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A B S T R A C T   

Nanomaterials have revolutionized the design of the detection strategies, and nowadays nanoparticles are 
extensively employed in innovative assays for the selective and sensitive detection of a large variety of analytes. 
Recently, a new nanomaterials category, namely nanoclusters (NCs), is rapidly emerging. These nanostructures 
offer great advantages in terms of stability and ease of fabrication. The increasing interest in NCs applications, 
well represented by the wide bibliography reporting on gold and silver NCs, opens new perspectives for copper 
nanoclusters (CuNCs). Compared to noble metals, CuNCs not only are more easily available and inexpensive, but 
also display unique photoluminescent properties with large Stokes shifts, low toxicity, and high biocompatibility, 
providing high sensitivity even in complex biological matrices. In this review, we present some relevant aspects 
in the application of CuNCs to various detection strategies, reporting the main features that define the most 
interesting CuNCs properties, focusing on CuNCs as a promising functional nanomaterial for the development of 
innovative fluorescent-based platforms.   

1. Introduction 

There is a need in bioanalytical chemistry of simple, easy, sensitive, 
and inexpensive assays. In the last years, nanomaterials have been used 
to improve bioassays’ analytical performances, mainly in terms of 
detection limits. Metal or carbon nanostructures have been applied to 
Surface Plasmon Resonance (SPR) coupled to nucleic acids or protein 
based biosensing [1,2] or used in fluorescent-based measurements such 
as quantum dots (QDs). Recently, a new category of nanomaterials, 
namely nanoclusters (NCs), is rapidly attracting the interest of bio-
analytical chemists for the important fluorescence features applied to 
the development of bioassays. 

Metal nanoclusters (MNCs) are exciting and versatile nanomaterials 
with intermediate properties between isolated metal atoms and metal 
nanoparticles (MNPs). To date, the majority of the sensing strategies 
based on MNCs exploit noble metals, e.g., silver (AgNCs) [3] and gold 
(AuNCs) [4]. 

Thanks to their low toxicity and high biocompatibility, in the last 
decade, copper nanoclusters (CuNCs) were successful used in biomed-
ical and biological fields for in vitro and in vivo applications [5–8], 
including molecular diagnostics, nanotheranostic, and environmental 
analysis. Furthermore, copper is less expensive and more accessible on 

earth than noble metals, positively impacting on NCs-based systems 
development. CuNCs appear as excellent substitutes of QDs and organic 
dyes, thanks to high quantum yield (QY), photostability [9], and large 
Stokes shifts [10]. The outstanding fluorescence and catalysis features of 
CuNCs are size-dependent [11], limited by definition to few-to-tens 
atoms, and diameters within 1 nm, leading to a quantum-like behavior 
with discrete HOMO-LUMO electronic transitions [12]. 

The first reports on the formation of fluorescent CuNCs nanoclusters 
were proposed in 1998 by Zaho et al. [13,14]. They used a class of 
monodisperse polymeric macromolecular compounds (dendrimers) as 
templates triggering metal ion reduction which stabilize formed metal 
clusters, avoiding their aggregation [15]. Other useful templates are 
nucleic acids [16], proteins [17], peptides [18], and small molecules 
[19], which reduce copper ions and inhibit the formation of aggregates 
by steric hindrance [20]. CuNCs were used as sensing probes (enhancing 
or quenching their fluorescence) to achieve the high-sensitive determi-
nation of small and macromolecules even in complex real matrices. First 
studies reported the Pb2+ ions  detection by using BSA as template for 
copper clustering and CuNCs fluorescence quenching to reveal Pb2+

presence in solution [21]. Since then, CuNCs were used for 
quali-quantitative molecular targets’ analysis [22–26], pH determina-
tion [27–30], or biological imaging [31–33]. The coupling of CuNCs 
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with a biological recognition element, enabled the development of 
fluorescence-based platforms characterized by good detection range and 
detection limit, great stability, and selectivity, which are of great 
importance in bioanalysis to develop simple and ultrasensitive strategies 
for biomolecular targets. In this framework, the use of peptides, proteins 
[34], single (ssDNA), double stranded (dsDNA) [35], and hairpins DNA 
[36], has been reported [37]. 

This review firstly describes the general synthetic strategies of 
CuNCs, then it summarizes the CuNCs-based platform focusing on nu-
cleotides-based CuNCs applied to sensing strategies [38,39] in a 
framework of easy-to-use, portable, and low-cost devices. Differently 
from interesting published reviews [38–43], we will distinguish be-
tween homogeneous (in solution) and heterogeneous (e.g., lateral flow 
strips) assays, preserving the definition of sensors and biosensors to 
devices where a transducer is coupled to a biological receptor immobi-
lized on the surface, including electrodes, planar waveguides, optic fi-
bers, quartz crystals, for electrochemical, optical, and gravimetric based 
sensing. 

2. Synthesis and features of CuNCs 

2.1. Experimental parameters that influence fluorescence of CuNCs 

The fluorescent properties of CuNCs depend on their nanometric 
dimensions (Fig. 1) and, similarly to NPs, can be tuned by playing on the 
synthesis conditions (metal and template concentration/type, reducing 
agent, solvent, pH, temperature, growth time, etc.), generating atomi-
cally precise entities [44]. The emission energy (Eg) of CuNCs depends 
on Fermi energy of the bulk metal (Efermi) and the number of atoms in 
single clusters (n), according to equation Eg=Efermi/n1/3 [44,45], with 
the emission wavelengths (λ) spanning from the visible to the 
near-infrared (NIR) region. Consequently, NCs represent a link between 
optical properties of a single atom, with discrete electronic transitions 
between the occupied d bands and the Fermi level, and those of nano-
particles, exhibiting localized surface plasmon resonance (LSPR) 
[46–50]. The core size is directly proportional to the quantity of the 
reducing agent used during the synthesis but inversely proportional to 
fluorescence intensity. In particular, fluorescence is limited to NCs with 
less than ten copper atoms that can be obtained using very low per-
centages of reducing agent with respect to stoichiometric amount of 
copper (α < 0.1) [51]. 

Coordination of ligands to the metal core [52] and pH influence both 
the photoluminescence (PL) of the CuNCs. In particular, electron-rich or 
electron donor groups, like -SH, –COOH, -NH2 and –OH, increase the 
emission intensity and fluorescence lifetime of CuNCs [53,54]. 

Moreover, pH changes lead to CuNCs emission and excitation peaks 
shifts due to protonation/deprotonation mechanisms [55], inducing 
aggregation, emission enhancement, and impacting on CuNCs growth 
[56]. For example, alkaline pH favors disulfide bonds breaking within 
the protein scaffold, stabilizing CuNCs by thiol groups coordination 
[57]. Thanks to the CuNCs pH sensibility, pH sensors are reported 
[58–61] in the range from 2.0 to 13.2. 

Solvents also influence CuCNs PL spectra, due to interactions among 
the ground state, the excited state, and solvent molecules [62,63]. In 
particular, CuNCs fluorescence spectra show lower number of peaks and 
greater Stokes shift in solvents with higher polarity [64], but the fluo-
rescent emission intensity is higher when CuNCs are dispersed in sol-
vents with lower polarity [65]. 

2.2. Synthetic strategies of copper nanoclusters 

Top-down and bottom-up approaches are leading strategies to obtain 
photoluminescent CuNCs (Fig. 2). Top-down synthesis is based on 
CuNPs resizing to obtain smaller CuNCs; this approach is very laborious 
[66,67] while the bottom-up one, simple and mostly used, involves the 
reduction of metal atoms, followed by their aggregation into clusters, 
often in presence of a stabilizing agent. Different procedures including 
electrochemical [68], sonochemical [69], photo-reduction [70], 
microwave-assisted [32], and template-based synthesis [71] are used in 
the bottom-up approach. In electrochemical methods, an anode is used 
as the metal ions source that are reduced at the cathodic surface to metal 
atoms forming aggregates or nanoclusters stabilized by using surfactants 
[72]. The sonochemical method is a green and easy synthetic method, 
exploiting ultrasounds derived from acoustic cavitation [73]. Its limi-
tation is the low quantity of metal atoms obtained, which impairs the 
following nanoclusters’ growth. In photo-reduction synthesis, the pro-
duction of NCs is induced directly by UV radiation [70]. The 
microwave-assisted method produces rapid CuNCs crystallization due to 
homogenous and fast heating [72]. The most used approach is the 
template-assisted one, allowing a facile, fast, cheap, and green synthesis 
of nanoclusters by using a template to control the kinetics of copper ions 
reduction, tuning CuCNs size and shape, and preventing their aggrega-
tion [74]. Micro and macromolecules like polymers, oligonucleotides, 
proteins, peptides, and small molecules have been adopted as scaffolds 
to induce the controlled nucleation of copper nanoclusters as detailed in 
the following paragraphs. 

2.2.1. Nucleotide sequences as templates 
Copper ions interact with nucleotide bases through the coordination 

of the negatively charged phosphodiester backbone [75]. The length and 

Fig. 1. The influence of the reducing agent-to-copper ratio (α) on CuNCs size (n) and absorption band (λ). Size changes proportionally with α values, whereas 
photoluminescence is observed when the number of atoms (n) is smaller than 10. The estimated wavelengths (λ) for each cluster and the trend of potential energy are 
reported [51]. 
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the nucleic acid sequence of the dsDNA template strongly influence the 
CuNCs synthesis and photoluminescence properties [41]. Firstly, 
random dsDNA was initially exploited for the CuNCs synthesis. Subse-
quently, it was noticed that a remarkable fluorescent signal improve-
ment was obtained by using polyT ssDNA or poly(AT-TA) dsDNA, where 
adenine and thymine represent the nucleation site for reduction of Cu(II) 
to Cu(0) and its clustering to CuNCs. This mechanism is impaired by 
adopting cytosine and guanine rich sequences likely due to strong cop-
per complexation that could limit copper reduction. Summarizing, 
ssDNA containing poly(thymine) sequences [76–78], dsDNA with 
AT-rich domains, as well as long oligonucleotide sequences [79,80], in 
presence of a reducing agent (usually ascorbic acid), favor the formation 
of high fluorescent CuNCs with an excitation wavelength at 340 nm and 
an emission peak around at 600 nm. Beside the stabilizing effect and its 
influence on the CuNCs photoluminescent properties, nucleotide se-
quences may also possess specific molecular recognition ability, that can 
be exploited in solution assays to selectively bind different analytes [81, 
82], like for the aptamers that are nucleic acid sequences (DNA or RNA) 
able to bind a target molecule [83,84]. They are obtained in vitro after a 
selection process by exponential enrichment (SELEX) or non-SELEX 
approaches [85,86]. DNA is a privileged scaffold for the synthesis of 
CuNCs also because it can be used for a rapid detection of genetic 
alteration [87], differently from classic genetic tests that usually require 
long analysis time [88]. 

2.2.2. Proteins and peptides as templates 
Proteins and peptides are often used as templates for building stable 

and biocompatible CuNCs, requiring mild conditions for the synthesis 
[89,90]. They contain several functional groups, like amine-, thiol- and 
carboxyl groups, which initiate the complexation through electrostatic 
forces. Amine- and carboxyl groups coordinate copper ions while thiol 
groups contribute to the reduction and stabilization of CuNCs. Thus, the 
diversity of the amino acid sequence affects the final CuNCs properties. 
A conventional protein-CuNCs synthesis implies the use of various ad-
ditives that alter the protein structure by breaking the disulfide bonds, 
like dithiothreitol (DTT) [91], H2O2 [92], hydrazine hydrate [93], and 
NaOH [94]. So far, different protein templates have been explored to 
synthesize luminescent CuNCs. For instance, bovine serum albumin 
(BSA) leads to high QY fluorescent CuNCs [81,82,95]. Bustos et al. 
produced blue emitting CuNCs (610 nm) with high photostability with a 

decrease of only 15% in emission signal after 50 min [82]. Other pro-
teins, such as human serum albumin (HSA) [96,97], lysozyme [98,99], 
ovalbumin [100], papain [101,102], transferrin [103] and trypsin [60] 
have been also applied as templates for CuNCs production. Although 
proteins are preferred as templates for the presence of multiple active 
sites that favor the reduction and the accumulation of copper ions pro-
moting the CuNCs growth, few studies report the use of peptides as 
template [104,105]. For example, Tang and co-workers prepared stable 
and well water-dispersed CuNCs by reducing copper chloride with 
ascorbic acid in the presence of a short peptide template 
Cys-Cys-Cys-Asp-Leu, highlighting the importance of CuCl2-to-peptide 
molar ratio (1:4) in the formation of CuNCs [104]. 

2.2.3. Polymers as templates 
Dendrimers, i.e., highly ordered branched polymers with different 

size and the chemical structure, are the most exploited templates to 
produce very stable CuNCs [13,106]. Polyvinyl pyrrolidone 
(PVP)-CuNCs were applied to develop a FRET-based assay in solution 
(named sensor) for the micromolar detection of glutathione (GSH) in 
human serum with performances comparable to HPLC [107]. Poly-
ethyleneimine (PEI) was also used as scaffold for facile one-pot synthesis 
of water soluble CuNCs applied to Fe2+ detection in tap, river water, and 
urine, with very good analytical performances, i.e., micromolar level 
concentration and 100% recovery [108]. Furthemore, CuNCs were 
incorporated into composite polymer films by reduction of copper ions 
in a hydrogel network with 30% QY, opening to possible applications in 
heterogeneous phase assays/sensors [109]. 

2.2.4. Small molecules as templates 
Small molecules, containing thiolates and carboxylates groups, like 

glutathione (GSH) and cysteine, act as reducing, protecting, and capping 
agents to stabilize CuNCs through to a facile one-step green synthetic 
approach [110–114]. Glutathione was exploited also for its ability to 
coordinate metal cations like aluminum ions that guide the 
self-assembly of nanoclusters resulting in the formation of CuNCs with 
controllable size and retained bright luminescence in neutral conditions 
[115,116]. Many authors took advantage of the easy and cheap syn-
thesis of copper nanoclusters by using small molecules as template 
[117–120]. Additional small molecules like 4-methylthiophenol and 
4-chlorothiophenol were also applied to synthesize CuNCs able to 

Fig. 2. Synthetic strategies of copper nanoclusters.  
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sensitively detect different kinds of target molecules like tetracycline 
(LOD 40 nM) [121]. 

3. CuNCs-based detection strategies 

CuNCs were exploited as sensing probes in solution since they are 
able to detect different types of targets, from ions to macromolecules (i. 
e., proteins, DNA, enzyme, etc.) [122]. Numerous publications are 
related to the integration of noble metal nanomaterials in bioanalytical 
assays development [123–126], leading to remarkable improvement in 
bio-detection processes. 

Generally, an efficient detection system should be characterized by 
the following properties: stability, selectivity towards the analyte, 
reproducibility, desired sensitivity, a null or minimal sample pre- 
treatment. Moreover, to ensure the development of a potential com-
mercial device, the assay should be simple, cheap, and able to perform 

rapid analysis making it suitable as a point-of-care (POC) test 
[127–129]. 

Copper nanoclusters employed as signal transducers in “sensors” 
design lead great advantages in the assay performance, such as high 
selectivity, sensitivity, low detection limits, and wide detection range. 
Typically, when the bioreceptor is associated with CuNCs, the binding 
event leads to a fluorescence signal variation depending on analyte 
concentration [130–132]. 

In the following sections, different types of detection strategies 
combined with CuNCs are reported, with the focus on oligonucleotide 
sequences as bioreceptors both in solution and in heterogeneous assays. 
Nucleic acids are employed for CuNCs growth and may hybridize or not 
the complementary DNA sequences. Alternatively, NAs act as synthetic 
biomimetic receptors i.e., aptamers, binding different analytes (both 
small and macromolecules), leading to several detecting strategies. The 
nucleic acids-, proteins-, and immuno-based approaches will be 

Table 1 
DNA-based detection strategies for CuNCs-based assays.  

Template Target Technique Read 
out 

Sample Linear 
range 

LOD QY Refs. 

dsDNA miRNAs *340/608 nm Turn- 
on 

- 1.0 pM–10.0 
nM 

1 pm - [134] 

polyT DNA miRNA21 *340/605 nm Turn- 
on 

Cancer cells 50 pM – 1 nM 18.7 pM - [135] 

hp-DNA miRNA155 *400/510 Turn- 
on 

Human serum, saliva, plasma, MCF-7, fibroblast 5.0 pM − 10.0 
nM 

2.2 pM - [136] 

AT-rich 
dsDNA 

miRNAs *340/580 nm Turn- 
on 

Urine - 500 fM - [137] 

dsDNA T4 PNKP *340/570 nm Turn- 
off 

HeLa cells 0.07–15.0 U 
mL 

60 U L 3.4 % [155] 

AT-rich 
dsDNA 

MNase *340/570 nm Turn- 
off 

- 1.0–50 U L 1.0 U L - [142] 

dsDNA ExoIII *345/610 nm Turn- 
off 

- - - - [168] 

hpDNA S1 nuclease *490/660 nm Turn- 
on 

- 5.0–8.0 U L 3.0 U L - [36] 

AT-rich 
dsDNA 

EcoRI *340/575 nm Turn- 
off 

- 2.0 − 100 U mL 0.87 U 
mL 

- [79] 

polyT DNA UDG *345/650 nm Turn- 
on 

HeLa Cells 0.05–2.0 U L− 1 0.002 U 
L− 1 

- [143] 

polyT DNA UDG *340/602 nm Turn- 
on 

HeLa Cells 0.1–10 U L 0.05 U 
L− 1 

- [144] 

AT-rich 
dsDNA 

UDG *340/570 nm Turn- 
off 

HeLa Cells 1.0 – 100 U L 0.5 U L− 1 0.039 [145] 

AT-rich 
dsDNA 

Dam MTase *340/590 nm Turn- 
off 

Human Serum 0.5–10.0 U mL 0.5 U mL - [146] 

AT-rich 
dsDNA 

TdT *340/570 nm Turn- 
on 

Leukemia cells 0.7–14.0 U mL 60.0 mU 
L− 1 

0.112 [147] 

dsDNA SNP *344/593 nm Turn- 
on 

- - - - [138] 

polyT DNA SMN1 *340/500 nm Turn- 
on 

Clinical samples - - - [139] 

dsDNA Abasic sites *340/585 nm Turn- 
off 

Linear plasmid, onion and HeLa Cells - - - [140] 

Nucleosides Nucleosides *300/380 nm Turn- 
on 

- - - 0.27–1.34% [141] 

Nanowire- 
DNA 

TdT and 
BamH1 

Electrochemical Turn- 
on 

Human serum and urine 0.5 − 160 U 
mL− 1 (TdT); 
2 × 10− 2 − 30 
U mL− 1 

(BamH1) 

100 U L− 1 

(TdT); 4 
U L− 1 

(BamH1) 

- [156] 

AT-rich 
dsDNA 

miRNA21 ECL Turn- 
on 

Human breast cancer cells (MCF-7) and human 
cervical cancer cells (Hela) 

100 aM–100 
pM 

16.05 aM - [157] 

AT-rich 
dsDNA 

miRNA155 ECL Turn- 
on 

Human serum 100 aM– 100 
pM 

36aM - [158] 

polyT-DNA miRNA155 Colorimetric Turn- 
off 

Human plasma 1.0 pM to 10.0 
nM 

0.6 pM - [159] 

dsDNA HBV DNA Colorimetric Turn- 
on 

Human serum 12 × 109–12 ×
1013 

DNA molecules 

12 × 109 

DNA 
molecules 

- [160] 

polyT-DNA DNA SPR Turn- 
on 

- - 3.21 
fM 

- [163]  

* Fluorescence (λex/λem) 
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discussed with the focus in real matrices detection, when available in the 
literature. 

The CuNCs-based solution assays/sensors are reported in three tables 
and three paragraphs to differentiate DNA- (Table 1, paragraph 3.1), 
aptamer- (Table 2, paragraph 3.3), and immuno-based (Table 3, para-
graph 3.3) detection strategies, i.e., defining the probe used for the 
biorecognition of the target molecule. Within each table and detection 
strategy, the assays are classified according to the template used for 
copper reduction and CuCNs generation, the target molecule, the 
analytical technique used for signal transduction, the turn-on/turn-off 
read out, the kind of sample, and the analytical parameters, i.e., the 
linear range for the detection of the analyte, the limit of detection (LOD), 
and the QY for fluorescent probes only. 

3.1. DNA-based detection strategies 

3.1.1. Fluorescent detection of oligonucleotides 
One of the most used biorecognition elements in sensing strategies 

are nucleic acids, in particular, single stranded DNA [133]. In the case of 
CuNCs, DNA sequences have a dual role. They act as template and 
molecular probe at the same time, stabilizing NCs and selectively 
binding the analyte. The recognition mechanism involves affinity 
interaction, hybridization between the probe and complementary se-
quences or, as in the case of aptamers, Van der Waals, hydrogen 
bonding, and electrostatic interactions, without hybridization. The 
crucial role of miRNAs in the regulation of gene expression and, 
consequently, their association with several diseases, prompted the 
development of CuNCs-based assays. The pioneering work from Ye’s 
group reported the miRNA detection via an isothermal enzymatic re-
action [134], using an amplified template to generate a dsDNA as 
scaffold for the synthesis of fluorescent CuNCs, showing a detection 
range from 1 pM to 10 nM (Fig. 3A). Subsequently, similar assays were 
proposed [134–137]. In particular, miRNA21 was determined in cancer 
cells by using a duplex-specific nuclease (DSN). When miRNA binds the 
DNA probe, the DSN digests the DNA sequence, releasing an oligonu-
cleotide that forms a long polyT acting as scaffold for the synthesis of 
high fluorescent CuNCs [135] (Fig. 3B). DNA-CuNCs are also employed 
to identify single nucleotide polymorphisms (SNPs) [138], or nucleotide 
variants [139–141], linked to diseases and drug responses. For example, 
Chen and coworkers [139] used luminescent polyT (DNA)-CuNCs to 
identify the Survival Motor Neuron genes SMN1 involved in spinal 
muscular atrophy, observing fluorescence in 65 DNA clinical samples 
containing the SMN1 gene. This approach could be exported to other 
SNPs or nucleotide variants by designing suitable sensing probes 
(Fig. 3C). 

3.1.2. Fluorescent detection of enzymes and small molecules 
DNA-CuNCs based assays are also applied to detect enzymes and 

their activity. Recently, Zhang and coworkers designed a fluorimetric 
method to detect the activity of the T4 polynucleotide kinase 

phosphatase (PNKP) by using a short phosphorylated DNA (pDNA) 
strand, and a long-dephosphorylated DNA (dsDNA) as complementary 
probes [119]. When PNKP is present, pDNA undergoes dephosphoryla-
tion and the dsDNA thus operates as template for CuNCs growth 
(Fig. 3D). Several research groups adopted similar strategies to develop 
different DNA-based bioassays for micrococcal nuclease [142], exonu-
clease III [141], S1 nuclease [36], endonuclease EcoRI [79], Uracil-DNA 
Glycosylase (UDG) [143–145] and transferase [146,147]. Details rela-
tive to LODs and detection ranges of the cited assays are reported in 
Table 1. 

Finally, DNA is also employed as an indirect probe to detect ions [80, 
148], or small molecules [149–154]. In these cases, the fluorescent 
signal could be the result of:  

- Interaction between copper ions and small molecules;  
- Electron transfer effect between copper ions and the detected target;  
- Oxidation of CuNCs;  
- Binding between the small molecule and the DNA template, resulting 

in CuNCs formation;  
- Binding between the small molecule and the DNA template which 

leads to DNA destruction, avoiding CuNCs growth. 

3.1.3. Electrochemical and electro-chemiluminescence detection strategies 
Most CuNCs-based detection strategies exploit their PL properties for 

direct analyte detection. However, alternative analytical electro-
chemical and electrochemiluminescent (ECL) methods have been pro-
posed [156–160] also because of low fabrication costs, simple and 
low-cost experimental setup, as well as high sensitivity and selectivity. 
ECL is a kind of luminescence produced by an electrochemically 
generated intermediates, and the absence of a light source dramatically 
reduces the background signal from scattered light and luminescent 
impurities [161]. In this context, Hu et al. reported a CuNCs DNA-based 
electrochemical sensor to determine the enzymatic activity of terminal 
deoxynucleotidyl transferase (TdT) that catalyzes the growth of long 
T-rich DNA nanowires, here used as CuNCs template, further attached to 
a graphene oxide (GO)-modified electrode where occurs the H2O2 
reduction, with an electrochemical signal proportional to the TdT 
amount (LOD = 0.1 U mL− 1, detection range: 0.5–160 U mL− 1) [156]. 
The same strategy has been applied to test BamH1 activity, an 
site-specific endonuclease employed to detect hepatitis C virus (LOD =
0.004 U mL− 1, detection range: 0.02–30 U mL− 1 [156]). 

Different sensing mechanisms based on ECL were designed [157, 
158]. For example, miRNA21 was detected within an excellent con-
cetration range 100 aM - 100 pM, with the ultrasensitive detection limit 
of 19 aM [157]. The same range and a LOD of 36 aM was obtained for 
microRNA-155 detection by using an innovative DNA probe (DNA 
nanocranes) stabilized by an AT-rich domain [158] (Fig. 4A). 

3.1.4. Colorimetric detection strategies 
Simple colorimetric assays for NA detection are also reported, 

Table 2 
Aptamer-based detection strategies for CuNCs-based assays.  

Template Target Technique Read out Sample Linear range LOD QY Refs. 

DNA ATP and ADA *460/580 nm Turn-on (ATP), Turn-off 
(ADA) 

Fetal bovine 
serum 

2–18 mM (ATP); 5–50 U L− 1 

(ADA) 
7.0 μM (ATP); 
5 U L− 1 

(ADA) 

- [170] 

dsDNA MC-LR *34/575 nm Turn-off Water 0.01–1000 mg L− 1 4.8 ng L− 1 - [174] 
polyT-DNA VEGF165 *332/393 

*463/524 nm 
Turn-on Human serum 10–800 pM 12 pM 0.082 [175] 

PDANS PKA *390/492 nm Turn-off HepG2 
cell lysates 

0.05–4.5 U mL− 1 0.021 U mL− 1 1.24% [172] 

dsDNA PKA *345/595 nm Turn-off HepG2 
cell lysates 

0.1–5.0 U mL− 1 0.039 U 
mL− 1. 

- [177] 

dsDNA ATP *340/598 nm Turn-on - 0.01 nM - 100 nM 5 pM - [171] 
Y-DNA miRNA21 Electrochemical Turn-on Human blood 0 pM-0.1fM 10 aM - [176]  

* Fluorescence (λex/λem). 
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employing CuNCs DNA platforms [91,160,162,163]. Borghei and 
co-workers developed a colorimetric assay based on methylene blue 
(MB) to detect a cancer biomarker miRNA-155 in solution. In detail, 
polyT-DNA was used for CuNCs synthesis, exhibiting an enzyme-like 
peroxidase activity (Fig. 4B). After miRNA-155 incubation, the com-
plementary sequence on DNA-CuNCs hybridizes miRNA sequences and 
CuNCs catalyze the oxidation of the methylene blue [159]. Increasing 
the miRNA concentration, the absorbance of MB decreases with a dy-
namic range from 1.0 pM to 10.0 nM with a LOD equal to 0.6 pM. 

Application to the detection in human blood plasma resulted in excellent 
recovery (99%). This offers an interesting application in clinical di-
agnostics since miRNA-155 amount can be related to cancer stage and 
expression, increasing with advancing cancer stage. The use of MB is not 
new in DNA sensing, since it has been widely and successfully reported 
coupled to electrochemical transduction [164], but reinforces the CuNCs 
applicability to companion diagnostics. 

Virus detection has also been successfully achieved by an inexpen-
sive colorimetric heterogeneous assay to identify Hepatitis B virus 

Table 3 
Immunoassay-based detection strategies for CuNCs-based assays.  

Template Target Technique Read out Sample Linear range LOD QY Refs. 

- HIV-1 p24 *394/598 nm Turn-on Human plasma 27–1000 ng L− 1 23.8 ng L− 1 - [178] 
BSA PKA Electrochemical Turn-on Human serum 0.5 ng L- 100 ug L 146 pg L - [179] 
- LSR PEC-Colorimetric Turn-off Human serum 1 pg L− 1–10 ug L− 1 1 pg L− 1 - [180] 
dsDNA ALP *340/575 nm Turn-on Human serum 0.04–100 U L− 1 7.0 ng L− 1 - [181] 
DNA PSA PEC Turn-off Human serum 0.02–100 ug L− 1 5.0 ng L− 1 - [182] 
DNA MM-7 Potentiometric Turn-on Human serum 0.02–100 ug L− 1 5.3 ng L− 1 - [184] 
- hc-TnT PEC Turn-off Human serum 0.1 to 2 ng L 0.03 ng L - [183]  

* Fluorescence (λex/λem). 

Fig. 3. Schematic illustration of CuNCs DNA-based assays for: (A) miRNA detection according to the assay strategy proposed by Ye’s group, reprinted from Ref. [134] 
with permission of Royal Society of Chemistry; (B) miRNA detection according to the assay strategy proposed by Li’s group, reprinted from Ref. [135] with 
permission of Elsevier B.V.; (C) enzymes detection according to the assay strategy proposed by Zhang and co-workers, reprinted from Ref. [155] with permission of 
Springer Nature; (D) nucleotide variants detection according to the assay strategy proposed by Chen and co-workers, reprinted from Ref. [139] with permission of 
Elsevier B.V. 
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(HBV) by naked eye [160], with possible use in remote areas. In this 
strategy, a ssDNA probe is immobilized on the surface of a 96-well plate, 
hybridizing the complementary HBV NA, if present. The resulting 
dsDNA acts as a CuNCs template. To reveal the hybridization by naked 
eye, a chromogen is necessary. Thus, simple and cheap reagents leading 
to ox-red reactions, with final color development, are further added to 
the mixture:  

(1) creatinine with the consequent formation of a copper-creatinine 
complex  

(2) Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium 
salt (ABTS used as substrate)  

(3) H2O2 

The copper-creatinine complex shows peroxidase-like enzyme 
properties converting H2O2 into H2O and ABTS into its oxidized form 
[160]. Different concentrations of HBV DNA led to different degrees of 
ABTS oxidation reaction and, consequently, different green color gra-
dations. This assay was applied also to explore single nucleotide poly-
morphism (SNP) analysis, in which, in case of SNP presence, decreased 
color intensity versus wild type DNA, can be observed. The possibility to 
analyze the presence of the target sequence, wild type or mismatched 
(SNP), in the sample by naked eye and using very simple chemistry, 
represents an important possibility for bioanalytical applications in situ, 
in remote and/or disadvantaged places of the planet. 

3.1.5. Surface Plasmon resonance (SPR) 
SPR spectroscopy was explored in combination with CuCNs [163] to 

achieve ultrasensitive NA detection in real samples [165–167] (i.e., 
human blood), including SNP detection. An interesting approach is re-
ported by Yuan et al. dealing with the CuCNs synthesis on dsDNA formed 
at the SPR gold chip surface, followed by target NA extension by ter-
minal deoxynucleotidyl transferase. Here, TdT-mediated prolongation 
reaction was activated onto the dsDNA modified gold chip, originating 
an origami scaffold for CuCNs synthesis and precipitation by addition of 
ascorbic acid, leading to an ultrasensitive determination of 
femtomolar-level nucleic acid [163]. 

3.2. Aptamer-based detection strategies 

3.2.1. Fluorescence detection 
Another important class of oligonucleotide-based sensing strategy 

exploits aptamers as a biorecognition element, where the aptamers are 
short ssDNA or ssRNA sequences able to recognize a specific target 
[169]. The aptamer-target recognition is independent from both the 
detection principle and signal transduction that can be optical (e.g., 
fluorometric, colorimetric, plasmonic, etc.), electrochemical, or 

piezoelectric. Conventional fluorescent aptamer-based platforms (not 
employing CuNCs) use a fluorophore and a quencher label to produce a 
Förster resonance energy transfer (FRET) event in which a fluorophore 
(the donor), in an excited state, transfers its energy to a neighboring 
molecule (the acceptor) by nonradiative dipole-dipole interaction. 
Although not necessary, in most cases the acceptor is also a fluorescent 
dye. In biological applications, this technique has become popular to 
qualitatively map protein-protein interactions. 

In aptamer-based assays, the presence of the target triggers a change 
in the aptamer conformation, corresponding to a distancing between 
fluorophore and quencher and, in turn, a fluorescent response. FRET 
technique has been extensively investigated, however presents some 
limitations such as low fluorescent signal, due to an overlap between 
donor emission and acceptor excitation spectra, leading to low quantum 
yield and low sensitivity, high background due to an incomplete 
quenching phenomenon, and high cost of the labeled aptamer. These 
drawbacks encourage the design of new aptamer-based platforms, 
where CuNCs are exploited as fluorescent probes and the DNA aptamer 
acts both as template and bioreceptor. Currently, Zhang and Wei 
developed a ‘turn-on’ fluorescent method based on DNA-templated 
copper/silver nanoclusters (DNA-Cu/Ag NCs) for the detection of ATP 
(adenosine triphosphate) and the enzyme ADA (adenosine deaminase) 
[170], involved in the purine metabolism, playing a central role in the 
differentiation and maturation of the lymphoid system. The aptamer 
sequence is inserted in the middle of the DNA template (Fig. 5A). When 
the aptamer binds ATP or ADA, it changes its conformation, and, 
consequently, DNA-Cu/Ag NCs get closer, becoming bright emitters. 
This approach, in standard solutions, showed a linear range of 2–18 mM 
and of 5 to 50 U L− 1 with 7.0 μM and 5 U L− 1as LOD, respectively for 
ATP and ADA. Furthermore, the approach succeeded also in detecting 
ATP and ADA in a complex matrix, i.e., fetal bovine serum, opening new 
perspective for a real applicability of this strategy. This aptamer-based 
“turn-on” fluorescent assay combined with Cu and Ag and nano-
clusters is the only example found so far, including silver. 

ATP detection has been achieved also by a fluorescent aptasensor, 
where the structural switch induced by the affinity ATP binding leads to 
the aptamer harpin open conformation. This results in a primer hy-
bridization which drives a target-cycling strand displacement amplifi-
cation (TCSDA). As a result, a large quantity of dsDNA is produced, 
acting as template for CuNCs growth with high fluorescent signal [171]. 
Relatively to enzymatic activity testing a FRET-based assay for Protein 
Kinase (PKA) is also reported. In this case, an aptamer-based “in solu-
tion” assay/sensor utilizing CuNCs and polydopamine nanospheres 
(PDANS) was employed [172]. The ATP- CuNCs aptamer (apt-CuNCs) 
was adsorbed onto PDANS surface. The ox/red event regulates the signal 
generation. Here the donor apt-CuNCs is in close proximity to the 
acceptor polydopamine (PDANS), leading to apt-CuNCs fluorescence 

Fig. 4. Schematic illustration of CuNCs DNA-based (A) electrochemiluminescence (ECL) platform according to the assay strategy proposed by Zhou et al. reprinted 
from Ref. [158] with permission of American Chemical Society (C) colorimetric platform according to the assay strategy proposed by Borghei et al. reprinted from 
Ref. [159] with permission of Elsevier B.V. 
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quenching. 
In the case of toxic molecules analysis, an assay targeting micro-

cystins is reported. Microcystins are toxins produced by cyanobacteria 
with microcystin-leucine arginine (MC-LR) [173]. Zhang et al. designed 
an aptamer-CuCNs assay selective for MC-LR. The aptamer is also 
designed to hybridize the complementary DNA sequence (cDNA) which 
acts as template for CuCNs growth (dsDNA-CuNCs) (Fig. 5B) [174]. 
After MC-LR addition, the affinity interaction aptamer-target leads to 
aptamer conformational changes resulting in DNA hybrid (dsDNA/-
CuNCs) opening, with CuCNs fluorescence quenching. MC-LR detection 
in 0.01 to 1000 mg L− 1 concentration level, with 4.8 ng L− 1 as LOD in 
real water samples is reported. 

Relatively to protein detection, Vascular Endothelial Growth Factor 
(VEGF) was quantified via a “signal-on” fluorescent method, based on 

bivalent aptamer-CuNCs (Fig. 5C) [165]. A multimerized VEGF aptamer 
works as template for CuCNs growth. VEGF detection is successfully 
achieved in the 10–800 pM linear range with a LOD of 12 pM. The 
selectivity and specificity assessment displayed high discriminant 
capability in serum samples. This strategy is based on a previous work 
conducted by the same research group, in which graphene dioxide and 
dsDNA were employed [167]. 

3.2.2. Electrochemical detection 
miRNA21 detection has been reported also with electrochemical 

techniques [176]. Here NA sequences are immobilized on a gold elec-
trode (GE), and the analysis is performed by differential pulse stripping 
voltammetry (DPSV) [176], by detecting the Cu2+ ion of dissolved and 
stripped CuNCs. miRNA21, as already underlined, is a very interesting 

Fig. 5. Schematic illustration of CuNCs-aptamer based detection strategies (A) according to the assay strategy proposed by Zhang and Wei, reprinted from Ref. [170] 
with permission of Springer Nature. (B) according to the assay strategy proposed by Yanli Zhang’s group, reprinted from Ref. [174] with permission of Elsevier B.V. 
(C) according to the assay strategy proposed by Moghadam’s group, reprinted from Ref. [175] with permission of Elsevier B.V. 

Fig. 6. Schematic illustration of CuNCs aptamer-based electrochemical platform according to the assay strategy proposed by Yijia Wang’s research group. This 
reported detection strategy consists in a multi-steps assay. First, sequence A and B are mixed together to form a duplex DNA. Thus, in this first step A and B are 
hybridized. Then, it was added MIR21 that lead a displacement between A and B. At this point, EXO T7 degrades A and the fragment binds MIR21 forming a hybrid 
sequence. Instead, sequence B contributes to the Y-shaped DNA with capture 1 and capture 2 on the electrode. Once obtained the final arrangement of the detection 
strategy, the Y-shaped branched DNA was used as template for CuNCs synthesis to finally detect MIR21 through oxidation peak current of copper by using DPSV 
techniques. From Ref. [176], with permission of Elsevier B.V. 
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target, upregulated in many pathological conditions including cancer 
and cardiovascular diseases. The approach proposes the fast (in 3 min) 
and precise in situ growth of CuNCs on tree-like overlapping and 
branching Y shaped dsDNA on the electrode surface [176], with the 
advantage of being time-saving and allowing controlled dimension of 
CuNCs (with diameter around 2.5 nm). A simplified scheme is reported 
in Fig. 6. The assay results a bit cumbersome, requiring several experi-
mental steps: immobilization of NA probes, efficient enzyme with 
nuclease activity (exonuclease T7 for triggered targets recycling) to 
cleave only one strand of dsDNA, and the hybridization chain reaction 
(HCR) amplification for more signal molecules loading on Y-shaped 
dsDNA [176]. To obtain the Y-shaped branching DNA template, 
aptamers and hairpin sequences are adsorbed on the gold electrode 
surface. Subsequently, miRNA21 is added to form the overlapping 
Y-shaped branching ds-DNA template. This latter was exploited as a 
template to grow CuNCs. Then, the electrode was immersed in a HNO3 
solution which oxidized Cu (0) to Cu (II) that is thus released in solution. 
In conclusion, miRNA21 is determined by the oxidation peak current of 
copper obtained by applying differential pulse stripping voltammetry 
(DPSV) analysis. The aptasensor shows a linear range within 10 pM and 
0.1 fM and 10 aM as LOD. This LOD is competitive with the ones 
recorded with fluorescence and ECL detection respectively in the order 
of pM [135] and aM [157] as displayed in Table 1. Moreover, this 
electrochemical platform was tested in blood samples, with around 
100% recovery in human blood spiked with miRNA21 down to 0.1 fM, 
demonstrating an excellent ability to operate in real samples. 

3.3. Immuno-based CuNCs assays 

Over the past decades, considerable advances have interested the 
design of immunoassays thanks to the introduction of photoluminescent 
metal nanomaterials that improved the detection efficiency of bio-
molecules. However, the combination of CuNCs with immuno-based 
strategies is still poorly applied and only few studies are reported in 
the literature. Among these, detection strategies involving the growth of 
CuNCs on glutathione (GSH) and the subsequent coupling to streptavi-
din have been reported for detection of HIV-1 p24 biomarker in AIDS 
tests [178]. In particular, a secondary biotinylated antibody interacts 
with a CuNCs-conjugate streptavidin, emitting a fluorescence signal 
HIV-1 p24 concentration dependent (Fig. 7A). A dynamic range of 
27–1000 pg mL− 1 is achieved with a LOD of 23.8 pg mL− 1 standard 
solution. Reliable results were obtained also in plasma samples spiked 
with known concentrations of p24 antigen. Moving to tumor markers 
analysis, prostate specific antigen (PSA) detection was achieved by 
electrochemical detection, where Square Wave Voltammetry 
(SWV)-based immunosensing was coupled CuNCs growth [179] 
(Fig. 7B). The capturing Ab (Ab1) is immobilized on a glassy carbon 
electrode modified with Au nanoparticles (AuNPs), to bind PSA; the 

secondary Ab (Ab2) binds PSA on a different epitope of the Ab1. The 
novelty of the work is the use of BSA-templated CuNCs carried on 
platinum NPs and modified with Ab2. Thus, after the immunocomplex 
formation (Ab1-PSA-Ab2), catalytic signal amplification occurs, medi-
ated by presence of Pt and Cu nanostructures. The recorded current is 
due to Cu2+ reduction at the electrode. The proposed immunosensor 
works in a wide linear range from 0.5 pg mL− 1 to 100 ng mL− 1 dis-
playing a LOD of 145.69 fg mL− 1 (S/N = 3). In addition, the assay 
demonstrated good response in clinical serum samples; compared to 
reference ELISA assays the two methods displayed from %RSD of 5.0% 
and 5.5%, respectively, thus good accuracy and an acceptable reliability 
for PSA analysis in real practice. 

The detection of stimulated lipoprotein receptor (LSR), a biomarker 
closely related to ovarian cancer, deals with a photoelectrochemical 
(PEC)–colorimetric immunoassay [180]. Basically, the PEC response is 
reduced when the Antigen-Antibody reaction takes place. At the same 
time, color variations in Leuco-MB functionalized colorimetric poly 
(vinyl alcohol) (PVA) film occurs, providing a dual mechanism and in-
dependent signal transduction. The immunoassay is in a simple direct 
format, i.e., the Ab, immobilized on the transducer surface, directly 
binds the Ag, added in solution. In detail, the immunoreaction takes 
place on the CuNCs, grown on several layers of TiO2 (mixed TiO2 mes-
ocrystals junction (MMMJ)). CuNCs improve photoelectrochemical 
colorimetric properties and the catalytic activity of hydrogen peroxide 
(H2O2) that catalyzes Leuco-MB conversion from colorless to blue. When 
the antibody and the target antigen are captured onto the MMMJ, PEC 
properties and catalytic activities are inhibited. Spiked human serum 
samples with LSR, at sub ng/ml concentration level, provided excellent 
recovery (in the range from 98.4% to 100.7%). The assay analytical 
parameters are listed in Table 3. 

Behind biosensing-based approaches, disposable platforms can be 
combined with CuNCs use, to improve test analytical performances, in 
ELISA-like assays. The sandwich immunoassay format is quite common 
for protein detection. In particular, Immunoglobulins (Ig) and cancer 
biomarkers like prostate-specific antigen (PSA), matrix 
metalloproteinase-7 (MMP7) detection has been addressed, by fluores-
cent, photoelectrochemical (PEC) and electrochemical i.e., potentio-
metric analysis respectively. A fluorescent ELISA platform for IgG 
analysis with a new strategy for in-situ i.e., in solution synthesis of 
CuNCs, is reported. A sandwich assay format is used, where Alkaline 
Phosphatase (ALP) is bound to the secondary Ab and catalyzes the hy-
drolysis of ascorbic acid 2-phosphate (AAP) leading to ascorbic acid, 
that, in presence of Cu2+ and the DNA template, allows the in situ growth 
of CuNCs [181] with fluorescence emission. A LOD of 7 pg mL− 1 is 
achieved in IgG standard solutions. This novel, easy-to-use and 
cost-effective fluorescent ELISA platform, led to improved performances 
with respect to the common commercial ELISA kit and can be trans-
ferred to other analytes, if validity in real matrices is further explored. 

Fig. 7. Schematic illustration of CuNCs immunoassay-based detection strategies (A) according to the assay strategy proposed by Kurdekar’s et al. reprinted from 
Ref. [178]., with permission of Royal Society of Chemistry; (B) according to the assay strategy proposed by Lihua Zhao and Zhanfang Ma, reprinted from Ref. [179], 
with permission of Elsevier B.V. 
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PSA is detected by a PEC-CuNCs-based immunoassay employing a Car-
bon Dots/g-C3N4 [182], while MMP7, involved in cancer progression, 
was quantitatively detected by potentiometric immunoassay using 
copper ion-selective electrode (Cu-ISE) with a portable detector [183]. 
Cu2+, under acidic conditions, was released from CuCNs formed at the 
immunocomplex, where the secondary Ab was linked to a short nucleic 
acid sequence, acting as probe for further hybridization reaction cycles 
forming dsDNA structures, promoting CuCNs growth. A dynamic linear 
range of 0.01–100 ng mL− 1 with a detection limit of 5.3 pg mL− 1 MMP7 
was achieved in human serum samples. 

Behind the cancer biomarker MMP7, the quantitative analysis of 
cardiac troponin T (cTnT), an important marker of Acute Myocardial 
Infarction (AMI) is reported by a PEC approach [183]. Here CuCNs were 
synthesized on BSA, eventually encapsulated in liposomes for further 
labeling of antibodies to their external surface. After the sandwich 
immunocomplexing, the confined liposomal labels were lysed to release 
the CuNCs and numerous Cu2+ ions, free to interact with the ITO elec-
trode modified with quantum dots (QD) modifying the photocurrent 
[183]. The photocurrent signal decreased linearly with the increasing 
cTnT concentrations from 0.1 to 2 pg mL− 1, with a LOD of 0.03 pg mL− 1 

in standard solutions. The details relative to the CuNCs 
immunoassay-based detection strategies are reported in Table 3. Finally, 
considering the CuCNs growth on some proteins, carrying suitable 
characteristics, one may think of simple and direct antibody-free assays. 
We very recently reported on sensitive and selective Human Serum Al-
bumin (HSA) fluorimetric detection in body fluids, i.e., urine with in-
terest in kidney related diseases. HSA in different matrices was detected, 
obtaining excellent limits of detection: 2.48 ± 0.07 mg L− 1 (in H2O), 1.8 
± 0.1 mg L− 1 (in human serum) and 0.62 ± 0.03 mg L− 1 (in urine). This 
confirms the potentialities of these very powerful nanostructures [97]. 

3.4. Ratiometric fluorescent sensing based on CuNCs 

Recently, ratiometric fluorescent methods have attracted growing 
research interest [185]. Generally, this emerging fluorescent technique 
exploits double tunable emission characteristics of two fluorescence 
species [186]. 

In order to design a ratiometric sensor, a suitable reference probe 
should be choice [187]. Emerging nanomaterial used for the develop-
ment of ratiometric fluorescent probe are CuNCs [188]. Generally, the 
CuNCs-based ratiometric methods take advantage of the combination of 
CuNCs PL properties with additionally fluorescent species (e.g.. dye, 
QDs, NMs etc.) [189]. The fabrication of ratiometric fluorescent probes 
usually exploits several photophysical properties including internal 
charge transfer (ICT), fluorescence resonance energy transfer (FRET), 
monomer–excimer formation, and excited-state intramolecular proton 
transfer (ESIPT) [190]. Despite the gain in terms of method accuracy, 
the reports of ratiometric fluorescent sensor based on CuNCs, are 
limited. This is probably due to the lack of effective means to tune 
emission wavelength of the synthesized Cu NCs [191] . However, we 
report an interesting study on ratiometric fluorescence sensing platform 
developed by Wang and its collaborators [192]. This work was based on 
the sensing platform developed in which GSH-CuNCs and o-phenyl-
enediamine was integrated into same device. This label-free fluorescent 
ratiometric assay allowed very sensitively and simultaneously detection 
of Cu2+ and kojic acid. This method paved the way for future application 
in real sample analysis closely concerned with human health [192]. 

4. Biological application of CuNCs 

The biocompatibility and the low toxicity of CuNCs enable their 
application as fluorophores for in vitro and in vivo biological imaging by 
using different kinds of templates for the preparation of CuNCs. 
Numerous works reported blue emitting CuNCs for the labeling of 
various kinds of cell lines, including human and cancerous cells, as well 
as microorganism cells [193–195]. In order to verify the compatibility of 

CuNCs in biological systems, diverse tests were performed in biological 
samples like blood or serum [99,196]. An interesting study was con-
ducted by Mukherjee’s group in which Glutathione (GSH)-CuNCs were 
employed to perform cell viability and uptake assays on three cancerous 
cell lines, HeLa (malignant immortal cell line derived from cervical 
cancer), A549 (human lung carcinoma) and MDAMB-231 (human breast 
adenocarcinoma) [197]. They demonstrated the low toxicity of CuNCs 
localizing the nanoclusters close to the nucleus by laser scanning 
confocal microscopy. The same procedure was followed on Bacillus 
subtilis cells by Kailasa’s group for in vitro imaging tests [32]. In the last 
years, great advances in the application of CuNCs combined with in vivo 
imaging strategies, have been reached (Table 4). One of the most 
innovative research is represented by the synthesis of radioactive 
BSA-CuNCs conjugated with the Luteinizing Hormone Releasing Hor-
mone (LHRH) whose receptor is overexpressed in some cancer cells such 
as breast, ovarian, prostate, lung, and hepatic ones. The 64CuNCs@B-
SA-LHRH structure was thought to be used as a contrast agent for in 
vivo PET imaging and the uptake by tumor cells in a primary lung cancer 
model [90]. Theranostic applications based on the use of CuNCs are 
instead more common [6,43]. For example, a hydrogel-based anticancer 
carrier containing CuNCs and Cisplatin were exploited for mammalian 
cell uptake monitoring [198]. Moreover, CuNCs was used as a biological 
dye to stain proteins or oligonucleotides in gel electrophoresis [199] and 
cells in flow cytometry [200]. Copper, like other noble metals, is known 
also for its antibacterial properties; therefore, CuNCs were used for their 
antimicrobial action [201]. 

5. Conclusions and future perspectives 

In this review, we focused on the remarkable progress in the syn-
thesis and use of fluorescent copper nanoclusters combined with 
different detection strategies. We first evaluated diverse aspects that 
influence the photoluminescent properties of CuNCs, in particular size, 
surface ligands, and reaction environment. The synthesis of CuNCs can 
be effectively controlled by using a template-assisted approach. Nucleic 
acids, proteins, polymers, peptides, and small molecules are usually 
employed to reduce copper ions, stabilize and protect the growth of 
nanoclusters. In particular, nucleic acids, beside being excellent tem-
plates, are powerful biological recognition elements for bioanalytical 
assay development. Here, we discussed the combination of oligonucle-
otide sequences, as capture probes, and copper nanoclusters in CuNCs 
DNA-based detection strategies. We at first reported the CuNCs-based 
assays classified according to the capture probe used (i.e., DNA, 
aptamer, antibody) and, consequently, we discussed the CuNCs-based 
assays diversified depending on the transduction element (i.e., electro-
chemical, photoelectrochemical, colorimetric). Then we analyzed the 
biological application of copper nanoclusters. Despite the numerous 
advantages in terms of excellent fluorescent properties, cost effective-
ness, selectivity, sensitivity, rapidity in the response, versatility and 
environmental-benign, the use of CuNCs for analytical applications is 
mostly unexplored, with a low number of publications about immuno- 
based or electrochemical-based assays involving CuNCs in the detec-
tion strategy. Consequently, this research area offers considerable 
margins of improvement and new investigations. Firstly, large scale 
synthesis does not allow to obtain CuNCs with uniform size distribution. 
This mainly occurs in DNA-CuNCs synthesis where it is necessary to pay 
more attention to the experimental condition to guarantee a long-term 
stability of DNA-templated CuNCs. Secondly, the CuNCs formation 
mechanism on nucleotides template is still unknown. In addition, CuNCs 
signal can be quenched by many biomolecules and this could influence 
the system selectivity. Finally, more studies are expected for practical 
applications. For example, the development of CuNCs-based disposable 
devices, i.e., paper-based assay systems, as well as the combination of 
CuNCs with antibody-free biomimetic receptors, such as molecularly 
imprinted polymers (MIP), could lead to a great advantage in the fast 
and cost-effective target analyte detection. 
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