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ABSTRACT

Given the complexity of living systems, and the difficulty of measuring and

interpreting data from these systems, biomedical science has been adopting a reductionist

approach over the years. However, the rapid technological advances and the progress in

molecular biology and computation are changing this establishment.

Transcriptomics is one of the technologies that has revolutionized the way we study

the response of organisms to various situations, such as infections, vaccines and cancer. By

measuring the changes in the gene expression, we can capture important information about

the pathophysiology of diseases, mechanism of action of vaccines, among other biological

processes. By integrating transcriptomic data with cytokines, for instance, we uncovered a

systemic recall immune response to lung pneumococcal infection, describing the main factors

driving this process.

By combining systems biology and Machine Learning algorithms, the biological

signatures of three different cohorts studying the recombinant vesicular stomatitis virus

vaccine against Ebola were compared. We showed that different methods can capture distinct

signatures, especially when the molecular perturbation is less evident. The use of Feature

Selection and Machine learning algorithms can help us to focus on a gene level

characterization, which is an important feature in the precision medicine era.

Finally, in this work transcriptomics has also contributed to characterize the response

to a mucosal immunization with a recombinant bacteria expressing the CTH522, a Chlamydia

trachomatis antigen. We have shown that the intravaginal priming with the recombinant

vector modulated the systemic response to the antigen, using a model of splenocytes in vitro

stimulated after different immunization schedules.

Rather than focus on a specific vaccine or infection, the aim of this thesis was to

explore the range of tools available for the analysis of transcriptomics data in a systems

biology perspective. Using data from different studies, involving both experimental models

and clinical studies, the thesis offered a great opportunity to approach different themes and

leverage different tools to deal with the challenges of extracting meaningful biological

information from large data sets.

4



ABBREVIATIONS

AUC: Area under the curve

BioFeatS: Biological Feature Selection tool

BTM: Blood Transcriptional Modules

CbpA: choline binding protein A

Chop: phosphorylcholine

CERNO: Coincident Extreme Ranks in Numerical Observations

CIM: Clustered Image Map

CPS: Capsular Polysaccharides

CWPS: Cell Wall Polysaccharides

DAMPs: Damage or Danger-associated Molecular Patterns

DE: Differential Expression

DEGs: Differentially Expressed Genes

DNA: Deoxyribonucleic acid

eIF2: eukaryotic translation initiation factor 2 complex

EVD: Ebola Virus Disease

FCS: Functional Class Scoring

FDR: False Discovery Rate

GSEA: Gene Set Enrichment Analysis

ICA: Independent Component Analysis

ICEBOV: Ivory Coast ebolavirus

IPCA: Independent Principal Component Analysis

IVAG: Intravaginal route

kNN: k-Nearest Neighbors

MAMPs: Microbe-associated Molecular Patterns

MDP: Molecular Degree of Perturbation

ML: Machine Learning

mRNA: messenger Ribonucleic acid

MOMP: Major outer membrane protein

MZ: marginal zone

5



ORA: Over Representation Analysis

RNA: Ribonucleic acid

OVA: Chicken egg albumin

PAFR: Platelet-activating Factor Receptors

PAMPs: Pathogen-associated Molecular Patterns

PBMC: Peripheral blood mononuclear cells

PCA: Principal component Analysis

PcpA: Pneumococcal choline-binding protein A

PCVs: pneumococcal conjugate vaccines

PLS: Partial Least Squares

PLS-DA: Partial Least Squares - Discriminant Analysis

PPI: Protein-Protein Interaction

PPV: Polysaccharide Pneumococcal Vaccines

PRRs: Pattern Recognition Receptors

PVCA: Principal Variance Component Analysis

REBOV: Reston ebolavirus

RFE: Recursive Feature Elimination

SEBOV: Sudan ebolavirus

sPLS: sparse Partial Least Squares

sPLS-DA: sparse Partial Least Squares - Discriminant Analysis

SVM: Support Vector Machine

URT: Upper Respiratory Tract

VCA: Variance Components Analysis

VSV: Vesicular Stomatitis Virus

WGCNA: Weighted correlation network analysis

WT: Wild-Type

ZEBOV: Zaire ebolavirus

6



CHAPTER 1

An introduction to Systems Biology: the origin, its applications and
limitations

“Systems biology... is about putting together rather than taking apart, integration rather than
reduction. It requires that we develop ways of thinking about integration that are as

rigorous as our reductionist programmes, but different.... It means changing our
philosophy, in the full sense of the term”

(Noble, 2006)

1.1 The origin of Systems Biology

The beginning

Despite the exponential growth of Systems Biology applications in recent years, the

importance of the holistic view has been known for a long time (Erickson, 2007; Harte,

2002). However, because of the extreme complexity of living systems, the reductionist

approach has been driving biological science over the years (Wellstead et al., 2008). Then,

scientists started to realize that understanding the system’s behavior and why the components

interact together is as important as showing how they interact in a reductionist approach

(Trewavas, 2006).

This process of change began in the late 1960s, with the application of Systems

Theory to biology. At this point, Systems Theory was defined as “the theory of formal

(mathematical) models of real-life (or conceptual) systems” (Mesarović, 1968). An example

is the development of the Biochemical Systems Theory in the same period, given the growing

demand for means to model the nonlinear behavior of biological systems (Savageau, 1969a,

1969b, 1970).

In the 1970s and 1980s, Robert Rosen studied the transfer of concepts from physics to

biology and emphasized that biological systems are a special case of physical systems

(Rosen, 1978, 1985). Some years later, Reilly and collaborators described System analyses as

a method that could be applied to different levels of the biological hierarchy, from molecular

and cellular components, to whole organisms, populations and ecosystems. However, at that
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time, in 1994, the authors highlighted that the research oriented across system levels was not

yet part of the standard disease research (Reilly et al., 1994).

The advances in technology and molecular biology culminated in the Human Genome

Project during the 1990s and, later, enabled us to quantify mRNAs, proteins, and metabolites

on a large scale. These new technological features allowed Systems Biology to be

increasingly established as a new field (Ideker et al., 2001).

H. Kitano emphasized the importance and contributions of Molecular Biology to

Systems Biology and described this field as a way to understand biological systems at a

system level, through three main approaches: Bottom-Up, Top-Down, and Hybrid. The

Bottom-up approach tries to establish gene regulatory networks from independent experiment

data, while the Top-down seeks to find meaning in data from high-throughput measurements.

The Hybrid, as the name suggests, is a mix of both approaches. Kitano also highlighted the

difficulty of establishing network structures from Top-down approaches, as well the need to

continuously develop new methods (Kitano, 2000).

By that time, the Systems Biology approach was already presented with huge

expectations as a method that would support scientific discoveries in the most diverse areas.

In the following years, we have watched systems biology arise and consolidate as a new

biological field and not just a simple branch of physical or mathematical systems.

Recent years

The new century arrived bringing important technological and computational

advancements, permitting the establishment of Systems Biology and its application to

countless research areas, including infectious diseases, vaccination, chronic diseases and

cancer.

Systems biology became a very dynamic area, with new methods and technologies

constantly arising. In only a few years we jumped from a limited availability of less specific

methods to a multitude of high-throughput technologies, capable of measuring changes at
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different biological levels, including the expression of genes, proteins, microRNAs, and the

production of cytokines and metabolites, generating what we today address as OMIC data.

Moreover, the advances in biology could be wrapped up in huge databases, and new

computational methods evolved to permit data analysis and integration.

1.2 Transcriptomics and its role in Systems Biology

Among the different biological layers studied within Systems Biology approach,

transcriptomics has been one of the most used, thanks to its high coverage and relatively easy

assessment (Hagan et al., 2015). Even though studies usually focus on the messenger RNAs

(mRNAs), by definition, transcriptomics is the study of the whole range of the RNA

transcripts that are produced by the genotype, and their quantities, for a specific stage or

condition (Lowe et al., 2017; Milward et al., 2016). Thus, it includes not only mRNAs but

also noncoding RNAs, such as long non-coding RNA and micro-RNAs.

The Central Dogma of Molecular Biology was introduced by Francis Crick,

establishing the idea of information transfer from the genome (DNA) to messenger RNAs

(mRNAs) through transcription, and then to amino-acid chains through translation (Crick,

1970). Half a century later, we now understand that the way between genotype and phenotype

is a very complex road composed of many different steps and specific regulation points.

Different mechanisms such as alternative splicing, epigenetics and regulation by non-coding

RNAs arised as influencing factors of this process (Jafari et al., 2017).

The phenotypic diversity observed in our genetically identical cells is linked to the

fact that each cell expresses a different set of genes, presenting different transcriptomes

(Morozova et al., 2009). Both genetic and environmental factors contribute to the

transcriptional activity, and assessing this information provides an overview of which cellular

processes are taking place in a given situation (Chaussabel et al., 2010).

Despite the very complex scenario in which all these processes occur, the assessment

of changes in gene expression at different conditions has been proved to be a valuable tool to
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explore the molecular mechanisms ruling the host’s responses to different conditions and

perturbations. In the next topics, we will go through some applications of transcriptomics

coupled with Systems Biology approach in studying immune responses to infection and

vaccination.

1.3 Systems Biology and the study of the immune system

The response of organisms to vaccines, infections and other diseases involves many

factors from different levels, including biological and environmental aspects. Systems

biology offers frameworks and tools that enable us to deal with such complexity. This

approach has possibilitated a better understanding of many aspects of the biomedical

research, including host-pathogen interactions, disease progression, discovery of biomarkers

and study of immune system development. Moreover, this approach allows a comprehensive

look at the innate immunity and its bridging to adaptive immunity, which is a key point when

studying the memory generated by vaccines and infections (Dhillon et al., 2020).

Application in the study of Infectious diseases

Systems biology approach has been extremely helpful in deeping our knowledge in

the study of infectious diseases, especially for its ability to capture patterns in complex

circumstances, where the usual targeted methods struggle in going deeper into the

mechanisms. Previous studies have advanced our understanding on the host factors that could

affect the susceptibility to developing disease in human challenge models, correlating gene

expression at baseline, or very early after challenge, with clinical outcomes (Humphreys et

al., 2007; Yang et al., 2016).

Thanks to the possibility of assessing a greater number of variables we are able to

look at in a single experiment, transcriptomics has enabled us to gain insights on molecular

mechanisms related to the immune responses and disease progression. Chikungunya

(Soares-Schanoski et al., 2019), Dengue (Kwissa et al., 2014), Malaria (Tran et al., 2019) and
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COVID-19 (Islam and Khan, 2020; Melms et al., 2021) are examples of diseases for which

this approach has allowed a more comprehensive understanding of the pathogenesis.

Dual transcriptomics experiments (simultaneous profiling of host and pathogen

transcriptomics) have been very useful in the study of infection biology and host-pathogen

interactions. Successful examples include the study of the pathogenesis of Streptococcus

pneumoniae (D’Mello et al., 2020; Minhas et al., 2020; Ritchie and Evans, 2019), Chlamydia

trachomatis (Humphrys et al., 2013), Haemophilus influenzae (Baddal et al., 2015) and many

others (Westermann et al., 2017).

In the same direction, transcriptomic studies have been used to expand our knowledge

regarding the heterogeneity of symptoms observed in many diseases. In typhoid fever, for

instance, inflammation and innate immunity pathways were found correlated with the

severity of symptoms (Blohmke et al., 2016). For influenza infection, not only Interferon and

pattern recognition pathways were enriched in patients with moderate/severe disease, but a

signature of 6 interferon genes was able to distinguish the groups with 100% accuracy

(Davenport et al., 2015). Recently, the Systems Biology approach was also applied to

understand the signature of disease severity in COVID-19 (Arunachalam et al., 2020).

Insights empowered by computation can and should be further complemented and

validated using appropriate methods. Aguiar et al. combined different OMIC data,

histopathological results and the validation with immunohistochemistry to uncover important

alterations in the brains of babies who developed Congenital Zika syndrome (Aguiar et al.,

2020).

Application in the study of vaccines

The use of Systems Biology in vaccinology became so widespread in the last few

years, that a new term emerged to refer to this new area: Systems Vaccinology. The first

application in this field has successfully identified gene signatures correlated with the

antibody and CD8+ T responses to Yellow Fever vaccine, suggesting that transcriptomics in
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the early days after vaccination is a plausible method to predict the immunogenicity of

vaccines (Querec et al., 2009). From then on, this approach allowed the characterization of

the immune responses to different vaccines, including Influenza (Nakaya et al., 2011),

Malaria (Vahey et al., 2010; Kazmin et al., 2017), HIV (Ehrenberg et al., 2019; Zak et al.,

2012) and Ebola (Rechtien et al., 2017; Santoro et al., 2021), in many cases enabling the

discovery of gene signatures linked to the antibody response or protection against disease.

Data integration and network analysis permitted the establishment of context-specific

gene modules, reconstructed from 540 publicly available data series, originating the blood

transcription modules (BTMs). Thanks to its comprehensive approach, BTMs were able to

unveil new hypotheses on the mechanisms of vaccine induced immune responses (Li et al.,

2014). Since then, this framework has been used along different statistical methods

commonly used for pathway analysis to characterize immune responses and find correlations

with immunological data.

This approach has also contributed to the molecular characterization of different

vaccine adjuvants, providing insights on the mechanism of action of these substances and

enabling a more reasoned direction for their use for the future vaccines (Olafsdottir et al.,

2016).

Furthermore, systems vaccinology has also shown its usefulness in uncovering

previously unknown mechanisms involved in vaccine responses by highlighting the

importance of the microbiome during the generation of antibodies. One example is the

correlation found between bacterias in the stool and skin prior vaccination to the levels of

neutralizing antibodies after administration of a vaccine against HIV. A second important

example is the discovery of how important the gut microbiota is for the immune response to

the trivalent inactivated Influenza vaccine (Gonçalves et al., 2021; Oh et al., 2014).
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Figure 1. Systems Biology Overview. Three main components work together in the Systems Biology
approach: Biology, technology and Computation. The biological aspect includes all the aspects of the
system that are perturbed in a specific condition. It also includes all our knowledge in molecular
biology and immunology, not only to interpret results but also to allow the improvements in the
employed technologies. The technological aspect includes all the equipment needed to measure the
changes occurred in the biological level. Finally, the computational aspect includes all the
mathematical and statistical methods needed to assess and analyze information provided by the
technological level, bringing meaningful information from complex data sets, leading to new insights
and the formulation of hypotheses. (Adapted from Li et al., 2013)
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1.4 The limitations and challenges

Systems Biology is a recent and interdisciplinary field, combining three different

perspectives: the biological, the technological and the computational, as illustrated in Figure

1. All of these three faces need to work together and all of them present challenges and

limitations.

Biological variation, for example, is an important challenge to overcome, especially

when analyzing human data. Host’s factors like sex, age, presence of chronic diseases and life

style (diet, exercise, smoking, etc) can have an huge impact in the biological system and

influence how organisms respond to perturbations like infection and vaccination

(Duraisingham et al., 2012; Kau et al., 2011; Orrù et al., 2013; Woods et al., 2009).

Moreover, larger sample sizes could improve statistical power and reduce the impact of these

variabilities, but due to the high cost and ethical and logistical constraints, the number of

available samples is usually small (Hagan et al., 2015).

Limitations of transcriptomics include the assessment of a mix of different cell types,

often being impossible to address the observed response to a specific cell type. In addition,

enrichment analysis provides insights on the biological pathways activated in a specific

condition, but it cannot provide cause-and-effect relationships, being extremely challenging

to identify upstream processes and responses caused by technical artifacts (Barton et al.,

2017). Thus, further investigation and validation of the findings obtained through

computational analysis are of extreme importance.

From a technological point of view, the measurements made by high-throughput

technologies can present varying degrees of noise. This affects especially the reliance on the

detection of milder signals, that are not necessarily irrelevant. In fact, some low expressed

transcripts or features present in very little amounts are known to have significant biological

impact, such as transcription factors and long non-coding RNAs (Kornienko et al., 2016;

Spitz and Furlong, 2012). Another very common technical challenge is the presence of batch

effects, a source of bias that can arise due to different factors, such as the capacity of
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machines, changes in the experimental conditions and the use of data obtained in different

machines (Leek et al., 2010).

The computational methods need to walk together with technological development,

providing ways to assess the information extracted and helping to attribute biological

meaning to complex data. It is not an easy task and cases where the current methods were

refuted or unintentionally misused have not been rare in the recent past (Li et al., 2022; Zhao

et al., 2020).

Despite the limitations described above, the advancements in technology, computation

and biology are emerging ever faster. New sophisticated technologies are constantly rising,

the substitution of Microarray technology for RNA sequencing and now the possibility of

performing single-cell RNA sequencing are examples of this process. Statistical methods are

constantly being updated, focusing on overcoming biological and technical limitations,

allowing, for instance, the identification and removal of batch effects (Leek et al., 2010;

Papiez et al., 2019). Moreover, the accumulation of public data allows scientists to perform

meta-analysis studies, increasing the strength of the hypothesis.

In a scientific context, understanding the challenges and limitations of available

methods is of extreme importance to make the most of your data and decrease the risks of

forming a wrong hypothesis. When consciously implemented, Systems Biology is a powerful

tool that has been enabling a different look at biological processes, giving insights on

molecular mechanisms, permitting the discovery of biomarkers and supporting the

development of new treatments and vaccines.

1.5 The future

Two decades after the completion of the Human Genome Project, which has taken 13

years and around 3 billion dollars to sequence a single human genome, the scenario of

sequencing technologies has completely changed. Today, technologies like Illumina can

generate 200-6000 gigabase sequences per run, at an incomparably lower cost. A huge
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progress in the detection of proteins, cytokines and metabolites was also observed (Veenstra,

2021).

The technological advances and the decreasing in the costs contributed to the

exponential growth of systems biology applications observed in the past years. Despite the

great progress observed in different fields, a broad knowledge on how cells and organisms

react to internal and external events, which would enable the full prediction of how systems

function, is yet to be achieved (Veenstra, 2021). However, it is highly probable that we keep

seeing the exponential emergence of new methodologies, allowing more comprehensive and

accurate measurements, taking us closer and closer to this goal.

1.6 Aim of the thesis

Among the range of new possibilities emerging along transcriptomics and Systems

Biology, the aim of this work was to underline the use of these approaches to understand

host’s responses to infection and vaccination, with focus on the immune system. Through the

analysis of different datasets, this work made use of a variety of available methods and

frameworks to analyze and integrate transcriptomics data, extracting biological knowledge

from complex datasets.

More specifically, this thesis aimed to use transcriptomics analysis and Systems

Biology approach in three main contexts:

1. To study the systemic responses and the immune memory generated in a model of

Streptococcus pneumoniae lung infection

2. To compare the transcriptomics profiles of the rVSV-ZEBOV vaccination in three

independent cohorts, using two different approaches

3. To characterize the host’s responses induced by the immunization with an engineered

S. gordonii expressing the Chlamydia trachomatis CTH522 antigen
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CHAPTER 2

Methodologies in transcriptomics and Systems Biology

“The trick to being a scientist is to be open to using a wide variety of tools.”
(Breiman, 2001)

To successfully achieve the objectives established in the first chapter of this thesis, a

broad range of packages, tools and databases were used. This chapter elaborates on the

available methods for the main topics on bioinformatics downstream analysis for

transcriptomics, with a special focus on the resources used during the course of the PhD.

2.1 Exploratory Data Analysis and Quality control

2.1.1 Exploration of the descriptive data with DataExplorer R package

Before starting to analyze a dataset it is crucial to have a thorough understanding of

the information and variables related to samples, especially when performing data integration

and biomarker analysis. However, this step can be really time-consuming depending on the

number of variables available.

In this context, packages and tools that summarize this type of information can be

very useful. The DataExplorer R package is a great example, providing different functions to

perform data exploration. Using different types of plots, DataExplorer examines the structure

of the data, the type of each variable, the distribution of variables and the distribution of

missing values.

In addition, this package also performs correlation analysis, Principal Component

Analysis and allows the slicing of data in different ways, with boxplots and scatterplots for

visualization. In a very useful way, the DataExplorer package performs most of the

functionalities in only one personalized function, creating an html report with all the

requested results (Boxuan Cui, n.d.).
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2.1.2 Exploration of data variability

High-throughput technologies allow us to monitor thousands of variables in a single

experiment. However, this comes with the challenge of dealing with high-dimensional data.

In addition, the variability among samples can be attributed to several factors besides

biological information. In this context, unsupervised techniques focused on dimensionality

reduction are very useful. In particular, Principal component Analysis (PCA), Independent

Principal Component Analysis (IPCA) and Principal Variance Component Analysis (PVCA)

are examples of techniques used to explore the presence of experimental bias such as the

presence of outliers, batch effects, and other sources of variability in the data. Moreover,

these analyses also allow the identification of trends and patterns in the data.

Principal Component Analysis (PCA)

In a PCA the principal components are artificial variables, built as a linear

combination of the initial variables. This results in the attribution of a weight value for each

of the initial variables, which reflects the importance of the variable to the component. These

weight values are stored in the loading vectors associated with each PC. Importantly, the

components are uncorrelated and each of them aims to explain a maximal amount of

variance, starting by the first one, which will capture the largest source of variation between

samples. This allows an efficient dimension reduction while preserving the majority of the

variability in the data (Hotelling, 1933). PCA can be performed in R by the prcomp function.

Independent Principal Component Analysis (IPCA)

However, sometimes PCA is not informative to the biological question for two main

reasons: (i) the PCA assumes a multivariate normal distribution in the data, which is not

always the case and (ii) the PCA decomposes data by maximizing its variance, but sometimes

the main source of variance in the data is not related to the biological question. In these cases,

the IPCA can be helpful.
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The IPCA uses Independent Component Analysis (ICA) as a denoising process for

PCA since the ICA is a good technique to reduce the effects of noise or artifacts of the signal.

The assumption of the IPCA is that biological meaning can be highlighted by the components

when most of the noise is removed from the loading vectors (Yao et al., 2012). IPCA is

implemented by mixOmics R package.

Principal Variance Component Analysis (PVCA)

On the other hand, PVCA leverages the advantages of both PCA and Variance

Components Analysis (VCA). The VCA fits a mixed linear model using factors of interest as

random effects, aiming to understand the importance of each factor to the total variability

(Boedigheimer et al., 2008). This is especially useful to estimate the importance of technical

parameters and batch effects. PVCA is implemented in R by the PVCA package.

PCAtools: everything Principal Component Analysis

PCAtools (Kevin Blighe, n.d.) is an R package that provides exploratory

functionalities for highly-dimensional data through PCA techniques, including biplots,

loading plots and correlation of components with clinical data or even technical factors like

known batch effects. Its main advantages comprise automated and high-quality report

generation, with publication-ready figures, while providing optimization options for the user.

2.1.3 Data exploration with MDP (Molecular Degree of Perturbation)

MDP (Molecular Degree of Perturbation), described by Gonçalves et al., is a tool based on

the Molecular Distance to Health (Pankla et al., 2009) algorithm which tries to quantify how

perturbed samples from a given phenotype are compared to their controls, enabling us to

measure the heterogeneity of a given dataset as well which genes are responsible for such

perturbation.
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This tool has been applied not only to compare the perturbation caused by different

diseases but also to understand underlying differences among populations and disease

severity (Oliveira-de-Souza et al., 2019). Moreover, this framework can be used to detect

possible outliers, improving differential expression analysis results (Gonçalves et al., 2019).

2.1.4 Dealing with Batch effect

For logistical and practical reasons, genomic data is often produced in batches. The

variation among different batches can result in discrepancies in the statistical distributions,

which can directly impact the downstream analysis and the biological interpretation. While

some packages for differential expression analysis, such as edgeR, have developed methods

to deal with the differences across batches, for other downstream analyses this process needs

to be done in advance.

Combat-Seq

ComBat is one of the most popular tools for adjusting known batch effects for

downstream analysis when its sources are known (Johnson et al., 2007; Leek et al., 2010).

ComBat-seq is an extension of the ComBat model that addresses several issues specific to

bulk RNA-Seq data, such as using a negative binomial regression to model batch effects

instead of a Gaussian distribution assumed by ComBat. Combat-seq allows the adjustment of

the batches while preserving the integer nature of counts, which is compatible with most

downstream analyses. However, the adjustment of batch effects should only be done when

they are present and result in an unfavorable impact on downstream analysis (Zhang et al.,

2020).

2.2 Differential Expression analyses

Differential Expression analysis is probably the most used approach to extract

biological information from transcriptomic data. Through the application of statistical
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procedures, the quantitative changes in the gene expression of individuals in two different

conditions are evaluated. This process attributes a value concerning the magnitude of the

increase or decrease in the expression (Fold-Change) and the associated p-value. Due to the

extremely high number of statistical tests performed during this process, comparing the

expression of thousands of transcripts, many false positive genes can be detected. Therefore,

adjusting the p-values is a crucial step, and it is usually integrated into the DE analysis.

The R packages edgeR and DESeq2 are the two main used workflows for differential

expression analysis in RNA sequencing data. Both are based on the negative binomial

distribution, but they have their particularities. For instance, in estimating the dispersion,

DESeq2 assumes a similar dispersion in genes with similar average expression strength over

all samples, detecting and correcting dispersion estimates that are too low. On the other hand,

edgeR will moderate the estimate of dispersion for each gene toward a common estimate

across all genes, or toward a local estimate for genes with similar expression strength.

The defaults present differences as well. DESeq2 automatically finds the optimal

value for filtering low expressed genes, spots the genes with outlier values, and excludes

genes with very high within-group variance of the dispersion estimates. The edgeR package

offers similar functionality in the estimateGLMRobustDisp function.

2.3 Enrichment and functional analysis

2.3.1 Gene sets

Enrichment analysis is a very used method to gain insights from transcriptomic data.

The aim is to identify the processes that are activated or depleted, based on the expression of

a set of genes, previously defined according to specific criteria. For instance, genes that are

co-expressed, or genes that participate in a given biological process can assemble a gene set

(Maleki et al., 2020). Gene sets can be organized in databases such as MSigDB, the

Molecular Signatures Database (Subramanian et al., 2005).

26

https://www.zotero.org/google-docs/?AekOrG
https://www.zotero.org/google-docs/?H1Xw4K


Many gene sets are currently available. Among the most used ones, there are

Reactome (Jassal et al., 2019) and KEGG (Kanehisa et al., 2016), providing information on

the biological pathways and cellular processes. Gene Ontology (GO), describes the relation of

genes with biological processes under three aspects: Molecular Function, Cellular

Component and Biological Process (The Gene Ontology Consortium et al., 2021). Finally, the

Blood Transcription Modules (BTM) combine gene ontology, cell type specific gene

expression, interactome and bibliome to build sets of genes coexpressed under a particular

biological condition (Li et al., 2014a).

2.3.2 Gene set enrichment analysis

Over Representation Analysis (ORA)

ORA is a commonly used method to perform enriched analysis and for this reason, it

is implemented in a wide range of R packages. Based on a list of genes of interest, such as

differentially expressed genes, the intersection of this list with a specific pathway in a gene

set will be considered significant if this overlap could not be due to chance. For this, ORA

uses a reference or background, which usually is the list of all the genes under study. The null

hypothesis is that there is no association between differential expression and the specific gene

set, assuming that the gene set is the result of a random sampling of genes from the

background, and therefore, the probability of having differentially expressed genes in the

gene set list can be calculated using the hypergeometric or binomial distribution and the

significance of this association can be assessed by the Fisher’s exact test (Drǎghici et al.,

2003; Maleki et al., 2020).

The tmod R package implements this approach through the tmodHGtest function

(Weiner 3rd and Domaszewska, 2016). Many other packages implement ORA-based

approaches for enrichment, with slight differences among them (Huang et al., 2009; Maleki et

al., 2020).
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Functional Class Scoring (FCS)

Despite the wide use of ORA approaches, the method has its limitations. Firstly, the

need of setting thresholds to select a specific set of variables that are considered of interest,

which might discard genes that do not fit the threshold, but could contribute to the

understanding of the biological signatures in a data set. Secondly, ORA assumes that genes

are independent, but actually, it is known that genes act in concert, especially when belonging

to the same biological process.

Functional class scoring (FCS) deals with these factors by applying a statistical test

based on the expression matrix, using the information provided by all the variables. There are

two classes of FCS: univariate and multivariate methods. In univariate methods, there is the

calculation of a score for each gene using its specific row of the expression matrix and then

this score is used to calculate a gene set score and the significance of each gene set score is

assessed. In multivariate methods, the gene set scores are calculated directly from the

expression matrix, without the generation of gene scores.

The Gene Set Enrichment Analysis (GSEA), implemented through the fgsea R

package, is among the most used FCS approaches. It is a univariate method based on the

ranking of genes by the correlation between their expression and the distinct classes studied.

(Subramanian et al., 2005). Following the same approach, the Single-sample GSEA

(ssGSEA) is an extension of GSEA that calculates the enrichment scores separately for each

pairing of a sample and gene set, representing the degree to which the genes of a given gene

set are coordinately up- or down-regulated within a sample (Barbie et al., 2009)

As an example of multivariate FCS, the tmod package provides the CERNO test. The

Coincident Extreme Ranks in Numerical Observations (CERNO) approach is based on

Fisher’s method of combining probabilities, a widely used approach to combine p-values in

order to evaluate the presence of a global effect (Croze et al., 2013; Fisher, 1992). The

CERNO test uses all the expression measurements, emphasizing the extreme changes within

a dataset, and providing a measure of the strength of effect for each gene set. This method has
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improvements in performance compared to the GSEA approach, especially with small sample

sizes, a very common context in biomedical studies (Weiner 3rd and Domaszewska, 2016).

2.4 Data Integration

Data integration consists of the process of combining data that reside in different

sources, to provide users with a unified view of such data. There are two main approaches:

data-driven and knowledge-based. In the first one, statistical analysis, supervised and

unsupervised methods are conducted without the need for strong prior knowledge. This

includes correlations, clustering, dimension reduction and discriminant analysis by machine

learning algorithms.

On the other hand, the knowledge-based approach requires strong literature, prior

knowledge such as metabolic networks or mechanisms of enzyme kinetics are commonly

used as a first step, focusing the analysis in a specific context. Then, statistical or machine

learning methods are used to validate the models.

With the increase in data generation, Multi-Omics and Omics and non-Omics data

integration have been gaining attention in the last few years. While the Multi-Omics is

focused on integrating data from high-throughput experiments like transcriptomics,

metabolomics and proteomics, the Omics and non-omics integrate these datasets with other

types of data such as clinical, epidemiological or imaging. Despite the increase in the

availability of computational methods to perform such analyses, the complexity of the

methodologies and the presence of different limitations make these processes an ongoing

challenge (Picard et al., 2021).

The Multi-Omics data integration is focused on analyzing numeric variables, such as

two different Omic data sets measured in the same individuals. The main idea behind this

process is that by the integration of different biological layers, the similarities between the

data sets can be highlighted.
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Partial Least Squares (PLS) and sparse Partial Least Squares (sPLS)

The PLS is a widely used supervised approach to integrating two numerical variables

(matrices). In this linear multivariate visualization technique, the covariance between the

components (linear combination of variables) of the two datasets is maximized and allows the

modeling of the shared information that underlies the variables. It is a flexible method, able

to deal with missing values and with the presence of correlations among independent

variables, unlike traditional multiple regression models (Wold, Herman, 1966).

The mixOmics package implements not only the PLS but also its sparse version, the

sPLS, with the aim of improving the interpretability of the method by including the Lasso

penalization in each pair of loading vectors (Cao et al., 2008). The package also proposes a

tuning parameter for the sPLS, performing feature selection by pinpointing the best number

of features to be chosen in a specific data set.

DIABLO

The mixOmics package also proposes DIABLO - Data Integration Analysis for

Biomarker discovery using Latent variable approaches for Omics studies. This approach

leverages the generalization of the PLS method for multiple matching datasets. Therefore,

DIABLO demands the same individuals in all datasets analyzed. The main objective of the

tool is to identify, among the heterogeneous data, co-expressed variables. In a supervised

way, this workflow can be applied to an outcome of interest, to uncover biological signatures.

DIABLO, like most of the mixOmics workflows, provides many graphical outputs to

assist data interpretation, including networks of correlated features, circos plot and Clustered

Image Map (CIM). Moreover, there is the possibility of tuning parameters and predicting an

external test set (Singh et al., 2016).
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Reactome GSA

One of the recently developed tools for multi-omics analysis is the ReactomeGSA R

package and web tool (Griss et al., 2020). ReactomeGSA is a gene set analysis system that

allows the comparative analysis of multiple independent datasets that are submitted together

in a single pathway identification analysis, using the Reactome database. This method is

suitable for both bulk and Single-cell level analysis and allows the direct integration with

public data from ExpressionAtlas and Single Cell ExpressionAtlas.

2.5 Biomarker Discovery

In the new era of precision medicine, science has been fighting to identify biomarkers

that could be useful in many fields, from diagnostics to the prediction of responses to a

vaccine or a medication. In this aspect, the assessment of the expression of more than 20

thousand genes by transcriptomics offers a great opportunity to identify possible markers.

This context has spurred the application of different methods and the creation of new

frameworks to address this need.

DaMiR-seq

The DaMiR-seq package, described by Chiesa et al. offers a structured pipeline to

perform data mining in R. The package receives the count data from RNA sequencing

experiments, and besides the normalization of data, DaMiR-seq checks for the presence of

outliers and unwanted sources of variation. Then, to improve classification performance and

limit overfitting, redundant and irrelevant genes are excluded by feature selection approaches.

To identify the most informative variables capable of classifying samples according to

the provided classes, the package uses an ensemble of different Machine Learning algorithms

(Random Forest, Naïve Bayes, 3-Nearest Neighbours, Logistic Regression, Linear

Discriminant Analysis, Support Vectors Machines, Neural Networks and Partial Least

Squares). Since different datasets can fit differently into a model, weighting the prediction of
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distinct classifiers and combining them may reduce the risk of classification errors (Polikar,

2006).

Moreover, the package offers many graphical outputs at each step of the process,

allowing one to visually follow the pipeline and provide figures for the interpretation of the

results.

PLS-DA and sPLS-DA

We have previously discussed the Partial Least Squares methodology in this chapter.

Although PLS was developed to deal with numerical matrices, the flexibility of this method

allows its application for discriminant analysis. In this case, a numeric matrix is integrated

with a qualitative response (outcome), which will be treated as a continuous matrix. Despite

being an adaptation, many studies have shown the method working in practice (Barker and

Rayens, 2003; Boulesteix and Strimmer, 2006; Chung and Keles, 2010; Nguyen and Rocke,

2002).

The PLS-DA is implemented by the mixOmics R package, together with its sparse

version (sPLS-DA), which also applies Lasso penalization in the loading vectors associated

with the numerical matrix, performing feature selection.

2.6 Coexpression and Network analysis

Although different types of network analysis have been employed in Systems

Biology, protein-protein interactions are the most extensively used. PPI are specific and

intentional physical contacts between pairs of proteins that occur in a particular biological

context, playing a key role in predicting the function of a target protein and the drug ability of

molecules. De Las Rivas and Fontanillo have reviewed important concepts in PPI and

network analysis.
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Network Analyst

NetworkAnalyst is a powerful web-based bioinformatics tool released in 2014 to

support systems-level data understanding. Its user-friendly platform offers visual analytics

with statistical meta-analysis resources for interpreting gene expression data within the

context of protein-protein interaction (PPI) networks. With the recent updates, it is now

possible not only to visually compare multiple gene lists through interactive visualizations,

but also generate gene co-expression networks, regulatory networks and cell-type specific

PPI networks (Zhou et al., 2019).

CEMiTool

CEMiTool is an R package and a web tool that allows to perform co-expression

analysis in an automated pipeline (Russo et al., 2018). The package is based on the Weighted

correlation network analysis (WGCNA), but also provides a structured pipeline that includes

an unsupervised gene filtering method and an improved automatic selection of the β value,

being more reproducible and requiring less bioinformatic skills. Moreover, CEMiTool

outperformed WGCNA using even less computational resources (Cheng et al., 2020).

The tool allows the identification of modules of genes that are co-expressed among

samples, using a ‘soft’ thresholding to assign a connection-weight to each gene pair, instead

of classifying connections in a binary manner (connected or not connected). Genes are

divided in modules using an hierarchical clustering approach. With CEMiTool it is also

possible to include information about the class of the samples and perform functional

analysis based on a provided gene set. CEMiTool can also integrate the results with

interactome data, providing co-expression networks. Results are available in a HTML report,

with high-quality plots and interactive tables. To date, CEMiTool has provided insights in the

most different topics, including osteoarthritis (Zheng et al., 2021), neuropsychiatric disorders

(Hemmings et al., 2022) and breast cancer (Cedro-Tanda et al., 2020).
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2.7 Data visualization

Data visualization is a very important aspect of research, especially in bioinformatics.

In this field, it is very common to deal with many variables from different biological layers

and involve distinct biological pathways. A good figure is not only aesthetically important,

but in many cases, it is a crucial feature to extract information.

The R Graph Gallery and Ggplot2 R package

The R Graph Gallery is an organized portfolio of hundreds of graphs and their

respective scripts to reproduce them in R. The Gallery is also linked to From Data to viz

website, which displays useful information about the different types of plots, guiding the user

to the most appropriate representations to use.

Many of these graphs are built using the R package ggplot2. The package allows the

representation of data in high-quality figures, providing a range of tools to personalize the

aesthetics and customize your figure, including the colors, shapes, sizes, legends,

backgrounds and many more. Moreover, ggplot2 contains dozens of extensions, further

increasing the range of graphical outputs, including the creation of networks, diagrams,

animated representations, statistical tests, among others.

DiVenn web tool

DiVenn is a web tool that provides visualization of overlapping features from different

experiments, in an integrated force-directed graph. The final result can be personalized in

many ways, such as subsetting data, including feature names, and choosing colors. Moreover,

there is the possibility of visualizing Gene Ontology annotations of all or some of the genes.

DiVenn is a great alternative to the usual Venn Diagram, providing new resources and a better

overview (Sun et al., 2019).
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CHAPTER 3

A Systems biology approach to study the host’s responses to
pneumococcal lung infection

3.1 Streptococcus pneumoniae

Streptococcus pneumoniae, also known as pneumococcus, is a lancet-shaped

gram-positive bacteria, typically observed in pairs or short chains. These bacteria present a

thick cell wall, composed mainly of peptidoglycan and teichoic acids, known as cell wall

polysaccharides (CWPS). Surrounding the cell wall, there is a polysaccharide capsule

composed of repeating units of monosaccharides, which is a major pneumococcal virulence

factor and dictates the ability of the bacteria to cause invasive diseases (Brown et al., 2015;

Mitchell and Mitchell, 2010).

While the CWPS presents a similar structure among different strains, the capsular

polysaccharide is present in distinct structures, grouping S. pneumoniae strains sharing a

unique capsular structure into serotypes (AlonsoDeVelasco et al., 1995). Today, more than

100 different serotypes were identified (Ganaie et al., 2020). Serotypes that are antigenically

similar are grouped into serogroups.

Besides the CWPS and the capsule, S. pneumoniae present many proteins involved in

various stages of its pathogenesis (Mitchell and Mitchell, 2010). Different surface proteins

contributes to the interaction with the host's tissues and evasion of the immune system,

including three important adhesins: pneumococcal surface antigen A (PsaA) and

pneumococcal surface protein A and C (PspA, PspC) (Berry and Paton, 1996; Brock et al.,

2002; Ogunniyi et al., 2007). Moreover, the extracellular glycosidase neuraminidase A

(NanA) is also known to be involved in adhesion to host’s cells (Tong et al., 2000).

Other two important virulence factors are the Pneumolysin, a pore-forming toxin that

binds to membrane cholesterol and has a major role in inflammation (Weiser et al., 2018) and

the sIgA1 protease, which cleaves the hinge of the human immunoglobulin IgA1 (Weiser et
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al., 2003). The role of these virulence factors will be further discussed across this chapter,

along the host’s responses to this bacteria.

3.2 Pneumococcal disease epidemiology

S. pneumoniae colonizes the upper respiratory tract (URT) in an age-dependent

manner, being higher in young children and decreasing in adult age and the prevalence is also

higher in low-middle countries, compared to developed countries. The colonization is usually

asymptomatic but is the leading source of transmission between individuals and is a

prerequisite for pneumococcal infection (Le Polain de Waroux et al., 2014).

Infection occurs if the bacteria gains access to other tissues. When the spread is local,

it causes noninvasive diseases like sinusitis, otitis, and non bacteremic pneumonia. When the

bacteria reach the bloodstream it leads to invasive manifestations such as bacteremia,

meningitis, and bacteremic pneumonia, presenting high mortality rates (Bogaert et al., 2004;

Kadioglu et al., 2008).

Although pneumococcal diseases attain people at every age, infection and invasive

diseases are more common in children and in the elderly , along with immunocompromised

people (Melegaro et al., 2006). According to the World Health Organization, in 2019

pneumonia was responsible for 22% of all deaths in children aged 1 to 5, with S. pneumoniae

being the leading cause of bacterial pneumonia (“Pneumonia,” n.d.).

Vaccines are the most important strategy in preventing pneumococcal disease. The

currently available vaccines target the polysaccharide capsule and are classified in two

categories: the polysaccharide pneumococcal vaccines (PPV) and the pneumococcal

conjugate vaccines (PCVs). The first group consists of the purified capsular polysaccharides

(CPS) of 23 serotypes and elicits a T cell independent response. Despite effectively

preventing pneumococcal bacteraemia and meningitis in adults and elderly people (Moberley

et al., 2013), this vaccine does not induce affinity maturation and immunological memory

(Rose et al., 2005), aside from being poorly immunogenic in children (Pollard et al., 2009).
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In the pneumococcal conjugate vaccines (PCVs) a carrier protein is covalently linked

to the purified CPS of 10 or 13 different serotypes, eliciting T cell dependent responses and

leading to class switching, affinity maturation and antigen specific memory B cells, which are

important for the long-term protection against pneumococcal diseases (Papadatou et al.,

2019). The introduction of these vaccines resulted in an important decrease in invasive

manifestations of pneumococcal infection. However, there is a growing concern regarding the

replacement of the common serotypes by the serotypes not covered by the available vaccines

and, given the impossibility of covering all serotypes in one product, scientists have been

seeking serotype-independent strategies (Briles et al., 2019; Kaplan et al., 2013; Pichichero,

2017).

3.3 Host-pathogen interactions

The balance between the host’s specific and nonspecific defenses against S.

pneumoniae and the ability of the bacteria to counteract these defenses will dictate the

colonization and the spread to other tissues (Weiser et al., 2018). Moreover, once the

pneumococcal infection is established, the host’s inflammatory responses play a major role,

influencing the symptoms and disease outcome (Musher D. M, 1992; Dockrell, D. H., 2012).

Therefore, to better understand the systemic responses to a lung infection, it is

important to have an overview of how the innate and adaptive branches of the immune

system fight S. pneumoniae and how the bacteria escape from these responses.

3.3.1. Colonization, a prerequisite for infection

Physical defenses protect the respiratory tract, including the presence of

antimicrobials, neutralizing immunoglobulins and an epithelial layer that provides a

mucociliary escalator through the rapid beating cilia. In addition, resident leucocytes help to

maintain the airway integrity. To succeed in infecting humans, the pathogen needs to

overcome these different barriers (LeMessurier et al., 2020).
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In humans, S. pneumoniae asymptomatically colonizes the nasopharynx, a process

known as carriage. The colonization is a process mediated by different pneumococcal

proteins, including the phosphorylcholine (Chop), a component of the cell wall that binds

epithelial cells through platelet-activating factor receptors (PAFR), serving as an anchor for

different choline-binding proteins (Cundell et al., 1995). Particularly, choline binding protein

A (CbpA) and the pneumococcal choline-binding protein A (PcpA) contribute to the adhesion

to epithelial cells (Khan et al., 2012; Zhang et al., 2000). On the other hand, the

pneumococcal protease sIgA1 cleaves human IgA1 antibodies, the most abundant

immunoglobulin in mucosal sites, and the remaining Fab fragments in the surface of the

bacteria are associated with the increase in adhesion as well (Weiser et al., 2003).

In healthy individuals, the mucociliary escalator usually eliminates S. pneumoniae

before the arrival to the lower respiratory tract and the bacteria is cleared within a couple of

weeks. The process of overtaking the mucus escalator is facilitated by S. pneumoniae’s

exoglycosidases, such as the neuraminidase NanA, that plays its role by deglycosylation of

the mucus (Loughran A, 2019). Moreover, ciliary beating is inhibited by the cytotoxin

pneumolysin (Fliegauf M, 2013) and the capsule, that is negatively charged, promotes

evasion of mucus via electrostatic repulsion since the mucus is also negatively charged

(Dockrell and Brown, 2015).

Depending on factors from both the host and the bacterial strain, S. pneumoniae can

escape the clearance and spread to other tissues. The likelihood of penetration to other

tissues, including microaspiration to the lungs, rises with the increase of bacterial loads in the

nasopharynx. This can occur due to the induction of pro-inflammatory chemokines and

cytokines, upregulation of target receptors and viral infections that cause damage to the

respiratory epithelium (Loughran et al., 2019; Weiser et al., 2018).

The respiratory epithelium also presents high amounts of antimicrobial peptides and

immunoglobulins, which is overcomed by the autolytic enzyme LytA that promotes the

shedding of the capsule, leading to a considerable resistance to these peptides and permitting
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a closer interaction with the host’s cells, facilitating the invasion of epithelial cells (Kietzman

C, 2016).

3.3.2. Pneumonia development and Inflammation

If the bacteria manage to arrive in the lungs, one of the first stages of infection

involves the action of the pneumococcal esterase, EstA, that contributes to the cleavage of the

sialic acid by NanA, exposing the ligands in the host’s lung cells. With the progression of the

disease, the bronchioles and alveoli have their extracellular matrix exposed and free to

interact with different pneumococcal surface proteins, promoting the attachment of the

bacteria (Loughran et al., 2019).

The first cells to recognize S. pneumoniae in the lungs are the alveolar macrophages.

They subsequently stimulate the alveolar epithelium to amplify the response, recruiting

additional immune cells (Koppe et al., 2012). Our innate immune system recognizes S.

pneumoniae through pattern recognition receptors (PRRs), such as Toll-Like receptors 2, 4

and 9, NOD-like receptors, and cytosolic DNA sensors. PRRs can recognize

pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns

(MAMPs) and damage or danger-associated molecular patterns (DAMPs) (Koppe et al.,

2012).

During pneumococcal infection, PRRs are activated by different S. pneumoniae

components, including the cell wall, pneumolysin and bacterial DNA. As a consequence, they

trigger the transcription of NF-kB, resulting in the production of inflammatory molecules,

including the cytokines TNFα, IL-6, IFNα/β, KC, MCP-1 and pro-IL-1β. PRRs also induce

the formation of inflammasomes, like the NLRP3, which is activated by pneumolysin and

controls IL-1 production at a post-translational level. All these mediators will promote an

acute response to the bacteria, recruiting additional neutrophils and macrophages (Opitz et

al., 2010).
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At this stage, inflammation becomes very intense, driven especially by the bacterial

cell wall, pneumolysin and hydrogen peroxide. The epithelial cells and capillaries become

inflamed, the leukocytes enter the lesion and bacteria is engulfed by macrophages.

Importantly, Pneumolysin inhibits the oxidative burst of neutrophils and macrophages and

disrupt tight junctions, including the alveoli-capillary barrier, contributing to leakage and

consequently allowing serous exudates to enter the lungs and the bacteria to cross into the

bloodstream (Loughran et al., 2019). Indeed, Pneumolysin seems to be required for both

development of severe pneumonia and bacterial survival in the blood (Loughran et al., 2019;

Orihuela et al., 2004).

The development of invasive pneumococcal diseases directly from asymptomatic

colonization is not common, but can take place in situations of innate immunity disruption. In

fact, the access to the bloodstream occurs generally through the lungs. The intense

inflammation at alveolar level, with presence of edema fluid, accumulation of erythrocytes,

lymphatic dilatation and overabundance of bacteria is a propitious environment for

bloodstream access (Loughran et al., 2019; Orihuela et al., 2004).

Although bacterial pneumonia generally leads to a compartmentalized inflammation,

lung infection often results in a systemic response, even without bacteremia (Deng and

Standiford, 2005) .

3.3.3. The development of an adaptive response to S. pneumoniae

In humans, different studies have shown that colonization of the nasopharynx is a

immunizing process and leads to the generation of an adaptive response involving acquisition

of anti-capsular and anti-protein antibodies (Goldblatt et al., 2005; Weinberger et al., 2008;

Zhang et al., 2006), and CD4+ cellular responses (Lebon et al., 2011; Mureithi et al., 2009).

The development of antibodies against capsular and non capsular components of

pneumococcus seem to contribute to the gradual resistance to colonization, but cellular
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responses also play a role in this process, especially through CD4+ IL-17A producing T cells

(Malley, 2010).

Antibodies have their importance in pneumococcal diseases demonstrated through the

success of vaccines developed to target the humoral response. In the context of an infection,

the humoral response can be triggered against different surface proteins and the

polysaccharide capsule, the later one inducing thymus-independent responses mediated by

marginal zone B cells. Although this gives rise to plasma cells that secrete low affinity

antibodies without generating memory B cells, thymus-independent responses develop faster

than T cell dependent responses, being crucial to decrease pathogenic burden early in

infection (Coutinho and Möller, 1973; Martin et al., 2001).

Since pneumococcus can cleave IgA, the most common antibody in mucosal surfaces,

nasal and lung mucosal protection likely requires the action of other immunoglobulin classes,

like IgG (Janoff et al., 2014).

Within the cellular responses, it is known that CD4+ T cells provide protection

against S. pneumoniae in an antibody-dependent manner (Malley et al., 2005). These cells act

through the release of cytokines and are activated through co-stimulatory molecules and

antigen presentation cells, differentiating in Th1 and Th2 cells. Th1 cells can stimulate the

cellular responses by releasing cytokines such Interferon-gamma, activating and recruiting

other immune cells, like macrophages. In an in vitro study with human monocytes, live

pneumococcus triggered a Th1-biased response, while killed pneumococcus triggered a Th17

response (Olliver et al., 2011). On the other hand, Th2 cells support humoral responses

through the release of IL-4 cytokine and interaction with B cells (Romagnani, 1999).

T-helper 17 and regulatory T cells are very important in the context of a

pneumococcal infection. Peripheral blood mononuclear cells (PBMC) from healthy adults

living in regions with high incidence of pneumococcal carriage and infection respond to

pneumococcal antigens by the production of IFN and IL-17, pointing out the development of

a memory mediated by T cells (Mureithi et al., 2009). The release of IL-17 cytokine by Th17
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cells is a pro-inflammatory process and recruits leukocytes to the site of infection, promoting

clearance of the bacteria. Regulatory T cells act to regulate Th17 responses, avoiding

autoimmunity caused by an over-inflammation process (Hoe et al., 2017).

3.4 The role of the spleen in pneumococcal infection

The structure of the spleen comprises the red pulp and the white pulp, the latter being

surrounded by an interface region, the marginal zone (MZ). Afferent arterial blood ends in

sinusoids in the MZ and flows through sinusoids spaces and red pulp into venous sinuses

(Bronte and Pittet, 2013).

The MZ contains specific subsets of macrophages and B cells, acting as a bridge

between innate and adaptive immune systems (Mebius RE, 2005). In a mouse model,

blood-borne pathogens in circulation can enter the splenic MZ easily through a fenestrated

marginal sinus, or have their antigens captured by dendritic cells and granulocytes that will

then transport them to the MZ. (Mebius RE, 2005; Balázs M, 2002). The white pulp contains

T cell and B cell zones, being structurally similar to a lymph node and permitting the

generation of antigen-specific responses (Bronte and Pittet, 2013).

Thanks to its structure and composition, presenting a high perfusion and a multitude

of cell types, the spleen plays an important role in the response to blood-borne pathogens. In

fact, the spleen is the main responsible for the clearance of S. pneumoniae from the blood

(Shinefield HR, 1066; Theilacker Cm 2016).

In brief, besides clearing pathogens from the circulation, the spleen is capable of

triggering innate and adaptive responses against these pathogens. Therefore, when

establishing a model to study pneumococcal pneumonia in mice, spleens are an important

organ to investigate.
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3.5 The aim of this chapter

In the present work, mice were intranasally infected with 107 CFU of TIGR4, causing

a lung infection without indication of systemic spread. Spleens were collected at different

time points after infection, stimulated with the same strain of inactivated bacteria and changes

in gene expression and cytokines’ concentration were assessed. From this perspective, the

aim of this chapter is to understand the systemic response and memory generated in a

pneumococcal lung infection model using a systems biology approach.
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The in vitro stimulation of immune system cells with live or killed bacteria is essential for

understanding the host response to pathogens. In the present study, we propose a model

combining transcriptomic and cytokine assays on murine splenocytes to describe the

immune recall in the days following pneumococcal lung infection. Mice were sacrificed at

days 1, 2, 4, and 7 after Streptococcus pneumoniae (TIGR4 serotype 4) intranasal

infection and splenocytes were cultured in the presence or absence of the same

inactivated bacterial strain to access the transcriptomic and cytokine profiles. The

stimulation of splenocytes from infected mice led to a higher number of differentially

expressed genes than the infection or stimulation alone, resulting in the enrichment of 40

unique blood transcription modules, including many pathways related to adaptive

immunity and cytokines. Together with transcriptomic data, cytokines levels suggested

the presence of a recall immune response promoting both innate and adaptive immunity,

stronger from the fourth day after infection. Dimensionality reduction and feature selection

identified key variables of this recall response and the genes associated with the increase

in cytokine concentrations. This model could study the immune responses involved in

pneumococcal infection and possibly monitor vaccine immune response and

experimental therapies efficacy in future studies.
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1 INTRODUCTION

Streptococcus pneumoniae is a major human pathogen

responsible for various diseases, including life-threatening
conditions such as pneumonia, sepsis, and meningitis (Weiser

et al., 2018). Current vaccines have been very efficient in reducing

the death toll caused by this pathogen. However, strains not

covered by the available vaccines represent a growing concern,

demanding new serotype-independent strategies (Kaplan et al.,

2013; Pichichero, 2017; Briles et al., 2019). Models to assess the
response to new vaccine candidates would be of great use.

In vitro stimulation with live or killed bacteria has been used

for decades for understanding the host’s response to different

pathogens, including S. pneumoniae (Zhan and Cheers, 1995;

Schultz et al., 1998; Wu et al., 2011; de Stoppelaar et al., 2016).

This technique has also been applied in vaccine studies,

characterizing the immune response after a second stimulus
(Paranavitana et al., 2010; Moffitt et al., 2011; Shao et al.,

2015). Changes in gene expression and in cytokine

concentration were metrics assessed by some of these works to

study the immune profile of pneumococcal infection. In the

present work, we propose the combination of transcriptomic and

cytokine assays from murine splenocytes to assess the immune
memory built in the days following pneumococcal infection.

The spleen plays a vital role in host defenses against

encapsulated blood-borne pathogens due to its elevated

perfusion and efficient immune surveillance of the circulatory

system (Cerutti et al., 2013). In a pneumococcal bacteremia

model, bacteria present a tropism to the spleen, and

macrophages present in the splenic Red Pulp (RP) are
responsible for an initial binding and subsequent clearance of

S. pneumoniae mediated by mature neutrophils present on the

RP (Deniset et al., 2017; Ercoli et al., 2018). Moreover, the splenic

Marginal Zone (MZ) is a crucial area of antigen presentation to

MZ B cells that are capable of rapidly differentiating into

plasmablasts, secreting low-affinity IgM and IgG (Cerutti
et al., 2013).

RNA sequencing technologies permit us to gain insights into

the host’s response due to the possibility of analyzing the changes

in gene expression in different conditions. The transcriptomic

information can be integrated with other biological layers or

clinical data, permitting a more comprehensive understanding of
biological processes in response to perturbations such as

infection and vaccination.

In the current work, we propose the study of the host systemic

responses to a pneumococcal lung infection by assessing gene

expression and cytokine profiles of splenocytes, identifying

biological pathways and the key features involved in this process.

2 METHODS

2.1 Animals and Animal Infection
Seven-week female C57BL/6 mice (Charles River Italia, Italy)

were treated according to national guidelines (Decreto
Legislativo 26/2014) utilizing the three R’s principles. Animals

were maintained under specific pathogen-free conditions in the

animal facility of the Laboratory of Molecular Microbiology and

Biotechnology (LA.M.M.B.), Department of Medical

Biotechnologies at University of Siena, at 20-24°C, with 55 ±

10% of humidity, with food and water ad libitum. The study was

approved by the Italian Ministry of Health with authorization n°
304/2018-PR. As previously described (Kadioglu et al., 2011)

male and female mice respond differently to pneumococcal

infection and, therefore the use of only female mice can be

considered a limitation of this study.

Mouse-passaged TIGR4 strain of S. pneumoniae (Gerlini

et al., 2014) was inoculated 1:50 in TSB (Tryptic-Soy Broth,
Becton Dickinson, USA) supplemented with 0.1% of glucose

(PanReac, Applichem, Italy), 1% of yeast extract (Oxoid, UK)

and 0.016 M K2HPO4 (Sigma-Aldrich, USA) (TSB-GYP). The

bacterial culture in mid-exponential phase (≈OD590 = 0.6), was

centrifuged at 2,000 x g for 10 minutes and resuspended in an

appropriate volume of saline. Before the centrifugation, the
culture was Gram-stained and bacterial vital counts were

performed using the multilayer plating method (Iannelli et al.,

2021). Each mouse was anesthetized by intraperitoneal

administration of 15 mg/kg tiletamine hydrochloride/

zolazepam and 4 mg/kg xylazine and intranasally infected by

instillation of 10^7 CFU of TIGR4, prepared as described above,

in the volume of 25 ml/nostril in TSB. Mice were euthanized at
different time points with overdose of anesthesia and cervical

dislocation, as shown in Figure 1. Non-infected mice composed

the baseline group. Each group included 6 animals.

2.2 Sample Collection
After aseptic removal at different time points (days 0, 1, 2, 4, and

7 after infection), spleens were meshed onto 70 µm nylon screens

(Sefar Italia, Italy) using a scalpel and scraper. Cells were washed
two times in RPMI (Sigma-Aldrich) supplemented with 10% of

fetal bovine serum (FBS, Gibco, USA) and 1% of penicillin-

streptomycin (Sigma-Aldrich)(cRPMI), treated with red blood

cells lysis buffer according to manufacturer instruction

(eBioscience, USA), and resuspended in cRPMI for cell

counting by an automatic cell counter (Bio-Rad, USA). Lungs
were aseptically removed, meshed onto 40 µm nylon screens

(Sefar Italia, Italy), suspended in 1 ml of TSB containing glycerol

at a final concentration of 10% and frozen at -70°C.

2.3 Bacterial Cells Counts in Lungs
Bacterial colony forming units (CFUs) were determined by

plating appropriate dilutions of frozen lungs using a multilayer

plating procedure (Iannelli et al., 2021). The lower limit of
detection was 10 CFU/ml. CFUs were counted at 1, 2, 4, and 7

days after intranasal infection and in the mock infected

control group.

2.4 Preparation of Inactivated Whole Cells
of S. pneumoniae
TIGR4 was inoculated 1:1000 (v:v) in 1 L of pre-heated (37°C)

TSB-GYP in a GLS80 1 liter bottle (Duran, USA). Temperature

was maintained constant at 37°C, the pH was continuously

measured with a probe (InPro3030, Mettler Toledo) and kept
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at 6.9 by peristaltic pump controlled addition of 3M NaOH.

Agitation was set at 100 rpm. Growth was monitored by

aseptically drawing aliquots and measuring their OD590 in a

Spectronic 200 spectrophotometer (ThermoFisher). At the peak

OD590 (about 2.5, corresponding to 10^9 CFU/ml) bacteria were

harvested by centrifugation, resuspended in PBS/10% glycerol

and frozen at -70°C. TIGR4 bacteria were then thawed and
inactivated by treatment with 1.5% formalin for 2 hours on a

roller mixer at room temperature, then washed twice and

resuspended in water.

2.5 Splenocyte Stimulation and Cytokine
Secretion Assay
Splenocytes were cultured in a U-bottom 96-well plate in

triplicate for 72 hours at 37°C with 5% CO2 in cRPMI.
Splenocyte cultures were incubated in the presence or not of

inactivated TIGR4, at a cell:bacteria ratio of 1:10. Unstimulated

control splenocytes were cultured in cRPMI alone, and positive

control splenocytes were stimulated with 50 ng/ml of phorbol

12-myristate 13-acetate (PMA) and 1 µM of Ionomycin (both

from Sigma-Aldrich). After stimulation, cells were harvested

and centrifuged at 500 x g for 15 minutes at 4°C. The
supernatant was recovered and frozen at -70°C for subsequent

Luminex immunoassay.

A broad screening panel consisting of a biologically-relevant

collection of adaptive immunity cytokines, pro-inflammatory

cytokines, and anti-inflammatory cytokines was used. In

particular, IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10,
IL-12p40, IL-12p70, IL-13, IL-17, G-CSF, GM-CSF, IFNg, and

TNF-a, and of the chemokines Eotaxin, KC, MCP-1 (MCAF),

MIP-1a, MIP-1b, and RANTES production by in vitro stimulated

splenocytes was assessed with the BioPlex pro mouse cytokine

group 1 - panel 23-plex immunoassay (Bio-Rad, USA) according

to manufacturer guidelines, and analyzed by Bio-Plex Magpix
Multiplex reader (Bio-Rad). Cytokine and chemokine

concentration was expressed as picograms per milliliter (pg/ml)

and were calculated using Bio-Plex Manager 6.1.

2.6 Splenocyte Stimulation for RNA-
Sequencing
In a U-bottom plate, 1 x 10^6 splenocytes/well were seeded in

quintuplicate and cultured for 6 hours at 37°C with 5% CO2 in

cRPMI in the presence of inactivated TIGR4 at a cell:bacteria

ratio of 1:10. Unstimulated control splenocytes were cultured in

cRPMI alone. Upon stimulation, cell replicates were centrifuged

at 500 x g for 10 minutes at 4°C. The supernatant was discarded,
the pellet resuspended in 50 µl of lysis buffer RA1 (Macherey-

Nagel, Germany), flash-frozen in liquid nitrogen, and stored at

-70°C for subsequent RNA extraction.

2.7 RNA Extraction, Library Preparation,
and Sequencing
The RNA purification was performed with the NucleoSpin®

RNA kit (Macherey-Nagel) following manufacturer ’s

FIGURE 1 | Experimental design. Seven-weeks old C57BL/6 female mice were infected intranasally with a dose of 10^7 CFU/mouse of pneumococcal serotype 4,

TIGR4 strain. After 1, 2, 4, and 7 days post-infection each group of mice (n=6) was euthanized and their spleens were collected for the isolation of splenocytes.

Splenocytes from each single mouse were stimulated with formalin-inactivated TIGR4 (cell:bacteria 1:10), or maintained in cRPMI medium alone. The incubation was

performed at 37°C in 5% CO2 in a period of 6 hours for samples used in the RNA-sequencing experiment or 72 hours for samples used in the Bio-Plex Multiplex

immunoassay. Non-infected mice were euthanized at day 0, splenocytes were collected and maintained in the same in vitro conditions of the unstimulated group and

used as controls. Created with biorender.com.
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instructions, and, before DNAse treatment, the extracted RNA

was quantified by the Qubit® 2.0 Fluorometer (Invitrogen by

Thermo Fisher Scientific, USA), using the Qubit RNA BR

(Broad-Range) Assay Kit.

Contaminating DNA was removed from the extracted RNA

by adding 10X TURBO DNase Buffer (TURBO DNase, Ambion
by Thermo Fisher Scientific) and 1 µl of TURBO DNase

(Ambion), and samples were incubated at 37°C for 30 minutes.

After purification by the RNA Clean & Concentrator Kit (Zymo

Research, USA), the obtained RNA was quantified using the

Qubit® RNA BR Assay Kit.

Library preparation was performed as described in a previous
publication (Santoro et al., 2021), using the Ion AmpliSeq™

Transcriptome Mouse Gene Expression Kit from AmpliSeq

(Thermo Fisher Scientific), allowing the amplification of 23,930

target genes. Libraries were diluted to 50 pM and pooled in

equal volumes (7 ml), with eight individual samples per pool and

loaded onto Ion PI™ Chip v3 using the Ion Chef™ Instrument.
Sequencing was performed using Ion Proton™ Sequencer.

All described steps were performed according to the

manufacturer’s instructions.

2.8 RNA-Sequencing Data Analysis
R software in version 3.6.3 was used for transcriptomic data

analysis. The DESeq2 package (Love et al., 2014), performs

differential expression analysis and multiple test correction,
returning values of LogFC, and adjusted p values. Genes with

an adjusted p-value smaller than 0.05 and an absolute value of

log2 Fold Change greater than 0.5 were classified as differentially

expressed and then used in the enrichment analysis performed

by the hypergeometric test from the tmod package (Weiner 3rd

and Domaszewska, 2016) using the Blood Transcription

Modules (BTM) database (Li et al., 2014).

2.9 Cytokine Data Analysis
R software in version 3.6.3 and the software GraphPad Prism 8.0

were used to perform the statistical analysis. The cytokine

concentrations between stimulated and unstimulated samples

were compared using the Wilcoxon signed-rank test, a non-

parametric test used to compare two related samples. Samples

from different time points were analyzed using the Mann-
Whitney test, a non-parametric test for non-matched samples.

A p-value ≤0.05 was considered statistically significant.

2.10 Biomarker Analysis
The DaMiRseq (Chiesa et al., 2018) package was used to find

possible biomarkers of the host response to the second stimulus,

the inactivated bacteria. Stimulated samples were selected and

divided into three groups: baseline, infected samples at days 1
and 2 (early time points), and infected samples at days 4 and 7

(late time points). Following a pipeline that permits

normalization, data adjustment, and feature selection, the

DaMiRseq package ranked the most important features to

distinguish the three classes. The number of selected genes was

chosen based on the importance established by the package;

genes with a scaled importance score higher than 0.5 were chosen

(Supplementary Image 1).

2.11 Data Integration
To integrate RNA-sequencing results and the Cytokines Bioplex,

we selected the concurrent samples from both experiments, and

we performed the sparse version of Partial Least Squares (sPLS),
provided by the MixOmics package. The PLS is a multivariate

method to integrate two high dimensional matrices, maximizing

the covariance between components from two data sets, in our

case, the transcriptomic and cytokines assay data. The sparse

version, sPLS, applies LASSO penalization in each pair of loading

vectors from PLS, performing feature selection and providing the
correlation values between the main features in each data set (Lê

Cao et al., 2008).

According to the Q2 criterion, two components would be

sufficient to run the model (Q2 of 0.33931900 and 0.08639437).

As suggested by the tune.spls function, the optimal variable

number was chosen in each component resulting in 16 genes

for component 1 and 25 from component 2.

3 RESULTS

Groups of six C57BL/6 mice were intranasally inoculated with

10^7 CFUs of TIGR4 S. pneumoniae to generate lung infection.

To study the systemic response induced at early time

points afterinfection, we sacrificed animals after 1, 2, 4, and 7

days andisolated their splenocytes. We then stimulated
splenocytesfrom each single mouse with formalin-inactivated

whole pneumococcal cells and investigated the host responses by

transcriptomic analysis and assessment of cytokine

production (Figure 1).

3.1 Evidence of Pneumococcal Lung
Infection in Mice
The weight loss of animals after infection is a critical clinical

parameter of disease in the mouse model of infection, evaluated

in different challenge murine models with different pathogens

(Trammell and Toth, 2011; Pettini et al., 2015; Fiorino et al.,
2021). Mouse body weight was measured every 24 hours for a

period of seven days. Uninfected mice increased their body

weight over time, which reflected their health status.

Compared to naive mice, infected mice experienced a

significant decrease in body weight soon after infection, and

the average difference in the weight between the classes increased

over time, being 1.07 grams at day 2 after infection and 1.52
grams at day 7 (Figure 2A).

The significance of these findings was assessed using the

Mann-Whitney test, which showed significant differences in

the weight from day 2 to day 7 after infection, indicating a

long-lasting effect of the infection.

Pneumococcal cells were counted in the lungs of infected
mice. Cell counts had a peak at day 4 after infection (Figure 2B).

It is worth to note that, for each time point assayed, 2-5 mice had

no detectable pneumococcal cells, suggesting that mice are able
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to spontaneously clear pneumococcal lung infection at an

infectious dose of 1x10^7 CFUs of S. pneumoniae TIGR4.
When setting up the mouse model, we also counted

pneumococcal cells in the blood of six mice at 6 and 12 hours

after intranasal infection, and in the blood of 12 mice at 24 and

96 hours after infection. Of those, only one animal had detectable

pneumococcal cells in the blood (2.4x10^3 CFU/ml) at 24 hours

after infection, suggesting that the infection is essentially limited

to the mouse lungs without significant systemic spreading.

3.2 In vitro Splenocyte Stimulation With
Pneumococcal Strain TIGR4 Activates
Several Genes Related to Both Branches
of the Immune System
Transcriptomic data from spleens of infected and uninfected

mice with or without homologous in vitro stimulation were
analyzed. We performed an Independent Principal Component

Analysis (IPCA) and its sparse version, sIPCA, both proposed by

MixOmics package (Yao et al., 2012), (i) to observe the

distribution of our data, (ii) to understand how stimulation at

different time points affects the clustering of samples, (iii) to

identify the genes responsible for the main variance among
samples, and (iv) to find possible outlier samples.

The IPCA approach (Supplementary Image 2) yielded a

better clusterization among experimental groups and time

points compared to PCA (data not shown). An outlier control

sample was detected and removed. The sparse version of the

IPCA (sIPCA, Figure 3) applies soft-thresholding in the

independent loading vectors in IPCA, performing feature
selection. The graph shows the presence of two well-defined

groups in the sIPC1: the stimulated and unstimulated samples.

To better understand the genes that drive the formation of

these clusters, the normalized expression values of the 50 genes

selected by the first component of the sIPCA were divided into

two heatmaps (Figure 3). Genes positively correlated with the

first component (driving the unstimulated cluster) included
positive and negative regulators of the immune response, and

they presented a decreased expression after stimulation. The

genes negatively regulated with the first component (clustering

the stimulated samples) were related to cytokines, chemokines,

and inflammation, all of them presenting an increased

expression compared to unstimulated samples.

3.3 Stimulation of Splenocytes From
Infected Mice Highlights Biological
Pathways of Pneumococcus Infection
We then proceeded with the differential expression analysis

using the DESeq2 package. To understand the biological

alterations caused by the infection and the subsequent in vitro

stimulation with inactivated pneumococcus, enrichment analysis

was performed using three different comparisons. (i) Spleens

from infected mice, (ii) stimulated spleens from non-infected
mice, and (iii) stimulated spleens from infected mice, at different

time points after infection, were all compared with

control spleens.

The number of differentially expressed genes (DEGs) for each

condition at each time point is presented in Figure 4. As

expected, the stimulation of infected samples led to a higher

number of DEGs compared to only infected samples, including
specific genes that were not differentially expressed in the

infection or stimulation alone. Days 4 and 7 presented the

highest values of specific DEGs, in particular, new immune

related genes and microRNAs were found, such as Il2, Foxp3,

Il16a, Ccr1 and Mir155hg.

The enrichment analysis was performed using the Blood
Transcription Modules (BTM) database and the tmod package,

the complete results of the different groups are reported in the

Supplementary Data Sheet 1. Figure 5 shows a summary of the

A B

FIGURE 2 | Evidence of pneumococcal lung infection. Comparison of body weight variation of infected versus baseline (A). Infected (n=36) and uninfected (n=5)

mice were weighed every 24 hours for a period of 7 days. Values were obtained subtracting the pre-inoculum body weight from the body weight at each time-point,

and then subtracting the mean in the control group from mean of the infected group in each time point. The average differences are expressed in grams and the gray

shade represents the 0.95 confidence interval. From days 2 to 7 there were significant differences between the infected and baseline groups (p < 0.05, calculated

using Mann-Whitney test. Pneumococcal cell counts in the lungs (B). The lungs of mice sacrificed at 1, 2, 4 and 7 days after infection (n=6 per group) were

collected, homogenized in a final volume of 1 ml and plated using a multilayer plating procedure. Pneumococcal cells were counted after 24 hours and 48 hours of

incubation. Lungs of uninfected mice (0 days post-infection) were plated as a negative control. Data are expressed as CFUs/ml lung. The lower limit of detection was

10 CFU/ml lung. Average cell counts had a peak at day 4. For each time point, there were at least 2 mice without detectable pneumococci.
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FIGURE 3 | Distribution of gene expression data and changes after stimulation. The sIPCA proposed by MixOmics revealed two main clusters, one formed by stimulated samples (shaded in purple) and other formed by

unstimulated samples. The IPC1 (x-axis) represents the variance between stimulated and unstimulated samples of infected and non-infected mice. IPC2 (y-axis) shows the variance between baseline samples with respect to the

other groups in different study days (1, 2, 4, 7). After infection, samples from days 1 and 2 (early time points) form a smaller cluster closer to baseline samples (lighter green), while samples from days 4 and 7 (late time points)

present a higher dispersion (darker green). The normalized expression values for the 50 most important genes selected by the sIPCA in the first component were represented in heatmaps, with lower values represented in blue

and higher values in red and time points represented in the bottom part, following the same green scale of the sIPCA. The heatmap on the right, shows the 27 genes positively correlated with the first component, which include

positive and negative regulators of the immune system and drive the formation of the cluster of unstimulated samples. The heatmap on the left shows the 23 genes negatively correlated with the first component, driving the

stimulated samples to form a separate cluster. Most of these genes are related to cytokines and chemokines (Csf2, Ccl4, Il1a, Il1b, Il1rn, Il2ra, Cxcl1, Cxcl3, Cxcl2, Ccl3, Slc7a5) while others are related to immunity and

inflammation (Cd83, Acod1, Slc7a11, Gadd45g, Nlrp3, Ptgs2 and Igfbp4).
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A B

FIGURE 5 | Tmod enrichment analysis. From the list of genes provided by the DESeq2 package, genes were selected by their FDR value (< 0.05) and absolute log2

Fold Change (> 0.5). The enriched blood transcription modules were obtained by the Hypergeometric test. (A) Modules related to innate immunity and antigen

presentation, (B) modules related to cell cycle, adaptive immunity and cytokines modules. The effect size is proportional to the size of the pie, while the adjusted p-

value is proportional to colour intensity. Within each pie, the proportion of significantly upregulated and downregulated genes is shown in red and blue, respectively.

The gray portion of the pie represents genes that are not significantly differentially regulated.

FIGURE 4 | Differentially Expressed genes (DEGs) for comparison and Time point. Three main comparisons against baseline controls were defined: infected

samples, stimulated samples and infected and stimulated samples. Differentially Expressed Genes (DEGs) were obtained using the DESeq2 package and establishing

thresholds of FDR < 0.05 and absolute logFC > 0.5. The stimulation of spleens from infected mice led to a higher number of DEGs compared to only infected or only

stimulated spleens (number of specific genes highlighted in the figure).
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main immune system modules activated for each comparison

and time point. In total, 87 modules were significantly enriched,

only 3 of them being specifically activated in infected samples,

while 40 modules were only activated after stimulation of

previously infected samples.

3.3.1 Activation of Extracellular Matrix, Cell

Adhesion, and Innate Immune Response Modules
Five modules were consistently activated at almost all time points

in both unstimulated and in vitro stimulated groups. Related to

monocytes, immune activation, TLR signaling, and cell cycle,

these modules showed a different pattern after stimulation,
presenting more down-regulated genes. Following the same

direction, modules related to the extracellular region,

monocytes, and cell cycle are especially enriched in down-

regulated genes after stimulation (Figures 5A, B).

The “extracellular region cluster” module shows the

downregulation of genes involved in the interaction with

extracellular components, growth control, and the vascular
endothelium/angiogenesis (HSPG2, GH1, ENG). Moreover, the

monocyte chemoattractant CCL2 is also down-regulated, while

CCL18, important for the recruitment of T lymphocytes but not

monocytes, is up-regulated.

The stimulation down-regulates genes responsible for the

proli feration and differentiat ion of monocytes and
macrophages like CSF2RA, CSF1R, and CSF3R, the latter one

also important for adhesion. In monocytes modules, other genes

linked to the extracellular matrix and cell adhesion followed the

same behavior.

The downregulation of extracellular matrix genes could be

due to the process of in vitro stimulation, decreasing the cell

adhesion to the plate surface.

3.3.2 Activation of Cell Cycle, Cytokines, and

Adaptive Immune Response Modules
The stimulation of infected samples led to the enrichment of

many biological pathways not activated in the previous

comparisons, including modules related to antiviral response,
antigen presentation, T cells, B cells, and chemokines

(Figures 5A, B).

On the first day, unstimulated samples presented the

enrichment of T cell and cell cycle modules. After stimulation,

these same modules are activated, together with many others

related to T cells and cell cycle, in both cases enriched mainly by

down-regulated genes.
In T cell modules we find down-regulated cell-cycle genes and

genes linked to cell adhesion, like VCAM1 and SIR3PG, while

ITGA4, another adhesion-related gene, was up-regulated in

unstimulated samples but presented no change after

stimulation. Negative regulators of the T cell activity (LILRB4,

LILRB3, SIT1) were also downregulated, while the few up-
regulated genes were mainly related to T cell activation (CD3E,

GRAP2, CDCA7, and LAT).

On the other hand, the specific modules in late time points

were mostly activated by up-regulated genes. We observe a

stronger activation of the “cytokines − receptors cluster”

module and the specific enrichment of pathways like leukocyte

differentiation, signaling in T cells, enriched in B cells, among

other modules.

Cytokine modules are activated from the stimulation of

baseline samples and looking inside these modules, indeed we

see many up-regulated genes independently of the time point,
especially those from the CCL family, IL1A, IL1RN, and TNF.

Other genes such as CSF2, IL2RA, IL6, IL10 and IL1B present a

modest increase in stimulation of baseline samples, but a major

up-regulation at late time points.

Despite the high number of activated modules, the response

to the stimuli after a previous infection does not show general
up-regulation of the immune and inflammatory response. This

second contact with the pathogen through the in vitro

stimulation permitted us to appreciate biological processes

which could not be detected in the primary infection,

especially those related to antigen presentation, adaptive

immunity, and cytokines. These processes are possibly related
to a recall immune response starting within the first days

after infection.

3.4 Cytokines Assay Suggests the
Promotion of Innate and Adaptive Immune
Responses From Day 4 After Infection
Regarding the concentration of cytokines in splenocyte culture
supernatants, the infection without subsequent stimulation did

not result in significant increases in the concentration of

cytokines, with exception of IL-17a at day 7 after infection

(data not shown).

The stimulation process induced a significant increase in KC

and MIP-1a, compared to baseline samples (median of differences

of 42.46 and 184.4 pg/ml, respectively). Despite cytokine changes
between stimulated and control samples being noticeable in early

stages, they increased considerably upon in vitro stimulation, at

days 4 and 7 after the infection (Figure 6).

The comparison of stimulated samples from days 4 and 7

after infection with only infected samples showed a significant

increase in all cytokine concentrations, with exception of MCP-1
and IL12p40 (Figure 6 and Supplementary Image 3), suggesting

the involvement of both innate and adaptive branches of the

immune system. This increase was more accentuated on day 7, in

which the difference in the median between the stimulated and

unstimulated groups was 2597 pg/ml for IL-17A, 769 pg/ml for

GM-CSF and 374 pg/ml for IFN-gamma.

3.5 Gene Expression and Cytokines Data
Integration Indicate Specific Patterns of
Recall Immune Response After Stimulation
To identify the genes correlated with the increase in the

concentration of cytokines, especially at late time points, data

integration was performed using the sparse version of Partial
Least Squares (sPLS), from MixOmics package. PLS can integrate

two types of data measured on the same sample by maximizing the

covariance between the components of each data set. The sparse

version applies LASSO ℓ1 penalizations in PLS analysis to perform

feature selection.
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As expected, the in vitro stimulated samples formed a different

cluster compared to the non-stimulated samples, although there is a

different behavior regarding time points in each cluster (Figure 7A).

In the non-stimulated cluster there is a perturbation caused by

infection, but some samples from day 7 cluster together with control

samples from day 0. On the other hand, in vitro stimulated samples

presented a different pattern, samples from days 4 and 7 form a new
cluster, driven by the increase in cytokine concentration and the

expression of certain genes (Figure 7B).

By performing data integration and feature selection, sPLS

identifies the genes whose expression is strongly associated with

the concentrations of cytokines, providing the correlation value

for each variable. The genes with the highest values of correlation
with the 23 cytokines were Cd69, Csf2, Il2ra, and Il2 (Figure 7C).

Other genes related to the immune system (Foxp3, Tnfrsf4,

Tnfrsf9, Il10, and Il6) were also found positively correlated

with the cytokines.

3.6 Possible Biomarkers Elicited by In
Vitro Stimulation
We aimed to understand if feature selection could summarize the

impact of a previous infection on stimulated samples, indicating

possible biomarkers of this infection. We applied the DaMiR-seq

package, which provides data normalization, feature selection,

and classification, based on different machine learning
techniques. Three groups were established based on the

transcriptomics and cytokine data distribution, focusing on the

stimulation of uninfected samples, samples from early time

points after infection (days 1 and 2), and samples from late

time points (days 4 and 7).

Eleven genes were chosen by applying a threshold of 0.5 to the

scaled importance score identified by the DaMiR-seq package

(Supplementary Image 1). These 11 genes allowed a clear

clusterization of the three groups (Figure 8).

When compared to baseline stimulated samples, Fpr1, Nlrp3,
and Slpi presented an increased expression in infected stimulated

samples, independently of the time point. The stimulation of

samples from early time points after the infection led to the

increase in the expression of other inflammatory genes like

Serpinb2 and Chil1 (Chitinase-3-like protein 1), and these

values started to decrease in the subsequent days. At late time
points, three other important genes, related to cytokine activity,

had their expression increased when compared to the other

groups: Ccr4, Csf2, and Il2.

Despite the small number of samples being a limitation for this

type of analysis, the feature selection summarizes the new

immunological processes that arise after the stimulation of

infected samples and suggests the use of the in vitro stimulation
model to detect the presence of a previous pneumococcal infection

by measuring the expression of a few genes.

4 DISCUSSION

To characterize the host response to S. pneumoniae we proposed

a murine model of intranasal infection followed by an in vitro

FIGURE 6 | Cytokines concentrations in the spleens after TIGR4 pneumococcal infection. The spleens were collected from infected mice at different time points and

splenocytes were cultured for 72 hours in the presence or not of a stimulus (formalin-inactivated TIGR4 pneumococcal strain). The supernatants were collected and the

concentration of 23 cytokines were assessed by Luminex immunoassay. Data was analyzed using GraphPad Prism software. To compare Stimulated to Unstimulated

samples we used the Wilcoxon paired test. Concentrations from six of the cytokines are presented in the figure (for all the 23 cytokines see Supplementary Image 3). When

compared to only infected samples, all the six cytokines presented a significant (*= P<0.05) increase when stimulated in days 4 and 7 after infection.
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A B

C

FIGURE 7 | Data integration using sPLS (Sparse Partial Least Squares). Data integration suggests a different pattern in stimulated samples from days 4 and 7 after infection, driven by the expression of a few genes

and the concentration of most cytokines. (A) sPLS: Partial Least Squares regression applying the tune.spls function (MixOmics), 16 genes were selected for component 1 and 25 genes for component 2. Colors

represent samples from different groups: infected or non-infected and with or without in vitro stimulation. Numbers indicate the study days. (B) Correlation Circle Plot: the selected genes (blue) and cytokines (red)

are represented in a correlation circle plot. Variables positively associated are projected in the same direction from the origin, variables negatively correlated are projected in opposite directions. Variables displayed in

a perpendicular angle are not correlated and the greater the distance from the origin the stronger the association. For example, the cytokine IL1B is positively correlated with the IL2 gene, but is negatively correlated

with the gene Pdzd2. In general, cytokines and several genes related to cytokines are accumulated on the left side of the graph, indicating a high correlation among them. (C) Clustered Image Map (CIM): correlation

between genes (mRNA), reported in vertical, and Cytokine production, in horizontal. The map highlights the correlation values for these variables for the genes selected on the first component of the sPLS. High

positive correlations are represented by dark red, while high negative correlations by dark blue. Genes related to cytokines such as Il2ra, Csf2, Il10, Il6 and Il2 are positively correlated with most cytokines

concentration. The select genes are strongly correlated with almost all cytokines, with exception of MCP1 and IL12p40.
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stimulation of splenocytes with inactivated bacterial whole cells,

at different time points after infection. Using a transcriptomic-

based approach, our study has highlighted genes and biological

pathways associated with the stimulation of baseline and

previously infected samples, as well as the cytokines involved

in the same processes.

In accordance with the genes selected by the sIPCA, the
enrichment analysis has shown that the simple presence of

inactivated bacteria leads to the activation of cytokines genes

and different immune system pathways, mainly related to innate

immunity. However, when this stimulation occurs in previously

infected samples, there is a higher number of DEGs, revealing 40

new biological modules distributed across time points.
Stimulated samples presented downregulation of monocytes

modules, together with the upregulation of antigen presentation

and cytokine modules, which were also reported in gene

expression data from alveolar macrophages (AM) in a

pneumococcal colonization study, when comparing volunteers

that developed carriage or not after experimental human

pneumococcal challenge (Mitsi et al., 2020). In fact, the study
did not suggest an increase in monocytes, but a higher

monocyte-AM differentiation in people that developed

carriage. On the other hand, monocytes seem to be recruited at

the nose after the establishment of carriage (Jochems et al., 2018).

Recent vaccine studies have emphasized that innate immunity

modules, including antigen presentation and dendritic cell
activation, demonstrate stronger activation after a second

contact with the antigen. Using an in vivo boost with the

antigen alone following the priming with a chimeric vaccine

against Mycobacterium tuberculosis, Santoro et al. have observed

a faster and more robust response of dendritic cells and antigen

presentation (Santoro et al., 2018). Similar results were recently

observed in a different context, with an mRNA vaccine against
SARS-CoV-2, in which the second dose activated new antigen

presentation modules (Arunachalam et al., 2021).

Transcriptomics results have shown the presence of a

particular response after a second contact with the pathogen and

the concentrations of the cytokines suggested that this response is

marked by different patterns of activation, with the stimulation

allowing a better classification between early time points (1 and 2

days) and late time points (4 and 7) after infection. Moreover, the

activatedmodules and the concentration of the soluble modulators
suggested that both innate and adaptive branches of the immune

system are promoted by the stimulation, suggesting cooperation

between them.

In our model, cytokines secreted by macrophages, like MIP-1a

(CCL3), KC (CXCL1), IL-1a, IL-1b, and IL-6 had a small, although

significant, increase after stimulation of baseline samples. After
stimulation of early time points, a small increase in the

concentration of MIP-1b, RANTES, and TNF-a was observed,

although not statistically significant. When the in vitro stimulus

occurs at late time points after infection, the concentration of all

these cytokines significantly increases, especially at day 7. In fact,

innate immune responses to pneumococcus are known for

polarization towards Th1 and Th17 responses through the
release of cytokines (Bogaert et al., 2009).

Following this reasoning, it was expected that after the stimulation

of baseline samples the cytokines linked to the adaptive immunity

activation such as IL-17, IFNg, and IL-2 did not present an increased

concentration in comparison to unstimulated samples. G-CSF and

GM-CSF presented a small increase, although not significant. Again,
at early time points no important changes are seen, but at late time

points, a significant increase in the concentration was observed for all

these cytokines, suggesting the activation of a Th1 and Th17 response

starting around day 4. A strong Th1 response characterized by high

levels of IFNg was also demonstrated in a murine model of bacterial

meningitis by type 4 S. pneumoniae, already 48 hours after infection.

(Pettini et al., 2015).
A previous study has highlighted the action of CD8+ T cells in

helping AM to develop high MHC II expression after adenovirus

FIGURE 8 | Biomarkers of recall immune response. The DaMiR-seq package combines different classification methods to select possible biomarkers. After selecting

the stimulated samples, this package was used to find genes involved in the differences between infected and uninfected samples after stimulation. Groups were

established based on the results of data distribution (IPCA and sIPCA) and cytokines, where we observed a shared pattern between early time points (days 1 and 2)

and another pattern at late time points (4 and 7). Eleven genes were selected based on the drop of the feature importance (Supplementary Image 1). The

normalized expression values of the selected genes permitted to form three clear clusters.
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infection, a process that started coincidently with the entry of T

cells in the alveolar tissue, around 5 days after the infection (Yao

et al., 2018). The activation of T cells in the spleen could follow a

similar behavior in supporting macrophage activity and

consequently increasing cytokine release.

Biomarker analysis and sPLS integration were employed to find
genes that characterize the recall immune response and correlate

with the increase in the concentration of the cytokines. Among the

genes found positively correlated by the sPLS method, many were

linked to the immune response. The TNF receptors Tnfrsf9 and

Tnfrsf4, are important for Th1 promotion and CD4 responses

and, together with Il2, Il2ra, Foxp3 and IL10 participate in the
“NF-kappaB signaling” biological pathway (Cho et al., 2021).

Moreover, these genes are also associated with regulatory T cells,

along with Cd69 and Il6, two other features found correlated with

cytokines in the same analysis (Maloy and Powrie, 2005; Kimura

and Kishimoto, 2010; Chaudhry et al., 2011; Yu et al., 2018;

Hinterbrandner et al., 2021).
The eleven genes selected as possible biomarkers are capable of

correctly clustering the stimulated samples in the studied groups

(baseline, early, and late time points, Figure 8). These genes could

be cross validated in future studies using the same model of

pneumococcal lung infection to study vaccine strategies and

antimicrobial therapies. A link with pneumococcal infection,

colonization, or vaccination was established in the literature for
most of the selected genes. The Il2 and Csf2 genes were not only the

first and third most important genes for the classification of samples

regarding the presence of a previous infection but they were also

among the genes with the highest correlation with the concentration

of different cytokines, together with the Il2ra gene. This highlights

the importance of the IL-2 signaling pathway to the described recall
response. Indeed, different vaccine studies reported an increase in

IL-2 cytokine after restimulation with pneumococcal proteins or

peptides from these proteins (Kataoka et al., 2011; Singh et al., 2014;

Elhaik Goldman et al., 2016; Converso et al., 2017).

Csf2 gene encodes for Granulocyte/Macrophage colony-

stimulating factor (GM-CSF), a cytokine that presented one of the

highest concentrations after stimulation of infected samples from
late time points. Previous studies have described the increase in Csf2

expression and GM-CSF concentration in the lungs from mice

infected intranasally with S. pneumoniae (Steinwede et al., 2011). In

vitro stimulation of PBMCs with S. pneumoniae has also increased

the concentration of this cytokine. Furthermore, a protective role of

GM-CSF in pneumococcal infection was described with intra-
alveolar administration of this cytokine (Schmeck et al., 2004;

Steinwede et al., 2011) and the resistance to lung infection

attributed to the microbiota was found to be through GM-CSF

signaling (Brown et al., 2017).

The lack of Fpr1 and Chil1 led to a higher mortality rate in

murine models of pneumococcal meningitis and pneumonia,

respectively (Dela Cruz et al., 2012; Oldekamp et al., 2014).
Slpi is involved in the innate immune response to bacterial

infections, regulating the NF-kappa-B activation and inflammatory

responses. This gene was up-regulated in the lungs of mice infected

with pneumococcus, but the same was not observed in the spleen,

suggesting that its expression is modulated at the site of

inflammation in the presence of inflammatory stimuli (Abe et al.,

1997). Our data suggested a similar result, since Slpi expression did

not change in the spleen of infected samples, but only increased after

the in vitro stimulation.

Cd300ld presents no clear link with pneumococcal infection,

but its encoded protein, an activating receptor in myeloid and
mast cells, was downregulated in the blood of mice infected with

Streptococcus suis (Dai et al., 2018).

The link of most of the selected genes with the physiopathology

of pneumococcal infection supports the use of feature selection and

machine learning techniques to unveil gene signatures, potentially

finding new features and/or assigning new roles to genes involved in
a process, such as recall responses. The changes in cytokines

concentration and gene expression are two important ways to

assess immunological information after infection or vaccination.

Our findings suggest that in vitro stimulation is an important step to

understanding the systemic response to pneumococcal lung

infection and the immunological memory generated by this
bacteria. The analysis of transcriptomic and cytokine data

revealed a clustering of the samples based on the stage of

infection (early vs late), with more intense signals at late time

points. Integrative analysis identified few genes, related to the

immune system, which could categorize the samples based on the

infection stage and which may be useful in future studies to monitor

vaccine immune response and experimental therapies efficacy.
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Supplementary Image 1 | Feature Importance. The DaMiRseq package ranks

the selected features using RReliefF, a multivariate filter technique that assesses the

relevance of the features. The graph shows the importance of each feature,

indicating that Il2 gene is the best classificator.

Supplementary Image 2 | Independent Principal Component Analysis (IPCA).

The IPCA analysis from mixOmics package displays the distribution of samples by

their gene expression, pointing out two main clusters that split samples according

to their stimulation status. Numbers represent the time point of each sample,

leading to the formation of three groups: baseline (light green), early time points -

days 1 and 2 (green), and late time points - days 4 and 7 (dark green). The purple

shading highlights the clusters composed by stimulated samples.

Supplementary Image 3 | Cytokines boxplots (complete panel). Boxplots

comparing the concentration of 23 different cytokines in stimulated and

unstimulated samples at baseline and at different time points after infection.

Supplementary Data Sheet 1 | Modules enriched in each comparison and time

point.
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3.6 Final discussion

This work provided a mouse model to study underlying mechanisms of pneumococcal

infection through the stimulation of splenocytes harvested from mice at different time points

after infection. Our results demonstrated the importance of in vitro stimulating samples to

observe the hosts’ systemic responses and assess the memory generated by the infection. In

the case of our model, a specific response could be observed from transcriptomics and

cytokines concentration after stimulation of previously infected samples.

Transcriptomics and cytokines data analysis have proven to be useful techniques,

providing a detailed characterization of this response at a molecular level. In particular, we

observed the activation of biological pathways like antigen presentation, dendritic cells,

cytokines and adaptive immune system. In addition, thanks to stimulation, an important

difference was observed in the samples stimulated from day 4 after infection, with an

important increase in the concentration of 21 from the 23 cytokines analyzed.

Finally, by performing data integration and feature selection, this work highlighted

gene signatures and cytokines that could be used within the model to follow not only the

pneumococcal infection process but possibly vaccination and antimicrobial therapies as well.
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CHAPTER 4

Using Differential Expression analysis and Machine Learning algorithms to
uncover molecular mechanisms of the rVSV-ZEBOV vaccine in three

independent cohorts

4.1  Introduction

4.1.1 Ebola Virus and Ebola Virus Disease (EVD)

Since the first documented cases of disease caused by Ebola virus were described in

1976, the virus has re-emerged constantly in central Africa. Today, four different Ebola

viruses are known to cause disease in humans: Sudan ebolavirus (SEBOV), Zaire ebolavirus

(ZEBOV), Reston ebolavirus (REBOV) and Ivory Coast ebolavirus (ICEBOV), they were

grouped in the ebolavirus genus, grouped under Filoviridae family (Feldmann et al., 2003).

These viruses present a linear, negative sense, single-stranded RNA as genetic material, with

approximately 19 kilobases of length (Bharat et al., 2012; Martin et al., 2017).

The Zaire ebolavirus is of particular interest since it is not only the most lethal but

also responsible for many important epidemics, with fatality rates arriving up to 90% (Jadav

et al., 2015). The Ebola Virus Disease (EVD) is characterized by unspecific symptoms

including fever, headaches, muscle and joint pain, fatigue and gastrointestinal symptoms such

as abdominal pain, diarrhea, and vomiting. However, the disease can rapidly evolve into a

severe condition, causing external and internal bleeding, hypovolemic and septic shock and

multiple organ failure (Chertow et al., 2014; Leligdowicz et al., 2016).

The Ebola Virus Disease (EVD) is considered a zoonotic disease and evidence that

bats are carriers of EBOV and other filovirus have been increasing over time (Hayman et al.,

2010; Koch et al., 2020; Leroy et al., 2005; Ogawa et al., 2015). An outbreak starts with the

spillover from the animal reservoir to humans, with subsequent human-to-human

transmission, especially through contact with body fluids such as blood, saliva, vomitus and

stool (Dowell et al., 1999).
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Due to this ability to spillover from animals and establish a human-to-human

transmissible chain, EVD has the potential to cause thousands of deaths and serious sequelae

in survivors, including persistent arthralgia, arthritis, and sight problems, besides the negative

effects on the mental health of survivors and their relatives (Clark et al., 2015; Howlett et al.,

2018; Tiffany et al., 2016). Therefore, vaccination is the best option to protect the population

under increased risk and to contain new outbreaks (Kanapathipillai et al., 2014).

4.1.2 Vaccines against EVD

Given the situation of recurrent outbreaks in African countries, in 2014 there were

different vaccine prototypes against EVD under development (Mohammadi, 2014), including

subunit vaccines, non-replicant vectors, DNA vaccines and replication-competent vectors

(Marzi and Feldmann, 2014). However, although some preclinical tests were carried out by

then, it was only in response to the largest outbreak of EVD in 2014 that vaccine

development was spurred towards clinical evaluation.

At that time, one of the vaccine candidates, rVSV-ZEBOV, had already demonstrated

safety and efficacy in nonhuman primates (Jones et al., 2005). The rVSV-ZEBOV, today

commercialized under the trade Ervebo, is a live, attenuated and replication-competent

vaccine. This vaccine is based on a recombinant vesicular stomatitis virus (VSV), in which

the glycoprotein from the VSV envelope was replaced by the Ebola Zaire’s strain

glycoprotein (Garbutt et al., 2004).

Huge scientific effort and financial support were conferred to accelerate the clinical

development of this vaccine, which was demonstrated to be safe, immunogenic and

protective in phase I, II and III clinical trials (Agnandji et al., 2016; Halperin et al., 2019;

Henao-Restrepo et al., 2017; Heppner et al., 2017; Huttner et al., 2015; Regules et al., 2017).

In this context, different consortiums were formed to further investigate the response to

rVSV-ZEBOV vaccine. Among them, VSV-EBOVAC and VSV-EBOPLUS consortiums

were established with the objective of identifying molecular mechanisms associated with the
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vaccination, using, among other methods, transcriptomic analysis (Laverty and Meulien,

2019; Medaglini et al., 2015).

4.1.3 Machine Learning and Vaccinology in the Big-data era

As discussed in the initial chapter of this thesis, transcriptomic analysis and the

Systems Vaccinology approach have enabled the characterization of the immune responses to

different vaccines. Differential expression analysis, enrichment, and other downstream

analyses are extremely important in this context. However, this type of data can be explored

using other approaches, such as Machine Learning (ML).

Machine Learning (ML) is a branch of Artificial Intelligence that has been gaining

importance in different areas, including biomedical research. ML can be defined as the ability

to improve machine performance in specific tasks by identifying similarities in the data, and

using this to infer information on a different data set. ML algorithms are capable of

performing tasks and finding patterns in big data, which is considered impossible for human

beings (Bench-Capon and Dunne, 2007).

ML has been allowing earlier and more accurate diagnosis, supporting the discovery

of new subtypes of cancer, and making it possible to predict better treatments and outcomes

(Goecks et al., 2020). With the rapid progress in this field and the exponential generation of

data, personalized medicine is becoming more and more a part of our reality.

This represents a new era for the vaccinology field as well. The possibility of

understanding vaccine immune responses, finding correlates of protection and uncovering

mechanisms underlying immunogenicity and reactogenicity made scientists invest in this new

approach. However, dealing with the amount of data produced is still a huge challenge,

especially for biologists. In this context, tools that could help retrieve relevant information

are of extreme importance.
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4.1.4 The aim of this chapter

In this chapter, the transcriptomic responses to the rVSV-ZEBOV in different cohorts

were compared by two distinct methods: the usual Differential Expression Analysis and a

Machine Learning approach. The main objective was to understand the similarities and

differences among the cohorts and compare the application of each methodology in two

different scenarios: (i) high transcriptomics perturbation, represented by day 1 after

vaccination, and (ii) low transcriptomics perturbation, represented by day 7 after vaccination.

Therefore, the first part of the Results section is dedicated to the comparison of the

transcriptomic responses in the Swiss and North American cohorts, using a Differential

Expression approach. The third part concerns a work developed in collaboration with the

Computational Systems Biology Laboratory, within the VSV-EBOPLUS consortium. The

selection of genes by Differential Expression analysis was compared with the Biological

Feature Selection tool (BioFeatS), using the two cohorts cited above, and a third cohort

conducted in Germany.
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4.2 Methods

4.2.1 The cohorts

The details of the three cohorts used in this chapter are described in the results section

of the material provided in the item 4.3.4 of this chapter.

4.2.2 Library Preparation, and Sequencing

Library preparation was performed with the Ion AmpliSeq™ Transcriptome Human

Gene Expression Kit (Thermo Fisher Scientific), under the same conditions as the Swiss

cohort, described in a previous publication (Santoro et al., 2021). Sequencing was performed

with the Ion Proton Technology (Thermo Fisher Scientific). All the steps were performed

following the manufacturer's instructions.

4.2.3 Data analysis

All the steps in data analysis were performed in R software (version 3.6.3). The

edgeR package (Robinson et al., 2010) was used for differential expression analysis and

genes with an adjusted p-value < 0.05 were classified as differentially expressed. Enrichment

analyses were performed using the Blood Transcription Modules (BTM) database (Li et al.,

2014), significance was assessed by the CERNO test or the hypergeometric test, both from

tmod package (Weiner 3rd and Domaszewska, 2016). Venn Diagrams for the comparison of

differentially expressed genes between the cohorts were built using the DiVenn webtool (Sun

et al., 2019).
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4.3 Results

4.3.1 Differences in the transcriptomic profile after vaccination in the two

cohorts

The transcriptomic response to the ebola vaccine is already known to be marked by a

robust perturbation in a gene expression level, stronger on the first day after vaccination and

with a decreasing perturbation over time (Santoro et al., 2021), a pattern observed in both

Swiss and North American cohorts. Differential expression analysis showed similar

responses on days 1 and 2 after vaccination, with most of the differentially expressed genes

(DEGs) being shared between the cohorts and a similar number of specific DEGs for each

study (Figure 1).

However, on days 3 and 7 after vaccination, there are differences between the

responses in each cohort. Day 3 is marked by specific genes up-regulated only in the Swiss

cohort, while the genes specific for the North American cohort are mainly downregulated. On

day 7, the North American cohort presented significantly less differentially expressed genes

compared with the Swiss cohort. To understand the biological function of these DEGs,

hypergeometric tests were performed by the tmod package, using the blood transcription

module database.

The genes specifically activated in the Swiss cohort are related to an up-regulation of

inflammatory responses, especially those linked to antiviral innate immunity and interferon,

showing an extended innate response in comparison to the North American cohort. The latter,

on the other hand, presented specific DEGs enriched to down-regulation of inflammatory

processes linked to neutrophils and upregulation of CD4+ T cells responses, as shown in the

plots in Figure 1.
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Figure 1. Differentially Expressed Genes (DEGs) for each cohort and time point. Diagrams
representing the DEGs that are specific or shared between the two cohorts at each time point. Blue
circles represent downregulated genes while red represent upregulated ones. Yellow circles represent
genes that present a different direction in each of the cohorts. Gene Set analyses were performed to
address the biological function of the genes unique to each cohort on days 3 and 7.

4.3.2 Pathway analysis: apparent prolonged interferon response in the Swiss

cohort and earlier T cell response in the North American cohort

The Swiss and North American cohorts presented a very consistent profile of

activated modules in the enrichment analysis performed with the CERNO test, using the

genes ranked by their adjusted p-value. The supplementary figure 1 represents the most

significant activated modules for each time point and cohort (enrichment p value < 0.01).
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Here, we divided these enrichment results into innate and adaptive immune responses,

highlighting the main differences between the two studies.

Innate responses

The strong antiviral response mediated through Interferon was already described for

the rVSV-ZEBOV vaccine. In both North America and Swiss cohorts, there is an important

up-regulation of interferon and inflammatory cytokines genes (Figure 2). On days 3 and 7,

these innate antiviral and inflammatory responses are still substantial in the Swiss cohort, but

less significant in the North American cohort.
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Figure 2. Modules of the innate immunity and antiviral response. Enrichment analysis
highlighting pathways with a stronger and/or prolonged activation in the Swiss cohort, compared to
the North American cohort. This pattern was observed in different modules related to innate
immunity, antiviral response, activated dendritic cells and cytokines/chemokines.

Modules related to chemokines and viral sensing are not enriched anymore from day

3 in the North American cohort. In contrast, modules linked to interferon, innate antiviral

responses, and dendritic cells have a much less significant activation on days 3 and 7,

compared to the Swiss cohort. This fact is also explained by the discrepancy in the number of

differentially expressed genes.

Adaptive responses
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Figure 3. Modules of the adaptive immune system. Differences in the adaptive responses were also
seen in the enrichment analysis. The North American cohort presents an early activation of T Cell and
cell cycle modules, already at day 3 post vaccination. At day 7, the North American cohort also
presents unique activation of modules linked to adaptive responses.

While the Swiss cohort presents an apparent longer innate antiviral response, the

North American cohort shows an apparent earlier T cell activation, as modules related to T

CD4 cells and cell cycle are enriched from day 3 (Figure 3). Moreover, on day 7, the module

“plasma cells, immunoglobulins” is enriched only in the North American cohort, together

with another T CD4 module.

4.3.4 Prioritizing the importance of biological components within High

Throughput data: a machine learning approach
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ABSTRACT

The use of High-Throughput technologies to characterize immune responses to

infections and vaccination has been rising fast, producing an unprecedented amount of data.

As new computational methods emerge and demand for personalized medicine increases,

machine learning algorithms gain space in biomedical research. In this study we share a

Machine Learning approach to deal with massive datasets, aiming for a robust framework

that can be applied to different types of omic data. The transcriptomic profile after

vaccination with rVSV-ZEBOV was evaluated in three independent cohorts using two

different approaches. The traditional Differential Expression Analysis of the

RNA-sequencing data workflow was compared to a new workframe based on feature

selection and machine learning algorithms, denominated as the Biological Feature Selection

tool (BioFeatS).

When transcriptomic perturbations are high, BioFeatS can select a summarized list of

genes that allows one to study the biological processes focusing on a gene level analysis,

prioritizing features that better distinguish the class of the samples. When the perturbation is

less protuberant, BioFeatS is able to retrieve genes not found via Differential Expression

analysis, and bring more consistency in the Gene Set analysis. Genes specifically selected by

BioFeatS have also brought insights on the biological processes taking place 7 days after

vaccination.

The process of selecting genes by Feature Selection and Machine Learning algorithms

has shown to diverge from Differential Expression analysis. Therefore, to bring meaningful

biological insights and extract a more robust biological signature, these methodologies could

be applied in a complementary way.

Keywords: Machine Learning, Feature selection, Ebola Vaccine, Omic data analysis
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INTRODUCTION

The Zaire ebolavirus is a filovirus known to cause frequent outbreaks of Ebola Virus

Disease (EVD) in west and equatorial Africa (Malvy et al., 2019). EVD is characterized by

high mortality rates, as a result of an intense systemic inflammatory response that can lead to

multiple organ impairment (Jacob et al., 2020). In view of the largest known outbreak in west

Africa in 2014, efforts were combined aiming at the clinical development of an effective

vaccine against the disease. A recombinant live-attenuated vaccine candidate, based on the

vesicular stomatitis virus expressing the glycoprotein of the Zaire ebolavirus, had proved safe

and highly efficacious in nonhuman primates challenged with ebola virus (Jones et al., 2005).

Different clinical trials were carried out to assess safety and efficacy of this vaccine in

humans. Particularly, the cohort conducted in Geneva, Switzerland, provided data on gene

expression, proteins, metabolites, cytokines, and microRNAs. Two other cohorts, one

conducted in the United States and another in Germany have collected gene expression data

as well (Rechtien et al., 2017; Santoro et al., 2021a).

High-throughput technologies provide the possibility of evaluating the expression of

thousands of different features in different biological layers, revolutionizing the way we study

organisms and diseases. Simultaneously, computational techniques have emerged to handle

these new data and, despite the increasing availability of methods, scientists still cope with

extracting meaningful biological information from these experiments.

With the challenge of analyzing and integrating different biological layers, arises the

need for a structured framework that could deal with the massive amount of generated data.

The use of Machine Learning algorithms in biomedical sciences is a way to deal with this

challenge and it has been driving advances in different areas, from diagnosis to treatment

adherence, contributing to the evolution of precision medicine (Goecks et al., 2020).

OMIC technologies provide us with complex datasets, commonly presenting hundreds

or thousands of features, which usually greatly outnumber the sample size. The

high-dimensional datasets can affect the performance of the Machine Learning algorithms in
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different ways. For instance, multiple correlated features can deceive the algorithm training

step since they bring redundant information in the model (James et al., 2013). Also, the

presence of irrelevant features can result in overfitting of the model in the training process,

impacting the model performance in unseen datasets (Gonzalez-Dias et al., 2020).

With the purpose of overcoming these potential issues, we created the Biological

Feature Selection tool (BioFeatS). BioFeatS can deal with large data sets thanks to its robust

approach, which includes using three different methodologies for feature selection, creating a

list of consistent features among these three methods, ordering the consistent list using

Random Forest algorithm and then evaluating the ability of the final list of features in

discriminating different classes by using a combination of different Machine Learning

algorithms.

Hence, the purpose of this work is to retrieve meaningful biological information on

the effect of Ervebo® vaccine from a systems biology perspective and to introduce BioFeatS,

the framework we employed to address the challenges of working with massive datasets.
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METHODS

Study Design

This work relied on data from three different cohorts conducted in different countries.

The detailed study design for the German and Swiss cohorts were already described in

previous publications by Agnandji et al (Agnandji et al., 2016) and Santoro et al (Santoro et

al., 2021a), respectively. The North American cohort was a double-blind, randomized, and

controlled trial conducted to test the immunogenicity and safety of rVSVΔG-ZEBOV-GP

vaccine. All participants were healthy adults aged from 18 to 65 years and received a dose of

2 × 107 pfu.

RNA sequencing data collection and preprocess

The collection, sequencing and preprocess of data from the German cohort was

described in a previous work by Rechtien et al (Rechtien et al., 2017). For the North

American cohort, the RNA extraction, library preparation and RNA-sequencing were

performed following the same protocols of the Swiss cohort, described by Santoro et al

(Santoro et al., 2021a).

Differential Expression Analysis and Gene Set analysis

Low expressed genes were filtered out in all the three studies by maintaining only

genes that had more than 1 count per million in at least ten samples. Differential expression

(DE) analysis was conducted in the R software environment, using the edgeR package

(Robinson et al., 2010) and genes with a False Discovery Rate (FDR) of less than 0.05 were

considered differentially expressed. Gene set analysis was performed using the tmod package

and the blood transcription modules (BTM) (Li et al., 2014b; Weiner 3rd and Domaszewska,

2016). The hypergeometric function was used to assess the significance of the enriched

modules.
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BioFeatS Algorithm

The BioFeatS identifies and ordered list of features that best distinguishes the

outcome of 2 or more groups. The model selects the features based on the combination of the

following feature selection methods: Pearson’s correlation, Kbest and Recursive Feature

Elimination (RFE). After generating a list of features for each method, a unified list is

produced by selecting features from the intersection of 2 out the 3 methods. From this list, the

BioFeatS generates the ranking importance obtained from the Random Forest algorithm and

then removes the features with an importance value equal to 0. BioFeatS’ algorithm subsets

the dataset with the selected features and trains 4 different machine learning (K-fold = 10)

algorithms: Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Naive Bayes and

AdaBoost Classifier. Thereafter, the tool generates as output a table with the values of

F1-score, area under the curve (AUC), accuracy, and precision, obtained from each model

with the selected features. Also, provided in the output file are the median and harmonic

mean calculated from all methods and metrics. Additionally, BioFetS can also identify outlier

samples based on the number of times the samples are wrongly classified by the algorithm

after being tested 4 times with a k-fold of 10. A detailed version on the BioFeatS

methodology is provided in the supplementary materials (Supplementary file 1)
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Figure 1. BioFeatS general workflow. The input data consists of two tables, one being the result of
a high-throughput experiment, with the variables measured in the first column and the other columns
representing these values for each sample. The second table should inform the class of each sample.
Data is filtered by three different methods of feature selection, each method providing a distinct list of
features. Features that are present in two or three of these lists are selected and ranked by their
importance through Random Forest algorithm. Features with importance zero in the Random Forest
model are removed. Performance evaluation is assessed by four Machine Learning algorithms, using
four different metrics. The final output includes: (i) a list of the selected features ordered by their
importance, (ii) the values of the metrics for each method and the median and harmonic mean of these
values, and (iii) a table indicating samples that are consistently misclassified.
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RESULTS

The three transcriptomics cohorts

Three different cohorts were used to test BioFeatS’ performance in identifying

biological signatures for the response to Ervebo® vaccine (Figure 2). The Swiss and the

German cohorts already have publications associated with their transcriptomic data (Rechtien

et al., 2017; Santoro et al., 2021a). All of the cohorts have collected samples for

transcriptomics analysis before vaccination (Day 0) and 1, 3 and 7 days after vaccination.

Figure 2. The sample sizes and cohorts’ characteristics. Three independent cohorts studying the
response to rVSV-ZEBOV vaccine were compared in this study Four time points were in common
among the cohorts: day 0 (before vaccination) and days 1, 3 and 7 after vaccination. The figure
displays the number of volunteers at each time point for each cohort. Besides the number of
volunteers, vaccine dose and sequencing technology also varied among the cohorts.

BioFeatS summarizes the transcriptomic response to Ervebo® vaccine in different

cohorts

Differential expression (DE) analysis has been the standard approach for assessing

information provided by transcriptomics essays. However, in some cases the perturbations are

very strong, like the responses one day after Ervebo® vaccination, leading to a very high

number of differentially expressed genes (DEGs). In this context, it is a challenge to spot the

main features linked to this response. While DE analysis led to the selection of a thousands of

features, especially on day 1 after vaccination, BioFeatS was able to detect dozens of
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features, summarizing the perturbation of the three cohorts in 6 features: HERC6, AGRN,

IFI35, KIAA1958, IFIT1, and OAS3.

It is important to highlight that, even when selecting genes that are also differentially

expressed (DEGs), the selected by BioFeatS are not necessarily the most statistically

significant DEGs. For instance, the third most important gene in BioFeatS selection for the

North American cohort would be in the 340 position in the list of DEGs ranked by their score

(defined by -log10 of the adjusted p value multiplied by the log2 of the Fold-Change). This

fact highlights the distinction in the prioritization process employed by DE analysis and by

feature selection coupled with ML algorithms, which can lead to distinct gene lists.

Figure 3. Genes selected by BioFeatS. Volcano plot for each cohort at days 1 and 7 post vaccination,
genes selected by BioFeatS analysis are highlighted in red. The dashed line represents the significance
threshold of adjusted p value < 0.05.
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BioFeatS selected a smaller number of genes at day 1 after vaccination, which were

not necessarily the ones with the highest values of log2 Fold-Change or adjusted - logp value

in the DE analysis. However, these genes have a high contribution to the classification of the

groups, in this case before and one day after vaccination (Figure 3). On the other hand, day 7

after vaccination presents a much less protuberant response in the transcriptomic level. In this

case, BioFeatS was able to detect features that were not considered Differentially Expressed,

but again, are considered important for the distinction of the groups.

The features specifically selected by BioFeatS tool at day 7 after vaccination

At day 7 post vaccination with Ervebo®, among the genes identified in BioFeatS, the

German cohort presented the highest similarity to DE analysis (40/57, 70.2%), followed by

Swiss (103/172, 59.9%) and North American (56/199, 28.1%) cohorts.

Figure 4. Genes selected by BioFeatS and by Differential Expression Analysis at day 7 after
vaccination. A. Number of genes selected specifically by BioFeatS (blue) or DE analysis (red) and the
intersection between them (purple). B. Venn Diagram of the specific genes selected by BioFeatS in at
least two of the three cohorts and their direction compared to day 0 (before vaccination) - green
triangles identify genes less expressed, while red triangles represent genes with higher expression at
day 7.

While some of the identified genes are shared between the methods, all the cohorts

presented genes selected only via BioFeatS. In the Swiss cohort, 69 genes were uniquely
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identified by BioFeatS, for the North American and German cohorts, these numbers were 143

and 17 respectively. When selecting the specific common features in at least two of the

cohorts, a signature of 8 genes is revealed. The features ARHGAP23, MAD2L1BP and ZBP1

are differentially expressed at day 1 in all of the three datasets, indicating that the difference

captured by BioFeatS at day 7 is probably a remnant response. The gene CAT was

down-regulated on day 3 in two of the three cohorts. The other features included CDC123,

RAB5B, RAB11FIP4 and ARHGDIB which were not identified as differentially expressed at

day 1 or 3 after vaccination.

The gene ZBP1 encodes a protein that plays a role in the innate immune response by

binding to foreign DNA and inducing type-I interferon production, having an important role

in different viral infections such as Influenza (Kuriakose et al., 2018), Hepatitis B (Farci et

al., 2010), COVID-19 (Sims et al., 2013) and cytomegalovirus (Vermijlen et al., 2010). The

genes RAB11FIP4 and RAB5B are involved in endosome membrane recycling and plasma

membrane to endosome transport, respectively. RAB5B is involved in antigen processing and

presentation. MAD2L1BP participates in the coordination of cell cycle events, and it is linked

to the E2F transcription factor network. This gene was also up-regulated in naïve primary

human B-lymphocytes infected with Epstein-Barr virus (Mrozek-Gorska et al., 2019), and

proteins from this virus can interact with the protein encoded by MAD2L1BP (Li et al.,

2015).

ARHGAP23 and ARHGDIB are members of the Rho family of proteins.

Interestingly, ARHGAP23 was identified as a required host factor for the entry of VSV in the

cells (Panda et al., 2011), it is upregulated at day 01 in the DE analysis and over expressed at

day 7 by BioFeatS. CAT gene encodes a Catalase, which is involved in the response to

oxidative stress. BioFeatS identified this gene as less expressed 7 days after vaccination. In

fact, viral infections can inhibit the activity of catalase, such as the Newcastle disease virus in

chickens (Subbaiah et al., 2011), and influenza (Celestino et al., 2018; Yamada et al., 2012)

and herpes simplex virus type 2 (Sartori et al., 2012) in mice.
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Finally, CDC123 was not selected in the DE analysis in any of the three cohorts, but

was selected by BioFeatS in all of them. This gene is a chaperone needed to the assembly of

the eukaryotic translation initiation factor 2 complex (eIF2), positively regulating the

translation initiation. Since the phosphorylation of eIF2 leads to inhibition of the host's

translation, this complex has a role described in different viral infections, including vesicular

stomatitis virus (Connor and Lyles, 2005) and Ebola virus (Strong et al., 2008). CDC123 was

also downregulated in dendritic cells infected with Newcastle Disease Virus (Zaslavsky et al.,

2010) and human bronchial epithelial cells infected with human metapneumovirus (Bao et al.,

2008).

Features selected with BioFeatS tool on day 7 after vaccination reveals a consistent

response among the cohorts

When the transcriptomic responses are less expressive, DE analysis might not be able

to identify a robust signature. To understand if BioFeatS could contribute to the

characterization of the immune responses to the rVSV-ZEBOV vaccine, we compared the

gene set analysis of features selected by BioFeatS with those selected by DE analysis, using

the blood transcription modules database (BTM). Interestingly, enrichment analysis of

features selected by BioFeatS (14/30, 46.6%) showed a higher consistency among the cohort

then the DE analysis (17/48, 35.4%).

BioFeatS has identified modules in the North American cohort that were also present

in the other studies but were not identified in DE analysis, such as the “viral sensing &

immunity”; “IRF2 targets network - (I) and (II)”, “type I interferon response”, “antiviral

IFN signature”, and “enriched in activated dendritic cells (II)”. Moreover, the module

“plasma cells, immunoglobulins” was identified by BioFeatS in the Swiss and North

American cohorts but only in the North American cohort in the DE analysis. On the other

hand, modules related to cell cycle, that were consistent among cohorts, were not catched in

features selected by BioFeatS in the Swiss cohort. Importantly, modules enriched by genes
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selected by BioFeatS reflect biological signatures capable of best distinguishing two different

groups.
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Figure 5. BTM Modules from BioFeatS and Differential Expression Analysis at day 7 after
vaccination. A. Venn diagram with the number of pathways activated by DE analysis (left) and
BioFeatS (right), from each cohort: USA (blue), Switzerland (red), Germany (green). B. Pathways
enriched by BioFeatS and DE Analysis in each cohort on day 7.

DISCUSSION

In the pathway-level analysis that have guided transcriptomics and other OMICs

analysis from the beginning, a higher number of features is usually seen in a positive light.

This concept has been changing in the past years with the advances in precision medicine,

and the dissemination of machine learning and data integration methods, which focus more in

a gene-level perspective.

Here we have shown that Differential Expression Analysis and Machine Learning

algorithms select genes in a distinct manner, depending on the level of transcriptomic

perturbation in the data set. In our example, day 7 after vaccination with rVSV-ZEBOV

vaccine presented a lower perturbation compared to day 1, but both situations could benefit

from the BioFeatS framework. At day 1 BioFeatS was able to highlight the features, among

thousands of Differentially Expressed Genes, that best classify samples. At day 7, BioFeatS

was able to retrieve different genes from DE analysis and a more consistent activation of

Blood Transcriptional Modules.

Since one day after vaccination the transcriptomic perturbation is very high, the

signature identified by BioFeatS is contained in the signature identified by the differentially

expressed genes, which varied between 4688 and 5361 genes, depending on the cohort. The 6

genes consistently identified by BioFeatS summarizes the context of a viral infection.

HERC6 for example is part of the antiviral response to VSV and Ebola infections, and it is

correlated with protection against Marburg virus in a postexposure (rVSV)-MARV vaccine

study. OAS3, IFI35 and IFIT1 are Interferon induced proteins and involved in the immune

responses against viruses. AGRN and KIAA1958, despite not having a clear role described in

viral infections, are up-regulated in B cells infected with Epstein-Barr virus (Mrozek-Gorska
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 et  al.,  2019)  .  Besides  their  biological  role,  these  features  were  selected  for  having  the  best 

 classification attributes in distinguishing the two groups. 

 The  identification  of  genes  related  to  translation,  such  as  CDC123,  might  indicate 

 biological  processes  taking  place  within  infected  cells.  In  fact,  viruses  have  the  ability  to 

 selectively  inhibit  host  translation,  as  well  as  infected  cells  might  shut  down  protein  synthesis 

 as  an  antiviral  strategy  (Gale  et  al.,  2000;  Schneider  and  Mohr,  2003)  .  Particularly,  the 

 Vesicular  Stomatitis  Virus  (VSV)  is  known  to  inhibit  host  gene  expression  at  multiple  levels, 

 including  transcription,  nuclear  cytoplasmic  transport,  and  translation,  in  order  to  suppress 

 antiviral  responses  in  infected  cells  (Ahmed  and  Lyles,  1998;  Rajani  et  al.,  2012)  .  Among  the 

 specific  genes  selected  by  BioFeatS,  CDC123  is  linked  to  translation,  and  in  the  Swiss 

 cohort,  for  instance,  BioFeatS  specifically  spotted  differences  in  the  expression  of  many 

 genes  linked  to  translation  and  transcription,  which  were  less  expressed  at  day  7  post 

 vaccination, including ZNF33A, RYBP, POLR2C, PABPC1 and EIF3L. 

 Collectively,  our  results  suggest  that  BioFeatS  was  able  to  specifically  highlight 

 cellular  processes  that  may  have  resulted  from  vaccination  with  the  recombinant  VSV,  such 

 as  the  perturbations  in  transcription,  endosome  transport  and  translation,  besides  the 

 up-regulation  of  host’s  factors  that  are  important  for  the  entry  of  VSV  in  the  cells,  process 

 that seem to be important for the classification on samples at day 7 post vaccination. 

 Despite  studying  the  same  vaccine  and  collecting  data  at  the  same  time  points  after 

 vaccination,  these  cohorts  differ  in  many  aspects.  Starting  by  the  location  of  the  clinical  trial 

 and  the  number  of  volunteers.  The  Swiss  cohort,  for  instance,  presents  2  times  the  number  of 

 volunteers  of  the  North  American  cohort  and  4  times  the  number  of  the  German  study.  The 

 vaccine  dose  is  another  important  factor  that  differed  not  only  among  cohorts  but  also  inside 

 the  Swiss  and  German  cohorts.  Finally,  different  sequencing  technologies  were  used  to  assess 

 changes  in  gene  expression.  These  differences  can  affect  both  BioFeatS  and  DE  analysis, 

 leading  to  distinct  results,  and  therefore  being  a  limitation  in  integrating  different  clinical 

 trials.  Even  with  these  relevant  differences  between  the  cohorts,  Biofeats  identified  biological 
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 pathways  in  a  very  consistent  way.  For  instance,  BioFeatS  was  able  to  identify  signatures  of 

 antiviral  responses  and  dendritic  cell  activation  in  all  three  cohorts,  while  DE  analysis  did 

 not find these signatures in the North American cohort. 

 Moreover,  BioFeatS  was  built  with  the  purpose  to  be  a  flexible  tool  for  different  data 

 types.  Since  the  same  dataset  analyzed  by  different  methodologies  can  select  distinct  lists  of 

 features,  the  possibility  of  using  a  single  tool,  robust  enough  to  be  applied  to  different  data, 

 can  facilitate  the  process  of  data  integration.  Our  tool  uses  machine  learning  algorithms  that 

 have  been  employed  in  different  OMIC  data  analysis,  including  metabolomics  (Liebal  et  al., 

 2020)  ,  proteomics  (Suvarna  et  al.,  2021)  and  cytokines  (Kimita  et  al.,  2022;  Saharan  et  al., 

 2021)  . 

 The  quality  of  the  predictive  models  depends  on  the  quality  of  the  data  set  used  in  the 

 analysis.  Therefore,  it  is  highly  recommended  to  perform  pre-processing  steps  to  assess  the 

 overall  data  quality,  existence  of  missing  data  and  outliers,  and  perform  an  appropriate 

 normalization.  A  careful  examination  of  BioFeatS’  output  is  also  important,  since  it  displays 

 the  algorithm  performance  and  can  aid  in  identifying  samples  that  may  have  been 

 misclassified.  Finally,  a  well  processed  dataset  endows  a  richer  range  of  insights  provided  by 

 the BiofeatS algorithm. 
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Supplementary File 1

Biological Feature Selection (BioFeatS)
The Biological Feature Selection Tool (BioFeatS) was developed to select the best features
for classifying biological groups. This tool can be applied for different types of data,
especially for those provenient from high-throughput technologies, which contains large
amounts of features. BioFeatS is based on the Machine Learning approach divided into three
distinct stages: i) feature selection; ii) ranking and; iii) evaluation. The BioFeatS combines
different selection methods to choose only the most informative features (e.g. genes, proteins,
microRNAs, cytokines etc.), then proceeds with ranking, assessing their importance for the
machine learning model and, finally, evaluating the selected features in the trained models, by
using distinct machine learning algorithms.

Selection of Attributes
Feature Selection techniques aim to select a subset of features of greater relevance for the
construction of the predictive model (1). The central premise when using Feature Selection
techniques is that most datasets contain redundant or irrelevant Features for the learning of
the algorithm and, therefore, can be removed without leading to loss of information in the
model (2). This provides benefits such as the reduction of overfitting and training time, as
well an increased accuracy of the model (1, 2).

In this sense, for the development of the feature selection stage of BioFeatS, three techniques
of Features Selection were used, namely:

I. Pearson correlation: verifies the absolute value of the Person correlation between the
response variable and the numerical Features of the data set (3). For BioFeatS we
have established an N number of Features with the highest correlation;

II. kBest: selects resources according to the highest scoring k (4). For BioFeatS the
amount of Features selected corresponds to the number N established.

III. Recursive Feature Elimination (RFE): selects features recursively considering sets of
Features increasingly smaller. First, an estimator is trained in the initial set of Features
and the importance of each Feature is obtained (for BioFeatS Support Vector
Regression is used). Then, the less important Features are eliminated from the current
set (5). The procedure is recursively repeated in the obtained set until the N number of
Features is reached.

After execution, each Feature Selection technique provides a list of Features of greater
relevance according to the employed methodology. From this, a single list is generated with
the intersection of Features present in at least two of the three techniques.

It is important to highlight that, for the calculation of the N number of Features used in
BioFeatS in Feature Selection techniques, the total number of Features contained in the single
list after the execution of the Features intersection is taken into account. The calculation of
the number N is obtained by the following equation:
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> 0.5𝑁𝐹𝑁
where NF is the amount of Features from the single list and N is the value selected for the
Feature Selection techniques. In order to drastically reduce the number of features, the
number N initially receives the value of 100. If the equation is not satisfied, N is then
incremented by 100 until the condition of the equation 1 is satisfied. Therefore the output list
of features (NF) will be at least 50% of the total amount of the input. In case the input file has
less than 100 features, all features are selected instead of N, and the equation is not used.

Ranking
In decision trees, each node is a condition of how to divide values into a single resource.
Such a condition is based on impurity, which in the case of classification problems is entropy
and, for regression problems, is variance. In this sense, when training a decision tree it is
possible to calculate how much each resource contributes to reduce the weighted impurity
(6). The ordering step of BioFeatS is based on this logic, and for the calculation of Feature
importance, the Random Forest algorithm is used, which uses the average of the decrease of
impurity on the trees. Thus, after the feature selection step, the most relevant Features of the
database are ordered according to their importance. It is worth noting that in this ordering
stage, the features that have values of importance equal to zero are removed from the final list
of Features.

Evaluation
Using different algorithms BioFeatS evaluates the quality of the chosen Features. These
algorithms were selected due to the great diversity of their components, which means that
they have different methodologies and they use different mathematical approaches to learn
and classify the samples. In this way, it is possible to define a more generalized machine
learning model.  The algorithms chosen are:

I. Support Vector Machine (SVM): establishes a hyperplane in an N-dimensional space
(N - number of resources) that distinctly sorts data points (7).

II. k-Nearest Neighbors (kNN): uses the proximity of the data to perform the
classification/prediction on the grouping of an individual data point (8).

III. Naive Bayes: uses the probabilistic paradigm to perform classification tasks, based on
the Bayes theorem (9).

IV. AdaBoost Classifier: uses joint learning methods (meta-learning), using an iterative
approach to learn from "weak" classifier errors and turn them into strong classifiers
(10).

For the performance analysis of the selected algorithms, the methodology of Experimental
Planning and Evaluation (11) is used. Moreover, in BioFeatS, a k-fold cross-validation is
used, with k = 10, being k-1 for training and the rest for testing. Thus, it is possible to
measure the error estimate more accurately, since the average value estimate tends to a real
zero error rate as it increases n, which is usually the case for small sets of examples (11).
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Finally, the evaluation of each algorithm is assessed by four commonly used classification
metrics: Area Under the ROC Curve (AUC), Precision, Accuracy and the F1-score, which is
a combination of Precision and Recall metrics. The final output of the model includes the
value of each metric for each algorithm evaluated and the final mean and harmonic mean of
these values.
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4.4 Final discussion

The differences in the transcriptomic responses observed between the Swiss and

North American cohorts can be due to different factors. The cohorts presented distinct

vaccine doses and gender balance, two factors that could impact both the innate and adaptive

responses (Flanagan et al., 2017; Rechtien et al., 2017). Moreover, the number of volunteers

in each study was also different.

When comparing these responses with a third cohort, using two different

methodologies, we see that the differences highlighted in the DE analysis are less evident

when using BioFeatS, with some of the modules related to the innate responses being present

in all of the three cohorts and the “plasma cells, immunoglobulins” module activated also in

the Geneva cohort. Therefore, selecting features by Differential Expression analysis or by a

combined Machine learning approach lead to distinct selection of genes, which also implicate

distinct enrichment results .

The BioFeatS framework was built with the aim of bringing meaningful biological

information while also selecting the best features in distinguishing two different classes, and

this methodology has shown to provide a consistent result among independent cohorts.

Moreover, BioFeatS could also facilitate data integration processes, since it can be applied to

different OMIC data.

In brief, the methodology’s choice should take in consideration particularities of each

data set and the aims of each project, but our data suggests that a combination of DE analysis

with a Machine Learning approach could bring a more robust and consistent signature.
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ABSTRACT

Mucosal surfaces are particularly vulnerable to infection, and vaccines targeting these

areas would be of great importance. However, understanding the responses and protective

mechanisms induced by mucosal vaccines have been challenging, particularly with regards to

the genital tract, impacting the development of this type of vaccines. The transcriptomic

analyses and Systems Biology approach emerges as potential tools to better study these

immunological mechanisms and find new correlates of immunogenicity.

Streptococcus gordonii is a Gram-positive bacterium, member of the human oral

microbiome and has been studied as a vaccine vector for different antigens and and sites of

immunization. In this work we studied the transcriptomic response to the vaginal colonization

with the Wild-Type or a recombinant S. gordonii expressing the CTH522 protein, a

multivalent antigen composed of regions of the major outer membrane protein (MOMP) of

Chlamydia trachomatis.

Combining the intravaginal immunizations and a subcutaneous boost with the

CTH522 protein, we had access to the systemic responses through the transcriptomic analysis

of the splenocytes from mice primed with either the WT or recombinant strain. The priming

with the recombinant bacteria modulated different biological processes, including the activity

of IL-1 and IL-2 signaling networks, the activation of transcription factors and T cell modules

and the expression of genes like Ccl3. Moreover, a signature of genes correlated with the

antibody response was identified, implicating the Interferon type I pathway, the cell cycle

activity and genes like Ccl3 and Il18bp.
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INTRODUCTION

Streptococcus gordonii is a Gram-positive bacterium and a member of the human oral

microbiome, that can be genetically manipulated to express heterologous antigens based on

chromosomal integration of a donor construct (1), and used as a vaccine delivery vector. We

have previously shown that S. gordonii vectors expressing various antigens, and delivered in

mucosal tissues, could protect from lethal toxin challenge (2) and activate different immune

compartments such as antibody production and T-cell proliferation (3–9). In vaginal delivery

to both mice and non-human primates, recombinant S. gordonii vectors successfully

colonized the vaginal tract, induced antibody production both locally and systemically and

resolved vaginal yeast infection by Candida albicans (10–12). S. gordonii vector was also

found to be safe in a phase I clinical trial when administered nasally (13).

The ability of mucosal vaccination or infection to stimulate a systemic immune

response is greatly dependent on the type of mucosal tissue (14). The vaginal mucosa is

unique in its characteristics as it contains both type I and type II mucosal tissues, with their

respective immunological features (15). Numerous studies have demonstrated that vaginal

immunization can induce systemic cellular and humoral responses (16–20). However, despite

these features it remains an underexplored route of immunization compared to other mucosal

tissues such as the nasal and oral, due to their presence in both sexes, the simplicity of

administration and decades of experience with pharmaceuticals delivery (21). Additionally,

the vaginal tract is considered a complex site for antigen processing and requires adequate

adjuvants (22–25).

Given the complexity of this route of immunization, new approaches may be useful

for better understanding the response generated after vaccination. Systems Vaccinology

presents itself as a possibility to assess the complexity behind the immune mechanisms that

lead to protection (26). Different vaccines had their responses characterized through this

approach, including Influenza (27,28), Yellow Fever (29) and Ebola (30,31).
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In the context of mucosal vaccines, Systems Vaccinology has been pointed as

promising to support the search for correlates of protection and provide important insights

into the underlying mechanisms driving protective immunity (26). Vaccines against

Tuberculosis (32), Influenza (33) and enteric diseases such as cholera and enterotoxigenic

Escherichia coli (34), have recently had important mechanisms elucidated thanks to this

approach. Moreover, important advances in understanding the mechanisms behind protection

against simian immunodeficiency virus (SIV) infection were also achieved. This systems

approach allowed the identification of early blood transcriptional signatures that correlate

with antigen-specific antibody responses in vaginal secretions (35), and has contributed to the

identification of synergic factors between host restriction factors and vaccine-induced

immune responses (36).

Widely used in Systems Biology studies, transcriptomics offers the possibility of

following and comparing the gene expression in various conditions, allowing the study of the

biological processes after vaccination. In the present work, we examined the in vitro

transcriptomic signature observed in splenocytes harvested from mice intravaginally

immunized with either WT or recombinant S. gordonii strain expressing the Chlamydia

trachomatis (C.t) multivalent MOMP antigen, CTH522 (37–39), and then boosted with the

purified CTH522 protein.

Here, we show that vaginal priming with a recombinant S. gordonii expressing on its

surface the CTH522 molecule modulates the transcriptomic response of splenocytes

stimulated in vitro with the CTH522 protein. Additionally, we identified a gene signature

correlated with anti-CTH522 IgG levels. Lastly, we demonstrate that the boosting schedule,

at three or six months after the priming, influences the immune modules activated upon

antigen reencounter. Our analysis showed that vaginal colonization with recombinant S.

gordonii induced persistent and noticeable changes in the transcriptomic response of in vitro

stimulated splenocytes to the antigen.
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METHODS

Mice

Seven-weeks old female BALB/C mice from Charles River (Lecco, Italy) were

housed under specific pathogen-free conditions in the animal facility of the Laboratory of

Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical

Biotechnologies at University of Siena, and treated according to national guidelines (Decreto

Legislativo 26/2014). Experiments were planned and conducted utilizing the three R's

principles (Reduce, Replace and Refine), which included environmental enrichment and

nesting, veterinary oversight, numbers reflecting statistical significance, and the use of

anesthesia followed by cervical dislocation for the sacrifice. All animal studies were

approved by the Ethics Committee “Comitato Etico Locale dell’Azienda Ospedaliera

Universitaria Senese” and the Italian Ministry of Health (number 1004/2015-PR on

September 22, 2015).

Experimental Design

Mice were intravaginally (IVAG) primed three times on weeks 0, 1 and 2 with either

Wild-Type (GP1295) or recombinant (FR368) S. gordonii. Three or six-months after the

priming, mice were subcutaneously boosted with 5µg of purified unadjuvanted CTH522

protein. The transcriptomic response was characterized 10 days after boosting in in vitro

stimulated splenocytes, while the induction of CTH522- specific IgG serum response was

evaluated at the same time point on serum samples.
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Figure 1. Experimental Design. Groups of 6 mice were intravaginally primed with Wild-Type (WT)
or recombinant (FR368) S. gordonii. Three primings were performed on weeks 0, 1 and 2. For the
boosted groups, subcutaneous administrations of the CTH522 protein were performed on weeks 13
and 17 for the three-months boosting schedule and on weeks 27 and 31 for the six-months boosting
schedule. Spleens and blood were collected 10 days after the final boost and splenocytes were seeded
in the presence (Stimulation) or absence (Mock-stimulation) of the purified CTH522. Blood samples
were used for the assessment of IgG response by ELISA.

Immunizations

Following estrous cycle synchronization with subcutaneously delivered 0.1 mg of β-estradiol

17-valerate (#E1631, Sigma-Aldrich) resuspended in ethanol and diluted in olive oil, mice

were immunized three times on weeks 0, 1, and 2 by the intravaginal route (IVAG) with 109

CFU in a volume of 20μL PBS of either Wild-Type (GP1295) or recombinant (FR368) S.

gordonii bacterial vector expressing the vaccine antigen CTH522 (Philosof et al. 2022,

unpublished). On weeks 13 and 17 (three-months boosting) or 27 and 31 (six-months

boosting), mice were subcutaneously boosted with either CTH522 protein (5µg/mouse)
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administered in a volume of 100μl/mouse in NaCl 0.9% (Fresenius Kabi, Italy) or Saline

(NaCl 0.9%). Mice were sacrificed ten days after the second boost (week 18.5 or 32.5).

Sample collection and cell preparation

Blood samples were taken from individual mice by cardiac puncture at day ten post second

boost upon sacrifice. Samples were incubated for 30 min at room temperature and then

centrifuged at 1,200 x g for 10 min. Sera were collected and stored at -20°C until analysis by

ELISA. Spleens were mashed onto 70 µm nylon screens (Sefar Italia, Italy) and washed two

times in RPMI medium (#BE12-167F, Lonza, Belgium) supplemented with 100 U/ml

penicillin/streptomycin (#P0781, Sigma-Aldrich) and 10% fetal bovine serum (#10082,

Gibco, USA). Samples were treated with red blood cells lysis buffer according to

manufacturer instruction (#00-4300-54, eBioscience, USA) and quantified.

ELISA

Serum CTH522-specific IgG levels were determined by enzyme-linked immunosorbent assay

(ELISA). Flat bottomed Maxisorp microtitre plates (Nunc, Denmark) were coated with

CTH522 (1 µg/ml) overnight at 4°C in a volume of 100µl/well. Plates were washed and

blocked with 200µl/well of PBS containing 1% BSA (Sigma-Aldrich) for 2 hours at 37°C.

Serum samples were added and titrated in three to five-fold dilutions in 100 µl/well diluent

buffer. After incubation for 2 hours at 37°C samples were washed and incubated with the

Alkaline-Phosphatase-conjugated goat anti-mouse IgGs (IgG1 #1070-04, IgG2a #1080-04,

IgG2b #1090-04, Anti-IgG3 #1100-04 diluted 1:1,500 for total IgG in 100 µl/well and

developed by adding 200µl/well of 1 mg/ml AP substrate (#P5994, Sigma-Aldrich). The

optical density was recorded using Multiskan FC Microplate Photometer (Thermo Scientific).

Positive controls were included in all assays as follows: anti-IgG coating (1:1000, #1010-01),
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IgG standards (#0107-01), anti-MOMP rabbit serum (SSI, Denmark) and anti-rabbit IgG-AP

(#4050-04).

Splenocytes in vitro stimulation

106 splenocytes from each mouse were suspended in 100 µl of cRPMI and plated in a 96-well

plate in 5 replicates per mouse per condition. For stimulation, 100 µl of 10 µg/mL CTH522

were added to each well, at a final concentration of 5 µg/mL. In mock samples 100 µl of

cRPMI were added. Cells were incubated for 6 hours at 37°C with 5% CO2. Replicates were

pooled down together in a same-sample same-condition manner, centrifuged for 10 min at

500g 4°C and supernatant was discarded. Cell pellets were resuspended in 50 µl lysis buffer

RA1 (#740955 NucleoSpin kit, Machery-Nagel) and flash frozen in liquid nitrogen. Samples

were stored in -80°C until library preparation. RNA was extracted from frozen samples

(#740955 NucleoSpin kit, Machery-Nagel), quantified using Qubit RNA quantification kit

per manufacturer’s instructions and Quality controlled using Agilent Bioanalyzer RNA 6000

nano kit (#5067-1511, Agilent) per manufacturer’s instructions.

Illumina sequencing

Libraries were prepared using Stranded mRNA prep kit (Illumina, USA) according to

manufacturer’s instructions, using 60 ng of total RNA input per sample with dual indexing.

Pooled libraries were sequenced on a single run of an Illumina NovaSeq 6000 instrument

with 100 bp single end reads. Base calling was performed using Illumina’s basespace FASTQ

Generation pipeline. Basecalled reads were transferred on a local server and trimmed with

Trimmomatic to remove low quality bases (Q treshold=20) at the beginning of the read and

within the read using a sliding window size of 5 nucleotides with a required quality of 4.
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Trimmed reads under 36 nucleotides in length were discarded. Trimmed reads were aligned

to the mouse reference transcriptome using STAR and reads were counted using HTSeq.

Data Analysis

All the transcriptomics data analyses were carried out in R software, version 4.1.2

(2021-11-01), running under Windows 10 x64. Scripts can be found on Github at the

following link: https://github.com/IsaMoscardini/VacPath/tree/main/Src.

Low expressed genes were filtered out and counts were normalized by log2CPM (40)

to assess data variability by Principal Component Analysis (PCA), performed using the

mixOmics package (41). Differential Expression Analysis was performed using the DESeq2

package (42). Genes with an adjusted p value less than 0.05 were considered Differentially

Expressed (DEG). The Wild-Type immunized no boosting Mock-stimulated group was used as

a baseline for the overall comparison between groups and the Wild-type three-months boosted

stimulated group was used as baseline for the comparison with the FR368-primed three- and

six-months boosting stimulated schedules.

Mouse Ensembl genes were converted into human gene Symbol (HGNC) by biomaRt

(43,44) and enrichment analysis was carried out using the Blood Transcription Modules

(BTM) database (45) and the CERNO test from the tmod package (46), using genes ranked

by the adjusted p-value.

Correlation analysis was performed in log2CPM normalized data, after filtering low

expressed genes. Gene expression values were correlated with the log2 of IgG titers using

Spearman correlation. The Uniprot database (47), the web tool EnrichR (48,49), and the

MSigDB gene set database (50,51) were used to access biological information about these

genes.
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RESULTS

Data variability

Principal Component Analysis (PCA) was performed to assess intra- and inter-group

variability (Figure 2). The baseline group (WT saline mock-stimulated) presented a small

intra-group variability, clustering together (in grey). The other immunization schedules

presented a higher variability and samples had higher dispersion. The in vitro stimulation led

samples to spread towards the lower part of the graph, driven by genes negatively correlated

to the second component, including Irf8, Socs3, Stat3, Socs1 and Il21 (data not shown). No

outliers were detected.

Figure 2. Principal Component Analysis. To evaluate gene expression data distribution and the
presence of possible outliers, PCA analysis was performed by mixOmics package, using the
normalized expression values. 19% of the total variance is explained by the first component and 10%
by the second component, which seems important for the distinction between stimulated and
mock-stimulated samples.
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Interferon and chemokines responses (Figure 3). Although these modules were shared,

differences between groups were observed. For example, the activation of the

proinflammatory cytokines and chemokines module was stronger in the FR368-immunized

mice subjected to the three-months boosting schedule, owing to a higher fold-change of genes

like TNF, CCL3 and CCRL2. On the other hand, the signaling in T cells (I) module was

stronger in the FR368-immunized mice in the six-months boosting schedule, driven by genes

differentially expressed only in this condition, such as IFNG, EGR1, JUNB, PRF1 and

TNFRSF9.

In addition to the observed common signature, the stimulation process allowed the

identification of specific modules enriched only in the FR368-immunized groups. Both three-

and six-months boosting schedules activated modules linked to T cells, cell cycle, putative

targets of PAX3 and the AP-1 transcription factor network. Specific DEGs for these two

immunization schedules include CD83, ATF3, LEF1 and CCL3. Moreover, modules related

to dendritic cells and monocytes were specifically activated in the three-months boosting

schedule, by unique DEGs such as TNFRSF1B, GRINA, SLC7A11 and IL36G. On the other

hand, the cytokines − receptors cluster and different T cell modules were unique to the

six-months boosting schedule, enriched by DEGs specific for this immunization schedule,

like CSF2, GZMA, GATA3, IL12RB1 and NLRC3.

The mock-stimulated groups did not bring relevant biological information,

highlighting the importance of the in vitro stimulation process for assessing responses

through DE and Gene Set Analyses.
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Figure 3. Gene Set Enrichment Analysis. The significance of the activation of each Blood
Transcription Module for each group was assessed through a multivariate enrichment analysis. A
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strong antiviral response is detected in the in vitro stimulated groups, while specific signatures
distinguish different immunization schedules, such as the FR368-primed groups.

Key transcriptional differences in response to in vitro stimulation in splenocytes from

recombinant or WT-immunized mice

To further explore the transcriptional differences driven by the priming with the

recombinant S. gordonii, a distinct DE analysis was carried out comparing in vitro stimulated

samples from the FR368-immunized three-months and six-months boosting schedules to the

WT-immunized group. In total, 46 differentially expressed genes were found in common

between the two FR368-immunized groups, 16 downregulated, 13 upregulated and 17 genes

presenting different directions in each group.

Genes that belong to the IL-1 and IL-2 signaling network, or that are activated by

these cytokines, were up-regulated in both schedules, including Il1b, Mapkapk2, Nampt,

Peli1, Pfkfb3, Psmb1, Pten and Stk17b. Moreover, the Neutrophil cytosol factor 1 (Ncf1) is

described as coexpressed with Il1b and it was also found to be up-regulated.

In fact, after in vitro stimulation, all groups showed an increase in the Il1b gene when

compared to WT no boosting mock-stimulated samples, as seen in the first DE analysis. This

increase is not only much more pronounced in FR368-primed animals, but also followed by

the increase in other genes related to these pathways,

Correlation between gene expression values and serum IgG titers highlights genes and

biological pathways possibly linked to increased antibody production.

To investigate genes whose expression could be linked to the antibody response,

normalized gene expression values were correlated with the IgG titers. Since the in vitro

stimulation led to a strong effect in the gene expression observed in the Gene Set analysis, the

correlation with the IgG titers was performed with the gene expression profile of the 17

mock-stimulated samples that had in vivo contact with the antigen (WT three-months

117



boosting, FR368 three-months boosting and FR368 six-months boosting). These samples,

obtained at the same time point as the measurements of antibody titers, represent a more

biologically relevant sample than the stimulated ones for the correlation with serum IgG

titers.

The expression of 553 genes was found significantly correlated (p-value < 0.05) with

the log2 of the IgG titers in the serum. Looking at the biological function, these genes

enriched for pathways related to Myc targets V1 (cell proliferation pathway), interferon alpha

response, mTORC1 signaling and IL2/STAT5 signaling, activated mainly by genes negatively

correlated with IgG titers (Figure 4A). Many of the significantly correlated genes are linked

to the interferon pathway, especially type I, as represented in the network of Figure 4B.

Genes such as Azi2, Trim25, Pum2 and Eftud2 encode proteins that activate this pathway and

were negatively correlated with the total IgG titers, as well as Jak1, a kinase that plays a

major role in the interferon signal transduction. On the other hand, genes like Yipf2, which

inhibits the cGAS-STING signaling, were positively correlated with the IgG titers, suggesting

that indeed the interferon signaling pathway may be less expressed in samples with higher

titers.

Figure 5A displays the barplot indicating the log2 of the IgG titers for each sample,

colored by immunization groups and a heatmap with z-score of normalized expression values

for the 50 genes most significantly correlated with IgG titers. Among the top negatively

correlated features, there are genes involved in the interferon type I network, such as Azi2,

Phb2 and Eftud2, but also Anp32b, that might participate in the regulation of adaptive

immune responses. On the other hand, among the top positive correlated genes, there are

Ccl3 (an important chemoattractant), Il18bp (the encoder of the natural antagonist of IL-18)

and Pi4kb (involved in Golgi-to-plasma membrane trafficking).
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Figure 4. Correlation of gene expression and serum IgG titers. A. Gene set analysis of the 553 genes
significantly correlated with serum IgG levels. Performed with enrichR web tool using the MSigDB
Hallmark 2020 database. B. Interferon type I activation network. The 7 genes found negatively
correlated with the IgG titers are represented in blue while the gene positively correlated with the IgG
titers is represented in red. Green arrows indicate activation of the protein/pathway, while the red
arrow represents the inhibition of the protein/pathway. The figure was adapted from Jefferies CA,
2019 (52). The link between the genes and the Interferon pathways was found in previously published
works (52–60).
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Figure 5. Top 50 genes correlated with serum IgG titers. A. Barplot displaying the IgG titers (ng/mL)
in the serum, bars are colored by immunization schedule, followed by the heatmap representing the
z-score of the normalized expression values of the 50 genes with the lowest p-values for the
correlation with IgG. B. Dot plots for 6 of the top correlated genes, displaying the normalized
expression value on the x-axis and the log2 of the IgG titers on the y-axis. Dots are colored by
immunization schedule, as the bars in panel A.

DISCUSSION

In this work, we leverage transcriptomic analysis to study the host's response to

different immunization schedules. Mice were intravaginally primed with either Wild-Type or

a recombinant S. gordonii expressing the CTH522 protein, a multivalent chlamydial antigen

containing regions of MOMP from C. trachomatis serovars D, E, F and G found to be safe

and immunogenic in a phase I clinical trial (39), and then received two subcutaneous boosts

of the unadjuvanted CTH522 protein. Splenocytes were collected 10 days after the final boost

and seeded in the presence or absence of the CTH522 protein. The in vitro stimulation

process is important to characterize the response generated by a local infection (61). In the

present study, we took advantage of this method to assess the systemic response generated by

the intravaginal priming and the subsequent subcutaneous boosts.

The stimulation process allowed us to retrieve information on the differences between

intravaginally priming mice with the wild-type (WT) or with the recombinant bacteria

expressing the C. trachomatis antigen (FR368). In the enrichment analysis, compared to the

baseline group, the T cell signaling pathway was significantly activated only in

FR368-primed samples, as well as the AP-1 transcription factor network module. The AP-1

transcription factor network is involved in different bacterial and viral infections (62,63),

including in Chlamydia trachomatis (64) and Chlamydia pneumoniae (65) infections, in the

latter case being a key factor of the host’s response, regulating inflammatory mediators like

IL6, IL8, and IFN.
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Differences between the FR368-primed and the WT-primed groups after stimulation

have also emphasized the role of the IL-1 and IL-2 signaling pathways in the response

generated by different priming schedules. IL-1 is commonly mentioned for its roles in innate

immunity and inflammation, however, this cytokine plays essential roles in the bridging of

adaptive responses (66). IL-1 has been shown to improve the differentiation of naive T cells

through the regulation of DC activation (67–69) and to enhance the persistence and response

of memory cells when administered together with the antigen (70). In addition, IL-1 is known

for its role in favoring the differentiation of CD4+ T cells during priming, acting as a driver

of Th17 responses - a key mediator of mucosal immunity (71). Therefore, the increase in this

pathway after stimulation of FR368-primed samples could indicate an important mechanism

of this immunization schedule.

The Interferon type I signaling network was negatively correlated with the IgG titers

in the mock-stimulated samples. However, whether the antigen encounter in vivo upon

subcutaneous boosting leads to an activation of the interferon pathways, as seen in the in vitro

stimulated samples, requires further investigations. Since our samples were collected 10 days

after the final boost, the detected transcriptomic responses are probably related to

downstream processes occurring as a consequence of the boosting and may not be tightly

linked to the response to the CTH522 protein itself.

The Ccl3 gene was differentially expressed after stimulation only in FR368-primed

samples, both in three- and six-months boosting schedules. Interestingly, this gene was also

positively correlated with the serum IgG. Ccl3, also known as macrophage inflammatory

protein 1 alpha (MIP-1α), is an important chemoattractant secreted by various cells, including

fibroblasts, epithelial cells, lymphocytes, resident and recruited monocytes, and macrophages

(72,73). Besides acting as an attractant for immune cells like monocytes (74,75) and natural

killer cells (76), CCL3 has a well described role in the migration of dendritic cells (77–79)

and lymphocytes (80).
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In a study examining the immunogenicity of an adenovirus-based vaccine vector,

co-expression of CCL3 with the retroviral antigens increased vaccine protection from

infection by enhancing neutralizing antibody titers and virus-specific CD4+ T cell responses

(81). Indeed, previous studies suggest that CCL3 can enhance humoral and cellular responses

in both mucosal and systemic immunity. A study comparing the nasal administration of

Chicken egg albumin (OVA) in the presence or absence of CCL3 found enhanced systemic

antibody responses marked by higher levels of IgM and all the IgG subtypes. The CD4+ T

cells in Peyer patches, cervical lymph nodes and spleens of mice immunized in the presence

of CCL3 exhibited marked increases in OVA-specific proliferative responses. Moreover,

CCL3 promoted mucosal and systemic CD8+ CTL responses (82).

It has been suggested that CCL3 is an important cytokine for sustaining and

amplifying a previously primed T-cell response (83). Our data suggest that intravaginal

immunization with the recombinant bacteria expressing the CTH522 antigen induces Ccl3

expression upon antigen reencounter through in vitro stimulation.

Taken together, our data suggest that the in vivo site and context of antigen encounter

modulate the transcriptomic signature of in vitro stimulated splenocytes. We demonstrated a

differential activation of inflammatory pathways genes, which was associated with higher

systemic antibody response. Moreover, we have shown that Ccl3 is a marker of the recall

responses in mice primed with the recombinant S. gordonii, and it is associated with the IgG

titers after immunization, being a possible biomarker of vaccine response.
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 CHAPTER 6 

 Final discussion and Conclusions 

 Ebola  virus,  Streptococcus  pneumoniae  and  Chlamydia  trachomatis  are  three 

 pathogens  that  researchers  have  put  their  efforts  to  fight  in  the  past  decades.  Despite  the  huge 

 advances  in  diagnosis,  vaccination,  and  treatment,  we  still  have  important  gaps  to  be  covered 

 in order to definitely overcome them. 

 To  date,  most  gene  expression  studies  aimed  to  deepen  understanding  of  biology  at 

 the  level  of  mechanisms  and  pathways,  especially  regarding  the  immune  responses,  and  it  is 

 hoped  that  this  knowledge  will  support  different  fields,  ranging  from  rational  vaccine  design 

 to  identification  of  specific  diagnostic  and  prognostic  biomarkers  of  infection  and 

 vaccination.  In  this  context,  Systems  Biology  can  be  a  powerful  tool  to  explore  the  immune 

 response while preserving, as much as possible, the complexity of the biological systems. 

 The  main  objective  of  this  thesis  was  to  leverage  RNA-sequencing  technology  and 

 computational  methods  to  contribute  new  knowledge  in  the  responses  to  S.  pneumoniae 

 infection  and  to  Ebola  and  C.  trachomatis  vaccination.  We  have  established  a  model  to  study 

 a  systemic  response  to  S.  pneumoniae  lung  infection,  which  permitted  us  to  identify  evidence 

 of  an  early  recall  immune  response  in  the  spleens  of  mice  intranasally  infected  with  this 

 pathogen.  Genes  and  cytokines  involved  in  this  process  were  characterized,  suggesting  an 

 involvement  of  both  innate  and  adaptive  branches  of  the  immune  system.  Our  in-vitro 

 stimulation  model  has  also  shown  to  be  valuable  in  detecting  a  previous  infection  by  the 

 expression values of only eleven genes. 

 Technology,  Computation  and  Biology  walk  together  in  Systems  Biology.  During  the 

 course  of  this  thesis,  many  available  methods  were  used  and  a  new  framework  based  on 

 Feature  Selection  and  Machine  Learning  algorithms  was  built  to  deal  with  High-throughput 

 data.  This  tool  was  applied  to  understand  the  differences  and  similarities  between  cohorts 

 studying the rVSV-ZEBOV vaccine, against Ebola virus. 
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Systems Biology can also help address important challenges, such as the

understanding of the responses to mucosal vaccines. In this work we characterized the

transcriptomic profile of mice immunized with different schedules, including the intravaginal

priming with the wild-type or a recombinant S. gordonii expressing the CTH522 protein, a C.

trachomatis antigen. Besides the differences observed in the antibody response, the

transcriptomic profile showed that the intravaginal priming modulates the systemic responses

to the CTH522 protein and genes correlated with the IgG titers in the serum were identified.

This work has focused on understanding immune responses to infections and vaccines

using transcriptomic analysis and Systems Biology, leveraging different methodologies to

analyze and integrate high-throughput data. These approaches have shown to contribute to

research at different levels, from animal models to clinical trials, in a diverse range of

vaccines and infections.
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