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The aim of this paper is to prove controllability and stabilization properties for 
a degenerate and singular Schrödinger equation with degeneracy and singularity 
occurring at the boundary of the spatial domain. We first address the boundary 
control problem. In particular, by combining multiplier techniques and compactness-
uniqueness argument, we prove direct and inverse inequalities for the associated 
adjoint system. Consequently, via the Hilbert Uniqueness Method, we deduce exact 
boundary controllability for the control system under consideration in any time 
T > 0. Moreover, we investigate the stabilization problem for this class of equations 
in the range of subcritical coefficients of the singular potential. By introducing a 
suitable linear boundary feedback, we prove that the solution decays exponentially 
in an appropriate energy space.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The controllability and stabilization of Schrödinger equations without degeneracies and singularities have 
received a lot of attention during the past years. Under the so-called geometric control condition, it is shown 
by G. Lebeau [26] that the Schrödinger equation is exactly controllable for arbitrary short time. This is 
due to the fact that the Schrödinger equation can be viewed as a wave equation with an infinite speed 
of propagation. We also quote the article by E. Machtyngier [29] where observability inequalities for the 
Schrödinger equation are established by means of the multiplier method developed in [28]. The corresponding 
exponential decay is obtained by E. Machtyngier and E. Zuazua [30] when the boundary dissipation is linear 
(see also [23]).
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The literature on well posedness, controllability, stabilization and inverse problems for the Schrödinger 
equation is abundant. We refer to [1,2,6,7,9–11,13,19,24,25,31,32,34,35,41–43] and references therein.

In this paper, we are mainly interested in extending the known results on observability inequalities to-
gether with exponential stabilization in [29,30] to the Schrödinger equation with degeneracy and singularity 
at the boundary.

It is interesting to note that observability inequalities for the Schrödinger equation can be obtained from 
the corresponding ones for the wave equation and vice versa by an abstract framework (see Remark 1 for 
more details).

Here, we establish observability inequality and exponential stabilization of degenerate/singular Schrödinger
equation based on a direct application of the usual multiplier method developed recently by F. Alabau-
Boussouira et al. [4] in the context of the controllability and stabilization of purely degenerate wave 
equations. Although the approach is classical, these results are new for the degenerate/singular Schrödinger 
equation.

The first objective of this paper is to study the exact boundary controllability for Schrödinger equations 
of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

iyt + (xαyx)x + μ
x2−α y = 0, (t, x) ∈ Q := (0, T ) × (0, 1),{

y(t, 0) = 0, if 0 ≤ α < 1,
(xαyx)(t, 0) = 0, if 1 ≤ α < 2,

t ∈ (0, T ),

y(t, 1) = f(t), t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, 1),

(1)

where y = y(t, x) is the state and f = f(t) is a control function to be determined which acts on the system 
by means of the Dirichlet boundary condition at the point x = 1. Both are complex valued functions. Here 
i ∈ C is the imaginary unit, while α ∈ [0, 2) and μ are two real parameters, y0 is regarded as being the 
initial value and T > 0 stands for the length of the time-horizon. In particular, if α ∈ (0, 1) we say that the 
problem is weakly degenerate (WD), if α ∈ [1, 2) then it is strongly degenerate (SD).

The control problem we shall address can be formulated, roughly, as follows: given T > 0 and y0, yd
belonging to a suitable Hilbert space we look for a control function f such that the solution y of (1) satisfies 
y(T ) = yd. This is called an exact controllability problem.

In order to study system (1), we assume that the parameters α and μ satisfy the following assumption:

α ∈ [0, 2) \ {1} and μ ≤ μ(α), (2)

where

μ(α) := (1 − α)2

4 (3)

is the constant appearing in the following generalized Hardy inequality: for all α ∈ [0, 2),

(1 − α)2

4

1∫
0

|u|2
x2−α

dx ≤
1∫

0

xα|ux|2 dx, (4)

for all u ∈ C∞
c (0, 1) (the space of infinitely smooth functions compactly supported in (0, 1)). We refer for 

example to [18, chap 5.3].
We emphasise that (4) ensures that, if α ∈ [0, 2) \{1} and if u ∈ H1

loc ((0, 1]) is such that xα/2ux ∈ L2(0, 1), 
then 

u belongs to L2(0, 1). On the contrary, in the case α = 1, (4) (which reduces to a trivial 

x(2−α)/2
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inequality) does not provide this information anymore. Hence, it is not surprizing if with our techniques we 
cannot handle this latter special case and we refer to [20] and [39] where this issue is attacked in a different 
way for the heat equation.

Now, observe that when μ = 0, the problem above is purely degenerate. In this case, controllability 
properties by means of a locally distributed control have been investigated in [17] using a Carleman approach.

On the other hand, when α = 0, system (1) becomes purely singular with a singularity that takes the form 
of an inverse-square potential. To the best of our knowledge, [14] and [40] are the unique published works 
on this subject; they are concerned with the problem of exact controllability for the linear multidimensional 
Schrödinger equation with singular potentials.

As far as we know, there are currently no controllability results for the Schrödinger equation that couples 
a degenerate variable coefficient in the principal part with a singular potential.

In this work, we are interested in studying precisely this issue, extending the results obtained in [5], where 
the authors discuss the same issue in the case of wave equations.

Thanks to the linearity and the time reversibility of the Schrödinger system (1) (see [43]), exact control-
lability is equivalent to null controllability. Henceforth we shall assume that the target yd ≡ 0. Thus, we 
look for a suitable control f such that the solution of (1) satisfies y(T ) = 0.

By the now classical HUM (Hilbert Uniqueness Method), this result is actually equivalent to the so-called 
observability inequality for the solution of the adjoint system (see [43])

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

iut + (xαux)x + μ
x2−αu = 0, (t, x) ∈ Q,{

u(t, 0) = 0, if 0 ≤ α < 1,
(xαux)(t, 0) = 0, if 1 < α < 2,

t ∈ (0, T ),

u(t, 1) = 0, t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 1),

(5)

which formally states that, for any μ ≤ μ(α) and T > 0, there exists C > 0 such that

1∫
0

{
xα|ux(0, x)|2 − μ

x2−α
|u(0, x)|2

}
dx ≤ C

T∫
0

|ux(t, 1)|2 dt, (6)

where u solves (5). The proof of (6) relies on both multiplier method and compactness-uniqueness argument. 
As a consequence of this inequality, it follows that system (1) is null controllable for arbitrarily small time 
T by a control acting at x = 1 (that is, away from the degenerate and singular point).

Remark 1.

1. In the observability estimate (6), we only prove the existence of some positive constant without explicit 
constants. This is due to our method which is based on a compactness-uniqueness argument.

2. Note that the proof of (6) can be deduced applying the general theory in [38, Chapter 6], from the result 
proved for the wave equation in [5]. Indeed, it is well-known that exact observability for an (autonomous) 
wave equation implies observability for the associated Schrödinger equation. However, as far as we know, 
this general theory does not work for nonautonomous evolution equation (see [21]). Thus, we believe that 
our approach, that consists in deriving the observability estimate directly for the Schrödinger equation, 
is a first step and can be adapted to address the observability of a one-dimensional Schrödinger equation 
on certain time dependent domain. This equation can be transformed into a non-autonomous equation 
on a fixed domain, via a change of variable (see [8,21]).
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3. Besides being of interest in itself, the Schrödinger equation may serve also as a preliminary step to study 
an Euler-Bernoulli (plate) equation. We refer to [23], where the connection between these two problems 
is discussed in details.

In the last part of this paper, we study the energy decay rate of the degenerate and singular Schrödinger 
equation with a boundary damping. More precisely, we shall consider the following Schrödinger equation

iut + (xαux)x + μ

x2−α
u = 0 in (0, T ) × (0, 1), (7)

with dissipative boundary condition:

ut(t, 1) + ux(t, 1) + βu(t, 1) = 0, (8)

where β ≥ 0.
The main purpose of this part is to show that (8) stabilizes exponentially the corresponding solution of 

(7) under suitable assumptions on the parameters α, μ and β.
Prior to give the precise statement of our main results, we firstly give the main notations that will be 

used throughout the paper.
In what follows, Re and Im stand for the real and the imaginary part of a complex number, 〈·, ·〉 denotes 

the usual scalar product on L2((0, 1); C) i.e.

〈u, v〉 = Re
1∫

0

u(x)v(x) dx, ∀u, v ∈ L2((0, 1);C),

and the notation A 	 B means that there exist two constants C1, C2 > 0, such that C1A ≤ B ≤ C2A.
Finally, we recall the following technical lemma, whose proof is a simple adaptation of [5, Theorem 1.1 

and Lemma 2.1] to the complex case.

Lemma 1. Let μ(α) be as in (3). Then, for all α ∈ [0, 2) and for all u ∈ C∞
c ((0, 1); C), we have

1∫
0

x2|ux(x)|2 dx ≤ Cα

1∫
0

(
xα|ux(x)|2 − μ(α) |u(x)|2

x2−α

)
dx (9)

and

1∫
0

|u(x)|2 dx ≤ C ′
α

1∫
0

(
xα|ux(x)|2 − μ(α) |u(x)|2

x2−α

)
dx, (10)

where

Cα =
{

1, if 0 ≤ α < 1,
1 + 4(1−α)(α−3)

(2−α)2 , if 1 ≤ α < 2 (11)

and

C ′
α =

{
min

(
4

(1−α)(3−α) ,
16

(2−α)2

)
, if 0 ≤ α < 1,

16 , if 1 ≤ α < 2.
(12)
(2−α)2
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2. Preliminary results

In order to study well posedness and controllability properties for (1), we shall need some basic properties 
of the corresponding homogeneous problem (5).

Before going into further details, we first introduce the functional setting associated to the degener-
ate/singular problems (see [12] or [39]). For any μ ≤ μ(α), we consider the Hilbert space H1,μ

α ((0, 1); C)
given by

H1,μ
α ((0, 1);C) :=

{
u ∈ L2((0, 1);C) ∩H1

loc((0, 1];C) such that

1∫
0

(
xα|ux(x)|2 − μ

x2−α
|u(x)|2

)
dx < +∞

}

endowed with the scalar product

〈u, v〉H1,μ
α (0,1) := Re

1∫
0

(
u(x)v(x) + xαux(x)vx(x) − μ

x2−α
u(x)v(x)

)
dx,

for all u, v ∈ H1,μ
α ((0, 1); C).

The previous scalar product obviously induces the related respective norm

‖u‖H1,μ
α (0,1) :=

( 1∫
0

(
|u(x)|2 + xα|ux(x)|2 − μ

x2−α
|u(x)|2

)
dx

) 1
2
,

for all u ∈ H1,μ
α ((0, 1); C).

According to [39], the trace at x = 0 of any u ∈ H1,μ
α ((0, 1); C) makes sense as soon as α < 1. This leads 

us to introduce the following space:

(i) For 0 ≤ α < 1, we define

H1,μ
α,0((0, 1);C) :=

{
u ∈ H1,μ

α ((0, 1);C) | u(0) = u(1) = 0
}
.

(ii) For 1 < α < 2, we change the definition of H1,μ
α,0(0, 1) in the following way

H1,μ
α,0((0, 1);C) :=

{
u ∈ H1,μ

α ((0, 1);C) | u(1) = 0
}
.

Let us mention that in both cases, H1,μ
α,0((0, 1); C) may be seen as the completion of C∞

c ((0, 1); C) with 
respect to the norm ‖ · ‖H1,μ

α (0,1); thus (4), (9) and (10) also hold true in H1,μ
α,0((0, 1); C). Moreover, thanks 

to (10), one can see that H1,μ
α,0((0, 1); C) is a Hilbert space with respect to the inner scalar product

〈u, v〉H1,μ
α,0(0,1) := Re

1∫
0

(
xαux(x)vx(x) − μ

x2−α
u(x)v(x)

)
dx, ∀u, v ∈ H1,μ

α,0((0, 1);C),

and associated norm

‖u‖H1,μ
α,0(0,1) :=

⎛
⎝ 1∫ (

xα|ux(x)|2 − μ

x2−α
|u(x)|2

)
dx

⎞
⎠

1
2

, ∀u ∈ H1,μ
α,0((0, 1);C),
0
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which is equivalent to ‖ · ‖H1,μ
α (0,1) on H1,μ

α,0((0, 1); C).
Next, we will indicate with H−1,μ

α ((0, 1); C) the dual of H1,μ
α,0((0, 1); C) with respect to the pivot space 

L2((0, 1); C), endowed with the natural norm

‖f‖H−1,μ
α

:= sup
‖g‖

H
1,μ
α,0

=1
〈f, g〉H−1,μ

α ,H1,μ
α,0

.

In order to simplify the notations, in the sequel, we denote by L2(0, 1), H1,μ
α,0(0, 1), and H−1,μ

α (0, 1) the 
spaces L2((0, 1); C), H1,μ

α,0((0, 1); C), and H−1,μ
α ((0, 1); C), respectively.

Remark 2. It is classical that, even though H1,μ
α,0(0, 1) is a Hilbert space, one generally does not identify 

H−1,μ
α (0, 1) with H1,μ

α,0(0, 1). One rather identifies L2(0, 1) with its dual, so that H−1,μ
α (0, 1) becomes a 

subspace of D′(0, 1) containing L2(0, 1). In particular, if u ∈ H1,μ
α,0(0, 1) and v ∈ L2(0, 1), then

〈v, u〉H−1,μ
α ,H1,μ

α,0
= Re

1∫
0

v(x)u(x) dx.

Further, we define

H2,μ
α (0, 1) :=

{
u ∈ H1,μ

α (0, 1) ∩H2
loc((0, 1]) | (xαux)x + μ

x2−α
u ∈ L2(0, 1)

}
.

In the following lemma, we collect useful properties of the above functional spaces which play an important 
role in oder to evaluate boundary terms, see [4, Proposition 2.5] and [5, Lemma 4 and 5].

In the rest of the paper, we use the following notation: Hi,μ=0
α (0, 1) and H1,μ=0

α,0 (0, 1) denote the spaces 
Hi,μ

α (0, 1) and H1,μ
α,0(0, 1) when μ = 0.

Proposition 2. Assume that 0 ≤ α < 2. Then the following properties hold true:

1. For every u ∈ H1,μ=0
α (0, 1)

lim
x↓0

x|u(x)|2 = 0, (13)

thus

lim
x↓0

xu(x)v(x) = 0, (14)

for every u, v ∈ H1,μ=0
α (0, 1).

2. For every u ∈ H2,μ=0
α (0, 1)

lim
x↓0

xα+1|u′(x)|2 = 0. (15)

Moreover, for all u ∈ H2,μ=0
α (0, 1) and for all v ∈ H1,μ=0

α (0, 1) such that v(0) = 0, if α ∈ [0, 1[ then

lim
x↓0

xαu′(x)v(x) = 0. (16)

3. Assume 0 ≤ α < 1. Then, for all u ∈ H2,μ=0
α (0, 1) such that u(0) = 0, one has

xα−1|u(x)|2 → 0 as x → 0+. (17)
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4. Assume 1 < α < 2. Then, for all u ∈ H1,μ=0
α,0 (0, 1)

xα−1|u(x)|2 → 0 as x → 0+. (18)

Finally, for all μ ≤ μ(α), we define the operator

Aμ
αu := (xαux)x + μ

x2−α
u

with domain depending on the value of α:

D(Aμ
α) :=

{
u ∈ H1,μ

α,0(0, 1) ∩H2
loc((0, 1]) | Aμ

αu ∈ H1,μ
α,0(0, 1)

}
,

if 0 ≤ α < 1, and

D(Aμ
α) :=

{
u ∈ H1,μ

α,0(0, 1) ∩H2
loc((0, 1]) | Aμ

αu ∈ H1,μ
α,0(0, 1) and (xαux)(0) = 0

}
,

if 1 < α < 2.

Remark 3.

1. Notice that, if u ∈ D(Aμ
α), then u satisfies the Dirichlet boundary conditions u(0) = 0 and u(1) = 0 in 

the first case. Also, it is proved in [39] that if u ∈ D(Aμ
α), then xαux ∈ W 1,1(0, 1) and thus the condition 

(xαux)(0) = u(1) = 0 in the second case makes sense, as well.
2. Thanks to the definition of D(Aμ

α), we can apply the results in Proposition 2 to give a sense and to 
evaluate the boundary terms involving ut appearing in the proof of Lemma 5.

We have the following properties of (Aμ
α; D(Aμ

α)).

Proposition 3. Assume that (2) holds. Then iAμ
α is a maximal dissipative operator on H1,μ

α,0(0, 1).

Proof. Let u ∈ D (Aμ
α). We have

1∫
0

(
xαvxux − μ

x2−α
vu

)
dx = −

1∫
0

(
(xαux)x + μ

x2−α
u
)
vdx,

for every v ∈ C∞
c (0, 1). Since in both cases H1,μ

α,0(0, 1) is the closure of C∞
c (0, 1) with respect to the norm 

induced by 〈·, ·〉H1,μ
α (0,1) (see [39, page 768]), one can deduce that the above inequality holds for every 

v ∈ H1,μ
α,0(0, 1). Applying this inequality with v = Aμ

αu ∈ H1,μ
α,0(0, 1), we obtain that

〈iAμ
αu, u〉H1,μ

α,0
= Re

⎡
⎣i

1∫
0

(
xα(Aμ

αu)xux − μ

x2−α
Aμ

αuu
)
dx

⎤
⎦

= Re

⎡
⎣−i

1∫
0

Aμ
αu

(
(xαux)x + μ

x2−α
u
)
dx

⎤
⎦

= Re

⎡
⎣−i

1∫
0

|Aμ
αu|2 dx

⎤
⎦ = 0.
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Therefore, iAμ
α is dissipative.

In order to show that iAμ
α is maximal dissipative, it remains to check that I − iAμ

α is surjective. Equiva-
lently, given any f ∈ H1,μ

α,0(0, 1), we have to prove that there exists u ∈ D (Aμ
α) such that

u− iAμ
αu = f. (19)

For this, note that for all u, v ∈ H1,μ
α,0(0, 1)

〈u, v〉1,0 :=
1∫

0

(
xαux(x)vx(x) − μ

x2−α
u(x)v(x)

)
dx

defines another scalar product in H1,μ
α,0(0, 1) with the corresponding norm ‖ · ‖H1,μ

α,0(0,1). Hence, H1,μ
α,0(0, 1)

endowed with the scalar product 〈·, ·〉1,0 is also a Hilbert space.
Now, we consider the sesquilinear form Γ : H1,μ

α,0(0, 1) ×H1,μ
α,0(0, 1) → C given by

Γ(u, z) =
1∫

0

(
i ūz + xαuxzx − μ

x2−α
ūz

)
dx, ∀u, z ∈ H1,μ

α,0(0, 1).

We have

ReΓ(u, u) = Re
1∫

0

(
i |u|2 + xα|ux|2 −

μ

x2−α
|u|2

)
dx

=
1∫

0

(
xα|ux|2 −

μ

x2−α
|u|2

)
dx

= ‖u‖2
H1,μ

α,0(0,1),

and thus Γ(·, ·) is coercive. Moreover, applying the Cauchy-Schwarz inequality, for all u, z ∈ H1,μ
α,0(0, 1), we 

have

|Γ(u, z)| ≤ ‖u‖L2(0,1)‖z‖L2(0,1) + ‖u‖H1,μ
α,0(0,1)‖z‖H1,μ

α,0(0,1)

(by (10))

≤ (C ′
α + 1) ‖u‖H1,μ

α,0(0,1)‖z‖H1,μ
α,0(0,1)

and then Γ(·, ·) is continuous.
Next, we introduce the linear form � : H1,μ

α,0(0, 1) → C given by

�(z) = i

1∫
0

f̄ zdx, ∀z ∈ H1,μ
α,0(0, 1).

Using again the Cauchy-Schwarz inequality and in view of (10), we see that

|�(z)| ≤ ‖f‖L2(0,1)‖z‖L2(0,1)

≤
√

C ′ ‖f‖L2(0,1)‖z‖ 1,μ .
α Hα,0(0,1)
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That is, � is a continuous linear functional on H1,μ
α,0(0, 1). Therefore, by the complex form of the Lax-Milgram 

Theorem (see [33, Lemma 1.3]), there exists a unique solution u ∈ H1,μ
α,0(0, 1) of

Γ(u, z) = �(z), ∀z ∈ H1,μ
α,0(0, 1). (20)

In addition, since C∞
c (0, 1) ⊂ H1,μ

α,0(0, 1), from (20), we have

1∫
0

(
iūz + xαuxzx − μ

x2−α
ūz

)
dx = i

1∫
0

f̄ zdx, ∀z ∈ C∞
c (0, 1).

This gives

iū−Aμ
αū = if̄ . (21)

Multiplying (21) by i and taking its complex conjugate, one can see that identity (19) holds. It remains 
to prove that u ∈ D(Aμ

α). Since u ∈ H1,μ
α,0(0, 1), we have u ∈ H1

loc((0, 1]). Thus, in order to prove that 
u ∈ H2

loc((0, 1]), it suffices to show that uxx ∈ L2
loc((0, 1]). To this aim, let ε > 0 and observe that

1∫
ε

|uxx|2 dx =
1∫

ε

(
x−α((xαux)x − αxα−1ux)

)2
dx

=
1∫

ε

(
x−α

(
(xαux)x + μ

x2−α
u− μ

x2−α
u− αxα−1ux

))2
dx

which is finite since (xαux)x + μ
x2−αu ∈ L2(0, 1), u ∈ L2(0, 1) and ux ∈ L2

loc((0, 1]). Therefore, uxx ∈
L2
loc((0, 1]). Now, we prove that (xαux)(0) = 0 when α ∈ (1, 2). Coming back to (21) and integrating by 

parts, we have

1∫
0

(
iuz + xαuxzx − μ

x2−α
uz

)
dx− [xαuxz]x=1

x=0 = i

1∫
0

f̄ zdx ∀z ∈ H1,μ
α,0(0, 1).

This, combined with (20), gives

[xαuxz]x=1
x=0 = 0 ∀z ∈ H1,μ

α,0(0, 1).

Recalling that u ∈ H2
loc((0, 1]), the term (xαux)(1) makes sense. Since z(1) = 0, then

lim
x↓0

xαuxz = 0, ∀z ∈ H1,μ
α,0(0, 1).

Now, define z(x) := 1 − x for all x ∈ (0, 1); then z ∈ H1,μ
α,0(0, 1) and limx↓0 z(x) = 1, thus

lim
x↓0

xαux = 0.

In conclusion, u ∈ D(Aμ
α) and solves (19). �

Therefore, from standard semigroup theory, we get the following well posedness result:
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Theorem 4. Let T > 0 be given and assume (2). Given u0 ∈ H1,μ
α,0(0, 1), problem (5) has a unique solution

u ∈ C
(
[0,+∞), H1,μ

α,0(0, 1)
)
∩ C1 (

[0,+∞), H−1,μ
α (0, 1)

)
.

Moreover,

‖u(t)‖L2(0,1) = ‖u0‖L2(0,1), ∀ t ∈ [0, T ]. (22)

If u0 ∈ D (Aμ
α), then

u ∈ C ([0,+∞), D (Aμ
α)) ∩ C1

(
[0,+∞), H1,μ

α,0(0, 1)
)

and

‖u(t)‖H1,μ
α,0(0,1) = ‖u0‖H1,μ

α,0(0,1), ∀ t ∈ [0, T ]. (23)

Proof. Likewise [16, Proposition 3.5.13], from the skew-adjointness of iAμ
α, we deduce the desired exis-

tence, uniqueness and regularity results (see also [15, Proposition 2.1.1]). Let us prove the other facts. 
Suppose that u0 ∈ D(Aμ

α) so that u is a classical solution of (5) in the sense that u ∈ C ([0, T ], D(Aμ
α)) ∩

C1
(
[0, T ], H1,μ

α,0(0, 1)
)

(see [16, Theorem 3.2.3]). Then, multiplying (5) by iu and integrating over (0, 1), we 
obtain

0 =
1∫

0

iu(t, x)
{
iut(t, x) + (xαux)x (t, x) + μ

x2−α
u(t, x)

}
dx

=
1∫

0

{
−u(t, x)ut(t, x) − i

(
xα|ux|2 −

μ

x2−α
|u|2

)}
dx +

[
ixαux(t, x)u(t, x)

]x=1

x=0
.

Moreover, according to (16), we see that the boundary terms vanish. Then, taking the real part, we get

1
2
d

dt
‖u(t)‖2

L2(0,1) = 0,

which guarantees the conservation of the L2-norm of u:

‖u(t)‖L2(0,1) = ‖u0‖L2(0,1), for every t ∈ [0, T ].

On the other hand, multiplying (5) by ut and integrating over (0, 1), we have

0 =
1∫

0

ut(t, x)
{
iut(t, x) + (xαux)x (t, x) + μ

x2−α
u(t, x)

}
dx

=
1∫

0

{
i|ut|2 + ut(t, x)(xαux)x(t, x) + μ

ut(t, x)u(t, x)
x2−α

}
dx

=
1∫ {

i|ut|2 −
(
xαuxutx − μ

utu

x2−α

)}
dx +

[
xαux(t, x)ut(t, x)

]x=1

x=0
.

0
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Noting that the boundary terms vanish because of the boundary conditions and thanks to (16) in both the 
weakly and strongly degenerate cases, we obtain

1∫
0

(
xαuxutx − μ

uut

x2−α

)
dx = i

1∫
0

|ut|2 dx ∈ iR.

Therefore,

1
2
d

dt
‖u(t)‖2

H1,μ
α,0(0,1) = Re

1∫
0

(
xαuxutx − μ

uut

x2−α

)
dx = 0

and we deduce that

‖u(t)‖H1,μ
α,0(0,1) = ‖u0‖H1,μ

α,0(0,1), for every t ∈ [0, T ].

Finally, an approximation argument allows us to extend the conclusion to mild solutions. �
3. Boundary observability

By employing the nowadays classical multiplier method, we begin by establishing an identity which is 
the crucial starting point to prove the desired direct and inverse inequalities for the adjoint system (5).

Lemma 5. Let T > 0 be given and assume (2). If u is a classical solution of (5), then we have

1
2

T∫
0

|ux(t, 1)|2 dt = 2 − α

2 T‖u0‖2
H1,μ

α,0(0,1) + 1
2

⎡
⎣Im

1∫
0

xuxu dx

⎤
⎦
t=T

t=0

. (24)

Proof. Multiplying (5) by xux + 1
2u and integrating over Q, we obtain

0 =
∫
Q

iut(xux + 1
2u) dx dt +

∫
Q

(xαux)x(xux + 1
2u) dx dt

+
∫
Q

(xux + 1
2u) μ

x2−α
u dx dt

:= I + J + K.

(25)

We proceed integrating by parts the first two terms on the right-hand side of this equality as follows. For 
the first integral, we have

I =

⎡
⎣ 1∫

0

ixuux dx

⎤
⎦
t=T

t=0

−
∫
Q

ixuutx dx dt + 1
2

⎡
⎣ T∫

0

ixutu dt

⎤
⎦

1

0

− 1
2

∫
ixutxu dx dt−

1
2

∫
ixutux dx dt
Q Q
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=

⎡
⎣ 1∫

0

ixuux dx

⎤
⎦
t=T

t=0

−
∫
Q

ixuutx dx dt + 1
2

⎡
⎣ T∫

0

ixutu dt

⎤
⎦

1

0

− 1
2

∫
Q

ixutxu dx dt−
1
2

⎡
⎣ 1∫

0

ixuux dx

⎤
⎦
t=T

t=0

+ 1
2

∫
Q

ixuutx dx dt.

Then, using the boundary conditions together with the fact that ut = iAμ
αu ∈ H1,μ

α,0(0, 1), by (14) it follows 
that

I = i

2

⎡
⎣ 1∫

0

xuux dx

⎤
⎦
t=T

t=0

− i

2

∫
Q

x(uutx + utxu) dx dt. (26)

Moreover, after suitable integrations by parts, we also have

J =

⎡
⎣ T∫

0

xα+1|ux|2 dt

⎤
⎦

1

0

−
∫
Q

xαux(xux)x dx dt

+ 1
2

⎡
⎣ T∫

0

xαuxu dt

⎤
⎦

1

0

− 1
2

∫
Q

xαuxux dx dt

=

⎡
⎣ T∫

0

xα+1|ux|2 dt

⎤
⎦

1

0

−
∫
Q

xα|ux|2 dx dt

−
∫
Q

xα+1uxuxx dx dt + 1
2

⎡
⎣ T∫

0

xαuxudt

⎤
⎦

1

0

− 1
2

⎡
⎣ T∫

0

xα+1|ux|2 dt

⎤
⎦

1

0

+ 1
2

∫
Q

x(xαuxux)x dx dt.

In view of the boundary conditions and (15), we obtain

J = 1
2

T∫
0

|ux(t, 1)|2 dt + α− 2
2

∫
Q

xα|ux|2 dx dt

− 1
2

∫
Q

xα+1(uxuxx − uxuxx) dx dt.

(27)

Inserting (26) and (27) into (25) and taking the real parts, we have

1
2

T∫
0

|ux(t, 1)|2 dt = 2 − α

2

∫
Q

xα|ux|2 dx dt− ReK + 1
2

⎡
⎣Im

1∫
0

xuxu dx

⎤
⎦
t=T

t=0

. (28)

On the other hand, after an integration by parts and making use of (17) and (18), we deduce that
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ReK = 2 − α

2

∫
Q

μ

x2−α
|u|2 dx dt. (29)

Then the identity (24) follows inserting (29) into (28) and using (23). �
With the help of Lemma 5, we can now prove the main result of this section.

Proposition 6. Let T > 0 be given and assume (2). Then, there exist some constants c1, c2 > 0 such that, 
for every u0 ∈ H1,μ

α,0(0, 1), the solution u of (5) satisfies

T∫
0

|ux(t, 1)|2 dt ≤ c1‖u0‖2
H1,μ

α,0(0,1) (30)

and

‖u0‖2
H1,μ

α,0(0,1) ≤ c2

T∫
0

|ux(t, 1)|2 dt. (31)

Proof. By the Young inequality, due to (9) and (10), there exists a positive constant C = C(α) such that, 
for all t ∈ [0, T ], we have

∣∣∣∣∣∣Im
1∫

0

xux(t, x)u(t, x) dx

∣∣∣∣∣∣ ≤
1
2

1∫
0

|u(t, x)|2 dx + 1
2

1∫
0

x2|ux(t, x)|2 dx

≤ C

1∫
0

(
xα|ux(t, x)|2 − μ(α)

x2−α
|u(t, x)|2

)
dx

≤ C‖u(t)‖2
H1,μ

α,0(0,1),

since ‖ · ‖
H

1,μ(α)
α,0

≤ ‖ · ‖H1,μ
α,0

(∀ μ ≤ μ(α)). Then (23) yields

∣∣∣∣∣∣Im
1∫

0

xux(t, x)u(t, x) dx

∣∣∣∣∣∣ ≤ C‖u0‖2
H1,μ

α,0(0,1), ∀ t ∈ [0, T ]. (32)

Using this inequality in (24), we then deduce that there exists a positive constant c1 = c1(T, α) such that

T∫
0

|ux(t, 1)|2 dt ≤ c1‖u0‖2
H1,μ

α,0(0,1).

Let us now prove the inverse inequality (31). We split the proof in two main steps. First, applying Young’s 
inequality, for all ε > 0, we have

∣∣∣∣∣∣Im
1∫

0

xuxu dx

∣∣∣∣∣∣ ≤ Cα,ε

1∫
0

|u|2 dx + ε

Cα

1∫
0

x2|ux|2 dx,

where Cα denotes the constant in (9). Using (9) together with (22) and (23), one has
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∣∣∣∣∣∣Im
1∫

0

xuxu dx

∣∣∣∣∣∣ ≤ Cα,ε‖u0‖2
L2(0,1) + ε‖u0‖2

H1,μ
α,0(0,1). (33)

Thus, choosing ε < 2−α
2 T , by (24) and (33), we deduce that

(
2 − α

2 T − ε

)
‖u0‖2

H1,μ
α,0(0,1) ≤

1
2

T∫
0

|ux(t, 1)|2 dt + Cα,ε‖u0‖2
L2(0,1). (34)

In a second step, to complete the proof, it is enough to prove that there exists a constant K > 0 such that

‖u0‖2
L2(0,1) ≤ K

T∫
0

|ux(t, 1)|2 dt. (35)

Following [29], we argue by contradiction via a compactness-uniqueness argument. Let us assume that (35)
is not satisfied. This implies that there exists a sequence {un} of solutions of (5) such that

‖un(0)‖L2(0,1) = 1, ∀ n ∈ N (36)

and

T∫
0

|un,x(t, 1)|2 dt → 0 as n → +∞. (37)

From (34) we deduce that {un(0)} is bounded in H1,μ
α,0(0, 1) and, using Theorem 4, we get

{un} is bounded in L∞(0, T ;H1,μ
α,0(0, 1)) ∩W 1,∞(0, T ;H−1,μ

α (0, 1)).

Hence, extracting a subsequence (that we will still denote by {un}) we have
⎧⎨
⎩un → u, in L∞

(
0, T ;H1,μ

α,0(0, 1)
)

weakly �,

(un)t → ut, in L∞ (
0, T ;H−1,μ

α (0, 1)
)

weakly �.

The function u ∈ L∞(0, T ; H1,μ
α,0(0, 1)) ∩ W 1,∞(0, T ; H−1,μ

α (0, 1)) is clearly a solution of (5). Moreover, by 
the compactness of the embedding (see [36, section 8])

L∞(0, T ;H1,μ
α,0(0, 1)) ∩W 1,∞(0, T ;H−1,μ

α (0, 1)) → C
(
[0, T ];L2(0, 1)

)
and, by (36), we deduce

‖u(0)‖L2(0,1) = 1. (38)

On the other hand, (37) implies

ux(t, 1) = 0 on (0, T ). (39)

Applying the standard unique continuation method (see [37]), it results that (5) combined with (39)
implies u ≡ 0, which is in contradiction with (38). Indeed, unique continuation results may be applied far 
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from the origin where the coefficients of the Schrödinger operator i∂t · +∂x(xα∂x·) + μ
x2−α · are analytic 

in time (actually, they are independent of time and bounded in space). Then one can apply Holmgreen’s 
unique continuation (see [37, section 5.2]) that may be justified as described in [40, Theorem 6.1] (see also 
[14, Remark 4.1]), to get u = 0, a.e. in (ε, 1) for any ε > 0. Thus, we will conclude that u ≡ 0 in (0, 1). This 
proves (35). Finally, by (34) and (35), the desired inverse inequality (31) follows. �
4. Boundary controllability

Prior to the formulation of the exact controllability theorem we have to give a sense to the solution of the 
system (1) which has non homogeneous Dirichlet data on a part of the boundary. To this aim, we need to 
make some necessary preparation. First of all, let us consider the degenerate/singular Schrödinger equation 
with homogeneous boundary conditions and a source term:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

iyt + (xαyx)x + μ
x2−α y = h, (t, x) ∈ Q,{

y(t, 0) = 0, if 0 ≤ α < 1,
(xαyx)(t, 0) = 0, if 1 < α < 2,

t ∈ (0, T ),

y(t, 1) = 0, t ∈ (0, T ),
y(0, x) = y0, x ∈ (0, 1),

(40)

with y0 ∈ H1,μ
α,0(0, 1) and h ∈ L1

(
0, T ;H1,μ

α,0(0, 1)
)
.

The following result is a consequence of Proposition 3 and [16, Lemmas 4.1.1 and 4.1.5].

Theorem 7. Assume (2). Given h ∈ L1
(
0, T ;H1,μ

α,0(0, 1)
)

and y0 ∈ H1,μ
α,0(0, 1), the system (40) admits a 

unique solution

y ∈ C([0, T ], H1,μ
α,0(0, 1)).

In addition, we have

‖y‖C([0,T ],H1,μ
α,0(0,1)) ≤ C

(
‖y0‖H1,μ

α,0(0,1) + ‖h‖
L1

(
0,T ;H1,μ

α,0(0,1)
)
)
. (41)

In the following, we will give a sharp trace regularity result for problem (40).

Lemma 8. Assume (2) and consider y the unique solution of (40) corresponding to the initial data y0 ∈
H1,μ

α,0(0, 1). Then

yx(t, 1) ∈ L2(0, T ).

Moreover, there exists CT > 0 such that

T∫
0

|yx(t, 1)|2 dt ≤ CT

(
‖y0‖2

H1,μ
α,0(0,1) + ‖h‖2

L1
(
0,T ;H1,μ

α,0(0,1)
)
)

(42)

and y satisfies the identity
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1
2

T∫
0

|yx(t, 1)|2 dt = 2 − α

2 T‖y0‖2
H1,μ

α,0(0,1) + 1
2

⎡
⎣Im

1∫
0

xyxy dx

⎤
⎦
t=T

t=0

+ Re
∫
Q

xyxh dx dt + 1
2 Re

∫
Q

yh dx dt. (43)

Proof. Similar computations as in (24) lead to the identity (43). Then, inequality (42) follows from (43)
and the energy inequality (41). �

As a consequence, in a second step, we are going to prove well posedness of the non-homogeneous 
boundary value problem (1) with zero initial data. For this purpose, we introduce the following definition 
of a solution by transposition in the spirit of [22,28].

Definition 1. Let f ∈ L2(0, T ). We say that y is a solution by transposition of the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

iyt + (xαyx)x + μ
x2−α y = 0, (t, x) ∈ Q,{

y(t, 0) = 0, if 0 ≤ α < 1,
(xαyx)(t, 0) = 0, if 1 < α < 2,

t ∈ (0, T ),

y(t, 1) = f, t ∈ (0, T ),
y(0, x) = 0, x ∈ (0, 1),

(44)

when y ∈ L∞ (
0, T ;H−1,μ

α (0, 1)
)

and, for each h1 ∈ L1
(
0, T ;H1,μ

α,0(0, 1)
)
, one has

T∫
0

〈y(t), h1(t)〉H−1,μ
α ,H1,μ

α,0
dt = 〈f, wx(t, 1)〉L2(0,T ), (45)

where w is the solution of the backward Schrödinger equation

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

iwt + (xαwx)x + μ
x2−αw = h1, (t, x) ∈ Q,{

w(t, 0) = 0, if 0 ≤ α < 1,
(xαwx)(t, 0) = 0, if 1 < α < 2,

t ∈ (0, T ),

w(t, 1) = 0, t ∈ (0, T ),
w(T, x) = 0, x ∈ (0, 1).

(46)

Remark 4. Observe that Lemma 8 can be applied to the backward Schrödinger equation (46). Indeed, system 
(46) can be reduced to (40) by changing t in T − t. In particular, we have that the solution w of (46) satisfies 
wx(t, 1) ∈ L2(0, T ) so that the above definition makes sense.

We now state the following theorem that concerns the existence and uniqueness of solution to the new 
system (44) using the method of transposition.

Theorem 9. Assume (2) and let f ∈ L2(0, T ). Then the system (44) has a unique solution y belonging to 
the space C

(
[0, T ];H−1,μ

α (0, 1)
)

in the sense of transposition. Moreover, the operator f �→ y is linear and 
continuous from L2(0, T ) into C

(
[0, T ];H−1,μ

α (0, 1)
)
.
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Proof. Let us define a linear form L on L1
(
0, T ;H1,μ

α,0(0, 1)
)

by

L(h1) = 〈f, wx(t, 1)〉L2(0,T ),

where w is the unique solution to the adjoint system (46) with given source term h1. The map L is well-
defined because of the hidden regularity as mentioned in the remark above.

Using Cauchy-Schwarz’s inequality, from the estimate (42) for the solution w of (46), we obtain

|L(h1)| ≤ ‖f‖L2(0,T )

⎛
⎝ T∫

0

|wx(t, 1)|2 dt

⎞
⎠

1
2

≤ C‖f‖L2(0,T )‖h1‖L1
(
0,T ;H1,μ

α,0(0,1)
),

(47)

so that L is continuous on L1
(
0, T ;H1,μ

α,0(0, 1)
)
. Therefore, from the Riesz representation Theorem, there 

exists a unique y ∈ L∞ (
0, T ;H−1,μ

α (0, 1)
)

that satisfies (45) for every f ∈ L1
(
0, T ;H1,μ

α,0(0, 1)
)
. Moreover, 

the continuity of L reads as

‖y‖
L∞

(
0,T ;H−1,μ

α (0,1)
) ≤ C‖f‖L2(0,T ). (48)

Thus, the map f �→ y is continuous from L2(0, T ) into L∞ (
0, T ;H−1,μ

α (0, 1)
)
.

It remains to prove that y actually belongs to C
(
[0, T ];H−1,μ

α (0, 1)
)
. We take a sequence of smooth 

approximation fn → f strongly in L2(0, T ). The problem (44) with boundary condition fn admits a 
smooth solution yn, which is also a transposition solution. In particular, yn ∈ C

(
[0, T ];H−1,μ

α (0, 1)
)

(see 
for example [27]) and the estimate (48) implies that y is the limit of yn in L∞ (

0, T ;H−1,μ
α (0, 1)

)
. Since 

C
(
[0, T ];H−1,μ

α (0, 1)
)

is a closed subspace of L∞ (
0, T ;H−1,μ

α (0, 1)
)
, this implies y ∈ C

(
[0, T ];H−1,μ

α (0, 1)
)
. 

Thus the proof is complete. �
After these preparations, we deduce the well posedness of the full initial boundary value problem (1).

Definition 2. Let f ∈ L2(0, T ) and y0 ∈ H−1,μ
α (0, 1). We say that y is a solution by transposition of the 

problem (1) when y ∈ L∞ (
0, T ;H−1,μ

α (0, 1)
)

and, for each h1 ∈ L1
(
0, T ;H1,μ

α,0(0, 1)
)
, one has

T∫
0

〈y(t), h1(t)〉H−1,μ
α ,H1,μ

α,0
dt = 〈f, wx(t, 1)〉L2(0,T ) + i〈y0, w(0)〉H−1,μ

α ,H1,μ
α,0

, (49)

where w is the solution of the backward Schrödinger equation (46).

Theorem 10. Assume (2). For every f ∈ L2(0, T ) and every y0 ∈ H−1,μ
α (0, 1), the system (1) has a unique 

weak solution y belonging to the space C
(
[0, T ], H−1,μ

α (0, 1)
)

in the sense of transposition and the operator 
defined by

(y0, f) �→ y,

is linear and continuous from H−1,μ
α (0, 1) × L2(0, T ) into C

(
[0, T ];H−1,μ

α (0, 1)
)
.
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Proof. Observe that, for a given y0 ∈ L2(0, 1), the system (40) with h = 0 admits a unique solution 
y ∈ C([0, T ], L2(0, 1)) which satisfies

‖y‖C([0,T ],L2(0,1)) ≤ C‖y0‖L2(0,1).

In fact, this solution is also a transposition solution. This is the consequence of an integration by parts if y
is smooth enough, and the general case follows by a standard density argument. This fact, Theorem 9 and 
linearity imply the thesis. �

Now we can prove the null controllability theorem.

Theorem 11. Let T > 0 be arbitrary and assume (2). Then, given y0 ∈ H−1,μ
α (0, 1), there exists a control 

f ∈ L2(0, T ) such that the corresponding solution of problem (1) (in the sense of transposition) satisfies

y(T, x) = 0, for all x ∈ (0, 1). (50)

Proof. We employ the Hilbert Uniqueness Method (HUM) introduced by J.L. Lions in [28]. Given u0 ∈
H1,μ

α,0(0, 1), by the direct inequality (30), we know that the solution u of (5) satisfies:

ux(t, 1) ∈ L2(0, T ).

Now, let us introduce the following system:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

iyt + (xαyx)x + μ
x2−α y = 0, (t, x) ∈ Q,

y(t, 1) = ux(t, 1), t ∈ (0, T ),{
y(t, 0) = 0, if 0 ≤ α < 1,
(xαyx)(t, 0) = 0, if 1 < α < 2,

t ∈ (0, T ),

y(T ) = 0, x ∈ (0, 1).

(51)

By Theorem 9, problem (51) has a unique solution y, satisfying y0 := y(0, x) ∈ H−1,μ
α (0, 1). Hence the linear 

map

Λ : H1,μ
α,0 → H−1,μ

α , u0 �→ −iy0

is continuous from H1,μ
α,0 into H−1,μ

α . It is evident that, if Λ is surjective, then the null controllability problem 
for (1) is solved with a control of the form f(t) = ux(t, 1), where u is the solution of (5) with initial data 
u0 = Λ−1 (−iy0).

Multiplying equation (51) by u, integrating by parts over Q and taking the real parts, it follows that:

〈−iy0, u0〉H−1,μ
α ,H1,μ

α,0
=

T∫
0

|ux(t, 1)|2 dt.

Equivalently,

〈Λu0, u0〉H−1,μ
α ,H1,μ

α,0
=

T∫
0

|ux(t, 1)|2 dt.

By Proposition 6, for every T > 0 and u0 ∈ H1,μ
α,0(0, 1), we have
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T∫
0

|ux(t, 1)|2 dt 	 ‖u0‖2
H1,μ

α,0(0,1).

Therefore, for every T > 0, one has:

〈Λu0, u0〉H−1,μ
α ,H1,μ

α,0
	 ‖u0‖2

H1,μ
α,0(0,1).

Then, thanks to the Lions-Lax-Milgram Lemma (see [27]), Λ is an isomorphism from H1,μ
α,0(0, 1) onto 

H−1,μ
α (0, 1) and this completes the proof of Theorem 11. �

5. Exponential stabilization

This section is devoted to the study of boundary stabilization for the degenerate and singular linearly 
damped Schrödinger equation:

iut + (xαux)x + μ

x2−α
u = 0, in (0,+∞) × (0, 1), (52)

with
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut(t, 1) + ux(t, 1) + βu(t, 1) = 0, t > 0,{
u(t, 0) = 0, if 0 ≤ α < 1,
(xαux)(t, 0) = 0, if 1 < α < 2,

t > 0,

u(0, x) = u0(x), 0 ≤ x ≤ 1,

(53)

where μ ∈ R and β ≥ 0 is given.
In order to study problem (52)-(53), we now make the following assumption:

Assumption 12. We assume that the parameters α and μ satisfy:

α ∈ [0, 2) \ {1} and μ < μ(α). (54)

Remark 5. In the controllability problem, we have assumed (2) which include both cases: the subcritical 
potential μ < μ(α) and the critical one μ = μ(α). But for the stabilization problem, we only treat the 
first one, i.e. μ < μ(α). The reason relies on the fact that we need the Hardy-Poincaré inequalities given 
in Lemma 1 valid in the space H1,μ

α (0, 1) instead of H1,μ
α,0(0, 1). In the subcritical case, we can work on the 

space H1,μ=0
α (0, 1) (see [39]), where we prove the Hardy-Poincaré inequality (55). Also, to deal with the 

critical case, similar results to the ones stated in Proposition 15 will be needed to be proved in the space 
W 1,μ

α (0, 1) instead of W 1,μ=0
α (0, 1) (see the next subsection for the definition of these two spaces).

5.1. Preliminary results and well posedness

We start introducing the functional setting needed to treat our problem. Let us denote by W 1,μ
α (0, 1) the 

space H1,μ
α (0, 1) itself if α ∈ (1, 2) and, if α ∈ [0, 1) , the closed subspace of H1,μ

α (0, 1) consisting of all the 
functions u ∈ H1,μ

α (0, 1) such that u(0) = 0. Moreover, we set

W 2,μ
α (0, 1) = H2,μ

α (0, 1) ∩W 1,μ
α (0, 1).

Notice that W 2,μ
α (0, 1) = H2,μ

α (0, 1) when α ∈ (1, 2).
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In the Hilbert space W 1,μ
α (0, 1) we consider the following scalar product

〈u, v〉W 1,μ
α

= Re

⎛
⎝ 1∫

0

(
u(x)v(x) + xαux(x)vx(x) − μ

x2−α
u(x)v(x)

)
dx + βu(1)v(1)

⎞
⎠ ,

for all u, v ∈ W 1,μ
α (0, 1), and the associated norm

‖u‖W 1,μ
α (0,1) =

⎛
⎝ 1∫

0

(
|u(x)|2 + xα|ux(x)|2 − μ

x2−α
|u(x)|2

)
dx + β|u(1)|2

⎞
⎠

1
2

,

for all u ∈ W 1,μ
α (0, 1).

Let us also set

(u, v)W 1,μ
α (0,1) = Re

⎛
⎝ 1∫

0

(
xαux(x)vx(x) − μ

x2−α
u(x)v(x)

)
dx + βu(1)v(1)

⎞
⎠ ,

for all u, v ∈ W 1,μ
α (0, 1), and its corresponding norm

|u|W 1,μ
α (0,1) :=

⎛
⎝ 1∫

0

(
xα|ux(x)|2 − μ

x2−α
|u(x)|2

)
dx + β|u(1)|2

⎞
⎠

1
2

,

for all u ∈ W 1,μ
α (0, 1).

We first show the following Hardy-type inequality.

Lemma 13. Let α ∈ [0, 2). There exists a constant Dα such that, for every u ∈ W 1,μ=0
α (0, 1), we have

(1 − α)2

4

1∫
0

|u(x)|2
x2−α

dx ≤
1∫

0

xα|ux(x)|2 dx + Dα|u(1)|2. (55)

More precisely,

Dα := max
{

0, α− 1
2

}
.

Proof. Let u ∈ W 1,μ=0
α (0, 1). We can assume that u is a real function, since the result can be easily extended 

to the complex case using the fact that |u|2 = (Reu)2 + (Im u)2.
It is well known that (55) is valid for all α ∈ [0, 1) (see for example [3, Proposition 2.1]). Let us prove 

the result in the case α ∈ [1, 2). For all x ∈ (0, 1), we have that

0 ≤
1∫

x

(
s

α
2 u′(s) − 1 − α

2
u(s)
s

2−α
2

)2

ds

=
1∫
sα|u′(s)|2ds + (1 − α)2

4

1∫ |u(s)|2
s2−α

ds− 1 − α

2

1∫ 1
s1−α

(
u2(s)

)′
ds
x x x
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=
1∫

x

(
sα|u′(s)|2 − μ(α) |u(s)|2

s2−α

)
ds + α− 1

2 |u(1)|2 − α− 1
2 xα−1|u(x)|2

≤
1∫

x

(
sα|u′(s)|2 − μ(α) |u(s)|2

s2−α

)
ds + α− 1

2 |u(1)|2,

where we recall that μ(α) is defined in (3).
Thus we get

(1 − α)2

4

1∫
x

|u(s)|2
s2−α

dx ≤
1∫

x

sα|u′(s)|2 dx + Dα|u(1)|2.

Therefore, taking the limit as x ↓ 0, we obtain the announced result. �
In the subcritical case μ < μ(α), thanks to (55), one can easily prove that | · |W 1,μ

α (0,1) is equivalent to 
the norm | · |W 1,μ=0

α
, and hence W 1,μ

α (0, 1) = W 1,μ=0
α (0, 1). To be more precise, in the subcritical case, one 

can prove the following result.

Lemma 14. Assume Hypothesis 12 and consider β ≥ 0. Then there exist two constants C1
α,μ > 0 and C2

α,μ > 0
such that, for every u ∈ W 1,μ=0

α (0, 1)

C1
α,μ|u|2W 1,μ=0

α (0,1) ≤ |u|2
W 1,μ

α (0,1) ≤ C2
α,μ|u|2W 1,μ=0

α (0,1). (56)

More precisely,

C1
α,μ = 1 − max(0, μ)

μ(α) , C2
α,μ = 1 − min(0, μ)

μ(α) .

Next, we recall some preliminary results that will be very useful to tackle well posedness and stabilization 
issues for system (52)-(53) (see [4, Proposition 4.3]). First, let us set

‖u‖α,μ=0 =

⎛
⎝ 1∫

0

(
|u(x)|2 + xα|ux(x)|2

)
dx

⎞
⎠

1
2

, ∀ u ∈ W 1,μ=0
α (0, 1).

Then, we have the following two results.

Proposition 15. Assume Hypothesis 12. Then, for every u ∈ W 1,μ=0
α (0, 1)

‖u‖2
L2(0,1) ≤ 2|u(1)|2 + C̃α

1∫
0

xα|ux(x)|2 dx, (57)

where

C̃α = min
{

4, 2
2 − α

}
.

Moreover, assuming that β > 0, we have

|u(1)| ≤ 1√ |u|W 1,μ=0
α (0,1), ∀ u ∈ W 1,μ=0

α (0, 1). (58)

β
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Proposition 16. Assume Hypothesis 12 and consider β ≥ 0. We have

|u|2
W 1,μ=0

α (0,1) ≥ cα,β‖u‖2
L2(0,1), ∀ u ∈ W 1,μ=0

α (0, 1), (59)

where

cα,β = min
{

1
C̃α

,
β

2

}
.

Moreover, we also have

cα,β
cα,β + 1

(
‖u‖2

α,μ=0 + β|u(1)|2
)
≤ |u|2

W 1,μ=0
α (0,1) ≤ γα,β‖u‖2

α,μ=0, ∀ u ∈ W 1,μ=0
α (0, 1), (60)

where

γα,β = max
{

2β, 1 + 2β
2 − α

}
.

In view of (56) and (60), we have the equivalence below.

Corollary 17. Assume Hypothesis 12 and consider β ≥ 0. Then the two norms ‖ ·‖W 1,μ=0
α (0,1) and | · |W 1,μ

α (0,1)
are equivalent in W 1,μ=0

α (0, 1).

We are now ready to study the well posedness of problem (52)-(53). For this, we consider the linear 
unbounded operator Aβ : D (Aβ) ⊂ W 1,μ=0

α (0, 1) → W 1,μ=0
α (0, 1) given by

Aβu := (xαux)x + μ

x2−α
u,

for all u ∈ D (Aβ), where the domain D (Aβ) is defined in the following way:

D (Aβ) =
{
u ∈ W 1,μ=0

α (0, 1) : Aβu ∈ W 1,μ=0
α (0, 1) and ux(1) + βu(1) = −i(Aβu)(1)

}
.

Remark 6. Observe that:

1. In view of [39, Proposition 1], if u ∈ D (Aβ) then, in addition to the boundary conditions u(0) = 0
in the weakly degenerate case, also the condition (xαux)(0) = 0 in the strongly degenerate case makes 
sense, as well.

2. Because of the classical Sobolev embedding Theorem, ux(1), (Aβu)(1), and βu(1) are well defined for 
all u ∈ W 1,μ

α (0, 1).
3. Let us also note that the identity

ux(1) + βu(1) = −i(Aβu)(1)

has to be understood in the following variational sense:

1∫
0

(
xαuxzx − μ

x2−α
uz

)
dx +

1∫
0

(
(xαux)x zx + μ

x2−α
uz

)
dx

+ βu(1)z(1) + i(Aβu)(1)z(1) = 0,

for all z ∈ W 1,μ
α (0, 1).
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The next result holds.

Proposition 18. Assume Hypothesis 12 and consider β > 0. Then iAβ is a maximal dissipative operator in 
W 1,μ=0

α (0, 1).

Proof. Let u ∈ D (Aβ). Then, by using (16), we have

(iAβu, u)W 1,μ
α (0,1) = Re

⎡
⎣i

1∫
0

(
xα(Aβu)xux − μ

x2−α
Aβuu

)
dx + β(iAβu)(1)u(1)

⎤
⎦

= Re

⎡
⎣[(iAβu)xαux]10 − i

1∫
0

Aβu
(
(xαux)x + μ

x2−α
u
)
dx + β(iAβu)(1)u(1)

⎤
⎦

= Re

⎡
⎣−i

1∫
0

|Aβu|2 dx + (iAβu)(1)ux(1) + β(iAβu)(1)u(1)

⎤
⎦

= Re

⎡
⎣−i

1∫
0

|Aβu|2 dx− |(Aβu)(1)|2
⎤
⎦ = −|(Aβu)(1)|2 dx ≤ 0.

Therefore, iAβ is dissipative.
In order to show that Aβ is maximal dissipative, it remains to check that I−iAβ is surjective. Equivalently, 

given any f ∈ W 1,μ=0
α (0, 1), we have to prove that there exists u ∈ D (Aβ) such that

u− iAβu = f. (61)

To this aim, observe that, by Corollary 17, for all u, v ∈ W 1,μ=0
α (0, 1)

〈u, v〉1 :=
1∫

0

(
xαux(x)vx(x) − μ

x2−α
u(x)v(x)

)
dx + βu(1)v(1)

defines another scalar product in W 1,μ=0
α (0, 1) whose corresponding norm | · |W 1,μ

α (0,1) is equivalent to 
‖ · ‖W 1,μ=0

α (0,1). Hence W 1,μ=0
α (0, 1) endowed with the scalar product 〈·, ·〉1 is also a Hilbert space.

Let us consider the sesquilinear form Λ : W 1,μ=0
α (0, 1) ×W 1,μ=0

α (0, 1) → C given by

Λ(u, z) =
1∫

0

(
i ūz + xαuxzx − μ

x2−α
ūz

)
dx + (β + 1)u(1)z(1), ∀u, z ∈ W 1,μ=0

α (0, 1).

We have

Re Λ(u, u) = Re
1∫

0

(
i |u|2 + xα|ux|2 −

μ

x2−α
|u|2

)
dx + (β + 1)|u(1)|2

=
1∫

0

(
xα|ux|2 −

μ

x2−α
|u|2

)
dx + (β + 1)|u(1)|2

≥ |u|2 1,μ ≥ C1 |u|2 1,μ=0 ,

Wα (0,1) α,μ Wα (0,1)
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and hence Λ(·, ·) is coercive. Moreover Λ(·, ·) is continuous: indeed, applying the Cauchy-Schwarz inequality, 
for all u, z ∈ W 1,μ=0

α (0, 1), we have

|Λ(u, z)| ≤ ‖u‖L2(0,1)‖z‖L2(0,1) + |u|W 1,μ
α (0,1)|z|W 1,μ

α (0,1) + (β + 1) |u(1)||z(1)|

(by Proposition 16)

≤ 1
cα,β

|u|W 1,μ=0
α (0,1)|z|W 1,μ=0

α (0,1) + |u|W 1,μ
α (0,1)|z|W 1,μ

α (0,1) + β + 1
β

|u|W 1,μ=0
α (0,1)|z|W 1,μ=0

α (0,1)

(by Lemma 14)

≤
[
C2

α,μ + 1
cα,β

+ β + 1
β

]
|u|W 1,μ=0

α (0,1)|z|W 1,μ=0
α (0,1)

and the claim follows.
Now, we introduce the linear form F : W 1,μ=0

α (0, 1) → C given by

F (z) = i

1∫
0

f̄ zdx + f(1)z(1), ∀z ∈ W 1,μ=0
α (0, 1).

Using again the Cauchy-Schwarz inequality, in view of (58) and (59), it is clear that

|F (z)| ≤ ‖f‖L2(0,1)‖z‖L2(0,1) + |f(1)||z(1)|

≤ 1
√
cα,β

‖f‖L2(0,1)|z|W 1,μ=0
α (0,1) + 1√

β
|f(1)||z|W 1,μ=0

α (0,1).

Then, we obtain

|F (z)| ≤
(

1
√
cα,β

‖f‖L2(0,1) + 1√
β
|f(1)|

)
|z|W 1,μ=0

α (0,1),

i.e. F is a continuous linear functional in W 1,μ=0
α (0, 1).

As a consequence, by the complex form of the Lax-Milgram Theorem (see [33, Lemma 1.3]), there exists 
a unique solution u ∈ W 1,μ=0

α (0, 1) of

Λ(u, z) = F (z), ∀ z ∈ W 1,μ=0
α (0, 1). (62)

Now, we will prove that u ∈ D(Aβ) and solves (61). Since C∞
c (0, 1) ⊂ W 1,μ=0

α (0, 1), from (62), we have

1∫
0

(
iūz + xαuxzx − μ

x2−α
ūz

)
dx = i

1∫
0

f̄zdx, ∀ z ∈ C∞
c (0, 1).

This implies that

iū−Aβū = if̄ , (63)

or equivalently (61).
Moreover, coming back to (63) and thanks to (16), we infer that

i

1∫
ūzdx +

1∫ (
xαuxzx − μ

x2−α
ūz

)
dx− ux(1)z(1) = i

1∫
f̄ zdx, ∀ z ∈ W 1,μ

α (0, 1).

0 0 0
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This, combined with (62), gives

z(1)
(
ux(1) + (β + 1)u(1) − f(1)

)
= 0 ∀; z ∈ W 1,μ=0

α (0, 1).

Since the function z defined by z(x) = x for all x ∈ (0, 1) is in W 1,μ=0
α (0, 1), we deduce that

ux(1) + (β + 1)u(1) − f(1) = 0.

Thus,

ux(1) + βu(1) = i(Aβū)(1),

which implies that ux(1) + βu(1) = −i(Aβu)(1). In conclusion, u ∈ D(Aβ) and solves (61). �
Consequently, from semigroup theory, we find the following well posedness result.

Theorem 19. Assume Hypothesis 12 and consider β > 0. Then, for any u0 ∈ W 1,μ=0
α (0, 1), problem (52)-(53)

has a unique solution

u ∈ C
(
[0,+∞),W 1,μ=0

α (0, 1)
)
∩ C1 ([0,+∞), (D (Aβ))′) .

If u0 ∈ D (Aβ), problem (52)-(53) has a unique solution

u ∈ C ([0,+∞), D (Aβ)) ∩ C1 (
[0,+∞),W 1,μ=0

α (0, 1)
)
.

The last result, which will be crucial to obtain the stabilization of (52)-(53), is given by the following 
proposition.

Proposition 20. Assume Hypothesis 12 and consider β > 0. Then, for every λ ∈ C, the variational problem

1∫
0

(
xαvxzx − μ

x2−α
vz

)
dx + βv(1)z(1) = λz(1), ∀ z ∈ W 1,μ=0

α (0, 1) (64)

admits a unique solution v ∈ W 1,μ=0
α (0, 1), which satisfies the following estimates

|v|2
W 1,μ

α (0,1) ≤
|λ|2
β

and ‖v‖2
L2(0,1) ≤

|λ|2
βcα,βC1

α,μ

. (65)

Moreover, v ∈ W 2,μ=0
α (0, 1) and solves

{
− (xαvx)x − μ

x2−α v = 0,
vx(1) + βv(1) = λ.

(66)

Proof. For all z ∈ W 1,μ=0
α (0, 1) consider

L(z) := λz(1).

Clearly, L is a continuous antilinear form. Indeed, by (58), one has
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|L(z)| ≤ |λ|√
β
|z|W 1,μ=0

α (0,1).

Now, we recall that W 1,μ=0
α (0, 1) is a Hilbert space for the scalar product 〈·, ·〉1. Consequently, for all 

z ∈ W 1,μ=0
α (0, 1), there exists a unique v ∈ W 1,μ=0

α (0, 1) such that

〈v, z〉1 = L(z).

It means that, the above variational problem admits a unique solution v ∈ W 1,μ=0
α (0, 1). Moreover, we have

|v|2
W 1,μ

α (0,1) = L(v) = λv(1) ≤ |λ|√
β
|v|W 1,μ

α (0,1).

Thus,

|v|2
W 1,μ

α (0,1) ≤
|λ|2
β

.

Combining (56)and (59) together with this last estimate, we obtain

‖v‖2
L2(0,1) ≤

|λ|2
βcα,βC1

α,μ

.

Proceeding as in the proof of Proposition 18, one can show that v ∈ W 2,μ=0
α (0, 1) and solves (66). �

5.2. Stabilization result

In this subsection we prove the main exponential stabilization result of the paper when condition (54)
holds. To this aim, let u be a solution of (52)-(53) and consider its energy, given by

Eu(t) :=1
2

⎡
⎣ 1∫

0

(
xα|ux|2 −

μ

x2−α
|u|2

)
dx + β|u(t, 1)|2

⎤
⎦

=1
2 |u(t)|2

W 1,μ
α (0,1), t ≥ 0.

(67)

With this definition in hand, we will prove that the energy is nonincreasing.

Theorem 21. Assume Hypothesis 12 and let u be a classical solution of (52)-(53). Then the energy is non-
increasing, in particular

d

dt
Eu(t) = −|ut(t, 1)|2 ≤ 0, ∀ t ≥ 0. (68)

Proof. By multiplying the equation (52) by ut, integrating over (0, 1) and using (16), one has

0 =
1∫

0

ut(t, x)
{
iut(t, x) + (xαux)x (t, x) + μ

x2−α
u(t, x)

}
dx

= i

1∫
|ut(t, x)|2 dx−

1∫ (
xαuxutx − μ

x2−α
utu

)
dx +

[
xαux(t, x)ut(t, x)

]x=1

x=0

0 0
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= i

1∫
0

|ut(t, x)|2 dx−
1∫

0

(
xαuxutx − μ

x2−α
utu

)
dx + ux(t, 1)ut(t, 1).

Taking into account the boundary conditions, we get

1∫
0

(
xαuxutx − μ

x2−α
utu

)
dx + βu(t, 1)ut(t, 1) = i

1∫
0

|ut(t, x)|2 dx− |ut(t, 1)|2.

Hence

dEu
dt

(t) = Re
( 1∫

0

(
xαuxutx − μ

uut

x2−α

)
dx + βu(t, 1)ut(t, 1)

)
= −|ut(t, 1)|2 ≤ 0,

for all t ≥ 0. �
Since t → Eu(t) is nonincreasing, we can then address the question to know how fast this energy decays. 

For this reason, in the rest of the paper, we will prove an exponential decay result for system (52)-(53).

Theorem 22. Assume Hypothesis 12 and consider β > 0. Then for any u0 ∈ W 1,μ
α (0, 1), the solution of 

(52)-(53) satisfies the uniform exponential decay

Eu(t) ≤ e1−t/Mα,β,μEu(0), ∀ t ∈ [Mα,β,μ,+∞) , (69)

where Mα,β,μ > 0 is given in (84) and is independent of u0.

Proof. We prove the theorem for regular solutions, the general case will follow by a density argument. We 
divide the proof into several steps.
Step 1. We begin deriving the following key identity:

(2 − α)
T∫

S

Eu(t) dt = −1
2 Im

⎡
⎣ 1∫

0

xuux dx

⎤
⎦
T

S

+ 1
2

T∫
S

h(t) dt, ∀ 0 ≤ S ≤ T, (70)

where

h(t) :=|ut(t, 1)|2 + (β2 + β + μ− αβ)|u(t, 1)|2

− Im(ut(t, 1)u(t, 1)) + (2β − 1) Re(ut(t, 1)u(t, 1)).
(71)

For this purpose, we multiply both sides of (52) by xux + 1
2u and integrate by parts over (S, T ) × (0, 1). 

Then we have

0 =
1∫

0

T∫
S

iut

(
xux + 1

2u
)

dx dt +
1∫

0

T∫
0

(xαux)x
(
xux + 1

2u
)

dx dt

+
1∫

0

T∫
S

μ

x2−α
u

(
xux + 1

2u
)

dx dt := Ĩ + J̃ + K̃.

(72)

After suitable integration by parts, we obtain
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Ĩ = i

2

⎡
⎣ 1∫

0

xuux dx

⎤
⎦
t=T

t=S

− i

2

1∫
0

T∫
S

x (uutx + utxu) dx dt (73)

+ i

2

T∫
S

ut(t, 1)u(t, 1) dt,

J̃ = 1
2

T∫
S

|ux(t, 1)|2 dt + α− 2
2

1∫
0

T∫
S

xα|ux|2 dx dt (74)

− 1
2

1∫
0

T∫
S

xα+1 (uxuxx − uxuxx) dx dt + 1
2

T∫
S

ux(t, 1)u(t, 1) dt

and

K̃ = 1
2

T∫
S

1∫
0

μ

x1−α
(uux − uxu) dx dt + μ

2

T∫
S

|u(t, 1)|2 dt

+ 2 − α

2

T∫
S

1∫
0

μ

x2−α
|u|2 dx dt.

(75)

In light of (73)-(75), by taking the real part of equation (72), we get

(2 − α)
T∫

S

Eu(t) dt = −1
2 Im

⎡
⎣ 1∫

0

xuux dx

⎤
⎦
T

S

+ 1
2

T∫
S

{
− Im(ut(t, 1)u(t, 1))

+ |ux(t, 1)|2 + Re(ux(t, 1)u(t, 1)) + (μ + (2 − α)β)|u(t, 1)|2
}
dt.

Recalling that ux(t, 1) = −ut(t, 1) − βu(t, 1), we have

− Im(ut(t, 1)u(t, 1)) + |ux(t, 1)|2 + Re(ux(t, 1)u(t, 1)) + (μ + (2 − α)β)|u(t, 1)|2 = h(t),

where h is defined in (71). Hence the conclusion follows.
Step 2. We claim that for every 0 ≤ S ≤ T and δ > 0,

T∫
S

|u(t, 1)|2 dt ≤ δ

(
1

cα,βC1
α,μ

+ 1
β3

) T∫
S

Eu(t) dt + 1
2δ

(
1 + 1

βcα,βC1
α,μ

)
Eu(S)

+ 2
cα,βC1

α,μ

(
1 + 1

β2

)
Eu(S).

(76)

Set λ = u(t, 1) and denote by v the solution of the degenerate/singular elliptic problem (66). We multiply 
(52) by v and integrate the resulting equation over (S, T ) × (0, 1). This gives, after appropriate integration 
by parts, together with (16),
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0 =
T∫

S

1∫
0

v(t, x)
(
iut(t, x) + (xαux(t, x))x + μ

x2−α
u(t, x)

)
dx dt

=

⎡
⎣ 1∫

0

iv(t, x)u(t, x) dx

⎤
⎦
t=T

t=S

−
T∫

S

1∫
0

ivt(t, x)u(t, x) dx dt +
T∫

S

v(t, 1)ux(t, 1) dt

−
T∫

S

vx(t, 1)u(t, 1) dt.

Taking into account the boundary conditions in both systems of v and u, we immediately have

0 =

⎡
⎣ 1∫

0

iv(t, x)u(t, x) dx

⎤
⎦
t=T

t=S

−
T∫

S

1∫
0

ivt(t, x)u(t, x) dx dt

+
T∫

S

v(t, 1)
(
ux(t, 1) + βu(t, 1)

)
dt−

T∫
S

|u(t, 1)|2 dt

=

⎡
⎣ 1∫

0

iv(t, x)u(t, x) dx

⎤
⎦
t=T

t=S

−
T∫

S

1∫
0

ivt(t, x)u(t, x) dx dt−
T∫

S

v(t, 1)ut(t, 1) dt

−
T∫

S

|u(t, 1)|2 dt.

Hence

T∫
S

|u(t, 1)|2 dt =

⎡
⎣ 1∫

0

iv(t, x)u(t, x) dx

⎤
⎦
t=T

t=S

−
T∫

S

1∫
0

ivt(t, x)u(t, x) dx dt

−
T∫

S

v(t, 1)ut(t, 1) dt.

(77)

We need to estimate the terms on the right-hand side of the previous equality as follows. First, thanks to 
the second inequality in (65), we have

‖vt‖2
L2(0,1) ≤

1
βcα,βC1

α,μ

|ut(t, 1)|2. (78)

Moreover, thanks to the first inequality in (65), we have

β|v(t, 1)|2 ≤ |v|2
W 1,μ

α (0,1) ≤
1
β
|u(t, 1)|2,

so that

|v(t, 1)|2 ≤ 1
2 |u(t, 1)|2 ≤ 2

3 Eu(t). (79)

β β
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We repeat the same argument that we have used above to obtain

∣∣∣∣∣∣
1∫

0

iv(t, x)u(t, x) dx

∣∣∣∣∣∣ ≤
1
2

1∫
0

|v(t, x)|2 dx + 1
2

1∫
0

|u(t, x)|2 dx

≤ 1
2βcα,βC1

α,μ

|u(t, 1)|2 + 1
2cα,βC1

α,μ

|u|2
W 1,μ

α (0,1)

≤
(

1
β2cα,βC1

α,μ

+ 1
cα,βC1

α,μ

)
Eu(t), ∀ t ∈ [S, T ].

(80)

Using Young’s inequality and inserting estimates (78)-(80) in (77), we have for any δ > 0

T∫
S

|u(t, 1)|2 dt ≤ δ

(
1

cα,βC1
α,μ

+ 1
β3

) T∫
S

Eu(t) dt

+ 1
2δ

(
1 + 1

βcα,βC1
α,μ

) T∫
S

|ut(t, 1)|2 dt + 2
cα,βC1

α,μ

(
1 + 1

β2

)
Eu(S).

Using the dissipation relation (68), the claim follows.
Step 3. Now, we establish the existence of a positive constant Mα,β,μ such that for all 0 ≤ S ≤ T ,

T∫
S

Eu(t) dt ≤ Mα,β,μEu(S). (81)

Let h be the function given in (71). Using Young’s inequality, one has

h(t) ≤ 2|ut(t, 1)|2 + η|u(t, 1)|2, ∀ t ∈ (S, T ),

where η = β2 + |1 − α|β + |μ| + 1
2 (2β − 1)2 + 1

2.

Thanks to (76) with δ = 2 − α

η
(

1
cα,βC1

α,μ
+ 1

β3

) we have

1
2

T∫
S

h(t) dt ≤ Eu(S) + 2 − α

2

T∫
S

Eu(t) dt +
η2

(
1

cα,βC1
α,μ

+ 1
β3

)
4(2 − α)

(
1 + 1

βcα,βC1
α,μ

)
Eu(S)

+ η

cα,βC1
α,μ

(
1 + 1

β2

)
Eu(S).

(82)

On the other hand, by using Young’s inequality, we write

∣∣∣∣∣∣Im
1∫

0

xuux dx

∣∣∣∣∣∣ ≤
1
2‖u‖

2
L2(0,1) + 1

2

1∫
0

x2|ux|2 dx

≤ 1
2‖u‖

2
L2(0,1) + 1

2

1∫
xα|ux|2 dx.
0
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Now, using Lemma 14 and (59), it follows that
∣∣∣∣∣∣Im

1∫
0

xuux dx

∣∣∣∣∣∣ ≤
1

2cα,β
|u|2

W 1,μ=0
α (0,1) + 1

2 |u|
2
W 1,μ=0

α (0,1)

≤ 1
2cα,βC1

α,μ

|u|2
W 1,μ

α (0,1) + 1
2C1

α,μ

|u|2
W 1,μ

α (0,1).

Hence ∣∣∣∣∣∣∣
1
2 Im

⎡
⎣ 1∫

0

xuux dx

⎤
⎦
T

S

∣∣∣∣∣∣∣ ≤ C ′Eu(t), (83)

where C ′ = 1
C1

α,μ

+ 1
cα,βC1

α,μ

.

Using (82) and (83) in (70), we deduce that (81) holds with

Mα,β,μ = 2
(2 − α)

⎡
⎣1 + C ′ +

η2
(

1
cα,βC1

α,μ
+ 1

β3

)
4(2 − α)

(
1 + 1

βcα,βC1
α,μ

)
+ η

cα,βC1
α,μ

(
1 + 1

β2

)⎤
⎦ . (84)

By invoking [22, Theorem 8.1], this implies the desired stability estimate (69). �
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