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Mal’cev classes of left quasigroups and quandles

Marco Bonatto and Stefano Fioravanti

Abstract. In this paper we investigate some Mal’cev classes of varieties of left quasigroups. We
prove that the weakest non-trivial Mal’cev condition for a variety of left quasigroups is having
a Mal’cev term and that every congruence meet-semidistributive variety of left quasigroups is
congruence arithmetic. Then we specialize to the setting of quandles for which we prove that
the congruence distributive varieties are those which have no non-trivial finite models.

1. Introduction

Starting from Mal’cev’s description of congruence permutability as in [18], the
problem of characterizing properties of classes of varieties as Mal’cev conditions
has led to several results. Mal’cev conditions turned out to be extremely useful, for
instance to capture lattice theoretical properties of the congruence lattices of the
algebras of classes of variety. In [24] A. Pixley found a strong Mal’cev condition
defining the class of varieties with distributive and permuting congruences. In [15]
B. Jónsson shows a Mal’cev condition characterizing congruence distributivity, in
[10] A. Day shows a Mal’cev condition characterizing the class of varieties with
modular congruence lattices.

These results are examples of a more general theorem obtained independently
by Pixley [25] and R. Wille [28] that can be considered as a foundational result in
the field. They proved that if p 6 q is a lattice identity, then the class of varieties
whose congruence lattices satisfy p 6 q is the intersection of countably many
Mal’cev classes. [25] and [28] include an algorithm to generate Mal’cev conditions
associated with congruence identities.

Furthermore, the class of varieties satisfying a non-trivial idempotent Mal’cev
condition (i.e. any idempotent Mal’cev condition which is not satisfied by any
projection algebra) is known to be a Mal’cev class [27]. This class of varieties was
characterized by the existence of a Taylor term, namely an idempotent n-ary term
t that for every coordinate i 6 n satisfies an identity as

t(x1, . . . , xn) ≈ t(y1, . . . , yn)

where x1, . . . , xn, y1, . . . , yn ∈ {x, y}, xi = x and yi = y.
Recently this class of varieties was proven to be a strong Mal’cev class [22], i.e.

there exists the weakest strong idempotent Mal’cev condition.
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A variety V is meet-semidistributive if the implication

α ∧ β = α ∧ γ =⇒ α ∧ β = α ∧ (β ∨ γ),

holds for every triple of congruences of any algebra in V. It is still unknown if the
class of meet-semidistributivity varieties is defined by a strong Mal’cev condition,
nevertheless it can be characterized in several different ways [23]. On the other
hand, we are going to use the characterization of meet-semidistributive varieties
in terms of commutator of congruences as defined in [11].

Theorem 1.1. [17, Theorem 8.1 items (1), (3), (4)]
Let V be a variety. The following are equivalent:

(i) V is a congruence meet-semidistributive variety.
(ii) No member of V has a non-trivial abelian congruence.
(iii) [α, β] = α ∧ β for every α, β ∈ Con(A) and every A ∈ V.

Let A be an algebra, let α ∈ Con(A), and let a ∈ A. We denote by [a]α the
congruence class of a in α. The algebra A is said to be:

(i) coherent if every subalgebra of A which contains a block of a congruence
α ∈ Con(A) is a union of blocks of α.

(ii) Congruence regular if whenever [a]α = [a]β for some a ∈ A and α, β in
Con(A) then α = β.

(iii) Congruence uniform if the blocks of every congruence α ∈ Con(A) have
all the same cardinality.

A variety V is coherent (resp. congruence uniform, congruence regular) if all
the algebras in V are coherent (resp. congruence uniform, congruence regular).
Because for varieties regularity is equivalent to the condition that no non-zero
congruence has a singleton congruence class, every congruence uniform variety is
congruence regular. Congruence regularity and coherency are weak Mal’cev classes
(see [9] and [12]). On the other hand, it is known that congruence uniformity is
not defined by a Mal’cev condition [26].

Some of the most studied Mal’cev classes of varieties are displayed in Figure
1. We refer the reader to [2] for further informations about such classes and to [3]
for a more exhaustive poset of Mal’cev classes.

The main goal of this paper is to investigate Mal’cev conditions for racks and
quandles. In particular, this paper is concerned with certain Mal’cev classes of va-
rieties, namely, the varieties having a Taylor term, a Mal’cev term and congruence
meet semi-distributive varieties.

Left quasigroups are rather combinatorial objects, nevertheless Mal’cev classes
of varieties of left quasigroups behave in a pretty rigid way. A characterization of
Mal’cev varieties of left quasigroups is provided in Theorem 3.2: they are the vari-
eties for which every left quasigroup is connected, (a left quasigroup is connected
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Figure 1: Mal’cev classes: T = Taylor term, wDF = weak difference term, CE = non
trivial congruence equation, DF = difference term, CM = congruence modularity, Ed
= edge term, CP = congruence permutability, M = Mal’cev term, CO = congruence
coherency, SD(∧) = meet semidistributivity, SD(∨) = join semidistributivity, CD =
congruence distributivity, NU = CD

⋂
Ed = near unanimity term, CA = CD

⋂
M =

congruence arithmeticity.

if the action of its left multiplication group is transitive). Moreover, we show
that several Mal’cev conditions are equivalent for varieties of left quasigroups. In
particular, all the classes in the interval between the class of Taylor varieties and
the class of coherent varieties in Figure 1 collapse into the strong Mal’cev class
of varieties with a Mal’cev term. Moreover, we prove that the weakest non-trivial
(not necessarily idempotent) Mal’cev condition for left quasigroups is having a
Mal’cev term, and all such varieties are congruence uniform. In Corollary 3.3
we characterize finite Mal’cev idempotent left quasigroups as the superconnected
idempotent left quasigroups (i.e. left quasigroups such that all the subalgebras are
connected) using a general result given in [1].

In Theorem 3.5 we show that a congruence meet-semidistributive variety of left
quasigroups is congruence arithmetic.

As a consequence of our two main theorems, the poset of Mal’cev classes of left
quasigroups in Figure 1 turns into the one in Figure 2.

T = CO = M

NU = SD(∧) = CA

Figure 2: Mal’cev classes of varieties of left quasigroups.

Then we turn our attention to quandles, i.e. idempotent left distributive left
quasigroups. Quandles are of interest since they provide knot invariants [16, 19].
The class of quandles used for such topological applications is the class of con-
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nected quandles. According to the characterization of Mal’cev varieties of left
quasigroups, connectedness is actually a relevant property also algebraically. Some
of the contents of the paper are formulated for semimedial left quasigroups, a class
that contain racks and medial left quasigroups [5].

A characterization of distributive varieties of semimedial left quasigroup is
given by the properties of the displacement group in Theorem 4.3 where we take
advantage of the adaptation of the commutator theory in the sense of [11] de-
veloped first for racks in [8] and then extended to semimedial left quasigroups in
[5].

In Theorem 4.9 we prove that a variety of quandles is distributive if and only
if it has no finite models, making use of the characterization of strictly simple and
simple abelian quandles [4]. We also prove that there is no distributive variety of
involutory quandles. The problem of finding an example of non-trivial distributive
variety of quandles (resp. left quasigroups) is still open.

Examples of non-trivial Mal’cev varieties of quandles (which members are not
just left quasigroup reducts of quasigroups) are provided in Table 1.

Notation and terminology. We refer to [2] for basic concepts of universal
algebra. Let A be an algebra and t be an n-ary term. Then we say that A satisfies
the identity t1(x1, . . . , xn) ≈ t2(x1, . . . , xn) if t1(a1, . . . , an) = t2(a1, . . . , an) for
every ai ∈ A.

We denote by H(A), S(A) and P(A) respectively the set of homomorphic
images, subalgebras and powers of the algebra A and V(K) denotes the variety
generated by the class of algebras K. We denote by Con(A) the congruence lattice
of A, the block of a ∈ A with respect to a congruence α is denoted by [a]α (or
simply by [a]) and the factor algebra by A/α. We denote by 1A = A × A and
0A = {(a, a) : a ∈ A} respectively the top and bottom element in the congruence
lattice of A

Through all the paper, concrete examples of left quasigroups are computed
using the software Mace4 [20] and examples of quandles are taken from the library
of connected quandles of GAP [13].

2. Left quasigroups

A left quasigroup is a binary algebraic structure (Q, ∗, \) such that the following
identities hold:

x ∗ (x\y) ≈ y ≈ x\(x ∗ y).

Hence, a left quasigroup is a set Q endowed with a binary operation ∗ such that
the mapping Lx : y 7→ x ∗ y is a bijection of Q for every x ∈ Q. The right
multiplication mappings Rx : y 7→ y ∗ x need not to be bijections. Clearly the left
division is defined by x\y = L−1x (y), so we usually denote left quasigroups just
as a pair (Q, ∗). Nevertheless, if (Q, ∗) is a left quasigroup and (R, ∗) is a binary
algebraic structure and f : Q→ R is a homomorphism with respect to ∗, the image
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of f is not necessarily a left quasigroup. We define the left multiplication group of
Q as LMlt(Q) = 〈La, a ∈ Q〉.

Let α be a congruence of a left quasigroup Q. The map

LMlt(Q) −→ LMlt(Q/α), La 7→ L[a]

can be extended to a surjective morphism of groups with kernel denoted by LMltα.
The displacement group relative to α, denoted by Disα, is the normal closure in
LMlt(Q) of {LaL−1b : aα b}. In particular, we denote by Dis(Q) the displacement
group relative to 1Q and we simpy call it the displacement group of Q. The maps
defined above clearly restrict and corestrict to the displacement groups of Q and
Q/α and we denote by Disα the intersection between LMltα and Dis(Q).

Lemma 2.1. Let K be a class of left quasigroups and Q ∈ V(K). Then:

(i) Dis(Q) ∈ V({Dis(R) : R ∈ K}).
(ii) LMlt(Q) ∈ V({LMlt(R) : R ∈ K}).

Proof. (i). Let {Qi : i ∈ I} ⊆ K. The group Dis(Qi/α) ∈ H(Dis(Qi)). Let S be
a subalgebra of Qi and H = 〈La, a ∈ S〉. Then

Dis(S) ∼= 〈hLaL−1b h−1|S , a, b ∈ S, h ∈ H〉 ∈ HS(Dis(Qi)).

Let Q =
∏
i∈I Qi and αi the kernel of the canonical homomorphism onto Qi. Then⋂

i∈I Disαi = 1 and so we have a canonical embedding

Dis(Q) ↪→
∏
i∈I

Dis(Q)/Disαi =
∏
i∈I

Dis(Qi),

i.e. Dis(Q) ∈ SP({Dis(Qi) : i ∈ I}). The same argument can be used for (ii).

In [5, Section 1] we introduced the lattice of admissible subgroups of a left
quasigroup Q. Given N 6 LMlt(Q) we have two equivalence relations on the
underlying set of the left quasigroup Q:

(i) the orbit decomposition with respect to the action of N , denoted by ON .

(ii) The equivalence conN defined as
a conN b if and only if LaL−1b ∈ N.

The assignments α 7→ Disα (resp. Disα) and N 7→ conN (resp. ON ) are
monotone and Disα 6 Disα (see the characterization of congruences in terms of
the properties of subgroups provided in [5, Lemma 1.5]), whereas in general no
containment between the equivalences conN and ON holds.

We define the lattice of admissible subgroups as

Norm(Q) = {N E LMlt(Q) : ON ⊆ conN}.
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In particular, ON is a congruence of Q whenever N is admissible and Disα,Disα

∈ Norm(Q) for every congruence α. The assignments N 7→ ON and α 7→ Disα pro-
vide a monotone Galois connection between Norm(Q) and the congruence lattice
of Q [5, Theorem 1.10].

The Cayley kernel of a left quasigroup Q is the equivalence relation λQ defined
by

a λQ b if and only if La = Lb.

Such a relation is not a congruence in general. We say that:
(i) Q is a Cayley left quasigroup if λQ is a congruence. A class of left quasi-

groups is Cayley if all its members are Cayley left quasigroups.
(ii) Q is faithful if λQ = 0Q and Q is superfaithful if all the subalgebras of Q

are faithful.
(iii) Q is permutation if λQ = 1Q, i.e. there exists f ∈ Sym(Q) such that a∗b =

f(b) for every a, b ∈ Q. If f = 1 we say that Q is a projection left
quasigroup (we denote by Pn the projection left quasigroup of size n).
Note that, permutation left quasigrouops are unary algebras and that pro-
jection left quasigroups are also called right zero semigroups.

According to [7, Theorem 5.3], the strongly abelian congruences of left quasi-
groups (in the sense of [21]) are exactly those below the Cayley kernel. Equiv-
alently, if α is a congruence of a left quasigroup Q, then α 6 λQ if and only if
Disα = 1.

A left quasigroup Q is connected if its left multiplication group is transitive on
Q. We say that Q is superconnected if all the subalgebras of Q are connected. We
investigated superconnected left quasigroups in [6].

Proposition 2.2. [6, Corollary 1.6] A left quasigroup Q is superconnected if and
only if P2 /∈ HS(Q).

The property of being (super)connected is also reflected by the properties of
congruences.

Lemma 2.3. Connected left quasigroups are congruence uniform and congruence
regular.

Proof. Let Q be a connected left quasigroup and assume that [a]α = [a]β for some
a ∈ Q. For every b ∈ Q there exists h ∈ LMlt(Q) with b = h(a). The blocks of
congruences are blocks with respect to the action of LMlt(Q). Then

[b]α = [h(a)]α = h([a]α) = h([a]β) = [h(a)]β = [b]β ,

and so α = β. In particular, the mapping h is a bijection between [a]α and [b]α
for every α ∈ Con(Q).

Lemma 2.4. Superconnected left quasigroups are coherent.



Qasigroups and quandles 183

Proof. Let Q be a superconnected left quasigroup, M be a subalgebra of Q and
α ∈ Con(Q) with [a]α ⊆ M for some a ∈ M . For every b ∈ M there exists
h ∈ LMlt(M) such that b = h(a). The blocks of α are blocks with respect to the
action of LMlt(Q) and M is a subalgebra, then h([a]α) = [b]α ⊆ M . Therefore,
M =

⋃
b∈M [b]α.

A quasigroup is a binary algebra (Q, ∗, \, /) such that (Q, ∗, \) is a left quasi-
group (the left quasigroup reduct of Q) and (Q, ∗, /) is a right quasigroup. The
left quasigroups obtained as reducts of quasigroups are called latin (note that con-
gruence and subalgebras of a quasigroup and its left quasigroup reduct might be
different due to the different signature considered for the two structures). Latin
left quasigroups are superfaithful and connected.

The squaring mapping for a left quasigroup is the map s : Q −→ Q, a 7→ a∗a.
We denote the set of idempotent elements of Q by

E(Q) = Fix(s) = {a ∈ Q : a ∗ a = a}.
We say that:

(i)] Q is idempotent if Q = E(Q), i.e. the identity x ∗ x ≈ x holds in Q.
(ii) Q is 2-divisible if s is a bijection.
(iii) Q is n-multipotent if |sn(Q)| = 1 (here sn = s ◦ sn−1 denotes the usual

composition of maps). If n = 1 we say that Q is unipotent.

3. Mal’cev classes of left quasigroups
In this section we turn our attention to Mal’cev classes of left quasigroups. Ac-
cording to [17, Theorem 3.13] a variety with a Taylor term does not contain any
strongly abelian congruence, so in particular Taylor varieties of left quasigroup do
not contain permutation left quasigroups (if Q is permutation, then 1Q = λQ is
strongly abelian).

Proposition 3.1. Let V be a Taylor variety of left quasigroups. Then Dis(Q) is
transitive on Q for every Q ∈ V.

Proof. LetQ ∈ V. According to [5, Corollary 1.9], P = Q/ODis(Q) is a permutation
left quasigroup and so P is trivial, i.e. Dis(Q) is transitive on Q.

For left quasigroups, the interval of Mal’cev classes between the class of Taylor
varieties and the class of coherent varieties collapses into the class of varieties with
a Mal’cev term.

Theorem 3.2. Let V be a variety of left quasigroups. The following are equivalent:
(i) V has a Mal’cev term.
(ii) V has a Taylor term.

(iii) V satisfies a non-trivial idempotent Mal’cev condition.



184 M. Bonatto and S. Fioravanti

(iv) V satisfies a non-trivial Mal’cev condition.
(v) P2 /∈ V.

(vi) Every algebra in V is superconnected.
(vii) V is coherent.

In particular, every Mal’cev variety of left quasigroup is congruence uniform.

Proof. The implications (i) ⇒ (ii) and (vii) ⇒ (i) hold in general as represented
in Figure 1, (ii) ⇒ (iii) ⇒ (iv) ⇒ (iv) clearly hold.

(v) ⇒ (vi). According to Proposition 2.2, if P2 /∈ V then every left quasi-
group in V is connected and then superconnected since V is closed under taking
subalgebras.

(vi)⇒ (vii). By Lemma 2.4 every superconnected left quasigroup is coherent,
i.e. V is coherent.

According to Lemma 2.3, connected left quasigroups are congruence uniform,
therefore so is any Mal’cev variety of left quasigroup.

Corollary 3.3. Let Q be a finite idempotent left quasigroup. Then V(Q) has a
Mal’cev term if and only if Q is superconnected.

Proof. Let Q be a finite idempotent left quasigroup. According to [1, Theorem
1.1], V(Q) has Taylor term if and only if P2 /∈ HS(Q). Thus, V(Q) has Taylor
term if and only if Q is superconnected by Proposition 2.2.

Proposition 3.4. Let V be a Cayley (resp. idempotent) Mal’cev variety of left
quasigroups and Q ∈ V. Then:

(i) every left quasigroups in V is superfaithful.
(ii) The Dis operator is injective and the con operator is surjective and

α = conDisα = conDisα for every α ∈ Con(Q).

Proof. (i). Idempotent superconnected left quasigroups are superfaithful accord-
ing to [6, Lemma 1.9], so the claim follows if V is idempotent.

Assume that V is a Cayley variety. The Cayley kernel is a strongly abelian
congruence for Cayley left quasigroups (see [7, Proposition 5.1]), therefore the left
quasigroups in V are superfaithful.

(ii). All the left quasigroups in V are superfaithful by (i). According to [5,
Proposition 1.6] we have that

α 6 conDisα 6 conDisα = α.

and so the operator conDis is the identity on Con(Q).

Let us turn our attention to congruence distributive varieties of left quasi-
groups. We have already proved that every Taylor variety of left quasigroups is
also Mal’cev. Therefore, the left branch of the poset in Figure 1 also collapses into
the Mal’cev class of distributive varieties.
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Theorem 3.5. Let V be a variety of left quasigroups. The following are equivalent:

(i) V is congruence meet-semidistributive.

(ii) V is congruence distributive.

(iii) V is congruence arithmetic.

According to Theorems 3.2 and 3.5, for left quasigroups the poset of Mal’cev
classes in Figure 1 turns into the one in Figure 2.

A term t(x1, . . . , xn) in the language of left quasigroups is a well-formed formal
expression using the variables x1, . . . , xn and the operations {∗, \}. It is easy to
see that the term t is either a variable or can be expressed by

t(x1, . . . xn) = u(x1, . . . , xn) • r(x1, . . . , xn) (1)

where • ∈ {∗, \} and u and r are suitable subterms. Let u be a n-ary term. We
define

L0
u(x1,...,xn)

(y) = y

Lk+1
u(x1,...,xn)

(y) = u(x1, . . . , xn) ∗ Lku(x1,...,xn)
(y),

Lk−1u(x1,...,xn)
(y) = u(x1, . . . , xn)\Lku(x1,...,xn)

(y),

for k ∈ Z. Using this notation we have that every term t can be written as

t(x1, . . . , xn) = Lk1u1(x1,...,xn)
. . . Lkmum(x1,...,xn)

(xR)

where ui is a subterm, ki = ±1 for 1 6 i 6 m and xR ∈ {xi : i = 1, . . . , n}. We
say that xR is the rightmost variable of t.

Every identity in the language of left quasigroups t1 ≈ t2 has the form

Lk1w1(x1,...,xn)
. . . Lkmwm(x1,...,xn)

(xR) ≈ Lr1u1(y1,...,yl)
. . . Lrlul(y1,...,yl)(yR),

or equivalently,

L−rlul(y1,...,yl)
. . . L−r1u1(y1,...,yl)

Lk1w1(x1,...,xn)
. . . Lkmwm(x1,...,xn)

(xR) ≈ yR. (2)

The projection left quasigroup P2 satisfies (2) if and only if xR = yR. So a variety
of left quasigroups V has a Mal’cev term if and only if it satisfies an identity as in
(2) with xR 6= yR.

Note that, an identity as in (2) might have just the trivial model. For instance
if V is a variety of idempotent left quasigroups satisfying such an identity and
the variable yR does not appear in the left handside then V is trivial. Indeed,
identifying all the variables x1, . . . , xn, y1, . . . , yl we have Lk1+...+kmxR (xR) = xR ≈
yR.
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Example 3.6. A variety axiomatized by some identities as in (2) might be made
up of latin left quasigroups. For instance, Mal’cev varieties of left quasigroups
are provided by varieties of quasigroup in which every member is term equivalent
to its left quasigroup reduct. This is the case of the following examples (for an
example of a Mal’cev variety of latin left quasigroups not arising from quasigroups
see Proposition 4.2).

(i) The variety of commutative left quasigroups defined by the identity
x ∗ y ≈ y ∗ x.

(ii) Let n ∈ N. The variety of left quasigroups satisfying the identity
(. . . ((x ∗ y) ∗ y) . . .) ∗ y︸ ︷︷ ︸

n

≈ x.

(iii) The variety of paramedial left quasigroups, identified by the identity
(x ∗ y) ∗ (z ∗ t) ≈ (t ∗ y) ∗ (z ∗ x).

Example 3.7. Mal’cev varieties of left quasigroups are not limited to varieties of
latin left quasigroups, as witnessed by the following examples.

(i) Let Vn be the variety of left quasigroups satisfying Lnx(x) ≈ Lny (y) where
n ∈ Z. Then

m(x, y, z) = L−nx Lny (z)

is a Mal’cev term. Let n > 0, Q be a set and e be a fixed element in Q. We
define Le = 1 and La to be any cycle (a, . . . , e) of length n for every a ∈ Q,
a 6= e (if n < 0 we define L−1a in the same way). Then (Q, ∗) ∈ Vn.

(ii) The variety of n-multipotent left quasigroups is axiomatized by the identity

sn(x) = Lsn−1(x)Lsn−2(x) . . . Ls(x)Lx(x) ≈ Lsn−1(y)Lsn−2(y) . . . Ls(y)Ly(y) = sn(y).

A Mal’cev term for n-multipotent left quasigroups is

m(x, y, z) =
(
Lsn−2(x) . . . Ls(x)Lx

)−1
Lsn−2(y) . . . Ls(y)Ly(z).

Example 3.8. Let G be a variety of groups. We denote the class of left quasi-
groups such that the left multiplication group (resp. displacement group) belongs
to G by L(G) (resp. D(G)). According to Lemma 2.1 such classes are varieties.
Since LMlt(P2) = Dis(P2) = 1 then P2 belongs to L(G) and to D(G) and so they
have no Mal’cev term.

4. Semimedial left quasigroups
Semimedial left quasigroups are defined by the semimedial law:

(x ∗ y) ∗ (x ∗ z) ≈ (x ∗ x) ∗ (y ∗ z).
The projection left quasigroup P2 satisfies the semimedial law and so the whole
variety of semimedial left quasigroups is not Mal’cev.
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A relevant subvariety of 2-divisible semimedial left quasigroups is the variety
of racks, axiomatized by the identity

x ∗ (y ∗ z) ≈ (x ∗ y) ∗ (x ∗ z).
Idempotent semimedial left quasigroups are racks and they are called quandles.
If Q is semimedial then the squaring map s is a homomorphism and so if h =
Lk1a1 . . . L

kn
an ∈ LMlt(Q) we have

sh = Lk1s(a1) . . . L
kn
s(an)︸ ︷︷ ︸

=hs

s

and the subset E(Q) = {a ∈ Q : a ∗ a = a} is a subquandle of Q. Medial left
quasigroups, i.e. those for which

(x ∗ y) ∗ (z ∗ t) ≈ (x ∗ z) ∗ (y ∗ t)
holds are also semimedial.

For a semimedial left quasigroup Q, the admissible subgroups are

Norm(Q) = {N E LMlt(Q) : Ns 6 N}

where Ns = {hs : h ∈ N}. Note that [g, h]s = [gs, hs] for every g, h ∈ LMlt(Q).
Thus, if N ∈ Norm(Q) then [LMlt(Q), N ] ∈ Norm(Q) (see [5, Lemma 3.1]).

The relation conN is a congruence for every admissible subgroup N and the as-
signments α 7→ Disα and N 7→ conN provide a second monotone Galois connection
between the lattice of congruences and the admissible subgroups [5, Theorem 3.5].
Such a Galois connection is also well-behaved with respect to the commutator of
congruences. Indeed, in a Mal’cev variety the commutator of congruences in the
sense of [11] is completely determined by such Galois connection.

Lemma 4.1. Let V be a Mal’cev variety of semimedial left quasigroups and Q ∈ V.
Then

[α, β] = con[Disα,Disβ ]

for every α, β ∈ Con(Q).

Proof. The variety V is Cayley ([5, Proposition 3.6]), and so the left quasigroups
in it are superfaithful by Proposition 3.4(i). Therefore we can apply directly [5,
Proposition 3.10]

Let us show that unipotent semimedial left quasigroups are latin, providing an
example of variety of latin left quasigroups that is not term equivalent to a variety
of quasigroups. Recall that a group G acting on a set Q is regular if for every
a, b ∈ Q there exists a unique g ∈ G such that b = g · a. Equivalently the action is
transitive and the pointwise stabilizers are trivial.

Proposition 4.2. Let Q be a unipotent semimedial left quasigroup and s(Q) =
{e}. Then:

(i) the group Dis(Q) is regular and Dis(Q) = {LaL−1e : a ∈ Q}.
(ii) Q is latin.
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Proof. (i). Let h = Lk1a1 . . . L
kn
an ∈ Dis(Q). According to [5, Lemma 1.4] k1 +

. . . + kn = 0 and so hs = Lk1s(a1) . . . L
kn
s(an)

= Lk1+...+kne = 1. If h ∈ Dis(Q)a, then
La = Lh(a) = hsLah

−1 = Lah
−1, i.e. h = 1 and so Dis(Q) is regular. On the other

hand, e = (e\a)∗(e\a) = Le\aL
−1
e (a), and so we have Dis(Q) = {LaL−1e : a ∈ Q}.

(ii). Let a, b ∈ Q. According to (i) Dis(Q) = {LcL−1e : c ∈ Q} and it is
regular. Thus, there exists a unique c such that

a = LcL
−1
e (b) = c ∗ (e\b)

and so the right multiplication Re\b is bijective for every b ∈ Q.

4.1. Congruence distributive varieties
According to Theorem 3.5 we have that congruence meet-semidistributive varieties
of left quasigroups are congruence distributive. For semimedial left quasigroups
congruence distributivity is determined by the properties of the relative displace-
ment groups and of the admissible subgroups.

Proposition 4.3. Let V be a variety of semimedial left quasigroups. The following
are equivalent:

(i) V is distributive.
(ii) Disα = [Disα,Disα] for every Q ∈ V and α ∈ Con(Q).
(iii) If N ∈ Norm(Q) is solvable then N = 1 for every Q ∈ V.

Proof. It is enough to prove the equivalence for meet-semidistributive varieties
thanks to Theorem 3.5.

Let Q ∈ V and α ∈ Con(Q). By Lemma 4.1 we have

Dis[α,α] = Discon[Disα,Disα]
6 [Disα,Disα] 6 Disα.

(i) ⇒ (ii). By Theorem 1.1 we have [α, α] = α and so Disα = Dis[α,α] =
[Disα,Disα].

(ii) ⇒ (iii). Let N ∈ Norm(Q) be solvable of length n and let D be the non-
trivial (n − 1)th element of the derived series of N . So D is abelian and it is in
Norm(Q). Hence, according to [5, Lemma 2.6], β = OD is a non-trivial abelian
congruence of Q. Therefore Disβ is abelian and we have Disβ = [Disβ ,Disβ ] = 1.
Hence, β 6 λQ = 0Q, contradiction.

(iii) ⇒ (i). If α is abelian then Disα is abelian [8, Corollary 5.4]. Hence
Disα = [Disα,Disα] = 1, i.e. α ≤ λQ = 0Q.

If Q is a 2-divisible semimedial left quasigroup then

Norm(Q) = {N E LMlt(Q) : sNs−1 6 N}

since s is bijective. In particular, Z(N) is a characteristic subgroup of N , and so
it is normal in LMlt(Q) and sZ(N)s−1 6 Z(N). Thus, Z(N) ∈ Norm(Q).
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Proposition 4.4. Let V be a variety of 2-divisible semimedial left quasigroups.
The following are equivalent

(i) V is distributive
(ii) Z(N) = 1 for every Q ∈ V and every N ∈ Norm(Q).

Proof. We are using the characterization of distributive varieties given in Propo-
sition 4.3(iii).

(i)⇒ (ii). If N ∈ Norm(Q), then Z(N) ∈ Norm(Q) is solvable and so Z(N)=1.
(ii) ⇒ (i). If Z(N) = 1 for every N ∈ Norm(Q) then there are no abelian

subgroups in Norm(Q). Since [N,N ] ∈ Norm(Q) for every N ∈ Norm(Q) then
there are no solvable subgroup in Norm(Q).

Corollary 4.5. Let V be a distributive variety of semimedial left quasigroups.
Then:

(i) V does not contain any non-trivial medial left quasigroup.
(ii) V does not contain any non-trivial finite 2-divisible latin left quasigroup.

In particular, there is no distributive variety of medial left quasigroups.

Proof. The variety V omits solvable algebras. Medial left quasigroups are nilpo-
tent [5, Corollary 4.4] and finite 2-divisible latin semimedial left quasigroups are
solvable [5, Corollary 3.20].

4.2. Mal’cev varieties of quandles
In this Section we focus on quandles. A remarkable construction of quandles is
the following.

Example 4.6. (cf. [16]) Let G be a group, f ∈ Aut(G) and a subgroup H 6
Fix(f) = {a ∈ G : f(a) = a}. Let G/H be the set of left cosets of H and the
multiplication defined by

aH ∗ bH = af(a−1b)H.

Then Q(G,H, f) = (G/H, ∗, \) is a quandle, called a coset quandle. A coset
quandle Q(G,H, f) is called principal if H = 1 and in such case it is denoted by
Q(G, f). A principal quandle is called affine if G is abelian and in such case it is
denoted by Aff(G, f).

Connected quandles can be represented as coset quandles over their displace-
ment group.

Proposition 4.7. [14, Theorem 4.1] Let Q be a connected quandle Q. Then Q

is isomorphic to Q(Dis(Q),Dis(Q)a, L̂a) for every a ∈ Q, where L̂a : Dis(Q) −→
Dis(Q) is defined by setting x 7→ LaxL

−1
a for every x ∈ Dis(Q).

The class of latin quandles is not a subvariety of the variety of quandles. Indeed
the non-connected quandle Aff(Z,−1) embeds into the latin quandle Aff(Q,−1).
On the other hand, the class of principal quandles of a Mal’cev variety is a subva-
riety.
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Theorem 4.8. The class of principal quandles of a Mal’cev variety V is a subva-
riety of V.

Proof. The product of principal quandles is principal [4, Corollary 2.3]. By virtue
of [6, Proposition 2.11] subquandles and factors of principal Mal’cev quandles are
principal. Hence the class of principal quandles of V is a subvariety.

SmallQuandle(28,i) for i = 3, 4, 5, 6 are the smallest examples of non-latin
superconnected quandles in the [13] library of GAP. The identities in Table 1
provide Mal’cev varieties of quandles that contain such minimal examples.

Table 1: Examples of Mal’cev varieties of quandles

Identity Witness in the RIG library
LxL

2
yLxLyL

2
xLyLxL

2
y(x) ≈ y SmallQuandle(28,3)

L2
xLyLxL

2
yLxLyL

2
xL

2
y(x) ≈ y SmallQuandle(28,4)

LxL
2
yLxLyL

2
xLyLxL

2
y(x) ≈ y SmallQuandle(28,5)

LxL
2
yLxLyL

2
xLyLxL

2
y(x) ≈ y SmallQuandle(28,6)

Distributive varieties of quandles have the following characterization.

Theorem 4.9. Let V be a variety of quandles. The following are equivalent:
(i) V contains a non-trivial abelian quandle.
(ii) V has a non-trivial finite model.

In particular, V is distributive if and only if V has no non-trivial finite model.

Proof. (i) ⇒ (ii). According to [4, Theorem 3.21] simple abelian quandles are
finite. Let Q ∈ V be a non-trivial abelian quandle. According to the main result
of [?], V(Q) ⊆ V contains a simple abelian quandle which is finite.

(ii)⇒ (i). Let assume that V contains a non-trivial finite quandle Q. Accord-
ing to [4, Theorem 4.7], the minimal subquandles of Q with respect to inclusion
are abelian.

The variety V is idempotent, and so it contains an abelian congruence if and
only if it contains an abelian algebra. Thus, the last claim follows.

Corollary 4.10. Let V be a distributive variety of semimedial left quasigroups
and Q ∈ V. If E(Q) is finite then |E(Q)| = 1.

Proof. According to Theorem 4.9 if E(Q) is finite then V(E(Q)) contains an
abelian algebra.

Involutory quandles are the quandles that satisfy the identity x(xy) ≈ y. A
direct consequence of the contents of [6, Section 3] is that connected involutory
quandles on two generators are finite, so we have the following Corollary of The-
orem 4.9.
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Corollary 4.11. There is no distributive variety of involutory quandles.
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