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We propose a mixture model approach to identify locally optimal technologies and to

dissect environmental productivity (output produced per unit of emission) into a techno-

logical and a managerial component. For a large sample of plants covered by the EU ETS,

we find that the share of plants adopting the frontier technology is about 21%. We also

find that the average output gains that plants could reach by adopting optimal technologies

and managerial practices are 75% and 80% respectively. These results remain qualitatively

similar after addressing endogeneity of emissions. Finally, we match EU ETS data with

balance-sheet data on parent companies and find that better environmental technologies

tend to be adopted by larger, listed, multi-plant and international companies, while older

firms and firms with higher intangibles assets intensity more commonly show improved
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1 Introduction

Recent empirical evidence has documented that in many OECD countries emission in-

tensity (measured as emissions per unit of output) of manufacturing sectors has been

falling over the last decades (e.g., Najjar and Cherniwchan (2020)). Looking at the

plant-level, the decline of emission intensity seems to be driven primarily by a within-

product increase in environmental productivity, i.e. an improvement in the ability to

generate the same output at a lower environmental cost, rather than by changes in the

composition of production (Shapiro and Walker, 2018). Yet, as it has been observed for

other output-based measures of productivity, environmental productivity remains highly

dispersed even within narrowly defined industries. This has important economy-wide

consequences because, in response to aggregate shocks (like an exogenous increase in in-

put prices), microeconomic heterogeneity may amplify macroeconomic dynamics thereby

leading to fluctuations in the aggregate environmental performance of firms beyond the

effect of the initial shock. In particular, it is still poorly understood whether cross-plant

differentials in environmental productivity are to be explained mainly in terms of differ-

ences in the technology used by different groups of firms or as idiosyncratic differences

in managerial practices across firms using the same technology. Quantifying these di-

mensions has broad policy implications, as it would help evaluating the potential gains

of technology diffusion policies in comparison with policies aimed at improving environ-

mental management.1

The main reason of this lacuna is practical. Measuring the technological dimension of

1Technology diffusion policies cover a large array of measures, including both direct and indirect
instruments, such as technology standards and adoption subsidies (Fisher and Newell, 2008; Acemoglu
et al., 2012), whereas policies aimed at promoting environmental management are typically more nu-
anced and point to improving managerial skills, environmental awareness, green accounting and, more
in general, corporate social responsability.
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environmental productivity requires estimating as many production functions as the dif-

ferent production technologies available in a sector, in order to obtain technology-specific

emissions coefficients. Under standard techniques, this is possible only after conducting

some form of clustering, e.g. based on an engineering approach with experts examining

and classifying the technology in use firm-by-firm. Such approaches are clearly unusable

on a large scale. On the other hand, obtaining residual TFP-like measures of environmen-

tal productivity under the assumption that a single technology (i.e. production function)

exists in a sector implies confounding the firm-specific (managerial) and the group-specific

(technological) dimensions of environmental productivity. This is one of the reasons why

research that studies the environmental performance of management employs measures

of managerial quality obtained from outside production data, typically from surveys (e.g.,

Bloom et al. (2010), Martin et al. (2012)).

In this paper we use an innovative methodology to decompose plant-level environ-

mental productivity into a technological and a managerial dimension.

We use data on plant-level pollution emissions and output obtained from the Euro-

pean Union’s Operator Holding Accounts (EU OHA hereafter), which provide detailed

information on verified CO2 emissions and allocated emission permits for all European

plants regulated under the EU Emission Trading System (EU ETS). In particular, we use

permits data from the EU ETS Phase 3 (2013-2020) in order to recover, from the inverse

permit allocation rule, physical output levels as the median activity level in 2005-2008

for each plant. We then match output levels with contemporaneous CO2 emission levels

obtained from the EU ETS Phase 1 (2005-2007). This allows us to afford additional

granularity in the measurement of emission intensity relative to the existing literature.

Next, our analysis proceeds in two main steps. We first employ an empirical mixture
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model to identify different “environmental-production functions” (E-PFs) within nar-

rowly defined industries. The estimation determines the number of E-PFs available in

a sector, with each E-PF reflecting an environmental production technology defined in

terms of physical output generated per unit of emissions. The model leaves the estimation

free to determine both the number of E-PFs available in each sector and the probability of

each plant using each E-PF. Hence, the estimation provides us, for each sector, with the

number of available environmental technologies and, for each plant, with the probability

of adopting each technology, including the one reflected into the frontier E-PF (i.e. asso-

ciated with the minimum emission intensity). Brought to our data, this exercise delivers

a number of technologies ranging from one to five, with most sectors having more than

one technology. We then use the difference between the observed output of each plant

and the estimated output associated with each E-PF to compute a plant-level measure of

“environmental-total factor productivity” (E-TFP), weighted by the plant’s probability

of adopting each available technology. The E-TFP can be interpreted as the idiosyn-

cratic (i.e. managerial) component of the environmental performance of a plant, given

the production technology.2 In the sectors where more than one technology is available,

we find that the probability weighted share of plants adopting the frontier technology is

about 21% and that the dispersion of the E-TFP varies substantially depending on the

technology in use (with the E-TFP variance being in most sectors lower for the firms

using the frontier technology).

Second, we quantify the potential gains in environmental productivity from eliminat-

ing technological and managerial heterogeneity. We compute two counterfactual scenar-

ios. One in which the plant adopts the frontier E-PF available in its sector and one in

2Previous productivity research has shown that the Solow residual in production function estimation
is largely accounted for by idiosyncratic managerial quality (e.g., Bhattacharya et al. (2013)).
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which the plant continues to be attached to the probability of adopting each technology

as estimated in the first step but shows the E-TFP of the top 5% performers in the

sector. For each plant, we compare the output that would have been obtained under

these two scenarios with the output actually observed. We find that adopting the fron-

tier technology would increase average output at the plant-level by 75%, while using the

best managerial practices would entail an output gain of 80%, emissions being equal. On

average, the total gain from technology upgrades when both sources of productivity dis-

persion are eliminated is about 155%.3 Behind these averages, we also document that the

growth margins of environmental productivity differ substantially both across sectors and

across plants within sectors, partly reflecting a number of variables on parent companies

obtained by linking each plant in the EU OHA database with its parent company in Orbis

(Bureau van Dijk, 2022). In particular, we find that better environmental technologies

are more likely to be adopted by larger, listed, multi-plant and international companies,

while older firms and firms with higher intangibles assets intensity more commonly show

improved environmental management.

Taken together, our results suggest that existing technologies have large unexploited

potentials, both because only a minor fraction of firms is adopting frontier technologies

and because there is non-negligible room for improving the management of currently

used technologies. This points to the importance of coupling green innovation policies,

aimed at promoting the development of new low-carbon technologies, with policies for

broadening technology diffusion and good managerial practices. Moreover, by unveiling

significant cross-plant asymmetries in the sources of the environmental productivity gaps,

our statistical decomposition leads to consider market-based regulations as the preferred

3In the Appendix, we show that these results are qualitatively unchanged when plant-level emissions
are modeled as an endogenous variable in the production function mixture estimation.
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way for improving environmental productivity—an insight in line with the “narrow”

version of the so-called Porter Hypothesis (Jaffe and Palmer, 1997; Lanoie et al., 2011).

The paper proceeds as follows. In Section 2 we provide a brief overview of the related

literature. In Section 3 we present the data. In Section 4 we explain in detail the steps

of our methodology. In Section 5 we provide a quantification of the technological and the

managerial components of environmental productivity dispersion. Section 6 concludes by

explaining the policy relevance of our analysis.

2 Related literature

The paper is at the intersection of three literatures.

First is the literature on the diffusion of environmental technologies among regulated

firms, i.e. technologies associated with a reduced environmental impact per unit of output,

including technologies that reduce pollution at the end of the pipe, such as scrubbers

for industrial smokestacks, and improved energy efficiency devices integrated into the

production process. Popp et al. (2009) provide an extensive survey of this literature.

More recent research has focused on the question whether environmental regulations are

responsible for the broader adoption of lower-emissions technologies observed in many

countries and sectors. Shapiro and Walker (2018) find that changes in environmental

regulations in the US account for most of the emissions reductions in US manufacturing

between 1990 and 2008. Similarly, Najjar and Cherniwchan (2020) show that improved

air quality standards in Canada caused reductions in the emission intensity of individual

industries in Canadian manufacturing over the period 2004-2010. Macher et al. (2020)

show that the effect of environmental regulatory constraints on energy-saving technology

adoption is greater in more competitive environments. In the European context, Calel and
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Dechezlepretre (2016) find that the introduction of the EU ETS in 2005 has increased

low-carbon innovation among companies included in the EU ETS, while Calel (2020)

shows that the EU ETS has been effective in encouraging the production of low-carbon

technologies without necessarily driving the diffusion of such technologies. On the same

vein, Borghesi et al. (2020) show that the EU ETS had a weak effect on firm-level

patterns of investments abroad through the opening of new subsidiaries. This literature

has improved our understanding of the process of environmental technologies diffusion,

particularly in regulated contexts such as the one considered in our paper. However,

it does not explore the technological differentials across regulated firms. Moreover, by

relying on data on low-carbon patenting, R&D spending or sector-specific technology

classifications, most of this body of research tends to overlook cleaner technologies that

are unpatented or difficult to classify in broad-scale analyses. The methodology proposed

in the present paper allows to address this gap.4

Second, our paper adds to the literature on the environmental consequences of man-

agerial quality. It has been argued that the adoption of pollution-reducing technologies

may be prevented by organizational failures and managerial inertia (Porter and van der

Linde, 1995; Ambec and Barla, 2002). In fact, the quality of the management has been

found to correlate positively with the environmental performance of the company by

recent studies. Bloom et al. (2010) show that better managed establishments are signif-

icantly less energy intensive in a sample of 300 manufacturing firms in the UK. Martin

et al. (2012) interviewed managers of 190 manufacturing plants in the UK and find that

climate friendly management practices are associated with lower energy intensity and

higher productivity. De Haas et al. (2021) show that managerial constraints slow down

4Incidentally, our methodology may also contribute to the broader literature on the measurement of
firm-level upgrading and technology adoption outside the environmental context (see Verhoogen (2022)
for an overview).
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firm investment in more energy efficient and less polluting technologies, using data for

a large sample of firms in 22 emerging markets. We contribute to this line of research,

by measuring the potential environmental productivity gains that can be obtained by

spreading improved managerial practices among polluting firms.

Finally, our paper relates to the literature on productivity estimation. A broad array

of methods of productivity measurement is available (Del Gatto et al. (2011) and Van

Beveren (2012) provide comprehensive surveys of these methods). However, this litera-

ture almost exclusively focuses on the relationship between marketed inputs and outputs,

while little effort has been put into the development of methods focused on non-marketed

inputs (e.g. environmental quality) since the notion of environmental productivity was

introduced (Repetto, 1990). In this paper, we operationalize an environmental produc-

tion function where the notion of productivity is expressed as marketed output per unit

of emissions. In doing this, we develop an empirical mixture method similar in spirit to

the one proposed by Battisti et al. (2015) and Battisti et al. (2020) in a more classical

TFP context, which allows for the probability distribution of environmental productivity

to be the result of the potential overlapping of several distributions that we then inter-

pret as different environmental technologies. This estimation strategy, more generally,

contributes to enriching the line of methodological research in industrial economics that

analyzes the determinants of cross-firm productivity differentials (see Syverson (2011)

for a review), and in this literature, in particular, adds to the body of works exploring

quantity-based measures of productivity (e.g., de Roux et al. (2021)). In addition, by ex-

ploiting plant-level granularity, our analysis improves also on the standard revenue-based

production function estimation literature, which commonly uses data aggregated at the

firm-level.
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3 Data

We use plant-level data provided by the EU OHA, which is carried out by the European

Commission and covers all the installations regulated under the EU ETS. The database

provides accurate information on tons of verified CO2-equivalent emissions and the num-

ber of allocated emission permits for each plant and year covered by the EU ETS, along

with information on the plant’s location and product sector.

We are able to retrieve plant-level output from the inverse allowance allocation rule

employed in the EU ETS Phase 3 (2013-2020). Over the years 2013-2020, allocation of

allowances was administrated by the following rule:

Ai,t,s = ẽs λs,t ϑt Qi,s, (1)

where Ai,t,s is the allowances to plant i in year t and sector s, ẽs is the sectoral benchmark

emission intensity, λs,t is a carbon leakage exposure factor (CLEF), ϑt is a cross-sectoral

correction factor (CSCF) and Qi,s is the baseline activity level calculated as the median

of the activity level in 2005-2008. Since Ai,t,s, ẽs, λs,t and ϑt are known, Qi,s can be re-

trieved by manipulating Equation (1).5 Plant-level annual tons of verified CO2-equivalent

emissions (Ei,t,s) are directly obtained from the EU OHA. In order to match physical out-

put levels with contemporaneous emission levels, we use the median value of emissions

over the EU ETS Phase 1 (denoted hereafter with Ei,s, for simplicity). Hence, a plant’s

5The CLEF is constant 1 or decreasing at a predetermined rate depending on the carbon leakage
status of the sector, while the CSCF is a time-varying factor (constant across sectors) ensuring that
total allocation remains below the maximum amount pursuant to article 10a(5) of the EU ETS Directive
(European Commission, 2015). Product-specific benchmark emission intensities are listed in European
Commission (2011) according to a classification that is more granular than the EU OHA sectors classi-
fication. We cross-walked the two classifications using product-sector description matching. Unmatched
sectors are left out of the analysis. We remain with 1881 plant-level observations. Details on CLEF,
CSCF and benchmark emission intensities are provided in the Appendix.
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emission intensity can be calculated as:

ei,s =
Ei,s
Qi,s

. (2)

Environmental productivity is nothing else than the reciprocal of ei,s.

The cross-sectional distribution of ei within each sector is illustrated in Figure 1.6 As

the figure shows, there are significant emission intensity differentials across plants. The

sense of scale of these differentials can be grasped by considering that, in most of the

sectors, the emission intensity of the plant at the 75-th percentile of the distribution is

about as twice as the emission intensity of the plant at the 25-th percentile.

[insert Figure 1 about here]

While this evidence suggests that dispersion of environmental productivity is signifi-

cant even in narrowly defined industries, it reveals little as to whether this heterogeneity

is driven by plant-specific (managerial) or group-specific (technological) sources. This is

explored next.

4 Environmental production functions estimation

The environmental-production function (E-PF) of plant i is:

ln(Qi) = αi,τ + ατ + βτ ln(Ei), (3)

6The countries covered are: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg,
Netherlands, Norway, Poland, Portugal, Romania, Slovak Republic, Slovenia, Spain, Sweden, United
Kingdom.
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where τ denotes the technology adopted by plant i among the T technologies available

in sector s. The parameters ατ and βτ are the constant and shape coefficients of the

τ -technology’s E-PF. Hence, in this framework technology τ in sector s is defined by

the set {ατ , βτ}. The residual productivity term is αi,τ , which reflects the idiosyncratic

deviation of plant i’s output with respect to the fitted output of the plants adopting the

same technology τ . We refer to αi,τ as the environmental-total factor productivity (E-

TFP), which, net of the technological dimension, can be thought of as representing the

plant-specific managerial component of environmental productivity. Essentially, Equation

(3) describes the process through which a plant converts emissions into output abstracting

away from the quantity of capital and labour used, in a similar way as standard production

functions describe the relation between output and marketed inputs abstracting away

from the environmental consequences of production.

We obtain ατ and βτ by estimating Equation (3) with a finite mixture model (McLach-

lan et al., 2019) sector-by-sector. Under such type of modeling, the within-sector distri-

bution of ln(Qi) is the average of T distributions, each with own mean µτ and variance

σ2
τ , weighted by the ex-ante probabilities πτ of belonging to group τ , i.e.:

f
(
ln(Qi)|µ, σ2

)
=

T∑
τ=1

πτfτ
(
ln(Qi)|µτ , σ2

τ

)
, (4)

where

πτ =

∑N
i=1 pi,τ∑T

τ=1

∑N
i=1 pi,τ

, (5)

with N being the number of plants and pi,τ the posterior probabilities. It is imposed that∑T
τ=1 πτ = 1.
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Posterior probabilities pi,τ are obtained by using an expectation-maximization (EM)

algorithm to the sector-by-sector weighted least squares estimation of Equation (3). In

the expectation (E) step, posterior probabilities pi,τ are computed as

pi,τ =
πτfτ{ln(Qi)|µτ ;σ2

τ}∑T
τ=1 πτfτ{ln(Qi)|µτ ;σ2

τ}
, (6)

starting from random values of πτ . In the maximization (M) step, the likelihood for

Equation (3) is maximized using observation weights:

γi,τ =
√
pi,τ . (7)

The two steps are iterated until the likelihood converges. We denote with p̃i,τ the posterior

probabilities obtained after the last EM iteration, once the likelihood is converged.

We leave the model free to choose, in each sector, the number of technologies that

best fits the data. We do so by running the mixture model estimation of Equation (3)

repeatedly, imposing in each round a different number of technology clusters T ∈ [1, 10]

and selecting the number of clusters that minimizes the Bayesian information criterion

(BIC).7 We denote with T̃ such optimal number. Detailed results of our BIC-based

selection procedure are collected in Table 1.

[insert Table 1 about here]

Table 2 reports the estimated ατ and βτ coefficients for the T̃ technologies identified

in each sector. As shown in the table, our mixture model estimation delivers a number of

7A number of T higher than 10 could be considered, but we observed empirically that in our data
the model does not converge for T > 5 in any sector.
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technologies ranging from one to five, with most sectors having more than one technology.

While the emission coefficient βτ is generally lower than one, a few technologies have βτ

greater than one. All the technology-specific E-PFs are plotted in Figure 2.

[insert Table 2 about here]

[insert Figure 2 about here]

Once the parameters describing each technology are obtained, we are able to identify

the locally optimal technology τ ∗, referred to as the technology such that ln(Q̂i,τ∗)|Ei >

ln(Q̂i,τ )|Ei ∀τ 6= τ ∗.8 Note that τ ∗ is “locally” optimal because conditional on Ei, i.e.

two or more E-PFs may cross each other at some level of Ei. Indeed, as shown in Figure

2, in most sectors, we observe that there is not a unique optimal technology for any

level of Ei. This means that the relative performance of environmental technologies is

emission-contingent, with the technologies which perform relatively well at low levels of

emissions tending to perform worse in highly polluting plants.

For each plant we have the probability p̃i,τ of adopting each technology τ as well as the

probability p̃i,τ∗ of adopting the locally optimal technology τ ∗. Hence, we can calculate

the probability-weighted size of each technology cluster, including the one that is locally

optimal. We observe that the cross-technology distribution of plants vary considerably

both within and across sectors. In particular, in the sectors where T̃ ≥ 2, the within-

sector share of plants adopting technology τ ∗ ranges from 6.10% in the production of

lime and dolomite to 54.25% in the carbon black industry, it being 21.12% on average.

8Clearly, this notion of optimality refers to the environmental performance of the technology (in terms
of emission intensity minimization). An optimal environmental technology may be in fact sub-optimal
from a profit-maximization perspective.
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When plants from all sectors are pooled, the share of plants at the technological frontier

is 31.85%. The full technology-sector distributions are provided in Table 3. This result

unveils that the accessibility of the frontier technology may differ remarkably across

industries, with most plants in most sectors using sub-optimal technologies.

[insert Table 3 about here]

Finally, we obtain the E-TFP term αi,τ as the difference between the plant’s observed

output and the fitted output under each E-PF (weighted by the probability of adopting

each E-PF), i.e. as

ln(Qi)−
T̃∑
τ=1

p̃i,τ ln(Q̂i,τ ), (8)

with ln(Q̂i,τ ) = ατ + βτ ln(Ei).

To understand how the dispersion of the E-TFP varies conditional on the technology in

use at the plant level, we compute two additional versions of αi,τ , conditional respectively

on the locally optimal and sub-optimal technologies, i.e.

αi,τ∗ = ln(Qi)− p̃i,τ∗ ln(Q̂i,τ∗) and αi,τ 6=τ∗ = ln(Qi)−
∑
τ 6=τ∗

p̃i,τ ln(Q̂i,τ ), (9)

and compare their estimated variances. Sectoral figures are in Table 4. We find that

V̂ar(αi,τ∗) > V̂ar(αi,τ 6=τ∗) only in the production of carbon black and pig iron, while the

opposite holds in all the other sectors with T̃ ≥ 2, thereby revealing that the use of the

frontier technology may help to reduce cross-plant differentials in managerial environmen-

tal performance. This finding may be interesting in light of very recent research showing
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that environmental management quality correlates positively with green investments at

the firm level (De Haas et al., 2021).

[insert Table 4 about here]

5 Gains from eliminating environmental productivity disper-

sion

In this section, we conduct a counterfactual exercise to give a sense of magnitude of the

economic significance of the technological and the managerial dimensions of environmen-

tal productivity.

First, we measure an E-PF gain index, obtained as the difference between the output

associated with the best available technology in the sector and the weighted fitted output

associated with the technology actually in use by the individual plant. Formally:

E-PF gain = ln(Q̂i,τ∗)−
T̃∑
τ=1

p̃i,τ ln(Q̂i,τ ), (10)

In simple words, E-PF gain measures the increase in output that would be associated

with a switch to the technological frontier, the plant’s E-TFP being zero.

Second, we compute an index of the output gain that a plant could obtain by adopting

the best managerial practices available in the sector, the technology in use being the same.

We refer to this index as E-TFP gain and obtain it as the difference between the E-TFP

of the top 5% performers in the sector and the E-TFP of the individual plant. More
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formally:

E-TFP gain = α∗ − αi,τ (11)

where αi,τ is defined as in (8) and α∗ is the average αi,τ of the best 5% of plants in the

within-sector distribution of αi,τ .
9

As a difference between logarithmic terms, both E-PF gain and E-TFP gain can be

directly interpreted as output gains in percentage points. By construction, the sum of

E-PF gain plus E-TFP gain is the total environmental productivity distance from the

“frontier installation”, referred to as the installation in the top 5% performers in terms of

E-TFP that adopts the locally optimal technology. Denote the sum E-PF gain + E-TFP

gain with Total gain.

Table 5 reports the sectoral averages of E-PF gain, E-TFP gain and Total gain.10

[insert Table 5 about here]

Two main results emerge. On the one side, both the technology and the manage-

rial dimensions are associated with economically significant productivity dispersion. In

particular, switching to the frontier technology would increase average output at the

plant-level by 75%, while using the best managerial practices would entail an output gain

of about 80%, emissions being equal. When both sources of productivity dispersion are

eliminated, the total gain in environmental productivity is about 155%.11 Interestingly

9We use the average of the top 5% performers instead of the E-TFP of the best individual plant not
to have the E-TFP gain index driven by an outlier.

10Within-sector distributions are presented in the Appendix.
11In the Appendix, we assess how these results change after addressing a possible simultaneity bias

in the mixture model estimation of the production function. Instrumental variable estimates produce
total potential gains in environmental productivity similar to those obtained without accounting for
endogeneity.
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enough, we find that the potential gains from eliminating managerial quality dispersion

account for about 50% of total environmental productivity gains, that is more than pre-

vious quantifications of the management share of revenue based TFP dispersion (Bloom

et al., 2016).

On the other side, we also find significant heterogeneity in the relative size of these

gains across sectors. In the production of lime and dolomite, nitric acid, paper and

cardboard, the technology dimension of environmental productivity dispersion is quanti-

tatively the most significant, accounting by more than two-thirds of the total dispersion.

Productions of pulp from timber, pig iron and steel are associated with much larger id-

iosyncratic differences. Clearly, where only one E-PF was found in our mixture model

estimation, productivity gains would come only from eliminating E-TFP dispersion.

To help interpreting the distribution of E-PF gain and E-TFP gain across plants

and sectors, it is useful to explore whether the adoption of improved environmental tech-

nologies and managerial practices follows a systematic pattern, as observed for innova-

tive technologies and revenue-based TFP more in general by a large empirical literature

(Syverson, 2011; Verhoogen, 2022). In this literature, internationalization, access to ex-

ternal capital, intangible capital inputs, firm size and structure, among other factors,

have been found to directly impact productivity at the micro level. Following this line of

study, here we look at the association between E-PF gain, E-TFP gain and a number of

contemporaneous characteristics of parent companies obtained from Orbis (Bureau van

Dijk, 2022).12 In particular, we consider firm size (measured as the share of company’s

employees relative to the total number of employees in the sector), firm age (as the num-

ber of years since the year of incorporation), a dummy variable equal to one if the firm

12We link each plant i in the EU OHA database with its parent company in Orbis by using approximate
string matching (fuzzy matching), with a match rate of 82.86%.
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is listed on the stock market, and intangible capital intensity (i.e., intangible assets per

employee). Moreover, by looking at the number of plants of each parent companies and

their location, we construct two additional dummy variables equal to one, respectively, if

the plant belongs to a multi-plant firm and if the plant is located in a country different

from the country of the parent company’s global ultimate owner.

Formally, we regress E-PF gain and E-TFP gain on a vector of firm-specific variables,

by means of OLS over the pooled sample:

Yi,s = δ1 + d2Xi,s + εi,s, (12)

with Yi,s being alternatively E-PF gain and E-TFP gain, and where Xi,s is a vector of

covariates, d2 the associated vector of parameters, and εi,s the residuals. Statistically

significant correlations emerge from this exercise, as reported in Table 6.

[insert Table 6 about here]

We find correlations that are broadly consistent with our interpretation of E-PF gain

and E-TFP gain reflecting technological and managerial environmental productivity.

Plants closer to the technological frontier (i.e. E-PF gain is lower) belong to larger,

international, and multi-plant companies. Plants belonging to an international owner

and to companies with higher intangibles intensity more commonly show improved en-

vironmental management. Finally, listed firms and older firms have, respectively, lower

E-PF gain and lower E-TFP gain (but these effects show weaker statistical significance

after accounting for country fixed effects).13

13Notwithstanding a good match rate between the EU OHA and Orbis databases, in the regressions
with firm-level controls the number of observations drop significantly because of extensive missing data
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Overall, these correlations are consistent with previous evidence about firm character-

istics, technological upgrades and TFP, outside the environmental context. A suggestive,

yet speculative interpretation of this finding is that environmental friendly technologies

and management practices are driven by international exposure and broader access to

external funding and to higher quality inputs. Hence, firms may tend to adopt them more

likely when international linkages are stronger, their productive structure is broader and

when the firm makes greater use of information technology and other types intangible

assets.

6 Conclusions

Industrial economists have shown extensively, over a large number of industries and time

periods, that productivity asymmetries across firms are wide and persistent also when

increasing the level of disaggregation (Bartelsman and Doms, 2000; Syverson, 2011).

This has stimulated finer and finer methodological strategies, aimed at exploring the

intra-industry heterogeneity in productivity and its causes (Disney et al., 2003; Dosi et

al., 2016; Battisti et al., 2020; Amoroso and Martino, 2020; Dosi et al., 2021; de Roux

et al., 2021). In this literature, less effort has been devoted to measuring the environ-

mental dimension of such productivity differentials. To which extent do firms in a same

product market differ in how they combine marketed output and non-marketed environ-

mental inputs? And to which extent can these differences be interpreted as differences in

technology? How large are the potential gains from broadening the diffusion of frontier

technologies and how large those from improving the way a same technology is used?

These questions are relatively new, but they are already very relevant for both industrial

in Orbis.
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policy and environmental regulation, as the ongoing design of technology transition plans

in Europe and the US, in addition to other countries and regions, revolves around the pos-

sibility to link economic growth and improved environmental sustainability of industrial

productions—the so-called “green growth”.

In this paper we propose an innovative methodology to decompose environmental

productivity into a technological (group-specific) and a managerial (plant-specific) com-

ponent. This method has two main attractive properties: (i) it is entirely data-driven

(i.e. it does not need assumptions on the number of technologies available in the sector

and on the degree of technological sharing across plants), and (ii) it only requires infor-

mation on emissions and output levels, which is typically available for large-scale samples

of firms (in our exercise, we used freely accessible data from the EU OHA database).

Our analysis yields the general result that cross-plants differentials in environmental

management are non-negligible, the technological component of environmental produc-

tivity dispersion being qualitatively important in many sectors. We find that more than

two-thirds of regulated plants in our European sample uses sub-optimal technologies,

whereas adopting the locally optimal technology would lead on average to a 75% increase

in output, emissions being equal. Interestingly, the distribution of both technology and

managerial differences tends to be associated with several firm characteristics, with man-

agerial asymmetries on average being lower for the production units at the technological

frontier.

Related literature on environmental technology adoption has explored a number of

possible causes leading firms not to adopt improved environmental technologies. In par-

ticular, some of these technologies may not be profit enhancing and adopting them may

be inconvenient for profit-maximizing firms, absent public policy. Others may be prof-
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itable (e.g. because they are energy-saving) but their adoption may be prevented by

transaction costs, monitoring costs, administrative costs and adjustment costs (De Canio

and Watkins, 1998), which may be critical especially for credit-constrained firms (De

Haas et al., 2021).14

Our paper adds to this literature in two distinct ways. First, it provides an easy to

implement algorithm to quantify the potential gains in output, emissions being equal,

that can be reached by boosting emission-saving technology diffusion. With our method,

this quantification can be done at the most granular level, i.e. the plant level.

Second, the paper shows that there is a great variability across regulated plants (even

within countries and sectors) in technological and managerial environmental quality, with

many capped plants adopting sub-optimal technologies and others adopting optimal (or

close to optimal) technologies together with environmentally inefficient managerial prac-

tices. We show that these asymmetries tend to be systematic, with international firms

having both better technologies and better management than the average. This may

suggest that existing technologies have large unexploited potentials, particularly among

smaller, national firms. Arguably, our method could stimulate future research to explore

more deeply the causes of such heterogeneity.

Taken together, these findings point to technology (including technology management)

diffusion as a primary target for environmentally oriented industrial policy. Our findings

also lend support to the adoption of flexible policies, that combine technology standards

with market-based regulations inducing each firm to curb its emissions by means of what

arguably is the most effective strategy given the nature of its own environmental efficiency

bug. Related to this, we also find that what is an optimal technology, in terms of envi-

14A broader body of study on (non-environmental) TFP dispersion shows that informational frictions
and adjustment costs may be an important driver of such dispersion, which could in fact be optimal
within the context of richer models (Asker et al., 2014).
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ronmental productivity, depends on the plant’s level of emissions. Hence, one-size-fits-all

technology standards may be inappropriate for some plants and less effective, on average,

than emission-contingent technology prescriptions.
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Table 2: E-PF parameters from the sector-by-sector mixture model estimation.

Sector E-PF1 E-PF2 E-PF3 E-PF4 E-PF5

Aluminium β1 = 0.944
α1 = 0.000

Ammonia β1 = 0.151
α1 = 0.000

Carbon black β1 = 0.250 β2 = 0.793
α1 = 8.407 α2 = 0.000

Cement clinker β1 = 0.974 β2 = 0.419 β3 = 0.975
α1 = 0.284 α2 = 7.956 α3 = 0.384

Coke and coke ovens β1 = 0.852
α1 = 3.020

Glass β1 = 0.973 β2 = 0.980 β3 = 0.208 β4 = 0.561 β5 = 0.766
α1 = 1.141 α2 = 0.358 α3 = 9.760 α4 = 5.748 α4 = 3.424

Gypsum or plasterboard β1 = 0.264 β2 = 0.864
α1 = 10.819 α2 = 0.000

Lime and dolomite β1 = 1.170 β2 = 0.367 β3 = 0.373 β4 = 1.069
α1 = −2.620 α2 = 0.003 α3 = 0.082 α4 = 0.048

Mineral wool β1 = 0.811 β2 = 0.658 β3 = 1.057
α1 = 2.066 α2 = 0.000 α3 = 0.272

Nitric acid β1 = 1.306 β2 = 0.602
α1 = −2.485 α2 = 0.000

Other pulp β1 = 0.359
α1 = 9.203

Paper or cardboard β1 = 0.857 β2 = 0.065
α1 = 2.542 α2 = 12.441

Pig iron or steel β1 = 0.860 β2 = 1.004
α1 = 2.877 α2 = 1.236

Pulp from timber β1 = 0.856 β2 = 0.590
α1 = 4.548 α2 = 0.000

Note. All the reported parameters are statistically significant at the 1% level. Both α and β are
considered equal to zero if not statistically different from zero at the 1% level.
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Table 3: Technology-sector distributions (%).

Sector τ = τ1 τ = τ2 τ = τ3 τ = τ4 τ = τ5 τ = τ∗

Aluminium 100 100
Ammonia 100 100
Carbon black 74.04 25.95 54.25
Cement clinker 35.58 7.05 57.35 18.31
Coke and coke ovens 100 100
Glass 60.958 7.61 3.42 22.20 5.79 19.88
Gypsum or plasterboard 56.44 43.55 51.42
Lime and dolomite 6.79 24.27 4.55 64.37 6.10
Mineral wool 16.79 25.51 57.69 27.07
Nitric acid 54.48 45.50 41.98
Other pulp 100 100
Paper or cardboard 86.36 13.63 14.53
Pig iron or steel 33.29 66.70 41.26
Pulp from timber 60.88 39.11 37.89
All sectors pooled 31.85

All sectors with T̃ ≥ 2 pooled 21.12

Note. Entries are within-sector shares (%) of observations across technology clusters, weighted by the
probability p̃i,τ of belonging to each cluster. The locally optimal technology cluster is τ∗.
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Table 4: E-TFP dispersion conditional on technology.

Sector V̂ar(αi,τ∗) V̂ar(αi,τ 6=τ∗)
Aluminium 0.063 –
Ammonia 0.122 –
Carbon black 0.026 0.017
Cement clinker 0.003 0.057
Coke and coke ovens 0.222 –
Glass 0.002 0.020
Gypsum or plasterboard 0.002 0.010
Lime and dolomite 0.001 0.043
Mineral wool 0.004 0.015
Nitric acid 0.050 0.084
Other pulp 0.846 –
Paper or cardboard 0.052 0.193
Pig iron or steel 0.315 0.200
Pulp from timber 0.158 0.436

Note. V̂ar(αi,τ 6=τ∗) = − in sectors where T̃ = 1.

29



Table 5: Potential gains from eliminating emission intensity dispersion.

Sector E-PF gain E-TFP gain Total gain
Aluminium 0.000 0.595 0.595

(0.000) (0.219) (0.219)
Ammonia 0.000 0.429 0.429

(0.000) (0.349) (0.349)
Carbon black 0.102 0.386 0.488

(0.148) (0.211) (0.267)
Cement clinker 0.478 0.578 1.057

(0.612) (0.249) (0.666)
Coke and coke ovens 0.000 0.571 0.571

(0.000) (0.471) (0.471)
Glass 0.534 0.332 0.867

(0.589) (0.154) (0.608)
Gypsum or plasterboard 0.122 0.169 0.292

(0.169) (0.113) (0.217)
Lime and dolomite 1.037 0.452 1.489

(0.928) (0.210) (0.997)
Mineral wool 0.521 0.267 0.788

(0.534) (0.132) (0.568)
Nitric acid 1.159 0.571 1.730

(1.420) (0.347) (1.484)
Other pulp 0.000 1.692 1.692

(0.000) (0.834) (0.834)
Paper or cardboard 1.754 0.883 2.637

(1.153) (0.481) (1.194)
Pig iron or steel 0.102 1.259 1.362

(0.125) (0.638) (0.664)
Pulp from timber 0.136 1.710 1.847

(0.203) (0.723) (0.810)
All sectors pooled 0.755 0.800 1.555

(0.999) (0.640) (1.128)

Note. E-PF gain quantifies the increase in Q that would be obtained by moving to the counterfactual
scenario where all firms adopt E-PF∗, expressed as a ratio with respect to the observed (i.e. actual) levels
of Q. E-TFP gain quantifies the increase in Q that would be obtained by moving to the counterfactual
scenario where all firms have E-TFP∗, the technology in use being equal, expressed as a ratio with respect
to the observed (i.e. actual) levels of Q. Total gain is the sum of E-PF gain plus E-TFP gain. E-PF
gain, E-TFP gain and Total gain are calculated at the installation-level and then reported in the table
as sector-averages. Standard deviation in parenthesis.
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Table 6: E-PF gain, E-TFP gain and parent firms’ characteristics.

[1] [2] [3] [4]
E-PF gain E-TFP gain E-PF gain E-TFP gain

Firm age 0.000 -0.001** -0.000 -0.001
(0.001) (0.000) (0.001) (0.001)

Firm size -1.444** -0.419 -1.896*** -0.406
(0.609) (0.290) (0.626) (0.295)

Multi-plant firm -0.434*** -0.020 -0.382*** -0.042
(0.093) (0.053) (0.094) (0.054)

Intangibles intensity -0.000 -0.001** -0.000 -0.001**
(0.000) (0.000) (0.000) (0.000)

Listed firm -0.348* -0.002 -0.254 -0.106
(0.177) (0.106) (0.194) (0.117)

International ultimate owner -0.196** -0.130** -0.198** -0.097*
(0.091) (0.052) (0.095) (0.056)

Constant 1.169*** 0.947*** 0.763*** 1.334***
(0.089) (0.052) (0.243) (0.148)

Country FE No No Yes Yes
F 8.56 3.61 4.72 2.48
Pr.> F 0.000 0.001 0.000 0.000
# of obs. 493 554 493 554

Statistical significance: ∗ =10%, ∗∗ =5%, ∗∗∗ =1%. Standard errors are in parentheses. Plant level OLS
regressions. All sectors pooled. Sectors with T̃ = 1 are omitted from the E-PF gain regressions.
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Figure 1: Distribution of emission intensity within sectors.

Note. Emission intensity is measured at the plant-level as verified tons of CO2-equivalent emissions
per unit of output. The default unit of measurement of output is tons of product produced expressed
as saleable net production and to 100% purity of the substance concerned (details are in European
Commission (2011)).
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Figure 2: Estimated environmental-production functions.

Note. E-PFs obtained from the mixture model estimation. The number of E-PFs in each sector is
determined as the result of optimal clustering selection based on BIC minimization.
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Appendix
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A.1. Additional tables and figures

Table 7: CSCF and CLEF.

Year ϑt (CSCF) λs,t (CLEF) λs,t (CLEF)
sectors at risk sectors not at risk

of carbon leakage of carbon leakage
2013 0.94272151 1 0.8000
2014 0.92634731 1 0.7286
2015 0.90978052 1 0.6571
2016 0.89304105 1 0.5857
2017 0.87612124 1 0.5143
2018 0.81288476 1 0.4429
2019 0.79651677 1 0.3714

Note. The carbon leakage exposure factor - CLEF (λs,t) is constant 1 or decreasing at a predetermined
rate depending on the carbon leakage status of the sector. The cross-sectoral correction factor - CSCF
(ϑt) ensures that total allocation remains below the maximum amount pursuant to article 10a(5) of the
EU ETS Directive (European Commission, 2015).
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Table 8: List of sectors, benchmark emission intensities and carbon leakage risk.

s-sector Product-specific ẽs Exposure to
(EU-OHA classification) benchmark emission intensity carbon leakage risk
Aluminium Aluminium: 1.514 1.514 Yes

(1-to-1 match)

Ammonia Ammonia: 1.619 1.619 Yes
(1-to-1 match)

Carbon black Carbon black: 1.954 1.954 No
(1-to-1 match)

Cement clinker White cement clinker: 0.766 0.876 Yes
Grey cement clinker: 0.987 (average)

Coke and coke ovens Coke and coke ovens: 0.286 0.286 Yes
(1-to-1 match)

Glass Float glass: 0.453 0.380 Yes
Colourless glass: 0.382 (average)
Coloured glass: 0.306

Gypsum or plasterboard Plaster: 0.048 0.032 Yes
Gypsum: 0.017 (average) (No in 2013-14)

Lime and dolomite Lime: 0.954 1.013 Yes
Dolomite: 1.072 (average)

Mineral wool Mineral wool: 0.682 0.682 No
(1-to-1 match)

Nitric acid Nitric acid: 0.302 0.302 Yes
(1-to-1 match)

Other pulp Sulphite pulp: 0.020 0.067 Yes
Short fibre kraft pulp: 0.120 (average)
Long fibre kraft pulp: 0.060

Paper or cardboard Coated fine paper: 0.318 0.286 Yes
Uncoated fine paper: 0.318 (average)
Coated carton board: 0.273
Uncoated carton board: 0.237

Pig iron or steel Pig iron or steel: 0.325 0.325 Yes
(1-to-1 match)

Pulp from timber Pulp from timber: 0.039 0.039 Yes
(1-to-1 match)

Note. Product-specific benchmark emission intensities are listed in European Commission (2011) accord-
ing to a classification that is more granular than the EU-OHA sectors classification. We cross-walked the
two classifications using product-sector description matching: (i) 1-to-1 match is obtained when product
and sector descriptions perfectly coincide, (ii) where different products covered by a larger EU-OHA
sector have different product-specific benchmark emission intensities, the sectoral benchmark emission
intensity ẽs is obtained as the average of the product-specific benchmark emission intensities. Unmatched
sectors are left out of the analysis.
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Figure 3: Distribution of E-PF gain within sectors.

Note. E-PF gain quantifies the increase in Qi that would be obtained by a plant by switching to E-
PFτ∗ , expressed as a ratio with respect to the observed (i.e. actual) levels of Qi. Sectors with T̃ = 1 are
omitted.
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Figure 4: Distribution of E-TFP gain within sectors.

Note. E-TFP gain quantifies the increase in Qi that would be obtained by a plant by having the same
E-TFP as the average of the top 5% performers, the technology in use being equal, expressed as a ratio
with respect to the observed (i.e. actual) levels of Qi.
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A.2. Endogeneity bias

It is well known since Marschak and Andrews (1944) that, if the firm has knowledge

of its productivity parameter when making input choices, these choices will likely be

dependent on the productivity itself. This is the so-called “simultaneity problem”. In

our framework, this equals to say that both αi,τ and {ατ , βτ} in Eq. (3) may be biased due

to the fact that, while the true productivity terms are unobserved by the econometrician,

they are known by the firm when it takes emission decisions, i.e. ln(Ei) is endogenous.

In this section, we assess the impact of this simultaneity bias in our production function

estimation.

Starting with Olley and Pakes (1996), various approaches have been proposed to tackle

the simultaneity problem (see Ackerberg et al. (2007) and De Loecker and Syverson

(2021) for reviews on this). A traditional approach is the one relying on an instrumental

variable (IV), i.e. a variable that is correlated with the endogenous explanatory variables

but does not directly enter the production function and is uncorrelated with the produc-

tivity term. The economics of production suggests input prices as natural instruments.

To use the price of the inputs as instrument requires econometrically helpful variation in

this variable. With permit pricing being homogeneous across firms under the EU ETS,

in our cross-sectional estimation setting there is no such variation to exploit. Hence, we

instrument emissions by means of the number of allowances allocated to plants through

“grandfathering” at the start of the EU ETS in 2005. Following Directive 2003/87/EC

on greenhouse gas emissions trading, in 2005 each plant eligible to enter the EU ETS

was provided with a number of allowances allocated free of charge based on the plant’s

historical (predetermined) emissions. Fortunately for us, the number of allowances freely

allocated was both unexpected by polluters and independent of their current production

behaviour. Moreover, economic theory suggests that pollution permits influence output
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only through their effect on emissions.

Denote the number of allowances allocated through “grandfathering” in 2005 as

Ai,2005. We integrate our mixture model estimation of Eq. (3) with the following first

stage:

Ei = γ1 + γ2Ai,2005 + εi (13)

The predicted values from Eq. (13) are used in the production function estimation. Then,

we run again all the steps of our counterfactual analysis and obtain E-PF gain and E-

TFP gain as recomputed based on the IV estimation of the productivity terms. The OLS

correlation between Ei and Ai,2005 over the pooled sample is reported in Table 9 and the

final results of the counterfactual exercise in Table 10.15

[insert Table 9 about here]

[insert Table 10 about here]

The results are qualitatively similar to those obtained without accounting for endo-

geneity. In particular, we observe that the total gain in environmental productivity due

to removing both sources of productivity dispersion is about 161%, against a total gain

of about 155% obtained in our baseline estimation. In the IV version of the analysis, the

model does not converge for plant data from the aluminium sector, plus we find other

four sectors with only one technology. This explains why the technological dimension

of productivity dispersion is relatively lower (and the managerial dispersion relatively

higher) than in the baseline estimates.

15Details of the BIC-based selection of clusters and of the within-sector distribution of plants across
clusters are available upon request.
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Figure 5, finally, shows that the differences, respectively, between the baseline E-PF

gain and the IV-based E-PF gain and between the baseline E-TFP gain and the IV-based

E-TFP gain are not systematic.

[insert Figure 5 about here]
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Table 9: First stage OLS correlation between emissions and allowances.

γ1 γ2 R2 F Pr.> F
7526.502* (3979.685) 0.916*** (0.005) 0.953 23883.36 0.000

Note. Statistical significance: ∗ =10%, ∗∗ =5%, ∗∗∗ =1%. Standard errors are in parentheses. Plant
level OLS regression. All sectors pooled.
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Table 10: Potential output gains: IV estimates.

Sector E-PF gain E-TFP gain Total gain
Ammonia 0.000 0.447 0.447

(0.000) (0.357) (0.357)
Carbon black 0.332 0.138 0.471

(0.270) (0.087) (0.290)
Cement clinker 0.181 1.305 1.487

(0.275) (0.430) (0.442)
Coke and coke ovens 0.000 0.931 0.931

(0.000) (0.491) (0.491)
Glass 0.671 0.516 1.187

(0.732) (0.251) (0.803)
Gypsum or plasterboard 0.000 0.313 0.313

(0.000) (0.238) (0.238)
Lime and dolomite 0.619 0.552 1.172

(0.808) (0.248) (0.898)
Mineral wool 0.922 0.483 1.406

(0.804) (0.278) (0.781)
Nitric acid 0.000 2.412 2.412

(0.000) (1.596) (1.596)
Other pulp 0.639 1.207 1.846

(0.665) (0.427) (0.875)
Paper or cardboard 0.375 1.454 1.829

(0.477) (0.661) (0.951)
Pig iron or steel 0.852 0.979 1.832

(1.182) (0.536) (1.330)
Pulp from timber 2.079 2.217 4.297

(1.370) (0.748) (1.246)
All sectors pooled 0.554 1.062 1.617

(0.797) (0.691) (1.101)

Note. E-PF gain quantifies the increase in Q that would be obtained by moving to the counterfactual
scenario where all firms adopt E-PF∗, expressed as a ratio with respect to the observed (i.e. actual) levels
of Q. E-TFP gain quantifies the increase in Q that would be obtained by moving to the counterfactual
scenario where all firms have E-TFP∗, the technology in use being equal, expressed as a ratio with
respect to the observed (i.e. actual) levels of Q. Total gain is the sum of E-PF gain plus E-TFP gain.
E-PF gain, E-TFP gain and Total gain are calculated at the installation-level and then reported in
the table as sector-averages. Standard deviation in parenthesis. Estimates obtained by means of 2-stage
mixture model estimation of Eq. (3). Aluminium is omitted due to non convergence in the mixture
model estimation.
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Figure 5: Difference between baseline and IV-based E-PF gain and E-TFP gain.

Note. E-PF gain quantifies the increase in Q that would be obtained by moving to the counterfactual
scenario where all firms adopt E-PF∗, expressed as a ratio with respect to the observed (i.e. actual) levels
of Q. E-TFP gain quantifies the increase in Q that would be obtained by moving to the counterfactual
scenario where all firms have E-TFP∗, the technology in use being equal, expressed as a ratio with respect
to the observed (i.e. actual) levels of Q. The figure displays: (left-hand panel) the distribution of the
difference between E-PF gain obtained by means of the baseline mixture model and E-PF gain obtained
by means of the IV mixture model; (right-hand panel) the distribution of the difference between E-TFP
gain obtained by means of the baseline mixture model and E-TFP gain obtained by means of the IV
mixture model. Pooled sample.
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