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Oxygen (O2) supply is constantly maintained by the vascular network for a proper
tissue oxygenation. Hypoxia is the result of an increased O2 demand and/or
decreased supply and is common in both physiological conditions and human
diseases. Angiogenesis is one of the adaptive responses to hypoxia and is mainly
regulated by the hypoxia-inducible factors, HIFs. These heterodimeric
transcription factors are composed of one of three O2-dependent α subunits
(HIF-1, HIF-2, and HIF-3) and a constitutively expressed O2-insensitive subunit
(HIF-1β). Among them HIF-1α is the most characterized and its activity is tightly
controlled. Under hypoxia, its intracellular accumulation triggers the transcription
of several genes, involved in cell survival/proliferation, autophagy, apoptosis, cell
metabolism, and angiogenesis. HIF pathway is also modulated by specific
microRNAs (miRNAs), thus resulting in the variation of several cellular
responses, including alteration of the angiogenic process. The pro-angiogenic
activity of HIF-1α is not restricted to endothelial cells, as it also affects the
behavior of other cell types, including tumor and inflammatory/immune cells.
In this context, exosomes play a crucial role in cell-cell communication by
transferring bio-active cargos such as mRNAs, miRNAs, and proteins (e.g.,
VEGFA mRNA, miR210, HIF-1α). This minireview will provide a synopsis of the
multiple factors able to modulate hypoxia-induced angiogenesis especially in the
tumor microenvironment context. Targeting hypoxia signaling pathways by up-
to-date approaches may be relevant in the design of therapeutic strategies in
those pathologies where angiogenesis is dysregulated.
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1 Introduction

The maintenance and regulation of oxygen (O2) homeostasis plays a crucial role in
shaping the destiny of cells. Hypoxia is the result of low or inadequate O2 levels in tissue, due
to an increased O2 demand and/or decreased supply, and it is present in several
physiological and pathological conditions (Corrado and Fontana, 2020). The systemic
hypoxic response is a regulatory mechanism that orchestrates various cellular activities to
maintain homeostasis when faced with low O2 levels. This response increases O2 delivery by
acting at both transcriptional and post-transcriptional levels altering energy metabolism,
increasing cell motility, therefore promoting cellular adaptation, and enhancing the number
of red blood cells or blood vessels. The key mediator of the adaptive response to hypoxia is
the hypoxia-inducible factor (HIF) family of transcription regulators. Indeed, HIF triggers
the transcription of a multitude of genes associated with various biological processes,
including glucose metabolism, cell survival, proliferation, apoptosis, and angiogenesis
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(Pugh and Ratcliffe, 2017; Nakayama and Kataoka, 2019; Lee et al.,
2020). Notably, hypoxia promotes the development of blood vessels
by upregulating various pro-angiogenic pathways that play crucial
roles in the biology of endothelial cells, stromal cells, and vascular
support cells (Liu et al., 2023).

The regulation of angiogenesis through hypoxia represents a
vital element within the homeostatic regulatory mechanisms,
connecting cardio-pulmonary-vascular O2 supply to the
metabolic demand within local tissues (Carmeliet, 2003).
Angiogenesis is a complex process that consists of several distinct
steps including: a) degradation of the basement membrane by the
production of proteases; activation and migration of the
endothelium; b) proliferation of endothelial cells (ECs); c)
formation of tube-like structures and capillary tubes (Li et al.,
2018). However, hypoxic regulation of blood vessels is not only
limited to homeostatic processes, but it has been associated with
tumor angiogenesis. In tumors, the competition among actively
proliferating cells restricts the availability of O2 and nutrients, while
the diffusion of metabolites is inhibited by elevated interstitial
pressure (Gupta et al., 2017). In response to intratumoral
hypoxia, tumor cells generate angiogenesis-stimulating factors
that trigger the development of a new blood supply from the
existing vasculature. This process is critical for the survival and
proliferation of tumor cells in a hostile microenvironment
(Semenza, 2000; Lv et al., 2017). However, in tumors, neovessels
are often abnormal, immature, and leaky and they are either
insufficient or excessive depending on the tumor type (Carmeliet,
2005). This system provides tumor blood flow that expands rapidly,
providing nutrients and O2 for thriving cancer cells (Schiliro and
Firestein, 2021). However, an increase in the number of cells results
in a higher demand for O2 and growth factors, exacerbating hypoxia
that stimulates angiogenesis to alleviate the hypoxic condition.
Consequently, the neoplastic tissue develops an excess of
vasculature, which, even if dysfunctional, is providing enough O2

and nutrients to sustain tumor progression (Jiang et al., 2020).
Pathophysiological angiogenesis is a complex and finely tuned
process that is regulated by hypoxia, which could affect not only
endothelial cells, but also other components of the tissue
microenvironment. These include a multitude of other cell types,
soluble factors, extracellular matrix-related molecules, which are
contributing to the angiogenic process. In this review pathologic
aspects of hypoxia-related angiogenesis will be treated in the context
of tumor angiogenesis, although other pathologies characterized by
aberrant angiogenesis are also known (Bosisio et al., 2018; Rezzola
et al., 2020; Amato et al., 2022). Overall, targeting hypoxia signaling
pathways by up-to-date approaches may be important in the
development of therapeutic strategies in those pathologies where
angiogenesis is uncontrolled.

2 The hypoxia-inducible factors

Oxygen levels are sensed by the human body by the master
regulator of the cellular response to hypoxia, HIF, along with the 2-
oxoglutarate (2-OG)-dependent oxygenase prolyl-hydroxylases
(PHDs), the NAD(P)H oxidase family of enzymes that reduce
reactive O2 species (ROS), O2 sensitive ion channels, and the
electron transport chain (Arsham et al., 2003; Giaccia et al.,

2004). HIF is a family of transcription factors consisting of a
heterodimer of a constitutively expressed subunit, HIF-β, and an
O2-regulated subunit, HIF-α (Semenza, 2007; Chao et al., 2021).
Under normoxic conditions, HIF-α subunits (HIF1-α, HIF2-α, or
HIF3-α) have a very short half-life since cells continuously
synthesize and degrade HIF-α protein due to hydroxylation by
the PHDs at specific proline residues (Pro564 on HIF1-α,
Pro530 on HIF2-α, and Pro490 on HIF3-α) in the O2-dependent
degradation domain. This hydroxylation event triggers a
ubiquitination reaction facilitated by the E3 ubiquitin ligase Von
Hippel–Lindau protein (pVHL), leading to HIF-1α proteasome-
mediated degradation (Jaakkola et al., 2001; Maynard et al., 2003;
Nakazawa et al., 2016). HIF-α subunits can also be hydroxylated by
the FIHs (factor-inhibiting HIF-1α) proteins, a group of asparagine
hydroxylase enzymes (Asn803 on HIF1-α and Asn851 on HIF2-α),
that are dependent on the O2 concentration. Under normoxic
conditions, FIHs prevent HIF-1α binding with its co-activators
(p300/CBP) and therefore inhibit HIF transcriptional activity
(Lando et al., 2002; Albanese et al., 2020). When the O2

availability is impaired, HIF-α hydroxylation is inhibited and
HIF-α is stabilized. Therefore, the HIF-α subunit translocates to
the nucleus where it interacts and dimerizes with the HIF-β subunit
and the coactivators (p300/CBP). This heterodimeric complex
induces the induction of target genes containing hypoxia-
responsive elements (HREs) in their promoters, resulting in their
transcriptional regulation (Javan and Shahbazi, 2017) (Figure 1).
More than 100 genes have been identified as targets of HIF-1,
including those encoding pro-angiogenic cytokines such as
vascular endothelium growth factor (VEGF), platelet-derived
growth factor (PDGF), and angiopoietin 1 (Ang-1) (Ke and
Costa, 2006; Samanta et al., 2017), and thus HIF-1 is considered
a master regulator of angiogenesis.

Of note, several O2 independent factors and signals, along with
hypoxia, are able to modulate HIF-1α protein stability and thus to
affect angiogenesis, including calcineurin A and calcium signaling,
PI3Ks (Phosphoinositide 3 Kinases), FOXO4 transcriptional
programs, RACK1 and several miRNAs (which are discussed
below) (Koh et al., 2008).

3 HIFs role in endothelial cells in health
and disease

Oxygen availability is essential to coordinate blood vessel growth
with the metabolic demands of growing tissues, in both
physiological and pathological contexts. Indeed, one of the best
characterized and well-studied responses to hypoxia is the
stimulation and induction of angiogenic factors, which lead to
the formation and growth of new blood vessels (Chen et al.,
2009). Thus, hypoxia-related angiogenesis has been considered as
a major contributor to solid tumor growth, infiltration, and
metastasis. Thus, the study of angiogenesis in this context has
risen attention, and targeting tumor angiogenesis has emerged as
a key method for solid tumor treatment (Cella et al., 2022). Of
interest, angiogenesis, either in tumor, inflammatory and
physiological setting, strictly involves HIFs, and in particular
HIF-1. Indeed, HIF-1α, but not HIF-2α, has been demonstrated
to be essential for endothelial cell (EC) cord formation as well as for
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the hypoxic-dependent pathway mediating EC survival. This
suggests that HIF-1α may serve as a therapeutic target of the
tumor microenvironment not only in tumor cells but also in

stromal-infiltrating cells, including EC (Calvani et al., 2006).
More recently, it has been demonstrated that ECs switch from
HIF-1 to HIF-2 to adapt to prolonged hypoxia and that HIF-1α

FIGURE 1
Hypoxia-inducible factors (HIFs) signaling pathway. Under normoxic conditions, HIF1/2 are hydroxylated by prolyl hydroxylase domain (PHD)-
containing enzymes. Hydroxylated HIFs are degraded in the proteasomes by von Hippel-Lindau tumor suppressor protein (VHL) via polyubiquitination.
During hypoxic conditions, PHDs and FIH are inhibited and HIF-α subunits are translocated into the nucleus, where can dimerize with HIF1-β, recruit
p300 and CBP, and ultimately, bind to HREs at target genes to cause activation.

FIGURE 2
HIF-1/2α and angiogenesis. Along with hypoxia, several mediators, including exosomes, miRNAs and immune cells, are involved in angiogenesis
modulation by affecting directly or indirectly HIF-1/2α.
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and HIF-2α mRNA stability differences contribute to the HIF-1/
HIF-2 transitional switch. HIF-1 governs the acute adaptation to
hypoxia, whereas HIF-2 activity begins later, creating the above-
mentioned switch between these two HIF proteins (Bartoszewski
et al., 2019). Of interest, the overexpression of HIF-1α has been
associated with an induction of autophagy, during prolonged
hypoxia, responsible for a reduced EC viability (Wu and Chen,
2015). However, ECs are heterogeneous and differentially reactive to
hypoxia. EC in bone marrow frommultiple myeloma patients shows
a hypoxic phenotype, even under normoxic conditions, suggesting
that ECs from tumor vessels are different from those of quiescent
healthy vessels (Muz et al., 2015; Albanese et al., 2020). Moreover,
ECs frommultiple myeloma patients are more resistant than healthy
EC in terms of cell viability, when exposed to prolonged hypoxia.
ECs from tumor vessels also show a different metabolic response to
prolonged hypoxia in terms of glucose consumption and transport
as tumor-associated ECs have a higher glycolytic rate than normal
EC and rely on glycolysis, as the main source of ATP production
(Filippi et al., 2018; Rohlenova et al., 2018). Tumor-associated ECs
increase glycolysis by upregulating VEGF with cyclooxygenase 2
(COX2) together with lactate accumulation under hypoxic
conditions. Lactate acts as a signaling messenger able to stimulate
angiogenesis via the VEGF pathway in a HIF-1α and PI3K/AKT-
dependent manner (Ruan and Kazlauskas, 2013; Zhang et al., 2018).

4 Involvement of immune cells in the
regulation of hypoxia-related
angiogenesis

The pro-angiogenic activity of HIF-1α is not restricted to ECs, as
it also affects the behavior of other cell types, including
inflammatory and immune cells. T lymphocytes exert an
angiogenic influence and secrete VEGF with important
implications in the angiogenesis-inflammation crosstalk (Freeman
et al., 1995; Mor et al., 2004). Hypoxic T cells may affect angiogenesis
directly through the release of VEGF, but they also influence
angiogenesis through adaptor proteins, such as p66Shc, which
mediate VEGF expression under hypoxia (Naldini et al., 2010). A
growing body of evidence also highlights the dynamic role of
regulatory T lymphocytes (Tregs) in angiogenesis. Tregs can be
pro- or antiangiogenic, depending on tissues and diseases: they
promote angiogenesis directly by increasing the expression of VEGF
and/or IL-10 or indirectly, through their effect on other immune
cells. However, Tregs inhibit angiogenesis by inducing EC apoptosis
via a cell contact-mediated process through DLL4 Notch and
TNFR1 signaling or indirectly by modulating CD34+-circulating
angiogenic cells via CCL5/CCR5 pathway (Lužnik et al., 2020). In
the context of hypoxic tumor tissue, tumor-associated macrophages
(TAMs) have been associated with increased angiogenesis and
decreased survival in clinical specimens (Moeller et al., 2004;
Cheng et al., 2021). Their role in angiogenesis has been
particularly related to their ability to sense hypoxia in avascular
areas of tumors and secrete pro-angiogenic factors, including VEGF
and TNF-α (Kzhyshkowska et al., 2014). In the tumor
microenvironment, these and other factors shape the TAM
phenotype and skew them toward tumor-supportive M2-
polarized macrophages, although M1-polarized TAM with anti-

tumor activity was also reported in several types of cancer
(Forssell et al., 2007). Neutrophils can also directly contribute to
angiogenesis due to the release of cytokines and chemokines such as
TNFα, IL-1β and VEGF, especially in the endometrium (Heryanto
et al., 2004; Guo et al., 2021). In the context of tumor angiogenesis,
neutrophils infiltrate the tumor tissue and contribute to tumor
progression as reported for adenocarcinoma and melanoma
(Tazzyman et al., 2009). Finally, several studies have shown the
involvement of dendritic cells (DCs) in the angiogenic process due to
their ability to express a wide array of pro- and anti-angiogenic
mediators. That might have a significant role in those
physiopathological settings characterized by DC activation and
angiogenesis, including inflammation, wound healing,
atherosclerosis, and tumor growth (Ormandy et al., 2006; Perrot
et al., 2007; Bosisio et al., 2018). DCs release canonical angiogenic
growth factors that act directly on the endothelium by interacting
with specific receptors on the EC surface. In the mouse, DCsmediate
the VEGF-dependent vascular growth in reactive lymph nodes
(Webster et al., 2006). Still in the mouse, DCs show an hypoxic
phenotype either in the spleen and in the bone marrow (Barroeta
Seijas et al., 2022). Moreover, DCs are a significant source of
chemokines, especially those able to modulate angiogenesis by
direct or indirect mechanisms of action. In particular, DCs
express the pro-angiogenic chemokines CXCL8 and CCL2 that
induce angiogenesis by a direct action on ECs, whereas the CXC
family of chemokines inhibit angiogenesis (Sozzani, 2005; Strieter
et al., 2006). More interestingly, hypoxia enhances VEGF expression
in either immature andmature DCs and hypoxic DCs express higher
level of CXCR-4 receptor, with important implications in the tumor
microenvironment and inflammation (Schioppa et al., 2003; Monaci
et al., 2020; Monaci et al., 2021). Indeed, VEGF plays a role in
reducing the number of mature DCs promoting the expansion and
accumulation of immature tolerant DCs, and eventually causing the
polarization of DCs towards Th2 or T regulatory (Treg) induction.
These newly acquired characteristics of DC, contribute to the
evasion of tumors from the immune response and have led to
the identification of a new subtype of DCs known as Tumor-
associated regulatory dendritic cells (regDCs) (Ma et al., 2012;
Shurin et al., 2013). Together this highlights that immune cells
contribute to the regulation of angiogenesis, either in a hypoxia-
dependent or independent manner.

5 Hypoxia-associated miRNAs and
angiogenesis

Recent studies have highlighted the role of microRNAs
(miRNAs) during hypoxia providing a new and interesting link
between hypoxia and the regulation of angiogenesis (Gee et al.,
2010; Pocock, 2011). miRNAs are small nonprotein coding RNA
molecules responsible for regulating mRNA stability and
translation. They bind to the 3′UTR (3′ untranslated region) of
mRNA, leading to a decrease in protein levels (Hastings and
Krainer, 2001). Given that miRNAs decrease the protein output
from existing transcripts, they are ideal candidates for controlling
HIF expression during hypoxia. Among them, less than ten
miRNAs have been demonstrated to affect HIF expression, with
only three targeting directly HIF mRNA (Madanecki et al., 2013;
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Greco et al., 2014). Of note, HIF is responsible for the transcription
of the so-called angiogenic “hypoxiamiRs” such as miR-210
(Huang et al., 2009), which is consistently and significantly
induced by hypoxia. miR-210 targets the receptor tyrosine
kinase ligand ephrin-A3 (EFNA3) which plays a critical role in
the differentiation and migration of HUVEC in response to VEGF,
by promoting angiogenesis (Maynard et al., 2005; Camps et al.,
2008; Liu et al., 2012). More recently, miR-210, together with miR-
424, has been found to be involved in HIF-1α on the angiogenesis
under hypoxia not only in HUVEC but also in human dermal
microvascular EC (HDMECs). In this context, both miR-210 and
miR-424 are induced by hypoxia and target a splice variant of
VEGFR1 (sFLT1), which functions also as a receptor on the surface
of cells that VEGF binds to. Mechanistically, HIF-1α binds the
promoter region of miR-210 and miR-424 to activate their
transcription, while miR-210/miR-424 bind sFLT1 3′-UTR to
suppress its expression suggesting that HIF-1α/miR-210/miR-
424/sFLT1 axis modulates the angiogenesis in HUVECs and
HDMECs upon hypoxic condition via VEGF signaling (Zhao
et al., 2022). Another miRNA, miR-433, directly targets HIF1-α.
However, miR-433 is downregulated in hypoxia-exposed HUVEC
suggesting that the hypoxic reduction of this miRNA could
promote HIF-1 signaling (Zhang et al., 2017). Most HIF-1-
dependent miRNAs are also HIF-2-dependent in HUVECs
under hypoxia. According to the next-generation validation
system, there are six miRNAs dependent on both HIF isoforms,
including miR-210-3p, miR-520d-3p, miR-4745-5p, miR-98-3p,
miR-139-5p, and miR-6789- 5p. However, HIF-2 specifically
governs the expression of several miRNAs providing an
important level of miRNA-driven control in the hypoxia
adaptive pathways in EC (Moszyńska et al., 2022).

6 Role of exosomes in angiogenesis
associated with hypoxia

In a hypoxic microenvironment where ECs crosstalk with other
cell types, exosomes play a crucial role by transferring bioactive
cargos. Exosomes are small, single membrane extracellular vesicles
derived from cells exhibiting various sizes and origins, not capable of
replicating and without a functional nucleus (Di Bella, 2022).
Exosomes have been considered to be an important mediator of
cell-cell communication, proliferation, and differentiation by
transferring various bio-active cargoes such as mRNAs,
microRNA, proteins, and lipids, from one cell to another (Sun
et al., 2020). Based on these and other properties, exosomes are being
developed as therapeutic agents in multiple disease models (Ortega
et al., 2022). While the application of exosomes shows promising
effects in promoting angiogenesis in various animal models (Ma
et al., 2018; Zhang and Li, 2020), unmodified exosomes alone
demonstrate only moderate therapeutic efficiency and need to be
enhanced by either genetic modification or engineering tools.
However, exosomes with overexpression of HIF-1α in
mesenchymal stem cells (MSCs), induced angiogenesis in the
Matrigel plug assay via the expression of the Notch ligand
Jagged1, with potential applications for the treatment of
ischemia-related disease (Gonzalez-King et al., 2017). More
recently, Sun et al. demonstrated that HIF-1α-overexpressed

MSCs-derived exosomes in ischemic heart, rescue the impaired
migratory ability, angiogenic function, and proliferation of
hypoxia-injured HUVECs. In addition, exosomes overexpressing
HIF-1α show a robust cardioprotective effect on myocardial
infarction heart by promoting neovessels formation in the
ischemic border zone (Sun et al., 2020). The potential
therapeutical properties of hypoxic MSCs-derived exosomes in
inducing angiogenesis were demonstrated also in other models
including fracture healing, endometriosis, and spinal cord injury
(Umezu et al., 2014; Qiu et al., 2019; Zhang et al., 2019). Of interest,
MSCs are involved in the formation and modulation of tumor
stroma and in interacting with tumor cells, partly through
exosomes. Hypoxic condition within the tumor environment
enhances the release of tumor-derived exosomes (TEX) and act
as a potent trigger for the communication between cancer and ECs.
After the uptake by ECs, TEX transfers molecular information,
which promotes their adhesion, proliferation, migration, tube
formation, and as a result pathological angiogenesis (Gluszko
et al., 2019). In breast cancer, MSC-derived exosomes induce a
significant and dose-dependent decrease in the expression and
secretion of VEGF through the modulation of the mTOR/HIF-1α
signaling axis, suggesting an important potential therapeutic target
for this type of tumor (Pakravan et al., 2017). Over the past few
years, carbonic anhydrases (CAs) have also been found to be
involved in the regulation of angiogenesis via exosome release.
CAs belong to zinc metalloenzymes that catalyze the reversible
hydration of carbon dioxide into bicarbonate and protons, and
they play a critical role in maintaining the cell pH homeostasis
(Pastorek et al., 1994). Among human CAs isoforms, CA-IX is a
transmembrane protein localized on the surface of normal cells
including the stomach, duodenum, small intestine, and gallbladder.
On the contrary, CA-IX overexpression is associated with a variety
of solid cancers including melanomas (Chafe et al., 2019; Peppicelli
et al., 2020). CA-IX is induced by HIF-1α and has been found to be
highly expressed in invasive melanomas with only hypoxia-induced
exosomes expressing CA-IX (Venturella et al., 2023). In addition,
CA-IX-expressing exosomes released from hypoxic renal cell
carcinoma cells promote angiogenesis and migration of HUVEC,
suggesting the involvement of this enzyme in cancer progression
(Horie et al., 2017).

7 Discussion and conclusion

The control of angiogenesis by hypoxia is a crucial component of
the homeostatic mechanisms that link vascular O2 supply to
metabolic demand. Hypoxia plays a critical role in controlling
both physiological and pathological conditions and advances in
molecular characterization of angiogenic pathways identified HIF as
a key transcriptional regulator able to induce new blood vessels.
However, as shown in this minireview, the control of angiogenesis
involves a more complex net of factors including, but not limited to,
miRNAs, other cell types, exosomes, and metabolic adaptative
responses to hypoxia. All of these may exploit common signaling
pathways, that are often related to hypoxia. Thus, targeting these
signaling pathways by novel approaches may be important in the
development of therapeutic strategies in the pathological conditions
where angiogenesis is compromised (Figure 2).
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