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A B S T R A C T

The aim of this note is to show that many papers on various kinds of filters (and related concepts) in (subreducts of) residuated structures are in 
fact easy consequences of more general results that have been known for a long time.

This paper is born out of frustration. As most of my colleagues I am often asked to review papers submitted to journals in fuzzy 
logic or abstract algebraic logic; and a large majority of them deals with some kind of particular filters on some particular structure. 
Of course we all know that (usually) these papers are very weak and mostly useless but they keep appearing, cluttering the field and 
forcing good people (who would love to do otherwise) to read them at least once and spend some precious time in writing a rejection 
note (not to mention the Editors who have to deal with this disgrace on a daily basis). This of course is far from being news; already 
ten years ago a very amusing paper was published on the subject [31] and the description of the phenomenon was so good that we 
must (shamelessly) borrow it.

“We do not want to increase the amount of papers about particular, artificial types of filters. We want to illuminate the triviality of the 
theory behind these papers. Proofs of presented general claims are short and clear in contrast to proofs of particular results for concrete 
special types of filters which are technical and they seem like “math exercises”. We also want to provide a tool for reviewers who battle 
with dozens of papers dealing with unmotivated types of filters.”

In spite of the author’s intentions the situation now is worse than 10 years ago; not only the number of papers about filters 
has increased, introducing more and more preposterous definitions, but this craziness has spilled over the boundary of residuated 
lattices, involving subreducts or other kinds of derived structures. Just a clarification; we do not mean that every paper dealing 
with “interesting subsets” of (subreducts of) residuated structures is trivial. However we believe that most of them lack a real 
mathematical motivation and a good chunk in the majority of them consists of straightforward corollaries of a general theory that 
has been available (on respectable journals) for almost 30 years. In conclusion an update is due; we have chosen to treat the argument 
in the very general setting of universal algebra, in which a substantial theory of filters (or ideals) is already available.

We stress that in this paper we will not produce any new mathematics; our aim is rather the opposite, i.e. to show that some 
“new” mathematics is not new at all.

1. What is an ideal?

Given an algebra A an ideal is an “interesting subset” of the universe 𝐴, that may or may not be a subalgebra of A; an example 
of the first kind is a normal subgroup of the group and of the second kind is a (two-sided) ideal of a ring. Now defining what 
“interesting” means is largely a matter of taste; however there is a large consensus among the practitioners of the field that:
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∙ an ideal must have a simple algebraic definition;

∙ ideals must be closed under arbitrary intersections, so that a closure operator can be defined in which the ideals are exactly the 
closed sets; this gives raise to an algebraic lattice whose elements are exactly the ideals;

∙ ideals must convey meaningful information on the structure of the algebra.

The three points above are all satisfied by classical ideals on lattices and of course by ideals on a set 𝑋, where of course we interpret 
a set as an algebra in which the set of fundamental operations is empty. We have however to be careful here; an ideal on a set 𝑋 is 
an ideal (in the lattice sense) on the Boolean algebra of subsets of 𝑋. There also a significant difference between ideals on lattices 
and ideals on Boolean algebras; in Boolean algebras an ideal is always the 0-class of a suitable congruence of the algebra (really, of 
exactly one congruence), while this is not true in general for lattices. As a matter of fact, identifying the class of (lower bounded) 
lattices in which every ideal is the 0-class of a congruence is a difficult problem which is still unsolved, up to our knowledge. Of 
course the same property is shared by normal subgroups of a group and (two-sided) ideals of a ring (since they are both congruence 
kernels).

The problem of connecting ideals of general algebras to congruence classes has been foreshadowed in [17] but really tackled by 
A. Ursini in his seminal paper [29]. Later, from the late 1980’s to the late 1990’s, A. Ursini and the author published a long series 
of papers on the subject (see for instance [6] and the bibliography therein); the theory developed in those paper will constitute the 
basis of our investigation.

2. Ideals in universal algebra

We postulated that an ideal must have a simple algebraic definition; as imprecise as this concept might be, in our context there is 
a natural path to follow. Given a type (a.k.a. a signature) 𝜎 we can consider the 𝜎-terms (i.e. the elements of T𝜎(𝜔), the absolutely 
free countably generated algebra of type 𝜎); a term is denoted by 𝑝(𝑥1, … , 𝑥𝑛) to emphasize the variable involved and we will use 
the vector notation �⃗� for 𝑥1, … , 𝑥𝑛. Let Γ be a set of 𝜎-terms; we will divide the (finite) set of variables 𝑧1, … , 𝑧𝑛+𝑚 of each term 
in two subsets {𝑥1, … , 𝑥𝑛} and {𝑦1, … , 𝑦𝑚} so that every term in Γ can be expressed as 𝑝(�⃗�, ⃗𝑦) and we allow 𝑛 = 0, while 𝑚 must 
always be at least 1. Moreover we ask that Γ be closed under composition on 𝑦; this means that if 𝑝(�⃗�, ⃗𝑦 ∈ Γ), 𝑦 = (𝑦1, … , 𝑦𝑚) and 
𝑝1(�⃗�1, ⃗𝑦1), … , 𝑝𝑚(�⃗�𝑚, ⃗𝑦𝑚) ∈ Γ, then

𝑝(�⃗�, 𝑝1(�⃗�1, 𝑦1),… , 𝑝𝑚(�⃗�𝑚, 𝑦𝑚)) ∈ Γ.

If A has type 𝜎 a Γ-ideal of A is an 𝐼 ⊆ 𝐴 such that for any 𝑎1, … , 𝑎𝑛 ∈ 𝐴, 𝑏1, … , 𝑏𝑚 ∈ 𝐼 and 𝑝(𝑥, 𝑦) ∈ Γ, 𝑝(𝑎, ⃗𝑏) ∈ 𝐼 .

The following is a simple exercise.

Lemma 2.1. Let 𝜎 be any type, Γ a set of 𝜎-terms and A an algebra of type 𝜎. Then

1. the Γ-ideals of A are closed under arbitrary intersections;

2. the Γ-ideal generated by 𝑋 ⊆ 𝐴, i.e. the intersection of all the Γ-ideals containing 𝑋, is

IdΓ
A(𝑋) = {𝑝(𝑎, �⃗�) ∶ 𝑎 ∈ 𝐴, �⃗� ∈ 𝑋};

3. the Γ-ideals of A form an algebraic lattice IdΓ(A).

At this level of generality we cannot say much more; if the type however contains a constant we can get a more focused definition. 
Let 𝖵 be a variety whose type contains a constant which will denote by 0; a 𝖵, 0-ideal term in 𝑦1, … , 𝑦𝑚 is a term 𝑝(�⃗�, ⃗𝑦) such that

𝖵 ⊨ 𝑝(�⃗�,0,… ,0) ≈ 0.

Let 𝐼𝐷𝖵,0 be the set of all 𝖵, 0-ideal terms in 𝖵; a 𝖵, 0-ideal 𝐼 of A ∈ 𝖵 is a 𝐼𝐷𝖵,0-ideal of A. If 𝖵 =𝐕(A) we will simply say that 𝐼 is a
0-ideal of A. As before the set Id𝖵,0(A) of 𝖵, 0-ideals of A and the set Id0(A) of 0-ideals of A are algebraic lattices and Id0(A) ⊆ Id𝖵,0(A)
(and the inclusion may be strict). It is also evident that for any 𝜃 ∈ Con(A), 0∕𝜃 is a 𝖵, 0-ideal of A: if 𝑝(�⃗�, ⃗𝑦) ∈ 𝐼𝐷𝖵,0, 𝑎 ∈ 𝐴 and �⃗� ∈ 0∕𝜃

then

𝑝(𝑎, �⃗�) 𝜃 𝑝(𝑎, 0⃗) = 0.

We say that 𝖵 has normal 𝖵, 0-ideals if for all A ∈ 𝖵 for all 𝐼 ∈ Id𝖵,0(A) there is a 𝜃 ∈ Con(A) with 𝐼 = 0∕𝜃. If 𝖵 has normal 𝖵, 0-ideals 
then of course Id0(A) = Id𝖵,0(A) = {0∕𝜃 ∶ 𝜃 ∈ Con(A)} so we can simply talk about 0-ideals of A without specifying the variety. Observe 
that the variety of pointed (by 0) sets has normal 0-ideals, so we can hardly expext any nice structural theorem for varieties with 
0-normal ideals. However something can be said and the interested reader can consult [4] for more information.

We say that a pointed variety 𝖵 is 0-subtractive or simply subtractive [30] if there is a binary term 𝑠(𝑥, 𝑦) in the type of 𝖵 such 
that
2

𝖵 ⊨ 𝑠(𝑥,𝑥) ≈ 0 𝖵 ⊨ 𝑠(𝑥,0) ≈ 𝑥.
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Theorem 2.2. For a variety 𝖵 the following are equivalent:

1. 𝖵 is subtractive;

2. for every A ∈ 𝖵 and 𝜃, 𝜑 ∈ Con(A), 0∕𝜃 ∨𝜑 = 0∕𝜃◦𝜑 (hence the congruences permute at 0);

3. for every A ∈ 𝖵 the mapping 𝜃 ⟶ 0∕𝜃 is complete and onto lattice homomorphism from Con(A) to Id𝖵,0(A).

For the proof and for even more equivalences the reader can look at Theorem 2.4 in [3]. Theorem 2.2 implies at one that 
every subtractive variety has normal ideals; it is a nontrivial fact that in a subtractive variety subtraction terms can be used to 
describe uniformly the join of two ideals and this in turn implies that any algebra in a subtractive variety has a modular ideal lattice 
(Proposition 1.5 in [30].

Let 𝖵 be subtractive, A ∈ 𝖵 and 𝐼 ∈ Id0(A); let

𝐼𝑑 =
⋀

{𝜃 ∈ Con(A) ∶ 0∕𝜃 = 𝐼} 𝐼𝜀 =
⋁

{𝜃 ∈ Con(A) ∶ 0∕𝜃 = 𝐼}.

Then the interval [𝐼𝛿, 𝐼𝜀] in Con(A) consists of all 𝜃 ∈ Con(A) such that 𝐼 = 0∕𝜃. The properties of the mapping 𝐼 ⟼ 𝐼𝜀 have been 
investigated at length in [5] and it turns out (perhaps non surprisingly) that they are connected to abstract algebraic logic. However 
in this paper we do not need to deal with such intricacies; we simply need to consider the case in which the mapping is good enough 
to allow a connection between ideals and congruences. A subtractive variety 𝖵 is (finitely) congruential [5] if there are binary 
terms 𝑑1, … , 𝑑𝑛 of 𝖵 such that 𝖵 ⊨ 𝑑𝑖(𝑥, 𝑥) ≈ 0 for 𝑖 = 1, … , 𝑛 and for all A ∈ 𝖵 and 𝐼 ∈ Id0(A)

𝐼𝜀 = {(𝑎, 𝑏) ∶ 𝑑𝑖(𝑎, 𝑏) ∈ 𝐼 ∶ 𝑖 = 1,… , 𝑛}.

We mention that 𝐼𝜀 is usually called the Leibniz congruence of 𝐼 .

Theorem 2.3. [5] For a subtractive variety 𝖵 the following are equivalent:

1. 𝖵 is finitely congruential witness 𝑑1, … , 𝑑𝑛;

2. the mapping ()𝜀 is continuous, i.e. for A ∈ 𝖵 and every family (𝐼𝛾 )𝛾∈Γ of 0-ideals of A

(
⋃
𝛾∈Γ

𝐼𝛾 )𝜀 =
⋃
𝛾∈Γ

𝐼𝜀.

3. there exist binary terms 𝑑1, … , 𝑑𝑛, an 𝑛 + 3-ary term 𝑞 of 𝖵 and for each basic operation 𝑓 of arity 𝑘 and 𝑖 = 1, … , 𝑛 a (2+n)k-ary term 
𝑟𝑖,𝑓 such that

𝖵 ⊨ 𝑑𝑖(𝑥,𝑥) ≈ 0 𝑖 = 1,… , 𝑛

𝖵 ⊨ 𝑞(𝑥, 𝑦,0,0,… ,0) ≈ 0

𝖵 ⊨ 𝑞(𝑥, 𝑦, 𝑦, 𝑑1(𝑥, 𝑦),… , 𝑑𝑛(𝑥, 𝑦)) ≈ 𝑥

𝖵 ⊨ 𝑟𝑖,𝑓 (�⃗�, 𝑦,0,… ,0) ≈ 0

𝖵 ⊨ 𝑟𝑖,𝑓 (�⃗�, 𝑦, 𝑑1(𝑥1, 𝑦1),… , 𝑑1(𝑥𝑘, 𝑦𝑘),… , 𝑑𝑛(𝑥1, 𝑦1),… , 𝑑𝑛(𝑥𝑘, 𝑦𝑘)) ≈ 𝑑𝑖(𝑓 (�⃗�, 𝑦).

As a particular instance of being congruential we can consider the case in which the interval [𝐼𝛿, 𝐼𝜀] degenerates to a point, i.e. 
0∕𝜃 = 0∕𝜑 implies 𝜃 = 𝜑. In this case it can be shown that the mapping 𝐼 ⟼ 𝐼𝜀 is in fact an isomorphism and that 𝐼𝜀 is the unique 
𝜃 ∈ Con(A) with 0∕𝜃 = 𝐼 . In this case the variety 𝖵 is called 0-regular and we have

Corollary 2.4. [19] For a pointed (at 0) variety 𝖵 the following are equivalent:

1. 𝖵 is subtractive and 0-regular;

2. 𝖵 is subtractive and there is an 𝑛 ∈ ℕ and binary terms 𝑑1, … , 𝑑𝑛 such that

𝖵 ⊨ 𝑑𝑖(𝑥,𝑥) ≈ 0 𝑖 = 1,… , 𝑛

𝖵 ⊨ {𝑑𝑖(𝑥, 𝑦) ≈ 0 ∶ 𝑖 = 1,… , 𝑛}⇒ 𝑥 ≈ 𝑦.

Let us also mention that the characterization of 0-regularity, without reference to subtractivity, is usually attribute to B. Csákány. 
A pointed variety which is subtractive and 0-regular is called ideal determined [19]. Clearly groups, rings, vector spaces, boolean 
algebras, Heyting algebras and many other classical algebras are ideal determined and so are residuated lattices, 𝖥𝖫-algebras and 
many of their subreducts. They are also congruence permutable in most cases; however for instance implication algebras (which 
are the implicative subreducts of Heyting algebras) are not congruence permutable [21] but it is easy check that they are ideal 
determined. There are also non ideal determined varieties to which Theorem 2.3 applies, such as the variety of pseudocomplemented 
3

semilattices ([5], Example 4.4).
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Because of Theorem 2.3 a finitely congruential subtractive variety 𝖵 has two features that are the prototype of many papers on 
filters on residuated structures. Let 𝑇 be a set of terms of 𝖵; a 0-ideal 𝐼 of A ∈ 𝖵 is 𝑇 -special if for all 𝑎 ∈ 𝐴, 𝑡(𝑎) ∈ 𝐼 for all 𝑡 ∈ 𝑇 . 
It is obvious that the property of being 𝑇 -special is upward hereditary on ideals; it is also obvious that the 𝑇 -special ideals form an 
algebraic lattice. Moreover let 𝖵𝑇 be the subvariety of 𝖵 axiomatized by the equations 𝑡(�⃗�) ≈ 0 for 𝑡 ∈ 𝑇 .

Lemma 2.5. Let 𝖵 be a finitely congruential subtractive variety, witness 𝑑1, … , 𝑑𝑛. Then for any set 𝑇 of terms of 𝖵 and A ∈ 𝖵, A∕𝐼𝜀 ∈ 𝖵𝑇

if and only if 𝐼 is 𝑇 -special.

Proof. Suppose that 𝐼 is 𝑇 special; then for all 𝑎 ∈ 𝐴, 𝑡(𝑎) ∈ 𝐼 for all 𝑡 ∈ 𝑇 . As each 𝑑𝑖(𝑥, 𝑦) is an ideal term, we get that 𝑑𝑖(𝑡(𝑎), 0) ∈ 𝐼

for 𝑖 = 1, … , 𝑛 and therefore (𝑡(𝑎), 0) ∈ 𝐼𝜀 for all 𝑡 ∈ 𝑇 . This implies that A∕𝐼𝜀 ∈ 𝖵𝑇 as wished.

Conversely, suppose that A∕𝐼𝑒 ∈ 𝖳; then for all 𝑎 ∈ 𝐴, (𝑡(𝑎), 0) ∈ 𝐼𝜀 for all 𝑡 ∈ 𝑇 . This implies that 𝑑1(𝑡(𝑎), 0), … , 𝑑𝑛(𝑡(𝑎), 0) ∈ 𝐼 for all 
𝑡 ∈ 𝑇 ; by Theorem 2.3(3)

𝑡(𝑎) = 𝑞(𝑡(𝑎),0,0, 𝑑1(𝑡(𝑎),0),… , 𝑑𝑛(𝑡(𝑎),0)) ∈ 𝐼

for all 𝑡 ∈ 𝑇 and thus 𝐼 is 𝑇 -special. □

So in a finitely congruential variety we have a potentially unlimited supply of 𝑇 -special filters; if the variety is also ideal de-

termined, then even more is true. Let 𝖵′ be a subvariety of 𝖵 and let 𝐽 be a set of equations axiomatizing 𝖵′ relative to 𝖵. If we 
set

𝑇 = {𝑑𝑖(𝑝, 𝑞) ∶ 𝑖 = 1,… , 𝑛 𝑝 ≈ 𝑞 ∈ 𝐽}

then 𝖵 ⊨ 𝑡(�⃗�) ≈ 0 for all 𝑡 ∈ 𝑇 if and only if 𝖵 ⊨ 𝑝 ≈ 𝑞 for all 𝑝 ≈ 𝑞 ∈ 𝐽 . It follows that 𝖵′ = 𝖵𝑇 and so any subvariety of 𝖵 can be taken 
as the base for defining son 𝑇 -special ideals.

The second consequence is the following; let 𝖵+ be a pointed variety such a class of subreducts 𝖵 of 𝖵+ happens to be a finitely 
congruential subtractive variety. Certainly 𝖵+ is subtractive as well; if for any “new” operation 𝑓 in the type of 𝖵+ we can find terms 
𝑟𝑖,𝑓 satisfying (2) of Theorem 2.3, then 𝖵+ is finitely congruential as well and the ideals in 𝖵+ are exactly the 𝖵-ideals that are closed 
under all the 𝑟𝑖,𝑓 , where 𝑓 is a new operation. A particularly easy case is the one in which the new operation is itself a pure ideal 
term, i.e. 𝑓 (0, … , 0) ≈ 0.

3. Variations on 𝗙𝗟-algebras

A residuated lattice is an algebra A = ⟨𝐴, ∨, ∧, ⋅, ∕, ∖, 1⟩ where

1. ⟨𝐴, ∨, ∧⟩ is a lattice;

2. ⟨𝐴, ⋅, 1⟩ is a monoid;

3. ∕ and ∖ are the left and right residua w.r.t. ⋅, i.e. 𝑥 ⋅ 𝑦 ≤ 𝑧 iff 𝑦 ≤ 𝑥∖𝑧 iff 𝑥 ≤ 𝑧∕𝑦.

Residuated lattices form a variety 𝖱𝖫 and an axiomatization, together with the many equations holding in these very rich structures, 
can be found in [8]. A residuated lattice is integral if satisfies 𝑥 ≤ 1 and commutative if the monoidal operation is commutative. An 
𝖥𝖫-algebra is an algebra A = ⟨𝐴, ∨, ∧, ⋅, ∕, ∖, 0, 1⟩ where A = ⟨𝐴, ∨, ∧, ⋅, ∕, ∖, 1⟩ is a residuated lattice and 0 is a constant. An 𝖥𝖫-algebra 
is

∙ a 𝖥𝖫𝗐-algebra, if it is integral and satisfies 0 ≤ 𝑥,

∙ a 𝖥𝖫𝖾-algebra, if it is commutative,

∙ a 𝖥𝖫𝑒𝑤-algebra, if it is both an 𝖥𝖫𝑤 algebra and an 𝖥𝖫𝑒-algebra.

Residuated lattices are clearly ideal determined, hence so are 𝖥𝖫-algebras. Let A be a residuated lattice and let 𝐴+ = {𝑎 ∈ 𝐴 ∶ 𝑎 ≥ 1}; 
a filter of A is a subset 𝐹 ⊆ 𝐴 such that

1. 𝐴+ ⊆ 𝐹 ;

2. 𝑎, 𝑎∕𝑏 ∈ 𝐹 implies 𝑏 ∈ 𝐹 ;

3. 𝑎, 𝑏 ∈ 𝐹 implies 𝑎 ∧ 𝑏 ∈ 𝐹 .

A filter 𝐹 is normal if

4 𝑎 ∈ 𝐹 and 𝑏 ∈ 𝐴 implies 𝑏∖𝑎𝑏, 𝑏𝑎∕𝑏 ∈ 𝐹 .

Clearly in any commutative residuated lattices (or 𝖥𝖫𝑒-algebra) ∕ and ∖ coincide and so every filter is a normal filter. It is well-known 
that there is a one-to-one correspondence (which is in fact a lattice isomorphism) between the normal filters and the congruences of 
4

A given by the mutually inverse maps
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𝜃 ⟼ 𝐴+∕𝜃 𝐹 ⟼ 𝜃𝐹 = {(𝑎, 𝑏) ∶ 𝑎∕𝑏, 𝑏∕𝑎 ∈ 𝐹 }.

Here 𝐴+∕𝜃 =
⋃
{𝑎∕𝜃 ∶ 𝑎 ≥ 1}; so if A is integral, then 𝐴+ = {1} and the normal filters are just the 1-ideals; if A is not integral then 

the 1-ideals are not filters but rather the convex normal subalgebras of A. However there is a straightforward way to connect 
convex normal subalgebras and normal filters in such a way that the results of Section 2 can be transferred easily. We spare the 
technical details mainly because all the examples of “papers of filters” that we will introduce deal in fact with normal filters in 
integral residuated lattices (or 𝖥𝖫𝑤-algebras). Indeed in the majority of cases commutativity of the monoid operation is also present. 
We remind that subvarieties of 𝖥𝖫𝑒𝑤 have been studied extensively in the literature; besides Heyting algebras, by far the most studied, 
other examples are the variety of 𝖬𝖵-algebras [28], 𝖡𝖫-algebras [2] and 𝖬𝖳𝖫-algebras [16].

From our considerations it follows that any theory of “special” normal filters in integral residuated lattices (or 𝖥𝖫𝑤-algebras) can 
be regarded as a special case of the theory of special ideals in pointed varieties. So if one wants to create a (bad) paper on filters of 
say, 𝖡𝖫 or 𝖥𝖫𝑒𝑤-algebras all he has to do is to find some term and come up with a fancy name for the filters that are 𝑇 -special w.r.t. 
to those equations. Then he can prove a bunch of results that are corollaries of the results in Section 2, but of course, without using 
the general theory, the proofs very often consist in long (and pointless) calculations. These results have been classified first in [32], 
and next in the more tongue-in-cheesk [31]; the list of these amenities is substantial and we believe there is no need to produce some 
more.

However we would like to point out that the same trick has been applied to varieties which consist of ideal determined subreducts 
of varieties of 𝖥𝖫-algebras: the trick here is to take away some operation from the type of 𝖥𝖫-algebra, still keeping ideal determinacy. 
It is easily seen that if 𝖵 is any variety of 𝖥𝖫𝑤-algebras, then any class of subreducts of 𝖵 that contains {∕, ∖, ∧, 1} in its type is an 
ideal determined variety.

Again let’s deal with the integral case to make things simpler, i.e. 𝖥𝖫𝗐-algebras. Pseudo-𝖡𝖫-algebras are just the non commutative 
version of 𝖡𝖫-algebras; pseudohoops have been introduced and defined via equations in [18] but it is clear that they are just the 
0-less subreducts of pseudo-𝖡𝖫-algebras and of course pseudohoops and pseudo-𝖡𝖫-algebras are ideal determined. So for instance the 
entire [7] is a more or less trivial consequence of [20], which is a particular instance of [32], which is a consequence of the general 
ideal theory in Section 2. Now the reader can easily verify for instance that the more recent [9], [15] and [22] are just more of the 
same.

4. Adding operations

Another nice trick is to add new operations to 𝖥𝖫-algebras, but the axioms for those new operations are carefully chosen in such 
a way that the new filters are just the old filters that are closed under those additional operations. Of course there is a very general 
way to do that (see [1]); here we will briefly show how to do it for commutative and integral residuated lattices (and hence for 
𝖥𝖫𝑒𝑤-algebras).

Let A be a commutative and integral residuated lattice; a unary operation ℎ on A is normal if for all 𝑎, 𝑏 ∈ 𝐴

∙ ℎ(1) = 1;

∙ ℎ(𝑎 → 𝑏) ≤ ℎ(𝑎) → ℎ(𝑏).

Observe that by the second point above any normal operation is increasing: 𝑎 ≤ 𝑏 implies 𝑓 (𝑎) ≤ 𝑓 (𝑏). An 𝑛-ary operation 𝑓 on A is

normal if for all 𝑖 ≤ 𝑛 and for all 𝑎1, … , 𝑎𝑖−1, 𝑎𝑖+1, … , 𝑎𝑛 ∈ 𝐴

𝑓𝑖(𝑥) ∶= 𝑓 (𝑎1,… , 𝑎𝑖−1, 𝑥, 𝑎𝑖+1,… , 𝑎𝑛)

is normal. A commutative integral residuated lattice with normal operators is an algebra A = ⟨𝐴, ∨, ∧, →, ⋅, 1, 𝑓𝜆⟩𝜆∈Λ such that 
⟨𝐴, ∨, ∧, →, ⋅, 1⟩ is a commutative and integral residuated lattice and 𝑓𝜆 is normal for any 𝜆 ∈ Λ.

Theorem 4.1. (see [1], Proposition 3.5) If A = ⟨𝐴, ∨, ∧, →, ⋅, 1, 𝑓𝜆⟩𝜆∈Λ is a commutative integral residuated lattice with normal operators, 
then the 1-ideals (which we may call the filters) of A are exactly the filters of the commutative residuated lattice reduct that are closed under 
𝑓𝜆 for any 𝜆 ∈Λ.

If A is as above, then we denote by 𝑃 (A) the set of all unary polynomials of A involving only the normal operators. If 𝑋 ⊆ 𝐴, let 
FilA(𝑋) be the filter generated by 𝑋 in A.

Lemma 4.2. (see Proposition 3.6 in [1]) Let A be a commutative integral residuated lattice with normal operators.

1. If 𝑋 ⊆ 𝐴, then 𝑎 ∈ FilA(𝑋) if and only if there are 𝑏1, … , 𝑏𝑛 ∈ 𝑋 and 𝑝1, … , 𝑝𝑛 ∈ P(A) such that

(𝑝1(𝑏1) ∧ 1)…(𝑝𝑛(𝑏𝑛) ∧ 1) ≤ 𝑎.

2. If 𝐹 , 𝐺 are filters of A,
5

𝐹 ∨𝐺 = {𝑐 ∶ 𝑎𝑏 ≤ 𝑐, for some 𝑎 ∈ 𝐹 , 𝑏 ∈ 𝐺}.
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Now this very general result, when applied to specific cases, can be made as complex as we want. Take for instance [26]; there 
the author defines a tense 𝖡𝖫-algebra has a 𝖡𝖫-algebra with two tense unary operators. As these operators are clearly normal, the 
general theory applies and many of the results in the paper are simply a straightforward consequence. I daresay that the general 
formulation is even clearer than the particular one (which is notationally heavy), but this is just a matter of opinion.

Another popular topic is adding modal operators to residuated structures. There nothing wrong in that of course; for instance 
in [12] the authors proposed a modal calculus with the two classical modalities □ and ◊ based on Hajek’s Basic Logic. Its equiv-

alent algebraic semantics consists of structures ⟨A, □, ◊⟩ where A is a 𝖡𝖫-algebra and □, ◊ are two unary operators satisfying 
certain equations. Filters are defined as filters (i.e. 1-ideals) of A closed under □ which is a normal operator. The axiom chosen 
basically imply that the congruences of ⟨A, □, ◊⟩ coincide with the congruences of its reduct ⟨A, □⟩ so the filters of ⟨A, □, ◊⟩ co-

incide with 1-ideals and the general theory applies. Of course the same trick can be applied (to a certain extent) to every variety 
of 𝖥𝖫𝑒𝑤-algebras; as usual one has simply to add enough axioms in such a way that the “new” filters are 1-ideals (see for instance 
[33]).

5. Changing the constant

𝖥𝖫-algebras have two constants, 0 and 1 and the 1-ideals are the filters; of course one might wonder what happens if we con-

sider the 0-ideals. Since 𝖥𝖫-algebras are highly non symmetrical (unlike Boolean algebras) one might be led to believe that the 
situation may be different. And indeed it is: easy examples show that there are varieties of 𝖥𝖫-algebras that do not have normal 
0-ideals.

However there some cases in which we can apply the general theory to the 0-ideals. In fact the variety of 𝖥𝖫𝑒𝑤-algebras happens 
to be 0-subtractive witness the term 𝑠(𝑥, 𝑦) ∶= (𝑦 → 0)𝑥; so in any variety of 𝖥𝖫𝑒𝑤-algebras the 0-ideals coincide with the 0-classes of 
congruences. Varieties of 𝖥𝖫𝑒𝑤-algebras are not 0-ideal determined but:

Lemma 5.1. Let A be a 𝖥𝖫𝖾𝗐-algebras and let 𝐼 be a 0-ideals of A; then

𝐼𝜀 = {(𝑎, 𝑏) ∶ (𝑎 → 0) ⋅ 𝑏, (𝑏 → 0) ⋅ 𝑎 ∈ 𝐼}.

Hence any variety of 𝖥𝖫𝑒𝑤-algebras is finitely congruential w.r.t. 0.

So the general theory of special 𝑇 -ideals can be applied in this case as well and (for instance) most of the results in [11], [24], 
[25] and [34] follow from that.

6. Tweaking the operations

Fantasy has its limits and eventually even the most preposterous way of defining filters and ideals over residuated lattices runs 
out of steam. So one can start tweaking a little bit the operations to get different structures an more complicated algebraic proofs of 
exactly the same results.

The first thing is to get rid of associativity of multiplication and study residuated lattice ordered groupoids; these are very in-

teresting structures in they own right but the filter and the ideal theories do not present much novelty. For instance in [10]

non associative bounded residuated lattices are introduced: in this case the binary operation is inspired by a non associative 
continuous 𝑡-norm on [0, 1] and therefore continuity forces 1 to be the groupoid identity. Then non associative 𝖡𝖫-algebras are 
defined as prelinear and divisible non associative residuated lattices and it turns out (not surprisingly) that the variety of non as-

sociative 𝖡𝖫-algebras is generated as a quasivariety by all the non associative 𝖡𝖫-algebras induced by non associative continuos 
𝑡-norms. Clearly non associative residuated lattices are 1-ideal determined and finitely congruential at 0 so the general theory applies 
again.

At first I could not find any paper on special filters of such structures and I must confess I was slightly disappointed. However one 
should never underestimate creativity; in [27] the authors investigated 𝑡-norms on [0, 1] that are not only non associative, but also 
non unital, in the sense that, if is such a 𝑡-norm, then 𝑥 ≤ 𝑥1 and the inequality may be strict. The introduction of these structures, 
called inflationary general residuated lattices, is well motivated and they turn out to be more interesting in that they are not 
ideal-determined of subtractive in general. Of course some of the general theory of ideals can be recovered in that setting as well, but 
it is no straightforward business and there is no need to explain it here. We simply notice that a non associative bounded residuated 
lattice is simply an inflationary general residuated lattice in which 𝑥1 ≤ 1. Now in [35] the authors introduced a non commutative 
version of inflationary general residuated lattices with all the usual results; this is pointless enough but the authors cannot resist the 
temptation to study special filters [36]. Of course they run into trouble, since inflationary general residuated lattices do not have a 
straightforward theory of filters (or ideals): their solution is to go back to non associative residuated lattices but in a covert way. 
Look at Theorem 1 in [36]; since the statement “1 is the groupoid identity” appears in both points (1) (implicitly) and point (2) 
(explicitly), this is really a statement about non associative residuated lattices. And it really says that if one quotients out a non 
associative residuated lattice by a 𝑇 -special ideal, where 𝑇 is any set of equations axiomatizing non associative 𝖡𝖫-algebras modulo 
non associative residuated lattices, then the result is a non associative 𝖡𝖫-algebra; and, of course, this is a consequence of the general 
theory of 𝑇 -special ideals. Now that the king is naked the reader can go through [36] and have fun in discovering similar instances 
6

of this phenomenon.
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Another generalization that is slightly different but in the same spirit is to consider a bounded q-lattice ordered residuated q-monoid

as a basis for a residuated structure. In this case we give some details that are helpful in understanding the context; a q-lattice is an 
algebra ⟨𝐴, ∨, ∧⟩ such that ∨ and ∧ are commutative and associative and for all 𝑎, 𝑏 ∈ 𝐴

1. 𝑎 ∨ (𝑏 ∧ 𝑎) = 𝑎 ∨ 𝑎 = 𝑎 ∧ 𝑎 = 𝑎 ∧ (𝑏 ∨ 𝑎);
2. 𝑎 ∨ 𝑏 = 𝑎 ∨ (𝑏 ∨ 𝑏), 𝑎 ∧ 𝑏 = 𝑎 ∧ (𝑏 ∧ 𝑏).

Clearly the relation 𝑎 ≤ 𝑏 if 𝑎 ∨ 𝑎 = 𝑎 ∨ 𝑏 is a quasiordering. A q-monoid is an algebra ⟨𝐴, ⋅, 1⟩ such that ⋅ is associative and for all 
𝑎, 𝑏 ∈ 𝐴

1. 𝑎 ⋅ 1 = 1 ⋅ 𝑎;

2. 𝑎 ⋅ 𝑏 ⋅ 1 = 𝑎 ⋅ 𝑏;

3. 1 ⋅ 1 = 1.

A quasi-𝖥𝖫𝑤-algebra is a structure ⟨A, ∨, ∧, ⋅, ∕, ∖, 0, 1⟩ where

1. ⟨𝐴, ∨, ∧⟩ is a q-lattice and 0, 1 are the bottom and the top in the quasi ordering;

2. (∕, ⋅) and (∖, ⋅) are left and right residuated pairs w.r.t. to ≤;

3. 0 ∧ 0 = 0 and for all 𝑎 ∈ 𝐴, 𝑎 ⋅ 1 = 𝑎 ∧ 𝑎;

4. for all 𝑎, 𝑏 ∈ 𝐴, (𝑏∕𝑎) ⋅ 1 = 𝑏∕𝑎 and (𝑎∖𝑏) ⋅ 1 = 𝑎∖𝑏.

If A is a quasi-𝖥𝖫𝑤-algebra and element 𝑎 ∈ 𝐴 is regular if 𝑎 ⋅ 1 = 𝑎. Let 𝑅A be the set of regular elements of A; then it is an easy 
exercise to check that

∙ 𝑅A is the universe of a subalgebra RA of A that is an 𝖥𝖫𝑤-algebra;

∙ 𝑅A = {𝑎 ⋅ 1 ∶ 𝑎 ∈ 𝐴}.

A congruence 𝜃 ∈ Con(A) is regular if (𝑎 ⋅ 1, 𝑏 ⋅ 1) ∈ 𝜃 implies (𝑎, 𝑏) ∈ 𝜃. The proofs of the following two theorems are straightforward:

Theorem 6.1. Let A be a quasi-𝖥𝖫𝑤-algebra and 𝜃 ∈ Con(A); then the following are equivalent:

1. 𝜃 is regular;

2. A∕𝜃 is an 𝖥𝖫𝑤-algebra;

3. 1∕𝜃 ∩𝑅A is a normal filter of RA;

4. 1∕𝜃 =↑ 𝐺 for some normal filter 𝐺 of RA;

5. 𝜃 = {(𝑎, 𝑏) ∶ 𝑎∕𝑏, 𝑏∕𝑎 ∈ 1∕𝜃}.

A normal filter of a quasi-𝖥𝖫𝑤-algebra A is a subset 𝐹 ⊆ 𝐴 such that

∙ 1 ∈ 𝐹 ;

∙ 𝑎 ∈ 𝐹 and 𝑎 ≤ 𝑏 implies 𝑏 ∈ 𝐹 ;

∙ 𝑎∖𝑏 ∈ 𝐹 if and only if 𝑏∕𝑎 ∈ 𝐹 .

Theorem 6.2. Let A be a quasi-𝖥𝖫-algebra; then

1. 𝐹 ⊆ 𝐴 is a normal filter if and only if it is equal to 1∕𝜃 for some regular 𝜃 ∈ Con(A);
2. 𝜃 is a regular congruence of A if and only if

𝜃 = {(𝑎, 𝑏) ∶ 𝑎∕𝑏, 𝑏∕𝑎 ∈ 𝐹 }

for some normal filter 𝐹 ;

3. the regular congruences of A form an algebraic lattice RCon(A) and the normal filters form an algebraic lattice NFil(A); they are 
isomorphic via the mapping

𝜃 ⟼ 1∕𝜃 𝐹 ∈ 𝜃𝐹 = {(𝑎, 𝑏) ∶ 𝑎∕𝑏, 𝑏∕𝑎 ∈ 𝐹 };

4. RCon(A) is a complete sublattice of Con(A);
5. NFil(A) ≅ RCon(A) ≅ Con(RA) ≅ NFil(RA).

It follows that the theory of normal filters in a quasi-𝖥𝖫𝑤-algebra A is equivalent to the theory of normal filters (i.e. the 1-ideals) 
of its associated 𝖥𝖫𝑤-algebra RA. At this point one can add suitable axioms to quasi-𝖥𝖫𝑤-algebras to get subvarieties that are the 
7

quasi-replica of subvarieties of 𝖥𝖫𝑤. And for each of those the theory of normal filters is equivalent to the theory of 1-ideals of 
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the corresponding subvariety of 𝖥𝖫𝑤. Examples of this are quasi-pseudo-𝖡𝖫-algebras [14], quasi-pseudo-𝖬𝖵-algebras [13] and 
many others. We also stress that we have not exhausted all the possible variations; for instance the reader can have fun in dissecting 
[23].

7. Conclusions

First we want to emphasize that there are at least two topics that we have not touched. The first one deals with algebras whose 
type contains a binary operation that resembles the implication and a constant 1; the most famous (and serious) examples of algebras 
of this kind are 𝖡𝖢𝖪 and 𝖡𝖢𝖨-algebras. Of course the poverty of the language allows the construction of many different algebraic 
structures with many non equivalent definitions of “filter” and the vast majority of them is totally pointless and utterly uninteresting. 
And those that might be of some interests are those for which the filter theory corresponds to the theory of 1-ideals; the reader may 
want to look at [5], Example 4.5 to understand what we mean.

The second topic we have not considered is the introduction of the so-called fuzzy filters on residuated structure; we suspect that 
a lot can be said in that direction as well but we did not have the stomach for it.

Finally let us give more explanations on the reasons why we have embarked in this enterprise. The main reason of course is 
that we believe that this is bad mathematics and should be avoided. But there are also more practical reasons, as this way of 
doing mathematics gives a bad reputation to residuated structures and, in the end, to “contemporary” algebraic logic. This is not an 
exaggeration: my original field is universal algebra and I have listened to many of my colleagues joking about it. . . Of course one 
might object that most of these papers end up in fourth rate journal or worse so no harm is done; but one should not forget that those 
journals are indexed in Scopus for instance, so they give metrics that are commonly accepted when evaluating a researcher. How 
this impacts on the credibility of our field is anybody’s guess (and my guess should be, at this point, clear). In conclusion I believe 
that as a group we have the responsibility to police our field more effectively than we are doing now. Other fields have found ways 
of doing that; maybe it is time to think seriously about it.
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