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Abstract—This article presents the scientific outcomes of the
2022 Hyperspectral Pansharpening Challenge organized by the
12th IEEE Workshop on Hyperspectral Image and Signal Pro-
cessing: Evolution in Remote Sensing (IEEE WHISPERS 2022).
The 2022 Hyperspectral Pansharpening Challenge aims at fusing
a panchromatic image with hyperspectral data to get a high spatial
resolution hyperspectral cube with the same spatial resolution of
the panchromatic image while preserving the spectral information
of hyperspectral data. Four datasets acquired by the PRISMA
mission owned and managed by the Italian Space Agency have been
prepared for participants. They are made available for the benefit
of the scientific community. Each dataset contains a panchromatic
image and a hyperspectral cube with different spatial resolutions.
More than 100 registrations have been received for the event. Four
teams submitted their outcomes. Since no team actually outper-
formed the baseline provided by the organizers, the challenge was
declared inconclusive and no winner was recognized.

Index Terms—Hyperspectral imaging, image fusion, optical
imaging, PRISMA images, pansharpening, remote sensing,
resolution enhancement.

I. INTRODUCTION

I
N THE design of optical remote sensing sensors, you cannot
have your cake and eat it too. There are tradeoffs between

the signal-to-noise ratio (SNR), spectral resolution, and spatial
resolution. Therefore, optical remote sensing images are typ-
ically either provided with a high spatial resolution but with
limited bands (e.g., panchromatic or Red-Green-Blue (RGB)
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images), or with high spectral resolution but with lower spa-
tial resolution (e.g., multi-/hyperspectral images). To obtain a
super image (with both high spectral and spatial resolution
image), researchers have developed many methods, ranging
from image super-resolution (combining multiple hyperspectral
images to enhance their spatial resolution) to pansharpening.
Pansharpening aims at fusion of a panchromatic image with a
multi-/hyperspectral one to generate an image with the same
spatial resolution of the panchromatic data and the spectral
resolution of the multi-/hyperspectral image. Many applications
have benefited from pansharpening, such as visual interpretation
in Google Earth, land-cover and land-use mapping, and so forth.

HyperSpectral (HS) images are widely used for several tasks
thanks to their very appealing spectral features. The other side
of the coin is represented by the coarse spatial resolution, often
limited to 30 m for satellite-based observations. To overcome
this issue, recent missions, such as the Hyperspectral Precursor
and Application Mission (PRISMA) owned and managed by
the Italian Space Agency, have been designed to simultaneously
acquire both an HS cube and a Panchromatic (Pan) image. Lever-
aging on the different spatio-spectral features, hyperspectral
pansharpening relies upon the fusion of the abovementioned
products with the aim of taking the best of them.

This research topic has been strongly debated in the last
decade leading to an extensive review paper in 2015 [1] present-
ing a qualitative and quantitative comparison of different HS
pansharpening algorithms, both considering methods originally
developed for multispectral pansharpening [2] and techniques
specifically designed for HS pansharpening. This study high-
lighted two important aspects that are still relevant today: 1)
the tradeoff between computational cost (critical for images
with hundreds of bands) and fusion performance; and 2) the
effect of a residual space-varying registration error between the
Pan band and the HS cube. When such misregistration occurs,
classical pansharpening methods, mainly those based on com-
ponent substitution or some specifically adapted multiresolution
analysis methods, are still competitive thanks to their robustness
to these issues [3], [4]. Excluding previous works on multi-
sensor classification that did not adopt any HS pansharpening
algorithm, the pioneering study about HS pansharpening was
published in 2007 [5]. It proposed an optimized component sub-
stitution method, which was formalized in 2008 for multispectral
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pansharpening [6], and compared it with existing pansharpening
algorithms. To the best of the authors’ knowledge, it was the
first paper presenting experiments on real Hyperion HS images
sharpened by the concurrent Advanced Land Imager (ALI)
panchromatic acquisition. Novel HS pansharpening methods
appeared in the following years, either based on quality index
optimization [7], or spectral preservation constraints [8]. An
interesting study on the pansharpening performance on HS/Pan
data acquired by the same platform or by different platforms was
presented in [2]. New classical methods were then proposed,
based on the guided filter [9], variational approaches [10],
and a component substitution technique improved by saliency
analysis [11]. Recently, the number of research papers on HS
pansharpening has grown dramatically, in particular related to
deep-learning [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24]. Among them, it is worth citing the algo-
rithm proposed in [21] that has been tested also at the original
Pan scale on a real Hyperion/ALI dataset.

Only very few works on HS pansharpening of PRISMA
images have been published so far. An application-oriented
work using pansharpened PRISMA data has been presented
in 2021 [25]. The goal of the proposed challenge has been
to boost the research on hyperspectral pansharpening pushing
researchers toward addressing more challenging issues involv-
ing the use of new data. Hence, four datasets acquired by the
PRISMA mission have been prepared. Each dataset contained
a Pan data and an HS image. The spatial resolution of the Pan
image is 5 m. Instead, the HS sensor acquires about 250 spectral
bands with a spatial resolution of 30 m.

The contest has been organized in conjunction with the 12th
Workshop on Hyperspectral Image and Signal Processing: Evo-
lution in Remote Sensing (WHISPERS). IEEE WHISPERS has
the aim of bringing together all the people involved in HS data
processing, i.e., everything from the acquisition, the calibration
to the analysis (image processing, signal processing, feature ex-
traction, dimension reduction, unmixing and source separation,
classification). The event has also been supported by the Italian
Space Agency, the Geoscience and Remote Sensing Society,
and the Image Analysis and Data Fusion Technical Committee.
The organizers observed a good interest, with more than one
hundred registrations. However, the proposed task appeared a
difficult one, especially because of the unusual ratio in the spatial
resolutions (6, while most traditional pansharpening problems
deal with a ratio of 4) and probably also because of the novelty of
the sensor and its spectral characteristics. Eventually, only four
teams submitted their results for final assessment. The four teams
addressed the proposed issue exploiting innovative solutions
relied upon machine learning and variational optimization-based
methodologies. Despite of the use of state-of-the-art method-
ologies, the teams did not get outstanding results if compared
with some baseline methods proposed tens of years ago for
multispectral pansharpening. For this reason, the committee
decided to close the contest and claim it is inconclusive (no
winner).

This article presents the four datasets exploited for the chal-
lenge together with the description of the data preparation
procedures (coregistration, band selection, etc.). The baseline

approaches used for performance assessment of the participants’
outcomes have also been described. Moreover, the article fo-
cuses attention on the protocols (both at reduced resolution
and full resolution) and the related quality metrics adopted
to assess the performance. Afterward, the quantitative results
(both at reduced resolution and full resolution) and a qualitative
analysis are shown to the readers. Finally, some further (and
more general) considerations about the results of the contest
and the new trends rewarding the use of artificial intelligence
solutions have been proposed.

The rest of this article is organized as follows. Section II is
related to the presentation of the Hyperspectral Pansharpening
Challenge with the related datasets, baseline methods, and proto-
cols for performance assessment. Instead, Section III is devoted
to the description of both the quantitative and qualitative out-
comes. A general discussion about hyperspectral pansharpening
is also presented in Section IV. Finally, Section V concludes the
article.

II. IEEE WHISPERS 2022: THE HYPERSPECTRAL

PANSHARPENING CHALLENGE

The Italian Space Agency’s PRISMA (Hyperspectral Precur-
sor of the Application Mission) satellite was launched from the
European space base in Kourou (French Guiana) on March 22,
2019. In 2020, the authors of this article conceived the idea to
propose an international contest for PRISMA data exploitation.
The contest, to be organized in conjunction with the Workshop
on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing (WHISPERS), was intended to boost the re-
search on hyperspectral pansharpening, thanks to the spatial
and spectral capabilities of the HS and Pan sensors mounted
on the PRISMA platform. After the pandemic emergency, the
concept became reality in conjunction with the 2022 edition of
IEEE WHISPERS, taking place in Rome in September 2022.
Thanks to the Italian Space Agency (ASI), four datasets have
been authorized for public distribution and finally prepared for
the participants. The 2022 WHISPERS Hyperspectral Pansharp-
ening Challenge was finally launched in February 2022.

A. Datasets

Four datasets are distributed for the PRISMA contest1, namely
FR1, FR2, for pansharpening at full spatial resolution (5 m for
the Pan channel, P, and 30 m for the HS image, HS), and RR1,
RR2 for pansharpening at reduced spatial resolution (30 m for
the reduced resolution Pan image,P↓, and 180 m for the reduced
resolution HS cube, HS↓).

The datasets have been prepared for the challenge participants
through the following preprocessing steps.

1) Downloading level-2-D image data product from the ASI
PRISMA portal for data distribution [26]. The level-2-
D product refers to the geocoded at-surface (Bottom-of-
Atmosphere) reflectance data [27].

1Data are available at https://openremotesensing.net/knowledgebase/
panchromatic-and-hyperspectral-image-fusion-outcome-of-the-2022-
whispers-hyperspectral-pansharpening-challenge/
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TABLE I
DATASETS

2) Reading Visible and Near-InfraRed (VNIR) and Short-
Wave InfraRed (SWIR) cubes and the Pan band accord-
ing to the Hierarchical Data Format (HDF5) standard.
Specific information on the PRISMA HDF5 format are
available in the PRISMA products specification docu-
ment [28]. The document also indicates different tools for
data reading both for commercial remote sensing software
packages and Python usage.

3) Removing atmospheric water absorption bands, low
signal-to-noise ratio (SNR) bands, and bands affected by
severe striping, which is due to a temporary unbalanced
response of a VNIR or SWIR detector.

4) Assembling the selected VNIR and SWIR bands into a
single image cube spanning the VNIR and SWIR wave-
length range. The final number of bands varies among the
four datasets, as reported in Table I.

5) Correcting any residual space-varying misalignment be-
tween the HS bands and the Pan band through local
correlation computation and nonrigid transformation. This
operation has been performed by interpolating the HS
bands at the 5-m panchromatic scale through bicubic in-
terpolation and by using the Sentinel-2 temporally closest
acquisition as reference. Sentinel-2 band 4 at 665 nm
is bicubically interpolated first at 5 m and then used as
a common reference for displacement estimation of the
660 nm PRISMA band and the Pan band. It should be noted
that the estimated displacement between the 660-nm band
of PRISMA and the Sentinel-2 B4 band is finally used
for all VNIR and SWIR bands of PRISMA, which are
perfectly coregistered in the original ASI product.

The images P and HS of the full resolution datasets FR1 and
FR2 have been obtained by extracting a 12 km × 12 km portion
(2400× 2400 pixels for P and 400× 400×N pixels for HS)
from the original 30 km × 30 km PRISMA acquisition, after
accurate coregistration.

The 900× 900 P↓ image and the coregistered 150× 150×
N HS↓ denote the 30 m resolution Pan image and the N -band
180 m resolution HS image on a geographical area of 27 km ×
27 km.
P↓ has been obtained from the original P by using an ideal

antialiasing low-pass filter, while HS↓ has been produced from
the original HS by applying spatial filters matching the sensor’s
Modulation Transfer Functions (MTFs) of the VNIR and SWIR
bands.

For easy portability, images are in ENVI format, that is, a flat-
binary raster file in 16-b unsigned integer data format and Band
Sequential (BSQ) interleave type, with an accompanying ASCII

header file. Each HS image contains N bands selected from the
original VNIR-SWIR PRISMA bands. The ASCII header also
contains the values of the central wavelengths of the HS bands.

Table I reports the main characteristics of the four datasets
in terms of spatial size, number of bands, and geographical
extension.

Fig. 1 shows the Pan bands and true-color composites from
the HS image of the four datasets.

FR1 denotes the PRISMA acquisition over the city of
Bologna, Italy, and its surroundings, on November 7, 2020. The
FR2 dataset was acquired over the Florence area (Italy) on June
27, 2020. For the abovementioned cases, the spatial resolutions
of the Pan and HS bands are those of the original acquisitions,
i.e., 5 and 30 m, respectively.

RR1 denotes the acquisition over the city of Barcelona (Spain)
on January 24, 2020, while RR2 corresponds to the PRISMA
acquisition on August 13, 2020, over the suburbs of Milan,
Italy. The latter two datasets are composed of spatially degraded
images, whose characteristics are recalled in Table I.

The four datasets, together with a Matlab toolbox for testing
and evaluating the baseline methods, are publicly available at
[29].

B. Baseline Methods

Five methods are exploited as baseline solutions in this chal-
lenge. The code of the baseline solutions is made available to the
scientific community.2 They have been borrowed from the pan-
sharpening literature [2] and successively used for addressing
the hyperspectral pansharpening task [1].

The first two methods belong to the component substitution
class [30], [31]. More specifically, the Gram-Schmidt (GS)
approach [32] is considered. This is a quite dated solution relied
upon the substitution of the first component of the HS cube
after the GS transformation. The high resolution Pan image
(with adjusted statistics) is substituted to get the resolution
enhancement. The fused image is obtained by the inverse GS
transformation on the new set of transformed components. The
second technique (an enhanced version of the GS) is based on the
same transformation (i.e., the GS one) but improving it using a
liner model for the intensity (first) component. The GS Adaptive
(GSA) [33] synthesizes an intensity component using a linear
model, properly estimating its weights through the relationship
between the HS image and a low-pass filtered and decimated

2The code is available at https://openremotesensing.net/knowledgebase/
panchromatic-and-hyperspectral-image-fusion-outcome-of-the-2022-
whispers-hyperspectral-pansharpening-challenge/
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Fig. 1. Challenge datasets: 5 m Pan and 30 m HS bands have been provided for FR1 and FR2; 30 m Pan and 180 m HS have been provided for RR1 and RR2.
True-color composites are shown for HS data.

version of the Pan data. This component represents the first basis
defining the transformed domain and it is used to project the HS
cube. Again, the fused image is obtained by substituting the
component related to the linear model with the Pan image and
inverting the transformation.

The other three baseline methods are representative of the
multiresolution analysis class [30], [31]. The third method
is the classical Additive Wavelet Luminance Proportional
(AWLP) [31], [34]. The wavelet planes of the Pan image are
added to the luminance component of the HS image. The adopted
injection rule is based on the idea to have proportionality be-
tween each HS band and the injected details, thus preserving the
spectral signature. The fourth technique is the MTF–Generalized
Laplacian Pyramid (MTF-GLP) [31], [35]. It exploits GLPs
to extract details from the Pan image. The Gaussian filters
are designed to match the HS sensor’s MTFs [35]. A linear
regression model [31] is used to address the details injection
problem. Finally, the last method is the Morphological Filters
(MF) [36]. It relies upon a nonlinear decomposition scheme
using half gradient MFs. A multiplicative injection model is
exploited to complete the fusion procedure [37].

It is worth to be remarked that machine learning-based ap-
proaches are not adopted as baseline methods. Indeed, their
use with data having different spatio-spectral features (e.g., a
different number of spectral bands) often requires changes in the
original network architectures and their retraining to properly
address the problem at hand. Thus, the application of these
approaches to the fusion of PRISMA data is not straightforward.

C. Protocols

The assessment of image fusion products is a hard problem
with a nontrivial solution. Since 30 years ago, researchers have

studied the topic proposing ways to address it considering its
ill-posed nature. Indeed, the assessment at the working (full)
resolution leads to the absence of a reference (ground-truth)
image that is the image that the HS sensor would observe with
the highest spatial resolution (i.e., the one of the Pan sensor).
This is the so-called synthesis property of Wald’s protocol [38],
which is hard to be measured without a reference. Thus, several
indexes, inspired by the quality without reference (QNR) pro-
tocol [39], have been proposed in the literature. These metrics
leverage on working at full resolution, but paying it with often
inaccurate evaluations because of the absence of a reference
(ground-truth) image. Thus, to complete the assessment, an
evaluation at reduced resolution is crucial (with the aim of
implementing Wald’s protocol) to generate a reference image
(i.e., the original HS cube). The assumption under this kind of
assessment is an invariance among scales of the performance
of the pansharpening approach under evaluation, i.e., a method
showing some performance at reduced resolution should have
the same behavior at finer resolution. Obviously, this hypothesis
is not always valid and the process of reducing input data res-
olutions can represent a degree of freedom, often unacceptable
for a validation procedure (even though step forwards have
been done imposing the design of filters taking into account the
spatial models of the acquisition sensors [35]). Thus, considering
the pros and cons of both the procedures, this challenge relies
upon a protocol accounting for both reduced and full resolution
assessments to have a complete evaluation of the submitted
outcomes. Finally, a visual inspection of fused products have
also been performed to highlight local patterns and distortions,
in particular for full resolution outcomes.

Reduced resolution assessment measures the similarity of
the fused product to an ideal reference, i.e., the original HS
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image. That is possible by degrading the resolutions of both the
original HS and Pan images, and by performing fusion from
those degraded data. Clearly, the choice of the filter is crucial
in this validation protocol. The filter is defined for ensuring the
consistency property [38] of the pansharpening process. Thus, it
is straightforward that the resolution reduction of the HS image
should be done by exploiting spatial filters matching the HS
sensor’s MTFs [30].3 In addition, the filter used to degrade the
Pan image should be designed to preserve the details that would
have been seen if the image were acquired at reduced resolution.
Accordingly, a common choice is the use of an almost ideal
filter [30]. The more similar is the obtained pansharpened image
to the original HS image, the higher is the measured quality. Such
a similarity degree can be easily computed through score indexes
that compare two multiband images. In this challenge, we use
the following set of well-established metrics [30], [31].

1) Spectral Angle Mapper (SAM) [30], [31], [40]. Given two
spectral vectors, v and v̂, both having N components, in
which v = [v1, v2, . . . , vN ] is the reference spectral pixel
vector and v̂ = [v̂1, v̂2, . . . , v̂N ] is the test spectral pixel
vector, the SAM denotes the absolute value of the spectral
angle between the two vectors

SAM(v, v̂) = cos−1
< v, v̂ >

||v||2 · ||v̂||2
(1)

where< ·, · > indicates the dot product, cos−1 denotes the
arccosine function, and || · ||2 is the ℓ2 norm. The SAM
is usually expressed in degrees. The lower the value, the
better the quality. The SAM is equal to zero if and only
if the test vector is spectrally identical to the reference
vector, i.e., the two vectors are parallel and may differ
only by their moduli. A global spectral dissimilarity, or
distortion, index is obtained by averaging the index over
the whole scene.

2) ERGAS [30], [31], [41]. The index, whose French
acronym stands for relative dimensionless global error in
synthesis, is a normalized dissimilarity index that offers a
global indication of the distortion toward the reference of
a test multiband image

ERGAS = 100
dh
dl

√

1

N

∑N

n=1

(

RMSE(n)

µ(n)

)2

(2)

where dh/dl is the ratio between pixel sizes of Pan and
HS; µ(n) is the mean (average) of the nth band of the ref-
erence; RMSE(n) is the root mean square error (RMSE)
calculated between the fused and the reference images for
the nth spectral band; and N is the number of bands. Low
values of the ERGAS indicate high similarity between
fused and reference HS data. The ideal value is zero.

3) Q2n [30], [31], [42]. It is the multiband extension of the
Universal Image Quality Index (UIQI). Each pixel of an
image with N spectral bands is accommodated into a
HyperComplex (HC) number with one real part andN − 1

3The assumption is that the HS sensor’s MTFs follow a Gaussian shape and
the standard deviation is set thanks to the information given by data providers
about the gains at Nyquist frequency that are all equal to 0.3 in this case.

imaginary parts. Let z = z(m,n) and ẑ = ẑ(m,n) denote
the HC representation of the reference and test spectral
vectors at pixel (m,n). Analogously to UIQI, namely,
Q20 = Q,Q2n can be written as the product of three terms

Q2n =
|σz,ẑ|

σzσẑ

·
2σzσẑ

σ2
z
+ σ2

ẑ

·
2|z̄||¯̂z|

|z̄|2 + |¯̂z|2
(3)

where σ·,·, σ·, and ·̄ denote the covariance, the standard
deviation, and the mean operators, respectively, and | · |
represents the modulus of a vector. The first term is the
modulus of the HC Correlation Coefficient (HCCC) be-
tween z and ẑ. The second and the third terms measure
contrast changes and mean bias, respectively, on all the
bands simultaneously. Statistics are calculated on N ×N
blocks, typically, 32× 32, and Q2n is averaged over the
blocks of the whole image to yield the global score index.
Q2n takes values in [0, 1] and is equal to 1 if and only if
z = ẑ for all the pixels.

Full resolution assessment infers the quality of the pan-
sharpened image at the Pan resolution without resorting to a
single reference image, which is not available. Consequently,
the problem of assessing the quality of pansharpened products
at full resolution is intrinsically ill-posed. To solve this issue,
new distortion measurements have been introduced, such that
they do not depend on the unavailable high resolution HS cube.
The Q∗ index [43] is defined as

Q∗ =
(

1−Dk
λ

)α
· (1−D∗

S)
β (4)

which is composed by the product of Dk
λ

and D∗
S , quantifying

the spectral and the spatial distortions, respectively, exploiting
the weights α and β (both experimentally set to 1). The higher
the Q∗ index, the better the quality of the fused product. The
maximum theoretical value of this index is 1 when both Dk

λ
and

D∗
S are equal to zero.
The spectral distortion index is calculated as follows [30],

[43]:

Dk
λ
= 1−Q(̂HS↓, H̃S) (5)

where ĤS↓ is the MTF-filtered pansharpened HS image consid-

ering a resolution ratio equal to R; H̃S is the original HS image
interpolated to the Pan scale (R times lower than the HS scale);
and Q is the UIQI averaged along the HS spectral bands.4

Instead, the spatial consistency, 1−D∗
S , proposed in [44],

is defined by the multivariate linear regression modeling the
relationship between the original high resolution Pan and the
pansharpened HS bands. The figure of merit of the matching
between the abovementioned images is given by the coefficient
of determination that is used to measure the spatial consis-
tency [44]. The choice of this combination of metrics for mea-
suring spatial and spectral qualities has also been corroborated

4It is worth to be remarked that the original implementation ofDk

λ
is based on

the use of the Q2
n index instead of the average of Q metrics calculated for each

spectral band. This modification has been provided for computational reasons
considering the high number of HS bands leading to a very slow evaluation
of the Q2

n index. Anyway, comparable performance can be obtained by this
modification with a relevant advantage from a computational burden point of
view.
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TABLE II
RESULTS ON THE RR1 DATASET INCLUDING Q2

n, SAM, AND ERGAS

for classical pansharpening in [43]. The code for assessing the
performance both at reduced resolution and at full resolution is
made available to the scientific community.5

III. OUTCOMES OF THE IEEE WHISPERS 2022
HYPERSPECTRAL PANSHARPENING CHALLENGE

This section is devoted to the presentation of the results of
the IEEE WHISPERS 2022 challenge on hyperspectral pan-
sharpening. The quantitative assessment will be presented first
under the protocol defined in Section II-C. Four datasets (two at
reduced and two at full resolutions) have been shared with the
participants. The quality metrics have been calculated for both
the baseline methods and the outcomes provided by the teams
joining the challenge. Moreover, a qualitative assessment of the
delivered products has been proposed in this section. This is
done to support the assessment, in particular at full resolution.
Finally, in Section III-C, a general discussion on the obtained
outcomes is reported.

A. Quantitative Assessment

Four datasets have been considered for this challenge. All the
images are captured by sensors onboard of the PRISMA mission.
Two datasets refer to the reduced resolution assessment (named
RR1 and RR2), instead, the other two are at full resolution data
(called FR1 and FR2). Baseline approaches, as presented in Sec-
tion II-B, have been run on the four datasets. The performance
at reduced resolution and at full resolution for both baseline
approaches and the outcomes provided by the participants is
measured according to the protocol described in Section II-C.

The results at reduced resolution are reported in Tables II
and III for the RR1 and RR2 datasets, respectively. Having a
look at the overallQ2n index, we can remark very similar results
between the two datasets. Indeed, the best approach is always
the GSA followed by Team 3’s one. Instead, the worst method

5The code is available at https://openremotesensing.net/knowledgebase/
panchromatic-and-hyperspectral-image-fusion-outcome-of-the-2022-
whispers-hyperspectral-pansharpening-challenge/

TABLE III
RESULTS ON THE RR2 DATASET INCLUDING Q2

n, SAM, AND ERGAS

TABLE IV
RESULTS ON THE FR1 DATASET INCLUDING Dk

λ
, D∗

S
, AND Q∗

is always the one provided by Team 1. The ERGAS index, even
though measuring a different quantity (just a radiometric distor-
tion in ℓ2), is generally in agreement with the findings of theQ2n.
Again, the best approach is represented by the GSA and the worst
results are related to Team 1.6 Focusing on teams’ outcomes,
again, Team 1 is the worse followed by Team 2. Instead, more
comparable performance can be obtained by Teams 3 and 4
representing the best results among the teams’ ones. The last
consideration is about the spectral distortion measured by the
SAM index. Generally speaking, results seem to be much more
dependent on the scenario and an overall evaluation turns out to
be more complicated. Just focusing on the teams, again, Team 1
is the worse showing a relevant spectral distortion of the results.
Among the other methods, the highest results of the SAM index
are obtained by Team 4. Instead, the products of Team 2 and
Team 3 seem to be more spectral consistent.

The results at full resolution are instead reported in Tables IV
and V for the FR1 and FR2 datasets, respectively. As for the

6In this case, the gap in performance of Team 1’s results with the other
outcomes is even larger due to the unbounded nature of this index.

https://openremotesensing.net/knowledgebase/panchromatic-and-hyperspectral-image-fusion-outcome-of-the-2022-whispers-hyperspectral-pansharpening-challenge/
https://openremotesensing.net/knowledgebase/panchromatic-and-hyperspectral-image-fusion-outcome-of-the-2022-whispers-hyperspectral-pansharpening-challenge/
https://openremotesensing.net/knowledgebase/panchromatic-and-hyperspectral-image-fusion-outcome-of-the-2022-whispers-hyperspectral-pansharpening-challenge/
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TABLE V
RESULTS ON THE FR2 DATASET INCLUDING Dk

λ
, D∗

S
, AND Q∗

TABLE VI
OVERALL ACCURACY (OA) OBTAINED BY AVERAGING THE

OVERALL QUALITY INDEXES AT FULL AND AT REDUCED

RESOLUTIONS, I.E., Q∗ AND Q2
n, RESPECTIVELY

assessment at reduced resolution, focusing on the overall quality
metric,Q∗, we got quite similar results on FR1 and FR2. Indeed,
the best approach is always represented by the one of Team
4 followed by two baseline techniques, i.e., GSA and MTF-
GLP. Comparable performance is reported for the techniques
provided by Teams 2 and 3. Again, Team 1 got the worst overall
performance, but showing the best spatial consistency, thanks
to the estimation of linear-based spatial and spectral responses
following the approach proposed in [45]. However, the best
performance on this index is not enough to get the overall good
performance because of the relevant spectral distortion. From a
spectral distortion point of view, the best approach is the simple
upsampling with bicubic interpolation (named EXP) thanks to
the fact that no injection of spatial details is performed, thus,
avoiding the introduction of spectral distortion in this phase (as
in the case of the other compared methods).

The overall results, exploited to define the ranking in Ta-
ble VII, are obtained taking into account the overall quality

indexes both at reduced resolution and at full resolution. More
specifically, theQ2n is taken at reduced resolution representing a
good candidate to give a big picture considering both radiometric
and spectral distortions in the fused products. Instead, at full
resolution, the unique metric representing an overall accuracy
is the Q∗ index obtained by combining the spatial (D∗

S) and
spectral (Dk

λ
) distortions. Since we combined twoQ-like metrics

(i.e., Q2n and Q∗), the final overall accuracy is simply obtained
by averaging these metrics calculated for RR1 and RR2 (Q2n)
and for FR1 and FR2 (Q∗). The results are reported in Table VI.
The best results are reached by the GSA method followed by the
MTF-GLP approach. Teams 3 and 4 obtained high performance
getting the third and fourth positions, respectively. Team 3 is the
best among the participants’ approaches showing a good balance
in performance and robustness varying the assessment procedure
and scenario under test. Instead, Team 4 has the best performance
at full resolution paid by a lower accuracy at reduced resolution
(in particular on the RR1 test case). Medium performance is
instead shown by the outcomes provided by Team 2. Finally, the
worst performance (worse than the simple upsampling approach,
EXP) is reached by Team 1.

B. Qualitative Assessment

The results on the four datasets of the challenge, namely FR1
and FR2 for the full resolution assessment and RR1 and RR2 for
the reduced resolution assessment, are displayed and compared
in this section for qualitative, visual evaluation.

Fig. 2 shows a 512× 512 fragment of the FR1 scene. A
true-color representation, a color composition in the SWIR and
NIR wavelengths, both at the original 30-m resolution, and the
5-m Pan band are reported. The true-color pansharpening result
of a baseline method, namely the GSA [33], is also shown
in Fig. 2. This color composite is displayed with the same
visualization parameters of the true-color upsampled image to
visually evaluate the spectral quality of the fused image. Since a
reference image is not available for full resolution assessment,
the GSA result, which achieved the best score indexes among
the tested algorithms (Tables VI–VII), is reported in Fig. 2 for
useful comparison with the challenge results illustrated in Fig. 3.

Fig. 3 shows the results obtained by the four teams on the FR1
dataset. Each image is displayed with linear stretching between
1% and 99% of the histogram range for each band. The same
visualization parameters used for the true-color composites in
Fig. 2 cannot be applied to the fusion results produced by the
four teams, due to mean bias (significant for Team 1) between
original and pansharpened bands. As an example, the histograms
of the 478-nm band before and after Team 1’s pansharpening are
shown in Fig. 4.

In this way, Fig. 3 allows for a fair comparison of the results
from the different teams at their best visualization conditions.

Team 1’s result appears sharp but presenting spectral distor-
tions in the vegetated area, particularly evident in the true-color
composition. Comparisons with Fig. 2 confirm the numerical
results of Table IV. Superior spectral quality is shown by Team
4, both from the true-color and the false-color compositions.
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TABLE VII
FINAL RANKING

Fig. 2. 512×512 portions of the FR1 dataset. From left to right: Color composites of the original HS image resampled at Pan scale, true-color (641, 563, 478)
nm and false-color (1586, 1229, 770) nm; Pan image; true-color GSA-pansharpened image [33].

Fig. 3. Pansharpening results on a 512× 512 portion of the FR1 dataset with color composites displayed in Fig. 2. Linear stretching between 1% and 99% of
the histogram range for each band is used for visualization.

A common problem of the products by Teams 1, 2, and 3, but
not Team 4, is the injection of residual striping artifacts into
the displayed bands. This problem is evident in the true-color
representation.

The results for the FR2 dataset are reported in Figs. 5–6.
The spectral distortion introduced by Team 1’s pansharpening
algorithm can be appreciated on the rooftops of the residential
area in the lower part of the image, both for true-color and
false-color representations. On the other hand, the spatial details
injection of the Team 1 product is efficient. For comparison, see
the bottom images of Teams 2–4 that appear less sharpened.
Similarly to the FR1 dataset, also the FR2 visual assessment
reveals that Team 4 better preserves the spectral information.

The results for the RR1 dataset are shown in Figs. 8–9. Here,
a direct visual comparison of the challenge results from the four
teams and the original (reference) image in Fig. 8 is possible.
Spectral distortion is severe for the pansharpened images by
Teams 1, 3, and 4. As an example, the spectral information
of the river appears highly distorted in products provided by
Teams 1 and 4, particularly in the false-color representation
at (2053,1555,855) nm wavelengths (bottom of Fig. 9). The
Team 2 outcome shows insufficient spatial details injection,
which is more evident in the true-color representation. Fig. 7
instead shows the spectral signatures of the ground-truth and
the ones obtained by the compared approaches for three se-
lected points representing three different kinds of landscape (i.e.,
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Fig. 4. Histograms of original and Team 1’s pansharpened band at 478 nm of
the FR1 dataset.

urban, vegetated, and mixed). The closer the spectral signatures
with respect to the ground-truth, the better the results. It is easy
to be remarked that the best results are obtained by the EXP
method followed by the GSA in agreement with the SAM values
in Table II.

Figs. 10 and 11, concerning the RR2 dataset, confirm the
visual analysis on the RR1 dataset. Team 1’s result is severely
spectrally distorted, while Team 2’s pansharpened image suffers
from underenhancement of the spatial details extracted from the
Pan image. Team 3 and 4’s products show significant spectral
distortions, more evident in the true-color image for Team 3
and in the false-color (one NIR and two SWIR wavelengths) for
Team 4.

C. Discussion on Challenge Results

Spectral information is of paramount importance in hyper-
spectral imaging. A discussion on the challenge results presented
by the four teams should start from specific considerations
about the preservation of the spectral information of the original
HS image after the spatial enhancement through hyperspectral
pansharpening. This kind of assessment is straightforward on
the two datasets at reduced resolution, since a reference HS
image, the original image at 30 m resolution, is available. It is
evident from an objective assessment in Tables II–III and visual
analysis in Figs. 8–9 for the RR1 dataset, and Figs. 10–11 for
the RR2 dataset, that the Team 1 algorithm introduces significant
spectral distortions, and Teams 2, 3, and 4 are almost equivalent,
since Team 4 outperforms the others on the RR1 dataset, but
not on the RR2 dataset (see, e.g., the poor spectral fidelity of
the false-color composite in Fig. 11). In summary, the results
by all the teams are spectrally insufficient, since the lowest
value of the SAM index for the RR1 and RR2 datasets (and
the most spectrally consistent color compositions in the visible,
NIR, and SWIR wavelengths) are provided by the baseline GSA
method. This conclusion is confirmed by the results at full
resolution, where the Team 4 results show an acceptable spectral
behavior.

Similarly to spectral quality, spatial enhancement can be
easily assessed on the reduced resolution datasets, RR1 and RR2,
through direct comparison with the original 30-m image and

computation of multiband quality indexes. Team 3 provides the
best results in term of injection of spatial details. This is proved
by the score indexes in Tables II–III and confirmed by comparing
the reference images in Figs. 8 and 10 and the sharpened images
in Figs. 9 and 11, respectively. More significant is the evaluation
of the spatial quality at full resolution, when a 5-m HS image
is synthesized. Close-ups in Figs. 3 and 6 show sharp images
from Team 1, comparable results from Teams 3 and 4, and
insufficient details injection provided by Team 2’s method. This
consideration is in accordance with the computed score indexes
in Tables IV and V.

As pointed out in Section III-A, all the teams presented
pansharpened HS images with lower overall quality with respect
to the baseline GSA method.

IV. HYPERSPECTRAL PANSHARPENING: WHERE ARE WE

NOW? A DISCUSSION ON THE CHALLENGE

This contest puts a spotlight on the hyperspectral pansharpen-
ing problem pushing researchers in finding solutions to a well-
known problem in the image fusion literature, but involving new
data. Indeed, PRISMA images are not widely used in the related
scientific community and this represents a further challenge,
i.e., the development of the best hyperspectral pansharpening
approach for a new set of data. This implies that there is no prior
knowledge about the particular problem at hand together with
the absence of pretrained models for machine learning-based
approaches.

In this context, the four teams addressed the issue proposing
innovative solutions relied upon machine learning and varia-
tional optimization-based methodologies, sometimes borrowed
by the related multispectral and hyperspectral image fusion
literature. Anyway, despite the use of state-of-the-art method-
ologies, such as deep networks (which already demonstrated
high performance for closely related tasks), the teams did not
get outstanding results if we compare them with some baseline
methods that were proposed tens of years ago in the multispectral
pansharpening literature (see, e.g., the GSA and the MTF-GLP).
For this reason, the committee decided to close the contest and
claim it is inconclusive (no winner).

Generally speaking, the organizers observed a good interest
(with more than 100 registrations) for this challenge, but just
four submissions. One of the reasons could be found in the fact
that some researchers are more prone to tune fusion approaches
with trial and error procedures and this contest does not provide
this opportunity because of the absence of ground-truth samples.
The lack of ground-truth samples was even more critical in this
challenge because of the specific nature of the data (new sensor
with specific spectral coverage and specific ratio for the spatial
resolutions), hence preventing deep networks pretrained with
data provided by other satellites from providing useful estimates.
In particular, machine learning approaches usually require a
tuning phase for hyperparameters that is often addressed treating
the networks as black-boxes and driving the tuning process
through improving a quality metric on ground-truth samples.
Unfortunately, an evaluation server (which continuously as-
sesses the performance on test cases) was not set up for this
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Fig. 5. 512×512 portions of the FR2 dataset. From left to right: Color composites of the original HS image resampled at panchromatic scale, true-color (641,
563, 456) nm and false-color (2053, 1284, 802) nm; Pan image; true-color GSA-pansharpened image [33].

Fig. 6. Pansharpening results on a 512× 512 portion of the FR2 dataset with color composites displayed in Fig. 5. Linear stretching between 1% and 99% of
the histogram range for each band is used for visualization.

Fig. 7. Spectral signatures obtained on (a) vegetation, (b) urban, and (c) mixed pixel samples from the RR1 dataset.

challenge, as done for other well-known contests as the Data
Fusion Contest organized by the IEEE GRSS Image Analysis
and Data Fusion Technical Committee. In the opinion of the
organizers, the absence of ground-truth samples (related to the
testing scenarios) and an evaluation server (following the line

drawn by other contests) limited the possibility of fine-tuning
for the proposed approaches, thus, reducing the performance.

This last point opens the door to some general considerations
about the use of machine learning-based approaches to solve
image sharpening problems. Indeed, it is not seldom to see
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Fig. 8. 400×400 portions of the RR1 dataset. From left to right: Color composites of the HS image degraded at 180 m and resampled at 30 m, true-color (641,
563, 478) nm and false-color (2053, 1555, 855) nm; Pan image degraded at 30 m; true-color original at 30 m (reference, not distributed).

Fig. 9. Pansharpening results on a 400× 400 portion of the RR1 dataset with color composites displayed in Fig. 8. Linear stretching between 1% and 99% of
the histogram range for each band is used for visualization.

Fig. 10. 400×400 portions of the RR2 dataset. From left to right: Color composites of the HS image degraded at 180 m and resampled at 30 m, true-color (641,
563, 478) nm and false-color (1726, 1575, 855) nm; Pan image degraded at 30 m; true-color original at 30 m (reference, not distributed).

deep networks with millions of parameters working after a
lightweight training involving few samples compared to the
number of parameters (biases and weights) to estimate. It is
worth to remark that the training is an estimation problem
where a number of parameters related to the particular network

configuration is estimated starting from the available samples
(examples) provided during the training phase. Some constraints
can sometimes be added to facilitate the training. A classical
example is provided by convolutional neural networks (widely
exploited for computer vision tasks), which implicitly limit
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Fig. 11. Pansharpening results on a 400× 400 portion of the RR2 dataset with color composites displayed in Fig. 10. Linear stretching between 1% and 99%
of the histogram range for each band is used for visualization.

connections to a neighborhood, thus reducing the size of the
receptive field with respect to fully connected neural networks.
However, to estimate millions of parameters, a huge amount
of data is required that are often unavailable for remote sensing
image sharpening. Hence, a clear reduction of the training phase,
because of the absence of data, leads to the adaptation of neural
networks to the particular problem presented in the training
phase, thus decreasing their generalization ability. This problem,
which is a hot topic for multispectral pansharpening, is still
more crucial for hyperspectral sharpening because hundreds
of spectral bands are fused with respect to tens of spectral
bands of the multispectral case. Indeed, more bands mean more
network inputs leading to more complex (with more parameters)
networks, thus requiring more data for training.

We want to conclude this section stating that this contest
opened our eyes to new problems. The scientific community
is moving faster and faster addressing more challenging issues
everyday. New potentialities have recently been identified in
artificial intelligence solutions for facing with remote sens-
ing image sharpening. Anyway, the Community should also
consider the development of remote sensing-based approaches,
strongly exploiting knowledge about the problem at hand and
integrating it in approaches that are not just borrowed from other
scientific communities (as the computer vision one). Indeed, the
exchange of information among communities will surely be the
key to success for developing new solutions to address more
challenging research problems with outstanding performance.

V. CONCLUSION

This article presented the scientific outcomes of the 2022
Hyperspectral Pansharpening Challenge organized by the 12th

IEEE WHISPERS 2022. The article described first the four
datasets used for this challenge, even pointing out the data prepa-
ration procedures. Afterward, the baseline approaches forming
the benchmark have been detailed together with the protocols
(both at reduced resolution and full resolution) for performance
assessment of participants’ outcomes. Finally, quantitative and
qualitative results have been shown with some discussions about
these latter and some thoughts on the state of the researches in
the field of hyperspectral pansharpening and the new trends in
image sharpening.

All in all, the organizers observed a good interest (with more
than 100 registrations), but just four teams joined it submitting
their outcomes. The participants proposed innovative solutions
relied upon machine learning and variational optimization-based
methodologies. Anyway, despite the use of the state-of-the-art
approaches, the teams did not get outstanding results if we com-
pare them with some baseline methods that were proposed tens
of years ago in the multispectral pansharpening literature (see,
e.g., the GSA and the MTF-GLP). For this reason, the committee
decided to close the contest and claim it is inconclusive (no
winner).
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