-

ment of heathland. The divergence observed in the extre-

mely dry, thin, and rocky soil of Lampedusa (different

habitat types sampled within the island; see Caruso et al.

2005) and Linosa (a transect along an elevational gradi-

ent) islands can be interpreted in a similar way: In this

case, the sampling strategy aimed at maximizing environ-

mental gradients and heterogeneity.

An interesting set of comparisons is that of the three

assemblages from the fire experiments: The control

assemblages show beta diversity higher than the neutral

prediction. The low-intensity fire communities were con-

sistent with the neutral model. The high-intensity fire

resulted in beta diversity much higher than the neutral

prediction (compare the three effect sizes in Table 1 and

Fig. 2). Relative to low fire intensity, high-intensity fire

produced a very patchy disturbance with patches that

were much more intensely burned than other patches

(personal observation): We attribute the observed differ-

ences to this effect.

Overall, the results support the general hypothesis that

neutral models allow detecting changes in beta diversity

caused by disturbance regimes that increase environmen-

tal heterogeneity or by natural environmental heterogene-

ity, which is usually captured at broad scales (>100 m;

e.g., Lampedusa and Linosa, Table 1).

There are technical aspects relevant to our interpreta-

tion of results and possible applications that are avenue

for future research. Neutral models provide a robust null

hypothesis because they can provide estimates of beta

diversity based on the simplest metacommunity scenario.

However, neutral models can be used to detect distur-

bances in two different ways: First, data reject neutral pre-

dictions because the real assemblages vary too much or

too little in terms of species composition and abundance

(Dornelas et al. 2006; Caruso et al. 2012a,b); second,

communities are really assembled under neutral dynam-

ics, and disturbance directly affects neutral parameters,

for example, by decreasing dispersal via increasing habitat

fragmentation (Hubbell 2001) or by affecting some funda-

mental demographic parameters (Dornelas 2010). In this

study, we basically used neutral models in the first sense

because we believe that in observational studies, robust

conclusions can be obtained only when sound statistical

null hypotheses are rejected (Gotelli and Ulrich 2012).

We also believe that in the framework of observational

studies, our modeling approach does not allow identifying

mechanisms but rather monitoring changes given expecta-

tions that come from background knowledge on the study

area.

We use a quantitative definition of beta diversity,

but one can further simplify the concept by focusing

just on compositional aspects, which is done using

indices such as the Jaccard index. In this case, commu-

nity variance (Legendre and De C�aceres 2013) would
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reflect just changes in species composition across the

study area.

In this sense, an interesting aspect to be investigated

is the partitioning of beta diversity in terms of pure

compositional variation and pure variance in species

abundance, a topic that, as far as we are aware, has been

introduced in the seminal paper by Anderson et al.

(2006) but never analyzed in terms of applications. Eco-

logically, these two aspects can imply fairly diverse sce-

narios. Local assemblages can be very different in terms

of species composition even if the spatial variance of

each species is low and vice versa. In theory, a set of

local assemblages can have zero BD if the assemblages

are identical in terms of species composition and BD is

measured using presence/absence data. However, species

abundance usually has some associated variance, and if

BD is measured using metrics that take into account

quantitative information, BD will not be zero. A key

aspect of many definitions of disturbance is that distur-

bance implies some change in the biomass or abundance

of the disturbed population (Walker 2012). This suggests

that, especially for applications relevant to the monitor-

ing of the effects of human-induced disturbance, a quan-

titative approach to BD is worth using to increase our

ability to detect effects and eventually interpret them.

Theoretical studies based on simulations and accompa-

nied by relevant field experiments are the tools to vali-

date this method in the future. In the meantime, we

propose to monitor the effect of disturbance on commu-

nity structure and the effect of restoration practices

using the following seven steps procedure: (1) Assess

whether the disturbance regime under investigation

increases or decreases environmental heterogeneity and/

or environmental predictability and fragmentation; (2)

sample local communities at the range of scales pertinent

to the disturbance regime; (3) estimate beta diversity

using the metrics proposed by Legendre and De C�aceres

(2013); (4) fit a general neutral model to species abun-

dance data in order to create a null prediction of beta

diversity (Etienne 2007; Data S1); (5) use the null distri-

bution to assess whether the sampled assemblages are

diverging or converging relative to their theoretical neu-

tral counterpart, or the assemblages could be consistent

with the neutral model (Data S2); (6) assess: if the

assemblages are diverging under a disturbance regime

that increases heterogeneity or converging under a dis-

turbance regime that homogenizes the environment, then

the conclusion is that disturbance is deeply affecting

community dynamics with effects on species abundance

and composition; (7) plan of action: arrange for replicat-

ing observations of the disturbed community in time,

also in connection with restoration regimes. If beta

diversity is quantified using BD by Legendre and De

C�aceres (2013) on Hellinger transformed data, species

most responsible for changes in beta diversity can be

identified.
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