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SUMMARY

Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM),
thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing
approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset
T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within
T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our
results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identifi-
cation of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM indi-
viduals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and
display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can
identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes
during follow-up.

INTRODUCTION

Type 1 diabetes mellitus (T1DM) is an autoimmune disease

caused by immune-mediated destruction and dysfunction of

pancreatic b cells, resulting into chronic hyperglycemia, lifelong

insulin therapy, and occurrence of diabetic complications.1

A marked disease heterogeneity leads to an incomplete under-

standing of T1DM pathogenesis and variable success of inter-

ventional therapies.2 Age at diagnosis recapitulates profound

differences in genetic predisposition,3,4 islet autoantibody

appearance,5,6 clinical presentation,7 and b cell functional

decline progression,8,9 with younger individuals showing a se-

vere clinical presentation and a faster C-peptide decline after

onset. A marked heterogeneity among individuals is also evident

in terms of immune-cell infiltrates in pancreatic islets10–12 and of

circulating islet autoantibodies.13 In light of this heterogeneity,

the existence of multiple distinct subgroups/phenotypes has

been hypothesized.14–19 Overall, these studies demonstrated

the existence of potentially distinct subgroups of T1DM individ-

uals; however, it is currently unclear how the identification of

these subgroups can be beneficial for a specific interventional

therapy and how they can be easily identified in clinical practice.

Nevertheless, the classification of T1DM individuals into disease

subgroups still remains of high interest and could be beneficial

for a precision-medicine approach.20 Hence, it is imperative to

find easily accessible and measurable biomarkers to detect
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and further characterize putative T1DM subgroups.21 The anal-

ysis of circulating biomarkers coupled to unsupervised, data-

driven-omics methodologies may help in the unbiased stratifica-

tion of T1DM individuals and, thus, in the identification of novel

disease endotypes.

MicroRNAs (miRNAs) are a class of small noncoding

RNAs22,23 reported to have a critical role in the regulation of

gene expression.24 They have been associated with T1DM path-

ogenesis25 by mediating function and dysfunction of pancreatic

b cells26,27 as well as immune cells.28–31 miRNAs also represent

an abundant class of circulating biomarkers.32–34 Hence, the

interception of these intercellular messages holds the potential

to yield valuable insights into the status of specific diseases

and facilitate the characterization of disease dysfunctions that

remain incompletely understood.35

Numerous investigations have assessed circulatingmiRNAs in

T1DM individuals. Currently, certain miRNAs have consistently

shown repeated associations with disease onset (i.e., miR-

24-3p,36–43 miR-146a-5p,37–39,44,45 and miR-375-3p37,40,46–49)

or also linked to disease progression (i.e., miR-375-3p37,50 and

miR-24-3p38,50). However, it is important to note that many other

findings have not been consistently confirmed in multiple

studies. This underscores the variability in miRNA measure-

ments, which may be attributed to the heterogeneity among co-

horts of T1DM individuals, pre-analytical variables that can

impact sample collection, and the performance of analytical plat-

forms. Additionally, to date, an unsupervised and unbiased anal-

ysis of circulating miRNAs aimed at stratifying T1DM individuals

into multiple subgroups based solely on their circulating expres-

sion levels has not been attempted.

In light of the limited overlap among different reports and the

lack of an miRNA-based unsupervised classification of T1DM

individuals, we employed two different sequencing platforms

to comprehensively and unbiasedly investigate the circulating

expression profile of miRNAs51 within two large cohorts of

recently diagnosed T1DM individuals (within 6 weeks from diag-

nosis) who were recruited and followed up as part of the

INNODIA project.52 This approach has allowed us to identify

and validate two distinct subgroups of T1DM individuals charac-

terized by different expression levels of a set of miRNAs

belonging to the 14q32 chromosomal locus and reporting differ-

ences in glycemic control and peripheral blood immune-cell

profiles.

RESULTS

T1DM individuals, data collection, and miRNA study
design
Circulating miRNA profiling from blood-derived plasma was

performed in two independent cohorts (first and second T1DM

INNODIA cohorts) of individuals enrolled within 6 weeks from

diagnosis of stage 3 T1DM in the European Consortium

INNODIA Natural History Study (https://www.innodia.eu).52 The

study design is reported in Figure 1.

The study population of the first cohort consisted of n = 115

recently diagnosed T1DM individuals (58 female and 57 male,

age 12.4 ± 7.7 years; mean duration 4.5 ± 1.5 weeks) (Table 1).

T1DM individuals were followed up until 12 months post diag-

nosis and subjected to four visits (visit 1 [V1], baseline; V2,

3 months; V3, 6 months; V4, 12 months) (Figure 1A; Table S1A)

when the main demographic data and clinical characteristics

were measured and collected (Tables 1, S1A, and S2). Plasma-

EDTA samples for miRNA analysis were collected at baseline

visit (V1) using a standardized protocol adopted by all clinical

sites.51 Circulating miRNAs from n = 115 T1DM individuals

were analyzed using two different library preparation strategies

on all plasma samples, followed by short read sequencing with

Illumina platforms. Specifically, we used (1) an RNA extraction-

free targeted strategy adopting the HTG EdgeSeq miRNA whole

transcriptome sequencing (hereafter ‘‘targeted-seq’’) and (2) a

previously standardized untargeted approach51 with QIAseq-

miRNA/small RNA sequencing (hereafter ‘‘untargeted-seq’’).

Hence, each plasma sample was analyzed using both methods

(Figure 1B). A subset of plasma samples from n = 6 T1DM indi-

viduals were run in duplicate for each platform, yielding a total

of n = 121 samples analyzed. Notably, whole blood samples

from a subset of T1DM individuals from the first cohort (67/

115) were collected at V1, processed to isolate peripheral blood

mononuclear cells (PBMCs), and analyzed through high-param-

eter flow cytometry to profile the circulating immunome.

The study population of the second cohort consisted of

n = 147 T1DM individuals (55 male and 92 female; age 11,9 ±

7,9 years; mean duration 3.9 ± 1.7 weeks) (Table 1). Plasma sam-

ples of T1DM individuals from this second cohort were analyzed

using the untargeted-seq approach, and results were further

validated through droplet digital PCR (ddPCR) for selected

miRNAs of interest (Figure 1B).

Circulating miRNA profile analysis of first-cohort T1DM
individuals using a dual-sequencing platforms approach
Small RNA-sequencing (RNA-seq) technologies have enhanced

the detection of miRNAs from plasma samples.53 However, the

limited RNA content in plasma, variations in RNA extraction

methods, and differences in cDNA library preparation protocols

and sequencing approaches have introduced biases into the

analytical workflow, resulting in inconsistent findings across

various studies.54,55

Therefore, to ensure the identification of miRNAs that were

consistently detected by both targeted-seq and untargeted-

seq, we performed a cross-validation of the results obtained

from both platforms. This approach allowed us to establish a

set of circulating miRNAs that exhibited concordant expression

patterns and could therefore be effectively employed for strati-

fying T1DM individuals at baseline or potentially predicting dis-

ease progression during the follow-up period.

In the targeted-seq, two plasma samples failed to generate

libraries, resulting into a total of n = 119/121 samples sequenced.

Overall, sequencing quality metrics including Q30, total

yield, and total reads passing filter met the acceptance criteria

(Figures S1A and S1B). The mean total read count for each sam-

ple was 4.7 ± 0.883 106 reads (Figures S1C and S1D), while the

mean read count aligned to miRNAs for each sample was 3.2 ±

0.67 3 106 (Figure S1E).

In the untargeted-seq, all plasma samples successfully gener-

ated cDNA libraries (n = 121/121), as shown by the correctly

sized cDNA fragments analyzed by capillary electrophoresis
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(Figures S2A and S2B). The quality controls of the untargeted-

seq metrics returned high-quality parameters that met the

acceptance criteria, including the Phred score (Figure S2C).

The mean total read count for each sample was 7.5 ± 2.1 3

106 reads (Figures S2D and S2E), while the miRNAs mean read

count was 2.6 ± 1.3 3 106 (Figure S2F). Overall, a total of

n = 114 unique T1DM individuals were successfully profiled for

circulating miRNAs using both sequencing approaches.

We then applied a cross-validation strategy to obtain a reliable

set of data (Figure S3A). Overall, we obtained raw data counts of

2,083miRNAs for the targeted-seq and 2,422miRNAs for the un-

targeted-seq. After low-counts filtering, a total of 892 and 753

miRNAs were retained in the targeted-seq and untargeted-

seq dataset, respectively (Figure S3A). A total of 402 uniquemiR-

Figure 1. Schematic of the miRNA study

design

Graphical description of the study design, which

involved the clinical follow-up of T1DM individuals

(A) and the analysis of two cohorts of individuals—

first cohort (B) n = 115, second cohort (C) n = 147—

using a multiplatform sequencing approach and

ddPCR validation.

NAs were commonly detected in both

sequencing methods. Next, we selected

only those miRNAs that had a positive

and significant Pearson’s correlation co-

efficient for each corresponding miRNA

pair between targeted-seq and untar-

geted-seq (Figures S3B and S4). By em-

ploying this strategy, we successfully ob-

tained two datasets comprising a total of

n = 248 plasma-derived miRNAs, each

of which exhibited consistent and concor-

dant expression patterns following cross-

validation. Using the expression datasets

obtained through the cross-validation

approach, we checked the internal plat-

form reproducibility by inspecting the

distance matrices of the technical repli-

cates. Analysis of replicates demon-

strated a good internal reproducibility,

as the sample duplicates clustered

together in both sequencing platforms

(Figures S3C and S5).

Coefficient of variation (CV) was calcu-

lated for each miRNA read count across

all samples analyzed in both platforms.

The distribution pattern of CV values

showed overlap between targeted-seq

(CV median: 88.1%; 95% confidence in-

terval [CI]: 80.8%–100.1%) and untar-

geted-seq (CV median: 68.7%; 95%

CI: 63.7%–79.6%) (Figure S3D). The

comparison of miRNA expression levels

ranking between targeted-seq and untar-

geted-seq demonstrated a significant

correlation (Figure S3E). When we specifically examined the 20

most highly expressed miRNAs in plasma of T1DM patients,

we observed a similar top-ranking order between the two

platforms, although some exceptions were noted (Figures S3F

and S3G). Overall, miRNA expression ranking observed in this

study was consistent with previous findings reported in other

studies.56,57

Circulating miRNome analysis stratifies T1DM
individuals into two subgroups: Cluster A and cluster B
To identify potential subgroups within T1DM individuals, we un-

biasedly conducted unsupervised miRNA hierarchical clustering

analyses separately for both the targeted-seq and untargeted-

seq datasets (Figures 2A and 2B). To determine the number of
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clusters that optimally define distinct patient subgroups, we

applied the silhouette method58 and gap statistic techniques

on both platforms. These gave us the best score for k = 2 (Fig-

ure S6). Thus, by pruning the obtained hierarchical tree with

k = 2, two distinct subgroups of T1DM individuals were optimally

identified for both targeted-seq (Figure 2A) and untargeted-seq

(Figure 2B). Principal component analysis (PCA) confirmed the

observed division of T1DM individuals into two subgroups for

both platforms (Figures 2C and 2D).

The two clusters, denoted as cluster A and cluster B,

comprised n = 87 and n = 22 T1DM individuals, respectively, re-

sulting into a total of n = 109/115 individuals consistently as-

signed to their respective cluster across both sequencing plat-

forms (Figure 2E). The analysis of the clinical site of sample

collection (Figures S7A and S7B), the total number of miRNA

reads detected in each analytical platform (Figures S7C and

S7D), and the hemolysis rate assessed through erythrocyte-en-

richedmiR-451a (Figures S7E and S7F) did not exhibit significant

differences between the two clusters.

Cluster B T1DM individuals of INNODIA first cohort have
a reduced insulin requirement at follow-up visits
To examine the key clinical parameters associated with cluster

A and cluster B, we fit a univariate logistic regression model

adjusted for multiple testing (padj) at each visit, including age,

gender, body mass index (BMI) and BMI standard deviation

score (BMI-SDS), autoantibody titers, and selected key meta-

bolic outcomes. Notably, such features were not associated

with these subgroups at baseline (Figure 3A; Tables S1B and

S3). Additionally, the frequency of T1DM individuals who

showed diabetes onset with ketoacidosis (DKA) (35.5% of total

T1DM individuals in the first cohort) also did not significantly

differ between cluster A and cluster B individuals (36%

and 46% with DKA at diagnosis, respectively) (Figure S8A;

Table S1B). However, in this model, insulin autoantibody (IAA)

titers at baseline (V1) showed a tendency to be associated

with T1DM subgroups being the odds ratio of having a higher

IAA titer lower in cluster B compared to cluster A (log2 odds ra-

tio [OR] �0.038; 95% CI �0.009, �0.089; p = 0.05; padj = 0.4)

(Figures 3A and S8B). Human leukocyte antigen (HLA) risk ge-

notype data, available for 106/109 T1DM individuals, showed

that the high-risk HLA genotype DR3-DQ2 (DRB1*03:01-

DQA1*05:01-DQB1*02:01) tended to be more common in indi-

viduals from cluster A than from cluster B (A: 51.8% versus B:

28.6%, p = 0.05, c2 test, not adjusted); a similar trend was

observed for the DR3/DR4 genotype (A: 28.2% versus B:

9.5%, p = 0.07, c2 test, not adjusted) (Figure S8C).

Next, we investigated whether T1DM individuals in cluster A

and cluster B had different clinical characteristics during the

12 months of follow-up. We found that individuals in cluster B

required a lower insulin dose per kilogram at 3 months (log2
OR �3.84; 95% CI �6.4, �1.5; p = 0.002; padj = 0.012) and at

6 months (log2 OR �2.30; 95% CI �4.5, �0.2; p = 0.036; padj =

0.21) after diagnosis (Figures 3C and 3D), while no differences

were observed at 12 months after diagnosis (Figure 3D). Overall,

the profile of insulin requirements of T1DM patients in cluster B

during the follow-up showed a lower insulin dose per kilogram

at 3 and 6 months after diagnosis compared to cluster A, while

returning to similar levels at 12 months after diagnosis (Fig-

ure 3E). These results are independent of the clinical site, as

no major differences were found in insulin dosing between the

clinical centers involved in the study (Figures S8D‒S8G). Stimu-

lated C-peptide (mixed meal tolerance test [MMTT] area under

the curve [AUC]) measured at 3, 6, and 12 months showed no

significant differences between the two clusters, along with insu-

lin dose-adjusted HbA1c (IDAA1c) and fasting glucose (Figures

3F, 3G, and 3H).

Peripheral blood immunomic profile analysis of cluster A
and cluster B T1DM individuals
To look for further differences between cluster A and cluster B in-

dividuals, we evaluated the peripheral blood immunomic profile

at V1 in a subset of T1DM individuals of the INNODIA first cohort

(67 out of 109 subjects) belonging to cluster A and cluster B

(A, n = 48; B, n = 19) (Figures 4A and 4B). High-parameter

flow-cytometry analysis identified a total of n = 150 different im-

mune-cell subpopulations, which were tested for differences be-

tween cluster A and cluster B (Figure 4C); using this approach,

n = 16 immune-cell subsets showed different frequencies be-

tween cluster A and cluster B with p < 0.05 (Figure 4D;

Table S4), while four of them resulted statistically significant after

false discovery rate adjustment (padj < 0.1) (Figures 4E–4H;

Table S4). Of note, in cluster Bwe observed a significant increase

of CD8+ T stem cell memory (Tscm) cells (CCR7
+CD95+CD45RA+)

(Figure 4E), TH1-TH2-like TFH memory Tconv cells (Figure 4F),

TIGIT+ central memory (Tcm CD45RA-CCR7+CD28+) CD8

T cells (Figure 4G), and TIGIT+ effector memory (TEM CD45RA-

CCR7- CD28-) Tconv cells (Figure 4H).

Table 1. Baseline clinical characteristics of first and second

cohort of T1DM individuals

Demographics

First T1DM cohort

(n = 115)

Second T1DM

cohort (n = 147)

Baseline (visit 1) Baseline (visit 1)

Age (years) 12.51 ± 7.70 [115] 12.03 ± 7.82 [147]

Gender (female/male) 58/57 55/92

BMI (kg/m2) 23.12 ± 2.82 [16] 22.26 ± 2.99 [21]

BMI-SDS 0.15 ± 1.09 [99] 0.38 ± 1.12 [126]

Disease duration

(weeks)

4.08 ± 1.53 [115] 3.91 ± 1.76 [142]

Fasting C-peptide

(pmol/L)

277.64 ±

203.54 [115]

270.03 ±

194.79 [145]

HbA1c (mmol/mol) 77.45 ± 19.44 [112] 76.01 ± 19.26 [143]

Insulin dose

(units/kg/day)

0.52 ± 0.27 [113] 0.59 ± 0.40 [144]

IAA (% positive) 76 [88] 77.55 [114]

IA-2A (% positive) 72.1 [83] 78.23 [115]

GADA (% positive) 76 [88] 77.55 [114]

ZnT8A (% positive) 66 [76] 70.75 [104]

Mean values ± SD are reported for continuous variables; n or n% for cat-

egorical values. Number of T1DM individuals with available measure-

ments for each specific variable is reported in brackets. BMI-SDS is

exclusively reported for T1DM individuals younger than 18 years (first

cohort, n = 99; second cohort, n = 126) at the moment of diagnosis.
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Figure 2. miRNA clustering analysis identifies two distinct T1DM subgroups

(A and B) Unsupervised hierarchical clustering analysis performed on all patients (columns) using Pearson’s R distance on log2 normalized counts (after the

addition of a pseudo-count) and complete linkage as agglomeration method in targeted-seq (A) and untargeted-seq (B) (n = 115 T1DM individuals). The heatmap

displays clustering results, with miRNAs as rows and patients’ information on diabetic ketoacidosis (DKA), gender, age, and the expression of miR-451a

(an indicator of hemolysis rate). miRNA expression is represented as scaled Z-score values ranging from red (+6) to blue (�6).

(legend continued on next page)
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A set of miRNAs belonging to the chromosome locus
14q32 drives T1DM individual separation into cluster A
and cluster B
To comprehensively characterize which set(s) of miRNAs were

more relevant for dividing T1DM individuals into cluster A and

cluster B, we performed a differential miRNA expression analysis

between the two clusters. We analyzed the targeted-seq and

untargeted-seq datasets separately and then validated the re-

sults by selecting only those miRNAs that were differentially ex-

pressed with padj < 0.01 on both platforms (Figure 5A). In total,

we observed n = 197 differentially expressed miRNAs between

cluster A and cluster B. Specifically, n = 151 miRNAs were upre-

gulated and n = 46 miRNAs were downregulated in cluster B

compared to cluster A T1DM individuals.

By ranking miRNAs from the most upregulated to the most

downregulated in cluster B, we observed a significant enrichment

(C and D) Principal component analysis (PCA) of the targeted-seq dataset (C) and the untargeted-seq dataset (D), showing the elliptical grouping of samples

based on miRNA expression. Targeted-seq, n = 114 T1DM individuals; untargeted-seq, n = 115 T1DM individuals.

(E) Venn diagram showing the number of T1DM individuals analyzed using both platforms and consistently identified as belonging to either cluster A or cluster B

by both analytical sequencing methodologies.

Figure 3. Clinical differences between cluster A and cluster B T1DM subjects at baseline and during follow-up
(A‒D) Forest plots presenting the effect estimates and 95% confidence intervals (CIs) for cluster B across selected clinical variables collected at visit 1 (A), visit 2

(B), visit 3 (C), and visit 4 (D). The effects of cluster B are presented as log odds ratio using univariate logistic regression analysis adjusted for multiple testing.

Light-blue bars indicate p < 0.05, while dark-blue lines indicate padj < 0.1.

(E) Insulin daily dose/kg profile over time from visit 1 to visit 4 in cluster A (orange) and cluster B T1DM subjects; data are reported as median and 95% CI.

(F) Area under the curve of C-peptide in mixed meal tolerance test (MMTT) performed at visit 2, visit 3, and visit 4 in cluster A and cluster B T1DM subjects.

(G) HbA1c-adjusted by insulin dose (IDAA1c) at visit 1, visit 2, visit 3, and visit 4 in cluster A and cluster B T1DM subjects.

(H) Fasting glucose at visit 1, visit 2, visit 3, and visit 4 in cluster A and cluster B T1DM subjects.

Data in (E)–(H) are reported as median and 95% CI. Number of individuals with available clinical parameters are reported in Table S8. p values are considered

significant with padj < 0.1.
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of miRNAs originating from chromosomal locus 14q32. Specif-

ically, miR-409-3p emerged as the most highly upregulated

miRNA in cluster B (log2 fold change [FC] = 3.99, B vs. A;

padj < 0.01), followed by miR-127-3p (log2 FC = 3.92, B vs. A,

padj < 0.01) (Figure 5A). Notably, four out of the five most upregu-

lated miRNAs in cluster B derived from the 14q32 locus,

including miR-409-3p, miR-127-3p, miR-431-5p, and miR-382-

5p (Figure 5A).

To investigate the presence of modules or groups of closely

related miRNAs that may contribute to distinguishing the two

clusters or correlate with clinical parameters at baseline or

follow-up, we conducted a miRNA network analysis. This

analysis was performed on both sequencing datasets, and a

consensus hierarchical tree model was constructed to identify

common miRNA modules across the two analytical platforms.

The results of the topological overlap matrix from each data-

set, along with the module assignment, are presented in

Figure 5B. To identify the most interconnected and relevant

miRNAs within each module, we selected the top five hub

miRNAs and calculated the eigenmiRNA value as a surrogate

measure of module expression (Figure 5C). Notably, we

observed that the module ME#8 almost exclusively consisted

of miRNAs from the 14q32 locus, which were upregulated in

cluster B compared to cluster A. Among these miRNAs,

Figure 4. Blood immunomic profile at baseline visit in cluster A and cluster B T1DM individuals

(A) Schematic illustration of blood immunomics analysis of T1DM subjects at baseline.

(B) Venn diagram showing the number of T1DM subjects in the INNODIA first cohort with shared analysis of both miRNomics and immunomics. n = 67 T1DM

individuals had complete data available for both miRNomics and immunomics analyses.

(C andD) (C) Heatmap and clustering analysis of immune-cell subset frequency in cluster A and cluster B T1DMsubjects. The immune-cell subsets demonstrating

p < 0.05 differential frequencies between cluster A and cluster B are further illustrated in (D) and listed in Table S4, where those with padj < 0.1 are further

highlighted and indicated with an asterisk.

(E‒H) Beta-regression models of the proportions for different immune-cell populations between clusters A and B with padj < 0.1. The beta regression depicts the

proportions of Tscm CD8+ cells (E) (cluster A n = 47, cluster B n = 18), TH1-TH2-like TFH memory Tconv cells (F) (cluster A n = 46, cluster B n = 16), central memory

TIGIT+KLRG� CD8 T cells (G) (cluster A n = 47, cluster B n = 18), and effector memory TIGIT+ TCONV cells (H) (cluster A n = 47, cluster B n = 17) populations in

cluster A and cluster B. padj (padj < 0.1) values were calculated using a beta-regressionmodel correcting for the processing effect; mean and SD of the proportions

of immune cells after residualization for the processing effect are shown.
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Figure 5. Relevance of miRNAs from chromosome 14q32 locus in the stratification of T1DM subjects into cluster A and cluster B
(A) Bar plot showing the top 20 differentially expressedmiRNAs (up- or downregulated) in cluster B (n= 22) vs. cluster A (n= 87) T1DM subjects. Data represent the

mean log2 fold-change values of cluster B vs. cluster A subjects obtained from separate analyses of targeted and untargeted datasets. Statistical analysis was

performed using the Wald test (DESeq2), considering padj % 0.01.

(B) Targeted-seq and untargeted-seq consensus clustering dendrogram of miRNAs with module colors. The top five highly interconnected miRNAs assigned to

each module are reported below the hierarchical tree model.

(C) Scheme illustrating modules, composition of miRNAs within each module, and strength of connections among miRNAs. Line thickness in each module in-

dicates the level of interconnectedness among miRNAs.

(legend continued on next page)
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miR-409-3p exhibited the highest level of interconnectedness

(Figure 5C; Table S5).

Subsequently, we examined the correlation between the ei-

genmiRNA module values and available clinical parameters for

each sequencing dataset. Notably, the ME#8 module exhibited

a significant association with insulin dose per kilogram at

follow-up visits after 3 months (V2) and 6 months (V3) in the tar-

geted dataset, while a similar trend was observed in the untar-

geted one. The correlation analysis between ME#8 and clinical

parameters recapitulates the previously observed differences

between cluster A and cluster B T1DM individuals. Indeed, those

miRNAs showing the highest connectivity in the ME#8 module

(miR-409-3p, miR-382-5p, and miR-127-3p) (Table S5) differed

significantly between T1DM individuals of cluster A and cluster

B in both sequencing platforms (Figure 5H) and were selected

for a ddPCR validation analysis.

Droplet digital PCR validation of miR-409-3p, miR-382-
5p, and miR-127-3p in cluster A and cluster B T1DM
individuals
The present findings underscore the discriminatory potential of

miR-409-3p, miR-382-5p, and miR-127-3p in distinguishing

T1DM individuals from cluster A and cluster B. Moreover, we

demonstrated their high interconnectedness within a distinct

network module (ME#8), which almost exclusively comprised

14q32 miRNAs. Remarkably, this interconnection is further sub-

stantiated by the discernible mid-collinearity observed among

the expression of the three miRNAs in the plasma of individuals

with T1DM (Figure S9A).

Co-expression and specificity analysis of the three miRNAs in

multiple small RNA-seq datasets obtained from isomiRdb59 and

derived from n = 99 different human primary tissues and cells did

not show a clear co-expression pattern (Figure S9B), suggesting

that this indeed represents a peculiar characteristic of our data-

set. Notably, in this analysis, miR-382-5p resulted in being spe-

cifically enriched in human primary sorted b cells (Figure S9C).

Hence, using ddPCR we analyzed miR-409-3p, miR-382-5p,

and miR-127-3p in plasma samples of T1DM patients derived

from cluster A and cluster B of the first cohort. The results

confirmed a significantly higher expression level of miR-

382-5p, miR-409-3p, and miR-127-3p in cluster B individuals

compared to cluster A counterparts (Figures 6A–6C). Receiver-

operating characteristic (ROC) curve analysis demonstrated

the high specificity and sensitivity of these miRNAs in assigning

T1DM individuals to the identified clusters. Notably, all three

miRNAs exhibited a significant inverse correlationwith the insulin

dose per kilogram at V2 (Figure 6D) and V3 (Figure 6E).

14q32miRNAs distinguish cluster A and cluster B T1DM
individuals in the INNODIA second cohort
To further validate the identification of cluster A and cluster B

subgroups in T1DM individuals, we conducted an analysis

on an additional cohort consisting of n = 147 T1DM individuals

(Tables 1, S6A, and S7).

This analysis was performed using the small RNA-seq pipeline

previously described (untargeted-seq) followed by ddPCR anal-

ysis. The sequencing metrics and reads counts, as shown in

Figures S10A‒S10D, confirmed the validity of the sequencing

run also in this second cohort.

In the first cohort, we have successfully identified a robust set

of 248 miRNAs using a cross-validation approach involving two

distinct platforms. To verify the reproducibility of our findings, we

applied the same rigorous filtering process to this second cohort.

Wewere able to detect a total of 226 out of the initial 248miRNAs

in this independent dataset. To assess the reliability of our small

RNA-seq method, we conducted correlation analyses on both

internal replicates (Pearson’s R > 0.77, p < 2.2 3 10�16) (Fig-

ure S10E) and inter-cohort replicates (Pearson’s R > 0.70,

p < 2.2 3 10�16) (Figure S10F); these analyses yielded positive

results, further validating the robustness of our approach.

Next, we analyzed this dataset by applying a hierarchical clus-

tering analysis pipeline as in the first cohort. Interestingly, we

observed a distribution of T1DM individuals into two clusters

(Figure 6F), in line with the findings from the initial cohort and

resembling the previously identified cluster A and cluster B sub-

groups (cluster A, n = 105 T1DM individuals; cluster B, n = 42

T1DM individuals). Additionally, PCA endorsed the classification

of T1DM individuals into distinct groups (Figure 6G) and was in

line with the results obtained in the first cohort (Figures S11A

and S11B), supporting the reliability of miRNAs in classifying

T1DM individuals into these two clusters. Differential expression

analysis revealed an enrichment of 14q32 miRNAs that were up-

regulated in cluster B compared to cluster A (Figures 6H–6K).

The upregulation of miR-409-3p, miR-382-5p, and miR-127-3p

in cluster B compared to cluster A was also confirmed using

ddPCR, providing additional support to the analysis of the

sequencing dataset (Figures 6L and 6M).

Next, we investigated the clinical differences between

cluster A and cluster B T1DM individuals in this second cohort.

In line with first-cohort findings, we did not observe differences

in age, gender, BMI, number of autoantibodies, glutamic acid

decarboxylase autoantibody (GADA), insulinoma-associated

autoantibody (IA-2A), and ZnT8 autoantibody (ZnT8A) titers,

and other metabolic outcomes (Table S6B). We did not find

any significant differences in terms of IAA titers at baseline

(Figures S12A and S12B) or insulin dose at V2 (Figure S12C),

although a trend was evident for both parameters and in line

with observations made in the first cohort (Figures S12A and

S12C). Notably, in this second cohort, we observed a significant

reduction in MMTT AUC glucose at the follow-up visit V2 in clus-

ter B T1DM individuals (cluster A: 13.5 ± 3.3 mmol/L; cluster B:

11.5 ± 2.9 mmol/L; padj = 0.036), suggesting a better glycemic

control compared to cluster A T1DM individuals at follow-up

(Figure S12C).

(D‒G) Scatterplots depicting relevant correlations between eigenvalues of the ME#8 module and insulin dose/kg at visit 2 (V2) and visit 3 (V3) for each T1DM

subject in the targeted (D and E) and untargeted (F and G) datasets. Spearman’s rho test (padj % 0.1) was performed, reporting for each graph rho and p values.

(H) Comparison of expression levels of miR-409-3p, miR-382-5p, and miR-127-3p in cluster A vs. cluster B T1DM subjects in targeted-seq and untargeted-seq.

Values are presented as log2 read counts. Statistical analysis was conducted using the Wald test (DESeq2) with padj.
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In summary, these findings demonstrate that miR-409-3p,

miR-382-5p, and/or miR-127-3p can be utilized to stratify newly

diagnosed T1DM individuals into two distinct subgroups charac-

terized by different glycemic control at follow-up visits after

diagnosis.

DISCUSSION

Numerous studies have demonstrated the association between

circulating miRNAs and T1DM, including its onset, progression,

and the decline of b cell function.36–44,46–49,60–63 Within this field,

there is growing appreciation that circulating miRNAs may serve

as biomarkers for T1DM. However, none of the previous studies

have taken an unbiased approach to utilize circulating micro-

RNAs for stratifying individuals with T1DM shortly after disease

onset. Notably, identification of disease subgroups associated

with specific phenotypes may shed light on the heterogeneity

of T1DM and aid in the stratification of individuals and their

assignment to specific interventional immunotherapy.64

In the current study, we sought to characterize circulating

miRNAs in a large cohort of T1DM individuals using a multiplat-

form sequencing approach coupled with the analysis of two co-

horts of T1DM individuals belonging to the European INNODIA

Study Consortium.52 It is important to highlight that within the

consortium, plasma samples were collected and processed

uniformly and consistently, following a standardized operating

procedure.51,65 As a result, the present study has a significant

advantage in terms of sample collection and initial screening of

miRNAs. Moreover, in the first-cohort analysis two different

sequencing approaches were utilized, further strengthening the

robustness of the findings.

The set of selected circulating miRNAs in individuals with

T1DM underwent an unbiased and unsupervised clustering

approach. This analytical approach was utilized in other con-

texts66–69 and demonstrated preferable results compared to a

plethora of other machine-learning approaches where dichoto-

mous/multichotomous outcomes are necessary for selecting

predictive features. This unbiased and outcomes-free methodol-

ogy appears as an optimal choice for exploratory and hypothe-

sis-free studies. In the present work, results of the hierarchical

clustering methodology were also confirmed using PCA stratifi-

cation, both in the first and in the second cohort.

Using this approach, we have selected three miRNAs (miR-

409-3p, miR-382-5p, and miR-127-3p) that can differentiate

two distinct groups of T1DM individuals (cluster A and

cluster B). The mid to high collinearity observed for the three

miRNAs of interest supports the potential utility of exclusively

utilizing one of them to assign an individual to a specific T1DM

cluster. Moreover, the selected miRNAs were validated, in both

cohorts, through ddPCR. Due to the absolute quantification na-

ture of ddPCR, data were not subjected to normalization70;

hence, absolute copies for each miRNA are reported per micro-

liter of plasma. This ensures the independence of ddPCRmiRNA

expression data from normalization strategies.

At V1, we observed that cluster B individuals displayed lower

IAA titers and a lower prevalence of the high-risk T1DM geno-

type HLA-DR3. These findings, while not reaching significance

after correction for multiple comparisons in both cohorts, ex-

hibited a consistent trend. Given the substantial heterogeneity

among individuals with T1DM, this outcome is noteworthy and

merits dedicated attention in subsequent T1DM cohort studies

to enhance the robustness and generalizability of the present

observations. Indeed, the appearance of IAA as the first auto-

antibody was associated with an increased risk of developing

future multiple autoantibodies and of T1DM onset71 and a rapid

decline of b cell function after onset.72 These findings suggest a

more severe phenotype of T1DM in cluster A vs. cluster B indi-

viduals despite the absence of age differences at diagnosis be-

tween the two subgroups, which was reported to be associated

with disease severity. This hypothesis is further corroborated

Figure 6. Droplet digital PCR validation and independent miRNA clustering confirmation

(A‒C) Stem-loop reverse transcriptase and TaqMan-based droplet digital PCR analysis of circulating miR-382-5p (A), miR-409-3p (B), and miR-127-3p (C) in

cluster A (n = 87) and cluster B (n = 22) T1DM individuals of the first cohort. Logistic regression and receiver-operating characteristic (ROC) curve analysis for each

of the three miRNAs are also presented. Values are reported as miRNA copies per microliter of plasma and shown on a log10 scale. Statistical analysis was

performed using the non-parametric Mann-Whitney U test (p < 0.05). Logistic regression and ROC curves provide information on specificity, sensitivity, area

under the curve, and corresponding p values (p < 0.05).

(D and E) Simple linear regression analyses betweenmiR-382-5p,miR-409-3p, andmiR-127-3p and visit 2 (V2) insulin daily dose/kg (D) and visit 3 (V3) insulin daily

dose/kg (E). Linear regression analyses report slope (b) values, R2, and corresponding p values (p < 0.05).

(F) Unsupervised hierarchical clustering analysis performed on all patients (n = 147) (in columns) using Pearson’s R distance on log2 normalized counts (after the

addition of a pseudo-count) and complete-linkage agglomeration method. The heatmap displays clustering results, with miRNAs as rows and patients’ infor-

mation on diabetic ketoacidosis (DKA), gender, age, and the expression of miR-451a. miRNA expression is represented as scaled Z-score values ranging from

red (+6) to blue (�6).

(G) Principal component analysis (PCA) of the untargeted-seq dataset of the second cohort, showing grouping of samples based on miRNA expression (orange

dots: cluster A individuals, n = 105; blue dots: cluster B individuals, n = 42).

(H) Bar plot showing the top 20 significantly upregulated or downregulated miRNAs in cluster B vs. cluster A T1DM individuals. Data represent the average log2
fold-change values of cluster B vs. cluster A individuals obtained from analysis of the untargeted datasets. Statistical analysis was performed using theWald test

(DESeq2), considering padj < 0.01. miR-409-3p, miR-382-5p, and miR-127-3p are reported in bold.

(I‒K) Comparison of expression levels of miR-382-5p (I), miR-409-3p (J), and miR-127-3p (K) in cluster A vs. cluster B T1DM individuals in untargeted-seq of

second-cohort samples. Values are presented as log2 values of normalized read counts.

(L‒N) Stem-loop reverse transcriptase and TaqMan-based droplet digital PCR analysis of circulating miR-382-5p (L), miR-409-3p (M), and miR-127-3p (N) in

cluster A and cluster B T1DM individuals of the second cohort. Logistic regression and ROC curve analysis for each of the three miRNAs are also presented.

Values are reported as miRNA copies per microliter of plasma and shown on a log10 scale. Statistical analysis was performed using the non-parametric Mann-

Whitney U test (p < 0.05). Logistic regression and ROC curves provide information on specificity, sensitivity, area under the curve, and corresponding p values

(p < 0.05).
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by clinical observations made at V2 and V3, where a better gly-

cemic profile was observed in individuals in cluster B compared

to cluster A, underscoring a less severe phenotype of cluster B

subjects during follow-up. In both T1DM cohorts, we did not

detect any differences in b cell functional profiles between clus-

ter A and cluster B at baseline or follow-up visits. These obser-

vations indicate the possible presence of variations in insulin

sensitivity between the two clusters of individuals. However, it

is important to note that, in T1DM cohorts of the INNODIA con-

sortium, direct measurements of insulin sensitivity were not

performed at diagnosis, and baseline (V1) and follow-up (V2,

V3, and V4) visits were influenced by administration of insulin

therapy, impairing a reliable insulin-sensitivity measurement.

To gain further insights into specific differences between clus-

ter A and cluster B, we had the valuable opportunity to investi-

gate peripheral blood immune-cell profiles. Cluster B individuals

showed increased frequency of CD8+ and CD4+ T cell subpopu-

lations exhibiting a partially exhausted phenotype (i.e., increased

frequency of TIGIT+ central memory CD8+ T cells and TIGIT+

effector memory Tconv cells) and increased frequency of CD8+

Tscm cells and TH1-TH2-like TFH memory Tconv cells. The role of

inhibitory receptors is well known, with TIGIT expression repre-

senting a hallmark of T cell exhaustion.73,74 It is noteworthy

that partial exhaustion and central memory phenotype of CD8+

T cells define responders in anti-CD3 clinical trials.75–79 In addi-

tion, CD8+ T cell exhaustion also characterizes T1DM individuals

experiencing a slow progression of the disease after onset.80 On

the other hand, the role of TH1-TH2-like TFH memory Tconv cells

and of CD8+ Tscm cells in autoimmune diseases is still to be fully

deciphered. Overall, while TH1-TH2-like TFH memory Tconv cells

have not yet been characterized, Tscm cells are known to play

a crucial role in promoting antitumor and immune reconstitution

because of their enhanced stem cell-like self-renewal capacity,

which can serve as a reservoir of effector T cells. Of note, circu-

lating Tscm cells showed increased frequency in T1DM individ-

uals, thus potentially promoting autoimmunity.81,82 Hence, the

precise role of these immune-cell subsets in cluster B T1DM in-

dividuals should be further analyzed.

In both T1DM cohorts, levels of circulating miR-409-3p, miR-

382-5p, and miR-127-3p were significantly elevated in plasma

of individuals belonging to cluster B compared to cluster A.

These miRNAs are all part of the 14q32 chromosomal locus.83

Intriguingly, miRNA network analysis showed that these three

miRNAs were the most interconnected among others within a

specific module (ME#8), hosting 13 out of 14 miRNAs whose

genes are located in the 14q32 genomic region. These findings

highlight the significance of this locus, which has been previ-

ously indicated as a susceptibility region for T1DM.84 Further-

more, network analysis revealed the presence of additional

interesting modules. For example, module ME#3 comprised

miRNAs from the let-7 family, which have been linked to

microvascular complications in diabetes85,86; ME#4 and ME#7

modules contained miRNAs associated with T1D, inflammation,

and b cell function, such as miR-93-5p,87 miR-25-3p,36 and

miR-106b-3p88 in ME#4 module and miR-151a-3p,89 miR-24-

3p,36–43 and miR-146a-5p89–93 in ME#7 module. Among these,

miR-25-3p displayed the highest degree of interconnectedness

within ME#4, while miR-151a-3p held this distinction in ME#7.

Interestingly, both miRNAs have previously been linked to

metabolic impairment and b cell function in T1DM.36,89 Overall,

these findings provide additional support to the validity and

robustness of our analysis.

Chromosome locus 14q32 hosts the largest polycistronic

miRNA clusters in mammals. In humans, it contains 54 miRNA

genes, organized in different subclusters or interspersed within

this region, and included between DLK1 and DIO3 genes.94

miR-127-3p, miR-409-3p, and miR-382-5p derived from

two different clusters, both residing in the 14q32.2 region: the

miR-127/miR-136 cluster (including miR-127a-3p) and the

miR-379/miR-410 cluster (including miR-409-3p and miR-

382-5p). It is noteworthy that even within the same cluster,

each individual miRNA may undergo distinct transcriptional

regulation. For instance, miR-127 and miR-433, which are

part of the same cluster, are transcribed from independent pro-

moters,95 implying an independent regulation of gene expres-

sion. Additionally, despite residing in the same cluster and

genomic locus and potentially being subject to similar signal al-

terations, it appears that their functions may be entirely diver-

gent and strictly dependent on the context.96 Consistent with

this, their tissues/cells expression patterns, analyzed across

multiple small RNA-seq datasets from 99 distinct human pri-

mary cells and tissues in a physiological state (Figures S10B

and S10C), do not align with their observed collinearity in

T1DM plasma samples of our cohort. This misalignment sug-

gests that their cellular origins may be different, but their

expression could be influenced by similar pathological mecha-

nisms, hence providing a high co-expression signature in

plasma of T1DM individuals.

Concerning the functions of the three miRNAs, they have been

documented as regulators of several functions. Genetic ablation

of the miR-379/miR-410 cluster in mice resulted in impaired

glucose homeostasis through the alteration of gluconeogenesis

and glycogenolysis.97 Particularly, In support of their role in

metabolism, several other studies showed that miRNAs from

the 14q32.2 region, including miR-409 and miR-127, exhibit

high expression in human pancreatic islets,59 where they are en-

riched in b cells rather than a cells.98–100 In addition, it has been

shown that these miRNAs are differentially expressed in islets of

type 2 diabetic donors,99 thus highlighting their role in glucose

metabolism.

The specific association between 14q32 miRNAs and their

involvement in T1DMpathogenesis or progression has been pre-

viously suggested. First, 14q32 miRNAs are expressed in b cells

where they have been reported to regulate multiple functions

through themodulation of a set of target genes encoding specific

T1DM autoantigens101; hence, their downregulation may poten-

tially increase the visibility of b cells to the immune system in

T1DM. Second, a specific single-nucleotide polymorphism has

been previously identified as associated with T1DM in a

genome-wide association study.84 Third, we previously demon-

strated that miR-409-3p expression is decreased in the plasma

of diabetic NOD mice in comparison with nondiabetic NOD

mice, and this reduction is mirrored in the pancreas-infiltrating

lymphocytes. Importantly, miR-409-3p was reduced in plasma

of recent onset (<2 years from diagnosis) T1DM individuals

compared to nondiabetic controls.30 Interestingly, we found a
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similar reduction in miR-409-3p expression in cluster A T1DM in-

dividuals compared to cluster B. This reduction in miR-409-

3p expression is in line with the more severe phenotype

observed in cluster A individuals, both at baseline and during

follow-up visits, thus potentially depicting a protective role

for this miRNA in the context of T1DM. Additional studies are

needed to fully understand the molecular mechanisms encom-

passing miRNA-mediated communication among different cell

types.102

In summary, the results of this study provide evidence sup-

porting the use of miR-409-3p, miR-382-5p, and/or miR-127-

3p as effective markers for stratifying newly diagnosed individ-

uals with T1DM into two distinct subgroups that display different

immune-related characteristics at baseline and different levels of

glycemic control over time. Hence, this stratification can be

taken into consideration to verify the responsiveness of T1DM in-

dividuals of cluster A and cluster B to multiple immunotherapies,

thus implementing a tailored precision-medicine approach to

treat T1DM.

Limitations of the study
We acknowledge limitations of this study. First, the sample size

used for the association study between T1DM clusters (A or B)

and peripheral blood immunomics was relatively small, consist-

ing of 67 individuals, while a large number of immune-cell

subpopulations (n = 150) were analyzed. Consequently, we did

perform multiple testing corrections setting the padj value at

0.1, being an exploratory study.

Second, in the second cohort we acknowledge a gender

imbalance, females being more prevalent than males. Several

analyses of this cohort are still pending because the INNODIA

study is ongoing.

Finally, although circulating miRNAs were validated using

ddPCR in two different T1DM cohorts, comprising a total of

256 T1DM individuals analyzed, their diagnostic applicability is

still limited and requires future studies to determine specific cut-

off values and undergo extensive validation in multiple cohorts

and real-life analyses.
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Small RNA seq Second Cohort GEO GSE265981

Software and algorithms

Graphpad Prism v10.0 GraphPad Software (Boston, MA) https://www.graphpad.com/

2100 Expert Software (vB.02.11) Agilent N/A; RRID:SCR_014466

Illumina Experiment Manager Software (v1.19.1) ILLUMINA N/A; RRID:SCR_021202

BaseSpace v. 1.1.0.64 ILLUMINA N/A; RRID:SCR_011881

GeneGlobe Data Analysis Center QIAGEN N/A

ExpressionSuite Software (v1.3) THERMO FISHER N/A; RRID:SCR_021095

R/Bioconductor N/A N/A

Other

Vacutainer Safety-Lok butterflies BD Biosciences 367282

NovaSeq Xp Flow Cell Dock ILLUMINA 20021663

Vacutainer K2 EDTA BD Biosciences 368861

DNA LoBind Tubes 0.5 mL Eppendorf 0030 108.035

DNA LoBind Tubes 1.5 mL Eppendorf 0030 108.071

DNA LoBind Tubes 2.0 mL Eppendorf 0030 108.058

96 Fast PCR Plate half skirt SARSTEDT 72.1981.202

MicroAmp 96 Optical Adhesive Film 100 cover Thermo Fisher 4311971

Strip 8 flat caps (Xtra-Clear) STARLAB I1400-0900

StarTub Reagent Reservoir (PVC) STARLAB E2310-1000

96 PCR Plate without skirt SARSTEDT 72.1978.202

SimpliAmp Thermal Cycler LIFE TECHNOLOGIES A24811

Qubit Assay Tube Set Thermo Fisher Q32856

Centrifuge MiniSpin Eppendorf 5452000010

Ministar centrifuge VWR 521–2319

NovaSeq 6000 System ILLUMINA 20012850

DynaMag-96 Side Magnet INVITROGEN 12331D

DynaMag-2 Magnet INVITROGEN 12321D

QUBIT 3.0 spectrofluorometer INVITROGEN N/A

2100 Bioanalyzer Instrument Agilent N/A

IKA MS3 S36 Agilent vortex IKA Agilent N/A

HTG EdgeSeq Processor HTG N/A

HTG EdgeSeq Processor HTG N/A

SimpliAmp Thermal Cycler LIFE TECHNOLOGIES N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Francesco

Dotta (francesco.dotta@unisi.it).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The generated data regarding demographic and clinical parameters are person-sensitive, and access can be provided by

application to the INNODIA Data Access Committee.

d Data: Circulating Small RNA-seq data from T1D individuals of the first and second cohort are available in Gene Expression

Omnibus (GEO) with the following IDs: GEO: GSE265980 (First cohort untargeted-seq); GEO: GSE265976 (First cohort Tar-

geted-seq); GEO: GSE265981 (Second cohort Untargeted-seq).

d Code: This study does not generate a custom code.

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

T1DM individuals of the INNODIA first cohort
For circulating small RNA sequencing analysis, an initial cohort composed of 115 individuals with newly diagnosed (<6 weeks, 4.5 ±

1.5 weeks) type 1 diabetes were enrolled in INNODIA natural history study. T1DM individuals [all positive for at least one autoantibody

(GADA, IA-2A, ZnT8A) and aged between 1 and 45 years] enrolled in this study were selected based on sample availability and even

gender distribution (sex: 58F/57M; age at diagnosis: 12,4 ± 7,7 years) (complete clinical characteristics in Tables 1 and S1). T1DM

individuals were followed-up to 24 months with programmed visits at 3- (V2), 6- (V3), 12- (V4) and 24-month (V5) after diagnosis. For

circulating small RNAs study, we considered visits up to 12-month for the statistical association analysis with clinical parameters due

to the uncompleteness at V5 at the moment of small RNA measurement.

Plasma samples for small RNAs sequencing were collected at baseline (V1, <6 weeks from diagnosis) through a standardised

protocol51 adopted by all clinical sites involved in the multicentric consortium.

T1DM individuals of the INNODIA second cohort
An independent cohort composed by n = 147 newly diagnosed (V1<6 weeks: 3.9 ± 1.8 weeks) T1DM individuals [sex: 92/55 (M/F);

age at diagnosis: 11,89 ± 7,86] was also enrolled in INNODIA consortium to perform the same analyses described for the first cohort.

All individuals were positive for at least one autoantibody (GADA, IA-2A, ZnT8A) and aged between 1 and 45 years. All individuals

were followed-up with programmed visits at 3- (V2), 6- (V3) and 12-month (V4) after diagnosis (Tables 1 and S5). Plasma samples

at baseline visit-1 (V1) were collected following the SOP reported above.

Study approval and ethics

The study followed the guidelines of the Declaration of Helsinki for research on human individuals, and the study was approved by the

local ethical committees of each participating clinical sites (see Tables S2 and S7). Written informed consent was obtained from all

participants before their participation in this study.

METHOD DETAILS

Blood samples and plasma processing
Blood samples were collected in K2 or K3-EDTA 3.5 mL tubes, inverted ten times and stored upright at room temperature (15�C–
25�C), and processed within 2 h from blood draw. An initial centrifuge was performed at 1800Xg for 10 min at 15�C-25�C to separate

blood cells from plasma. Then, plasma was collected in smaller tubes (i.e., 2 mL – Sterile, apyrogen and nuclease-free) avoiding

touching the white blood cells interphase (leaving 2–3 mm of plasma layer over the leukocytes) and further centrifuged at 1200Xg

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

StepOnePlus APPLIED BIOSYSTEM N/A

NextSeq ILLUMINA N/A
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for 20min at 10�C to remove contaminant cells and platelets. Multiple 200 mL plasma aliquots (where possible, 5 aliquots in nuclease-

free tubes) were then stored at �80�C and then transferred to a central biobank located in Cambridge (UK) until final transfer to the

analytical laboratory.

HTG EdgeSeq miRNA whole transcriptome assay (targeted-seq)
HTGEdgeSeqmiRNAwhole transcriptome assaymethod is an RNA extraction-free approach, and exploit quantitative nuclease pro-

tection assay (qNPA) chemistry with a subsequent Next Generation Sequencing (NGS) platform to allow semi-quantitative analysis of

a panel of n = 2102 targeted miRNAs (including n = 13 housekeepings, n = 5 negative process controls, n = 1 positive process control

and n = 2083 targeted miRNAs) from 15 mL of plasma. In PCR-based library preparation, each sample is used as a template for PCR

reactions for specially designed primers (tags), which share common sequences complementary to 50-end and 30-end ‘‘wing’’ se-

quences of the probes and common adapters required for cluster generation on NGS platform (Illumina NextSeq550). Libraries

were prepared and cleaned-upwith HTGEdgeSeq AMPure cleanup of Illumina Sequencing Libraries. Following libraries preparation,

their concentration has been evaluated through HTG EdgeSeq KAPA Library quantification, and each library has been normalized

and pooled using HTG EdgeSeq RUO library calculator. Then, pooled libraries were denatured in 0.2 N NaOH and sequenced (final

concentration 4 pM) onto Illumina NextSeq550 platform (High Output kit v2 cat. FC-404-2005). Data were returned from the

sequencer as demultiplexed FASTQ files. Resulting reads were aligned referring to miRbase v20 using HTG Parser software.

QIAseq small RNA sequencing (untargeted-seq)
Total RNA extraction was performed from 200 mL of plasma through Serum/Plasma Norgen kit (cat. 55000, Thorold, ON L2V 4Y6,

Canada). Small RNA-derived cDNA libraries were prepared using QiaSeq miRNA library kit (cat. 331505, Qiagen). QIASeq strategy

assign Unique Molecular Index (bound to reverse transcription primers) during reverse transcription step to every mature miRNA

molecule, to enable unbiased and accurate miRNome-wide quantification of mature miRNAs by NGS. Then, libraries quality control

(QC) was performed quantifying their concentration through QUBIT 3.0 spectrofluorometer (Qubit dsDNAHS Assay Kit, cat. Q32854,

Thermofisher Scientific) and assessing their quality using capillary electrophoresis in Bioanalyzer 2100 (Agilent High Sensitivity DNA

kit cat. 5067–4626, Thermofisher Scientific). High quality of libraries was evaluated considering electropherograms showing a peak

comprised between 175 and 185 bp. Following QC, all libraries were normalized until 2 nM and pooled, denatured in 0.2 N NaOH and

further sequenced (final concentration 175 pM) on Illumina NovaSeq 6000 platform [NovaSeq 6000 SP Reagent Kit (100 cycles) cat.

20027464, NovaSeq XP 2-Lane Kit cat. 20021664, Illumina] using the XP protocol applying 75 3 1 single reads.

Data were returned from BaseSpace Sequence Hub as demultiplexed FASTQ files. Resulting raw reads were deduplicated by

leveraging Unique Molecular Identifiers (UMIs) present in the library, then mapped to miRbase v21 and piRNABank using QIAseq

miRNA Quantification V1 Legacy pipeline from QIAGEN GeneGlobe Data Analysis Center portal (https://geneglobe.qiagen.com/

us/analyze). Briefly, resulting reads weremapped referring to miRbase v21 and piRNABank using QIAGENGene Globe data analysis

center software, which identified a wide repertoire of small RNA species e.g., piRNA (PIWI interacting RNA), tRFs (tRNA fragments),

rRNA (ribosomal RNA), miRNA (microRNA).

All these procedures (samples collection and time, RNA extraction, Small RNAs library preparation and sequencing) were also con-

ducted on second cohort as already described for first cohort, with minor modifications. In details, Small RNAs libraries were bar-

coded with unique dual indexes (UDI) (cat.# 331615 and cat.# 331625).

Primary analysis of miRNAs expression
Reads assigned to miRNAs were standardized into Counts Per Million (CPM) and filtered through edgeR package of R

(BioConductor), maintaining only those miRNAs expressed in at least 70% of individuals with at least 15 CPM for HTG EdgeSeq

and 10 CPM for QIAseq. Following low counts filtering, Median of Ratios normalization was performed through DESeq2103 package

of R (BioConductor) and normalised counts were used for subsequent analyses. Consistently detected miRNAs in both sequencing

platforms were selected, keeping only those having a positive Pearson correlation estimate between the two approaches (R > 0 and

p value < 0.05).

Circulating miRNAs unsupervised hierarchical clustering analysis
Unsupervised hierarchical clustering was independently applied to both miRNAs expression datasets. The analyses were performed

on log2 transformed data (after the addition of a pseudo-count), with hclust function of stats R package (complete-linkage agglom-

eration method and Pearson’s distance as distance metric). In order to determine the optimal cutting threshold silhouette method

was applied.

Then, both dendrograms were split in two branches (cutree function of stats package of R with K = 2) and named according to their

size (cluster A themajor and cluster B theminor). Only patients consistently identified asmembers of the same cluster in both expres-

sion datasets were kept.

The association among patients’ clinical data and their branch membership was evaluated with logistic regression (glm function

from stats package of R) and p-values %0.05 were considered significant. The direct association between individual miRNA
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expression (log2-transformed, adding a pseudo-count) and each numerical clinical parameter was evaluated using Spearman’s cor-

relation test. The same analysis was performed on Small RNAs sequencing dataset, obtained from the second cohort, by considering

the same miRNAs used for the analyses in the first cohort.

HLA genotyping
HLA typing was performed at v1 for n = 107 out of n = 109 T1DM individuals classified as cluster A or cluster B individuals through

AXIOMGenotyping Array. HLA aplotype prevalence differences between cluster A and cluster B was assessed using chi-square test,

considering significant p values <0.05.

PBMC (cryopreserved) multi-dimensional flow cytometry (Multi-FACS) immunomics
Immunomics profile of peripheral blood from n = 67 out of 115 individuals was investigated at baseline through Cytek Aurora flow

cytofluorometer.

Samples were processed in five batches (between 12 and 16 samples per batch, consisting of a mixture of samples from each of

the five INNODIA immune laboratories) together with two unrelated control samples in each batch using 0.54–2.83 106 PBMCs per

sample. PBMCs were first stained using Live/dead blue for 15 min at room temperature, washed with FACS buffer (PBS with 0.2%

BSA and 2mMEDTA), and incubated with Fc receptor blocker (TruStain FcX Fc; BioLegend) for 10 min at room temperature. Without

wash, samples were stained in a 37�C waterbath for 15 min using mastermix 1 (containing antibodies against CXCR3. CD117,

CD294/CRTH2, and CD161). Samples were further stained in waterbath for 15 min using mastermix 2 (containing antibodies against

CXCR5, ICOS, CCR7, and CCR6), followed by 30 min at room temperature using mastermix 3. Finally, samples were washed using

FACS buffer, then fixed and resuspended in PBS containing 1% paraformaldehyde (Alfa Aesar). Single color controls were made us-

ing PBMC for all colors except for CD294, CD117, CD161, and TCRgd where BDmouse or rat comp beads were used instead due to

low cell expression. Single color controls were subjected to the same buffer and fixed as the multi-colour stained samples.

SpectroFlo QC beads were run daily and single color controls were acquired in the reference library, which was subsequently

used for live unmixing during sample acquisition on a Cytek Aurora cytometer. Flow data were analyzed using FlowJo software using

the Boolean gating scheme shown in Figure S13.

In order two find differences in the proportion of immune cell populations between the two cluster of patients (cluster A, cluster B), a

Beta regression analysis was performed, using the betareg function (version 3.1.4).104 From the 109 patients assigned to the same

cluster by the two different sequencing platforms, 67 were also present in the immunomics cohort. Among these overlapping pa-

tients, n = 48 belongs to cluster A and n = 19 to cluster B. As first step of the analysis, proportions of immune cell population

were transformed according to Smithson & Verkuilen105 to rescale the dependent variable in the interval (0.1), avoiding values of

0.1. Indeed, beta regressionmodel cannot deal with values of 0 and 1. The Beta regressionmodel was corrected for the time between

blood draw and PBMCs isolation (same day vs. overnight). Before estimating the differential proportions of immune cell populations

between the two clusters of patients, an influent points detection analysis was performed to remove outliers. For each beta regres-

sion model, Cook’s distance of the samples was computed. Samples with Cook’s distance 5-fold higher than the average Cook’s

distance of the samples in the model were marked as influent points and removed from the analysis. After this procedure, the final

beta regression models were fitted and immune cell populations with an adjusted p-value (p adj) related to the cluster <0.1 were de-

tected as significantly different in proportions between the two groups of patients. For representative purpose only, immune cell pro-

portions were residualized for the time between blood draw and PBMCs isolation. For each immune cell population, a linear model

was fit with the proportion as dependent variable and the time between blood draw and PBMCs isolation as independent variable.

The residuals of the models represent the information on immune cell proportions that is not explained from the timing of PBMC’s

isolation.

MiRNAs differential expression analysis
Normalised reads of the two sequencing datasets were used to detect any differentially expressed miRNAs between cluster A and

cluster B groups in both sequencing platforms, accounting for age and gender as covariates with DESeq2 package of R

(BioConductor) using Wald test and Benjamini-Hoechberg adjusted p-value (padj) < 0.01 was considered as significant.

Weighted miRNA correlation network analysis (WMCNA) for the identification of miRNA modules
Co-expression modules from the two different sequencing platforms were identified using the WGCNA106 package. Normalized

expression values from the 248 common correlated miRNAs were transformed in log2 scale for the analysis (after the addition of

one pseudo-count). Similarities between nodes were computed using the biweight midcorrelation, setting the max p-outliers param-

eter at 0.1 and using aweighted signed network. The following stepwas the identification of the Beta parameter (for both platforms) to

compute adjacencies between nodes, by applying the approximate scale-free topology criterion. This criterion assumes that few

highly connected nodes (hubs) link the rest of the less connected nodes to the system. Given the power-law distribution of the con-

nectivity (sum of the adjacencies of a node with all the other nodes of the system), the goodness of the scale free-topology assump-

tion for Beta values wasmeasured through the R2 of the model regressing the log10 of probability of the connectivity and the log10 of

the connectivity. High values of the R2 of the model are related to a straight line fitting the model, suggesting the assumption of the

scale free topology. Moreover, the slope of the model should be close to �1. Candidate values of Beta ranging from 5 to 25 were
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manually inspected to choose the optimal ones for both platforms. Regarding the HTG-Seq platform, the scale free topology wasmet

at a value of Beta equal to 24, which is the first valuewith an R2 close to 0.8 andwith a slope of�0.82. On the other hand, regarding the

Untargeted platform, the first value of Beta with an R2 of the model of at least 0.8 was 11. However, the slope of the regression model

for this value was very far from�1 (�0.40), suggesting that the number of nodes with a high connectivity does not decay as expected.

Moreover, two values of Beta were very different for the two sequencing strategies (11 and 24) resulting in two networks with very

different architectures. For this reason, the optimal value of Beta in the untargeted platform was determined as the first value of

Beta with at least an R2 of the model of 0.8 and a regression slope of at least �0.7. The first value which satisfies these two criteria

for the untargeted platform was Beta equal to 20. Once estimated the Beta parameters, similarities matrices were converted into

adjacencies matrices by elevating similarities at the corresponding Beta value. The next step was the identification of the Topological

OverlapMatrix (TOM) for both sequencing platforms from the adjacencymatrices. The topological overlap of two nodes is ameasure

of similarity which defines how well the two nodes are interconnected. At this point, the information from the two sequencing plat-

forms, managed in a separate way during the previous phases of network construction, was merged in a consensus TOM. For the

estimation of the consensus TOM (TOMcons), the two TOMswere first scaled at the 95th quantile. The scaling step is crucial, because

the consensus TOM was estimated as the minimum-wise component between the two TOMs. The consensus TOM, which contains

theminimum-wise information about nodes interconnectivity from both platforms, was then transformed into a dissimilarity matrix (1-

TOMcons). The hclust algorithm (hierarchical clustering), with average agglomerationmethod, was used to detect themodules, using

the dissimilarity TOM as distance matrix. Minimum module size equal to 3 and deep split equal to 2 were set as parameters for the

deepsplit function to cut the dendrogram for modules identification. At this point, each miRNA was assigned to a module, with

the gray one representing un-assigned miRNAs. The last step was the merging of very similar modules, to limit the redundancy in

the information held. Modules EigenMiRNAs (MEs) were computed as the first principal component of themiRNAs expression values

(normalized and log2 scaled) present in themodule for both sequencing platforms. Similarity betweenMEswas computed with Pear-

son’s correlation coefficient, and then the dissimilarity was estimated and used for the hierarchical clustering of MEs. A cut height of

0.1 was used to merge closely related module. The final output of the WGCNA algorithm was a list of labels which identifies each

miRNA as belonging to a specific module (after merging of closely related ones). Eachmodule was summarized by anME, computed

as previously stated.

Once defined the modules through WMCNA, the aim of the analysis was the identification of a subset of the most representative

miRNAs (n = 5) for each module. The centrality (hubness) of a miRNA within its module was defined using the intramodular connec-

tivity as metric. The intramodular connectivity is the sum of the adjacencies of a miRNA with all the other miRNAs present in the mod-

ule. The higher the intramodular connectivity, the higher the centrality of the node in the module. However, given the different values

of Beta for the two sequencing platforms in themodule’s estimation step (24 HTG-Seq, 20 Untargeted), the intramodular connectivity

must be normalized in order to be comparable between them. Thus, for eachmodule and sequencing platform, the intramodular con-

nectivity of the node was divided by the maximum value of its own module. Then, the normalized intramodular connectivity of the

nodes among sequencing platforms were summed up, andmiRNAs were ranked based on this value. The 5miRNAs with the highest

values were defined as the most representatives for the module. Modules eigenMiRNAs of these subsets of most representative

miRNAs were then computed for both sequencing platforms and correlated with clinical parameters using Spearman’s Rho corre-

lation. Correlations with a padj %0.1 were considered as significant.

Droplet digital PCR (ddPCR)
Validation of selected miR-409-3p, miR-127-3p and miR-382-5p, identified through both differential expression analysis and

WMCNA, was performed through Custom Taqman reverse transcription and subsequent droplet digital PCR (ddPCR) detection.

In details, their expression was analyzed in all plasma samples of first and second T1DM cohort using TaqMan miRNA assay

primers (Life technologies, CA, USA) through a standardised protocol. RNA (the same used for small RNA sequencing) was reverse

transcribed employing Custom RT primers pool and preamplified using Custom Preamp primers pool. Briefly, 5 mL each RT or TM

primer was diluted in a total volume of 500 mL Tris-EDTA 1X and used for RT or preamplification reaction. Then, 3 mL of RNA were

added to 6 mL of custom primers pool, 0.30 mL 100 mM dNTPs, 3 mL of 50 U/mL Multiscribe RT, 1.50 mL 103 RT Buffer, 0.19 mL

20 U/mL RNase Inhibitor and 1.01 mL H2O. The reaction product was incubated at 16�C for 30 min, 42�C for 30 min and then at

85�C for 5 min. Afterward, the synthesised cDNA was preamplified using Custom Preamp primer pool; the reaction included:

2.5 mL of cDNA from each sample, 12.5 mL 23 TaqMan Preamp Master Mix, 3.75 mL 103 Custom Preamp primers and 6.75 mL

H2O. The reaction was incubated at 95�C for 10 min, at 55�C for 2 min and at 72�C for 2 min, then for 12 cycles at 95�C for 15 s

and 60�C for 4 min and, finally, at 99�C for 10 min. Then, droplet digital PCR was performed on a BioRad QX200 system using a

Probes assay (BioRad, Mississauga, ON, Canada). Each PCR reaction contained 11 mL of QX200 super mix, 1.1 mL of each 20X

TaqMan assay, 5.9 mL of H2O and 4 mL of template cDNA in a final volume of 22 mL. The PCR reactions weremixed, centrifuged briefly

and 20 mL transferred into the sample well of a DG8 cartridge. After adding 70 mL of QX200 droplet generation oil into the oil wells, the

cartridge was covered using a DG8 gasket, and droplets were generated using the QX200 droplet generator. Droplets were carefully

transferred into PCR plates using a multi-channel pipette and the plate sealed using PCR plate heat seal foil and the PX1 PCR plate

sealer. PCR was performed in a SimpliAmp thermal cycler (Life technologies, CA, USA). The PCR protocol was 95�C for 10 min;

40 cycles of: 95�C for 30 s, optimal annealing temperature (56�C for miR-409-3p and miR-382-5p; 54�C for miR-127-3p; 98�C for

10 min; 4�C for 30 min. PCR plates were transferred into a QX200 droplet reader to count positive and negative droplets. Thresholds
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to separate positive from negative droplets were set manually for eachmiRNA using the histogram function and reads analyzed using

QuantaSoft Analysis Pro software (Version 1.2, BioRad, Mississauga, ON, Canada).

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample size for circulatingmiRNAs analysis were determined according to our experience from previous works.MannWhitney U test

was performed between two groups when the variables did not follow a Gaussian distribution. Coefficient of Variation of miRNAs

expression in Targeted- and Untargeted-seq was calculated on read counts using GraphPad Prism 10.0.

Differences in clinical parameters between individuals belonging to cluster A and cluster B were determined with the univariate

logistic regression using the glm function from the stats package in R software. Data were modeled using the clusters as dependent

variable and the clinical parameter as independent variable. Multiple testing correction of p-values (padj) associated to clinical param-

eters was performed independently for each visit using the Benjamini-Hochberg (BH) method. Clinical parameters with a padj % 0.1

were considered as significantly different between the clusters. Correlation analyses were performed using Spearman Rho Test or

Pearson’s R test. p-values from correlation analyses were corrected for multiple testing using the Benjamini-Hochberg (BH) method

independently for each visit.

Collinearities ofmiR-409-3p,miR-127-3p, andmiR-382-5p (ddPCR) were assessed using a logistic regressionmodel with the clus-

ter as the dependent variable. The collinearities of the three miRNAs in predicting the cluster were evaluated with the variance infla-

tion factor (VIF). VIF values >5 were determined to indicate high collinearity.

The specificity of the three miRNAs previously mentioned was assessed using IsomiRdb datasets. These datasets were down-

loaded and re-analyzed to validatemiRNAs expression in 99 cell types. Samplemetadata andmiRNAs expression (Reads PerMillion)

files were retrieved from IsomiRdb59 and re-analysed using a multi-step filtering approach.

Firstly, metadata information was used to select sequencing data derived from healthy donors and primary cell studies. Initially,

only sources derived from the Sequence Read Archive (SRA) [105] in which cell origin is present were retained. From the remaining

dataset, external IDs were used to collect study titles and attributes from NCBI (https://www.ncbi.nlm.nih.gov/). Additional filters

were applied to these attributes to produce the final metadata containing 396 small RNA sequencing runs derived from 99 cell types.

After these filtering steps, the mean expression of each miRNA among cell types was estimated, and Z-scores were calculated.

Principal Component Analysis (PCA) was performed using the prcomp function from the stats package in R. Normalized expres-

sion data were scaled either by log2 or Z-scores transformation for the analyses. Statistical analyses were performed using R project

(version 4.2.2) or GraphPad Prism 10.0.
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