
Neurocomputing 611 (2025) 128679

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Comparison of Reservoir Computing topologies using the Recurrent Kernel
approach
Giuseppe Alessio D’Inverno a, Jonathan Dong b,∗

a Department of Information Engineering and Mathematics, University of Siena, Siena, 53100, Italy
b Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Station 17, Lausanne, 1015, Switzerland

A R T I C L E I N F O

Communicated by A. Iosifidis

Keywords:
Reservoir Computing
Recurrent Kernels
Sparse Reservoir Computing
Structured reservoir computing
Deep reservoir computing

A B S T R A C T

Reservoir Computing (RC) has become popular in recent years thanks to its fast and efficient computational
capabilities. Standard RC has been shown to be equivalent in the asymptotic limit to Recurrent Kernels, which
helps in analyzing its expressive power. However, many well-established RC paradigms, such as Leaky RC,
Sparse RC, and Deep RC, are yet to be systematically analyzed in such a way. We define the Recurrent Kernel
limit of all these RC topologies and conduct a convergence study for a wide range of activation functions
and hyperparameters. Our findings provide new insights into various aspects of Reservoir Computing. First,
we demonstrate that there is an optimal sparsity level which grows with the reservoir size. Furthermore,
our analysis suggests that Deep RC should use reservoir layers of decreasing sizes. Finally, we perform a
benchmark demonstrating the efficiency of Structured Reservoir Computing compared to vanilla and Sparse
Reservoir Computing.
1. Introduction and related work

Reservoir Computing (RC) is a machine learning technique used for
training Recurrent Neural Networks, which fixes the internal weights of
the network and only trains a linear layer, resulting in faster training
times [1]. Its simplicity and effectiveness have made it a popular choice
for various tasks such as chaotic time series prediction [1], robot
motor control or financial forecasting [2]. Additionally, the random
connections within Reservoir Computing networks make them a useful
framework for comparison with biological neural networks [3].

Over time, researchers have proposed several methods to optimize
and enhance Reservoir Computing’s performance and efficiency. One
such method is Leaky Reservoir Computing, which stabilizes the dy-
namics of the reservoir and enables tuning of its memory by adjusting
the leak rate [4]. There is also Sparse Reservoir Computing, which
consists in a sparse initialization of weight connections proposed since
the original formulation of Echo State Networks [1]). Structured Reser-
voir Computing [5] is another acceleration strategy which replaces
the internal weights by a structured transform instead. Finally, Deep
Reservoir Computing allows for the use of reservoirs with different
time dynamics [6]. All these variants show the flexibility of the Reser-
voir Computing framework, made of a fixed reservoir encoding a
time-dependent input combined with a linear readout, which can be ex-
tended further to physical implementations [7–9] and next-generation
reservoir computing [10].

∗ Corresponding author.
E-mail address: jonathan.dong@epfl.ch (J. Dong).

Increasing the number of neurons in a Reservoir Computing network
leads to the convergence of its behavior to a recurrent kernel, as
discussed in [5]. Kernel methods are a class of algorithms in machine
learning that use kernel functions to implicitly map input data into
high-dimensional feature spaces, calculating scalar products between
input points in a dual space, enabling linear models to solve non-
linear problems. Recurrent Kernels are a variant in which these scalar
products are dynamically updated over time based on changes in the
input data. They can be used as an alternative to large-scale Reser-
voir Computing and have demonstrated state-of-the-art performance
on chaotic time series prediction [5]. There are two ways Recurrent
Kernels can be useful. They offer an interesting alternative to RC
when the number of data points is limited, as kernel methods require
the calculation of scalar products between all pairs of input points.
Additionally, recurrent kernels have been useful for theoretical studies,
such as stability analysis in Reservoir Computing [11], as they provide
a deterministic limit with analytical expressions.

Prior studies on Recurrent Kernels has been mainly limited to
vanilla Reservoir Computing and structured transforms. In this work,
we extend the application of Recurrent Kernels to other Reservoir
Computing topologies, such as Leaky, Sparse, and Deep Reservoir Com-
puting. Specifically, we define the appropriate Recurrent Kernels for
each topology, investigate similarities in their corresponding limits,
https://doi.org/10.1016/j.neucom.2024.128679
Received 28 January 2024; Received in revised form 21 September 2024; Accepted
vailable online 1 October 2024
925-2312/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
29 September 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:jonathan.dong@epfl.ch
https://doi.org/10.1016/j.neucom.2024.128679
https://doi.org/10.1016/j.neucom.2024.128679
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.128679&domain=pdf
http://creativecommons.org/licenses/by/4.0/

G.A. D’Inverno and J. Dong

H
w
a
a
p
w
u

𝑝

s
𝜎
b
p
t

l

𝐨

T
s
t
t
t

2

m
F
r
h
v
f

f
c
t
S
w
g

𝑝

0

t

H
o
m
e
i
t
d

t
L

𝐱

Neurocomputing 611 (2025) 128679
and evaluate their convergence numerically. By broadening the scope
of Recurrent Kernels, we aim to demonstrate their versatility and
effectiveness in a range of Reservoir Computing configurations.

Our main contributions are listed as follows:

• We define the Recurrent Kernel limit for Leaky RC, Sparse RC, and
Deep RC, showing that Sparse RC converges to the same limit as
vanilla RC and Structured RC

• We conduct a thorough numerical study on the convergence of
these RC paradigms to their Recurrent Kernel counterparts, for
different activation functions

• Our results show that sparse RC is equivalent to the non-sparse
case, as long as the sparsity rate is above a certain threshold.
This suggests that sparse RC does not have increased or decreased
expressivity compared to vanilla RC

• We show that, in Deep Reservoir Computing, first reservoirs
should be larger than subsequent ones, in order to decrease the
amount of noise transmitted in the subsequent layers. However,
this effect is quite small for large reservoirs and reservoirs with
equal sizes should perform similarly in practice.

• We perform a benchmark of Reservoir Computing, Sparse Reser-
voir Computing, and Structured Reservoir Computing, as both
strategies have been introduced for computational efficiency, and
demonstrate that Structured RC is generally the most efficient for
large reservoir sizes.

2. Background

2.1. Reservoir computing

Reservoir Computing, like all recurrent neural network architec-
tures, receives sequential input 𝐢(𝑡) ∈ R𝑑 for 𝑡 ∈ N. The simplest model
for Reservoir Computing, commonly called the Echo-State Network
(ESN) [12], comprises a set of neurons 𝐱(𝑡) ∈ R𝑁 with fixed random
weights, with𝑁 the number of neurons in the reservoir. The initial state
of the network 𝐱(0) is randomly initialized, typically from a random
Gaussian distribution. The network is then updated according to the
following equation:

𝐱(𝑡+1) = 1
√

𝑁
𝑓
(

𝜎𝑟𝐖𝑟𝐱(𝑡) + 𝜎𝑖𝐖𝑖𝐢(𝑡)
)

. (1)

ere, 𝐖𝑟 ∈ R𝑁×𝑁 and 𝐖𝑖 ∈ R𝑁×𝑑 are the reservoir and input
eight matrices, 𝜎𝑟 and 𝜎𝑖 are reservoir and input scaling factors,
nd 𝑓 is an element-wise nonlinearity, often a sigmoid—which is well
pproximated by the (Gauss) error function. The factor 1∕

√

𝑁 ensures
roper normalization of the L2-norm of 𝐱 when 𝑁 goes to infinity. Each
eight of 𝐖𝑟 and 𝐖𝑖 is drawn from a normal Gaussian distribution with
nit variance:

(𝑤) = 1
√

2𝜋
𝑒−𝑤

2∕2 (2)

An essential hyperparameter to tune is the scaling factor 𝜎𝑟. It
ignificantly impacts the dynamics and stability of the reservoir: when
𝑟 is small, the updates in Eq. (1) are contractant, while the reservoir
ecomes a chaotic nonlinear system for large 𝜎𝑟. Therefore, this hy-
erparameter is often optimized to maximize performance for a given
ask.

The output of Reservoir Computing 𝐨(𝑡) ∈ R𝑛 is computed using a
inear model applied to the state of the reservoir, as given by:
(𝑡) = 𝐖out𝐱(𝑡). (3)

he training step for this model involves a linear regression, which is a
tark contrast to the non-linear optimization typically employed when
raining neural networks. Reservoir Computing’s approach is based on
he idea that the current state of the reservoir, 𝐱(𝑡), non-linearly encodes

(𝑡−1) (𝑡−2)
he past values of the input time series, 𝐢 , 𝐢 , etc. .

2
.2. Different variants of reservoir computing

Several Reservoir Computing variants have been proposed, which
odify the update equations and alter the reservoir dynamics (see

ig. 1). These variants include adjustments to the updates to tune the
eservoir relaxation time, speeding up computation, or introducing a
ierarchical structure to enrich the dynamics. The flexibility of Reser-
oir Computing makes it possible to fine-tune the dynamics precisely
or a particular task using these variants.
Sparse Reservoir Computing aims to increase computational ef-

iciency by using sparse internal weight matrices. The computational
omplexity in Reservoir Computing is mainly determined by the ma-
rix multiplication involving the 𝑁 × 𝑁 internal weight matrix. In
parse Reservoir Computing, this matrix is made sparse by drawing the
eights from a sparse i.i.d. distribution. Specifically, the distribution is
iven by:

(𝑤𝑟) = (1 − 𝑠)𝛿(𝑤𝑟) + 𝑠
√

𝑠
2𝜋
𝑒−

𝑠𝑤2𝑟
2 , (4)

where 𝛿 denotes the Dirac delta function, and 𝑠 takes values between
and 1, controlling the proportion of non-zero weights. 𝑠 = 1 cor-

responds to the original non-sparse case, and it is typically set at
0.05 [13,14] which means that 5% of the weights are non-zero. The
variance of the Gaussian term is fixed at 1∕𝑠 to ensure that the spectral
radius of the matrix stays similar to the non-sparse case. We focus here
on a sparsity model in which a fraction of the weights are non-zero.
Other works define sparsity with a fixed number of connections per
neurons [15], the two approaches being equivalent at fixed reservoir
sizes.

The sparsity in the weight matrix reduces the computational com-
plexity of the update equation, enabling faster computation without
sacrificing performance. The computational and memory complexities
are (𝑠𝑁2). This approach is especially useful for large-scale Reser-
voir Computing systems where the computational cost is significant.
Research has shown that the use of sparse matrix multiplication can
increase computational speed, while maintaining accuracy. Thanks to
their simplicity, they are often used in existing Reservoir Computing
works.

Structured RC speeds up computations by replacing the dense
weight matrices by a product of fixed structured and random diagonal
matrices [5], inspired by Orthogonal Random Features [16] which are
their non-recurrent counterparts. The weight matrix 𝑊 is replaced by:

𝑊 = 𝐻𝐷1𝐻𝐷2𝐻𝐷3,

where 𝐻 denotes a fixed structured transform and 𝐷𝑖 are diagonal
matrices with i.i.d. Rademacher random variables (±1 with probability
0.5) on the diagonals. The computational complexity is (𝑛 log 𝑛), de-
ermined by the structured transforms, while the memory complexity is
(𝑛). Deviating from [5], we will consider Hartley matrices instead of
adamard matrices. The Hartley transform is the real-valued version
f the Fourier transform, defined as 𝐻(𝑥) = Re𝐹 (𝑥 ∗ (1 + 𝑗)). It
aps real-valued vectors to real-valued outputs and can be computed

fficiently on CPU and GPU using the Fast Fourier Transform which
s present in all generic numerical libraries in Python. By contrast,
he Hadamard transform is a simple structured transform but requires
edicated Python libraries.
Leaky-Reservoir Computing introduces a leak rate to control the

ypical time scale of changes in the reservoir. The update equation for
eaky-Reservoir Computing is given by:

(𝑡+1) = (1 − 𝑎)𝐱(𝑡) + 𝑎 1
√

𝑁
𝑓
(

𝜎𝑟𝐖𝑟𝐱(𝑡) + 𝜎𝑖𝐖𝑖𝐢(𝑡)
)

, (5)

where 𝑎 ∈ [0, 1] is the leak rate. Setting 𝑎 = 1 corresponds to the non-
leaky Reservoir Computing case described earlier. Decreasing 𝑎 slows
down the speed of changes in the reservoir, thereby controlling the
typical time scale of reservoir dynamics. This feature can be useful for

G.A. D’Inverno and J. Dong Neurocomputing 611 (2025) 128679
Fig. 1. Recurrent Kernels associated with various Reservoir Computing topologies. RC, sparse RC, and structured RC converge to the same RK limit when the reservoir size 𝑁 → ∞.
Leaky RC and Deep RC converge to their corresponding limits.
tasks in which the input signal changes slowly over time, as it enables
the reservoir to better capture the temporal dependencies in the input
data.

Deep Reservoir Computing stacks multiple reservoir layers to form
a deep architecture also called a Deep Echo State Network (deep-
ESN) [6]. The first layer operates like the reservoir in a shallow
Reservoir Computing architecture and is fed by the external input,
while each successive layer is fed by the output of the previous one.
The reservoir layer of a deepESN can be expressed as:

𝐱(𝑡+1)𝑙 = 1
√

𝑁𝑙
𝑓
(

𝜎𝑟𝐖𝑙
𝑟𝐱

(𝑡)
𝑙 + 𝜎𝑖𝐖𝑙

𝑖𝐮
(𝑡)
𝑙

)

(6)

where the index 𝑙 = 1,… , 𝐿 describes the layer with a reservoir of size
𝑁𝑙, 𝐮

(𝑡)
𝑙 is the input for the 𝑙th layer:

𝐮(𝑡)𝑙 =

⎧

⎪

⎨

⎪

⎩

𝐢(𝑡) if 𝑙 = 1

𝐱(𝑡+1)𝑙−1 if 𝑙 > 1.
(7)

One of the main ideas is that each reservoir is encoding the recent
past of its received input. Thus, the first layer has limited memory while
the subsequent ones are able to extend this memory and build more
complex representations of the input signal.

The output of a deepESN at each time step 𝑡 can be computed by
applying any linear model to the different reservoir states. A common
choice is to define the linear model on the concatenation of all reservoir
states; the output 𝐨(𝑡) is given by:

𝐨(𝑡) = 𝐖out

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐱(𝑡)1
𝐱(𝑡)2
⋮

𝐱(𝑡)𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(8)

where 𝐖out ∈ R𝑛×
∑

𝑙 𝑁𝑙 is a weight matrix that maps the concatenated
reservoir states to the output. The concatenation of the reservoir states
from each layer allows for the capture of information across multiple
time scales, enabling the deepESN to model more complex temporal
patterns.

The different variants presented above are not exclusive. For exam-
ple, it is common to introduce different leak rates and sparse internal
weight matrices to each layer of a deepESN.

Other strategies have also been proposed to alleviate the dense
matrix multiplication by the reservoir weights. Next-generation Reser-
voir Computing [10] replaces the non-linear recurrent reservoir by an
explicit mapping with polynomial combination of past inputs. As such,
it can be interpreted as a non-recurrent temporal kernel. The flexibility
3
of Reservoir Computing is further exemplified by the many physical
implementations of Reservoir Computing [7–9,17], showing that any
non-linear dynamical system can be used as a reservoir.

2.3. Recurrent kernels

In machine learning, kernels are functions that measure the similar-
ity between pairs of data points, in a high-dimensional space to enable
effective linear models. This mapping into the higher-dimensional fea-
ture space is often done implicitly by computing the scalar products
between data points. This observation can be extended to Reservoir
Computing leading to Recurrent Kernels. We consider two reservoirs
𝐱 and 𝐲 driven by the inputs 𝐢 and 𝐣 respectively, following the update
Eq. (1). For conciseness, we assume 𝜎𝑟 = 𝜎𝑖 = 1; equations for different
values of reservoir and input scales can be obtained by substituting
𝐱(𝑡) by 𝜎𝑟𝐱(𝑡) and 𝐢(𝑡) by 𝜎𝑖𝐢(𝑡). The scalar product between two reservoir
states can be expressed as:

(

𝐱(𝑡+1)
)⊤ 𝐲(𝑡+1) = 1

𝑁

𝑁
∑

𝑙=1
𝑓
(

𝐰⊤𝑟,𝑙𝐱
(𝑡) + 𝐰⊤𝑖,𝑙𝐢

(𝑡)
)

×

𝑓
(

𝐰⊤𝑟,𝑙𝐲
(𝑡) + 𝐰⊤𝑖,𝑙𝐣

(𝑡)
)

(9)

where 𝐰𝑟,𝑙 and 𝐰𝑖,𝑙 denote the 𝑙th line of 𝐖𝑟 and 𝐖𝑖 respectively.
Thanks to the law of large numbers, this quantity converges when
the reservoir size 𝑁 goes to infinity to a deterministic kernel function
𝑘0 ∶

(

R𝑁+𝑑)2 → R defined as:

𝑘0
(

𝐮(𝑡), 𝐯(𝑡)
)

= ∫ 𝑑𝐰𝑝(𝐰)𝑓
(

𝐰⊤𝐮(𝑡)
)

𝑓
(

𝐰⊤𝐯(𝑡)
)

(10)

where we have introduced 𝐮(𝑡) =
[

𝐱(𝑡)
𝐢(𝑡)

]

, 𝐯(𝑡) =
[

𝐲(𝑡)
𝐣(𝑡)

]

, and 𝐰 =
[

𝐰𝑟
𝐰𝑖

]

a

random vector of dimension 𝑁 + 𝑑 with i.i.d. normal entries.
To properly define the associated Recurrent Kernel, we need to

remove the dependency on the previous reservoir states 𝐱(𝑡) and 𝐲(𝑡),
as they themselves depend on the random weights 𝐖𝑟 and 𝐖𝑖. This is
possible if 𝑘0 is an iterable kernel, i.e. if there exists 𝑘 ∶ R3 → R such
that for all 𝐮, 𝐯 ∈ R𝑁+𝑑 :

𝑘0(𝐮, 𝐯) = 𝑘(‖𝐮‖2, ‖𝐯‖2,𝐮⊤𝐯). (11)

We show in Appendix that the kernel associated to Reservoir Com-
puting is always iterable, as soon as the weights are sampled from a
Gaussian distribution (or any rotationally-invariant distribution 𝑝(𝐰)).
This is an extension of the statement in [5] that assumed translation or
rotation-invariant kernels.

We define the recurrent kernel by replacing
(

𝐱(𝑡+1)
)⊤ 𝐲(𝑡+1) in Eq. (9)

by 𝑘(𝑡+1)
(

𝐢(𝑡), 𝐣(𝑡),…
)

. Similarly, we replace in Eq. (11)
(

𝐮(𝑡)
)⊤ 𝐯(𝑡) by

G.A. D’Inverno and J. Dong Neurocomputing 611 (2025) 128679
Fig. 2. Convergence study of various Reservoir Computing topologies (columns) towards their corresponding Recurrent Kernel limits, for different activation functions 𝑓 (rows).
For each case, the Frobenius norm between the RC and RK Gram matrices 𝐿 (Eq. (18), smaller is better) is displayed for weight scaling factors 𝜎𝑟, 𝜎𝑖 between 0.04 and 2. Blue
dot in the first row: typical operating point 𝜎𝑟 = 𝜎𝑖 = 1.
𝑘(𝑡)(𝐢(𝑡−1), 𝐣(𝑡−1),…) +
(

𝐢(𝑡)
)⊤ 𝐣(𝑡), and perform the same operation for the

norms (as norms are symmetric scalar products). This leads to the
following definition of a Recurrent Kernel (RK) as a sequence of kernel
functions 𝑘(𝑡) ∶

(

R𝑑
)2𝑡

→ R for 𝑡 ∈ N∗:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘(1)
(

𝐢(0), 𝐣(0)
)

= 𝑘(1 + ‖𝐢(0)‖2, 1 + ‖𝐣(0)‖2,
(

𝐢(𝑡)
)⊤ 𝐣(𝑡))

𝑘(𝑡+1)
(

𝐢(𝑡), 𝐣(𝑡),…
)

= 𝑘(𝑘(𝑡)(𝐢(𝑡−1), 𝐢(𝑡−1),…) + ‖𝐢(𝑡)‖2,
𝑘(𝑡)(𝐣(𝑡−1), 𝐣(𝑡−1),…) + ‖𝐣(𝑡)‖2,
𝑘(𝑡)(𝐢(𝑡−1), 𝐣(𝑡−1),…) +

(

𝐢(𝑡)
)⊤ 𝐣(𝑡))

(12)

In the first line, we have initialized the RK by choosing ‖𝐱(0)‖ = ‖𝐲(0)‖ =
1 and

(

𝐱(0)
)⊤ 𝐲(0) = 0.

One can then replace large-scale Reservoir Computing by Recurrent
Kernels. To accomplish this, one must compute the recurrent kernels for
each pair of training inputs, which are then placed into a matrix known
as the Gram matrix. For instance, let us denote by 𝐢𝑚, 𝑚 = 1,… ,𝑀 , the
different inputs. The Gram matrix 𝐆(𝑡) ∈ R𝑀×𝑀 is defined for 𝑡 ∈ N∗

as:

𝐆(𝑡) =
[

𝑘(𝑡)(𝐢(𝑡−1)𝑛 , 𝐢(𝑡−1)𝑚 ,…)
]

𝑛,𝑚 (13)

A linear model is trained using the Gram matrix and can be employed
for making predictions.

Recurrent Kernels hold promise as a substitute for large-scale Reser-
voir Computing, as they offer comparable performance as the Reservoir
Computing limit with infinitely-many neurons. However, the drawback
is the computational time needed for prediction, as scalar products
must be computed with each training input for use in the linear model.
Additionally, due to their analytic formulation, Recurrent Kernels are
well-suited for theoretical studies on Reservoir Computing [11].

Rigorously proving the convergence of Reservoir Computing to
the Recurrent Kernel has proven challenging. Three assumptions are
typically required [5]:

1. Lipschitz-continuity: the activation function is 𝑙-Lipschitz;
2. Contractivity: the scaling factor of the reservoir weights needs

to satisfy 𝜎2𝑟 ≤ 1∕𝑙
3. Time-independence: the weight matrix is resampled at each time

step.
4
These assumptions are very restrictive to prove convergence of RC
towards their Recurrent Kernel limits in practice. We instead resort
to numerical investigations of convergence, as presented in the next
section.

3. Recurrent kernel limits for various RC topologies

Here we define the Recurrent Kernel limits of the different Reservoir
Computing topologies and discuss the assumptions for convergence to
these Recurrent Kernels. More details are provided in the Appendix.

The Recurrent Kernel for sparse Reservoir Computing corresponds
to the same Recurrent Kernel as the non-sparse case. This implies
that the asymptotic performance of a sparse reservoir is equivalent
to the one of a nonsparse one. To obtain this result, the reservoir
activations at each iteration needs not to be sparse, which is generally
valid for Reservoir Computing. A more detailed study of the sparse
case is provided in Appendix. This is similar to Structured Reservoir
Computing: both strategies have the same RK limit and they have
been introduce to decrease the cost of RC computations. As such, all
three topologies (vanilla, sparse, and structured RC) are equivalent
asymptotically and could be used interchangeably.

The Recurrent Kernel corresponding to Reservoir Computing with
leak rate is defined by replacing the update equation of Eq. (12)

𝑘(𝑡+1)(𝐢(𝑡), 𝐣(𝑡),…) = (1 − 𝑎)2𝑘(𝑡)
(

𝐢(𝑡−1), 𝐣(𝑡−1),…
)

+𝑎2𝑘(𝑘(𝑡)(𝐢(𝑡−1), 𝐢(𝑡−1),…) + ‖𝐢(𝑡)‖2,
𝑘(𝑡)(𝐣(𝑡−1), 𝐣(𝑡−1),…) + ‖𝐣(𝑡)‖2,

𝑘(𝑡)(𝐢(𝑡−1), 𝐣(𝑡−1),…) +
(

𝐢(𝑡)
)⊤ 𝐣(𝑡)) (14)

More details are provided in Appendix. As described for the vanilla case
of Recurrent Kernels, this limit is valid beyond these assumptions and
we will study it numerically.

For Deep Reservoir Computing, we can write the kernel limit for
each layer. We start by the first layer:

𝑘(𝑡+1)1
(

𝐢(𝑡), 𝐣(𝑡),…
)

= 𝑘(𝑘(𝑡)1 (𝐢(𝑡−1), 𝐢(𝑡−1),…) + ‖𝐢(𝑡)‖2,

𝑘(𝑡)1 (𝐣(𝑡−1), 𝐣(𝑡−1),…) + ‖𝐣(𝑡)‖2,

𝑘(𝑡)(𝐢(𝑡−1), 𝐣(𝑡−1),…) +
(

𝐢(𝑡)
)⊤ 𝐣(𝑡)) (15)
1

G.A. D’Inverno and J. Dong Neurocomputing 611 (2025) 128679
For the subsequent layers 𝑙 > 1, we obtain the recursive formula:

𝑘(𝑡+1)𝑙
(

𝐢(𝑡), 𝐣(𝑡),…
)

= 𝑘(𝑘(𝑡)𝑙 (𝐢(𝑡−1), 𝐢(𝑡−1),…) + 𝑘(𝑡+1)𝑙−1 (𝐢(𝑡), 𝐢(𝑡),…),

𝑘(𝑡)𝑙 (𝐣(𝑡−1), 𝐣(𝑡−1),…) + 𝑘(𝑡+1)𝑙−1 (𝐣(𝑡), 𝐣(𝑡),…),

𝑘(𝑡)𝑙 (𝐢(𝑡−1), 𝐣(𝑡−1),…) + 𝑘(𝑡+1)𝑙−1 (𝐢(𝑡), 𝐣(𝑡),…)) (16)

In practice, we can compute these Recurrent Gram matrices layer by
layer.

The Recurrent Kernel prediction is performed by concatenating the
reservoir states of the different layers and using a linear model. This
corresponds to a sum of the different Gram matrices:

𝑘(𝑡+1)tot (𝐢(𝑡), 𝐣(𝑡),…) =
∑

𝑙
𝑘(𝑡+1)𝑙 (𝐢(𝑡), 𝐣(𝑡),…) (17)

4. Results

4.1. Convergence study

We show in Fig. 2 a numerical convergence study of the various
Reservoir Computing topologies to their respective Recurrent Kernel
limits. Two random inputs of length 𝑇 = 10 and dimension 𝑑 = 100
are generated and fed to reservoirs of size 𝑁 = 1000. When applicable,
the sparsity level is set at 𝑠 = 0.5 and the leak rate at 𝑎 = 0.5. For
Deep Reservoir Computing, we use a sequence of two reservoirs of size
𝑁1 = 𝑁2 = 1000.

We compute the final Gram matrix 𝐺RC at time 𝑇 + 1 = 11. This
Gram matrix is compared with the Gram matrix 𝐺RK obtained using
the associated Recurrent Kernel. The metric displayed is the Frobenius
norm between the final Gram matrices:

𝐿 = ‖

‖

‖

𝐺(𝑇+1)
RC − 𝐺(𝑇+1)

RK
‖

‖

‖

2

𝐹
. (18)

This metric is computed for different values of the reservoir weight
standard deviations 𝜎𝑟 and 𝜎𝑖 which dictate the dynamics of the reser-
voir between 0 and 2. When 𝜎𝑟 is small, dynamics are contractant,
while they become chaotic for large values of 𝜎𝑟. Theory only predicts
convergence for the contractant case but it has also been observed for
large 𝜎𝑟. We typically choose 𝜎𝑟 close to 1 to obtain non-chaotic but rich
reservoir dynamics. We perform this study for three typical activation
functions: erf (differentiable and bounded), sign (discontinuous and
bounded), and ReLU (sub-differentiable and unbounded). Among these
three, the error function would be the one generally used in practice.

We see that in the sparse case, the convergence is fundamentally
similar to non-sparse Reservoir Computing. We observe convergence
over the whole parameter range for bounded activation functions. For
ReLU, convergence is achieved for values of 𝜎𝑟 below a threshold
which depends slightly on 𝜎𝑖. This is due to errors accumulating with
the ReLU activation function, for which convergence is more difficult
to achieve compared to bounded activation functions. Convergence
is also achieved over a wide range of parameters for Structured RC;
the convergence region is slightly smaller for erf and ReLU, but most
importantly Structured RC converges to the RK limit for the typical
operating point in blue with the erf activation function.

For leaky Reservoir Computing and Deep Reservoir Computing,
the convergence region is also smaller. For bounded activations, it
typically does not converge for large 𝜎𝑟 and small 𝜎𝑖. This typically
corresponds to an unstable case [11] that is not used in practice. For
ReLU, convergence is achieved for a range of parameters (𝜎𝑟, 𝜎𝑖) slightly
smaller than the non-leaky case. When the reservoir or input weights
are large, error accumulates and activations diverge.

In general, convergence is achieved for a wide range of parameters
with bounded activation functions. Caution is necessary only when
𝜎𝑟 is large and 𝜎𝑖 is small. For the ReLU case, convergence is more

challenging, as activations may diverge.

5
Fig. 3. (Top) Error metric (Eq. (18)) normalized between 0 and 1 as a function of
sparsity for different reservoir sizes. (Bottom) Sparsity threshold above which the error
metric is within 5% of the non-sparse limit. This gives an admissible sparsity level
which decreases with the reservoir size.

4.2. How to choose sparsity level

Our framework enables us to determine the optimal sparsity level
to obtain the same convergence to the RK limit while decreasing the
computational cost. We compute the normalized error metric as defined
in Eq. (18) for different reservoir sizes in Fig. 3 (top row). The error
metric being dependent on the reservoir size, we normalize it between 0
and 1 to represent all curves on the same graph. The error metric being
dependent on the stochastic realization of the weights, we perform a
Monte-Carlo estimation with at least 104 realizations to decrease the
estimation variance.

We observe that one can decrease the sparsity level until a thresh-
old below which the approximation error increases. This threshold
decreases with the reservoir size: larger reservoirs handle low sparsity
levels better.

In the bottom row of Fig. 3, we plot the threshold defined as 5% of
the non-sparse limit. We see that we can decrease the sparsity factor
quite dramatically: for a reservoir size 𝑁 = 1000, we can decrease
the sparsity rate down to 𝑠 = 0.003. This value is significantly below
the typical sparsity level of 0.05 [13,14], which could lead to further
computational and memory savings.

This sparsity level corresponds to a mean of 2𝑠𝑁 = 6 connec-
tions per neurons. The optimal sparsity level does not correspond to
a constant number of connections per neurons as it is not inversely
proportional to the reservoir size, but follows a law in 𝑁−0.38 (see
Fig. 3). At large reservoir sizes, more connections per neurons are
required. We suspect that as large reservoirs are better approximations
of the RK limit, it becomes more challenging to reduce 𝑠 while keeping
the same approximation quality.

G.A. D’Inverno and J. Dong Neurocomputing 611 (2025) 128679
Fig. 4. Error metric (Eq. (18)) for Deep Reservoir Computing for varying reservoir
sizes. We vary the first layer size 𝑁1 for a fixed computational budget 𝑁2

1+𝑁
2
2 = 2×𝑁2

med
for different values of the median reservoir size 𝑁med.

4.3. Optimal deep reservoir computing sizes

Our framework enables us to investigate how to optimally set the
various reservoir weights in Deep Reservoir Computing, addressing the
previously unresolved question of whether the first or second reservoir
should be larger. To investigate this question, we compute the previous
metric given in Eq. (18) for a fixed computational budget 𝑁2

1 +𝑁2
2 =

2×𝑁2
med for different values of 𝑁med. This quadratic scaling corresponds

to the computational and memory complexity of the dense matrix
multiplication, which is the limiting factor in Eq. (1). Each point is an
average of 10’000 repetitions.

The metric as a function of 𝑁1 is depicted in Fig. 4. We see that
in general the extreme cases yield high error. When the first reservoir
size is too small, the error of the first RK is detrimental even though
the second reservoir is closer to its limit. Similarly, the second reservoir
size cannot be too small or the second recurrent kernel is not well
approximated.

Between these extremes, there is a region for which the error is
relatively small. For small computational budgets, this region is limited,
both reservoirs need to be approximately the same size, while for large
reservoirs, the actual reservoir sizes do not seem to matter as much as
long as we avoid the extreme cases. We also observe that the minimal
error is obtained for a first reservoir size slightly larger than the second.

To obtain a quantitative answer, we performed a Nelder–Mead
optimization to find the optimal reservoir sizes. For 𝐿 = 2, we obtain
𝑛1, 𝑛2 = 209, 190, for 𝐿 = 3, we obtain 𝑛1, 𝑛2, 𝑛3 = 207, 202, 190. Thus, the
optimal shapes have first reservoir sizes that are larger than subsequent
ones. This decreases the noise that is transmitted to the next layers.

In a nutshell, a good rule of thumb to choose the reservoir sizes in
Deep Reservoir Computing is to choose them all equal. First reservoirs
can be chosen slightly (around 5%) larger than the last ones to decrease
further the distance with the asymptotic limit performance.

4.4. Computational benchmark

Since both RC, Sparse RC, and Structured RC converge to the same
kernel limit, we present in Fig. 5 a benchmark to provide guidelines on
which topology to choose. We benchmark the matrix–vector multiplica-
tion between the square reservoir weight matrix 𝐖𝑟 and the reservoir
state 𝐱 since this is the bottleneck operation. This benchmark is per-
formed on CPU (Intel Xeon 6240) and GPU (NVIDIA V100). The library
used is crucial as low-level optimizations may impact performance. We
use the Pytorch library for dense and sparse matrix multiplications and
6
Fig. 5. Time benchmark of the matrix–vector multiplication on CPU and GPU for
Reservoir Computing, Sparse Reservoir Computing, and Dense Reservoir Computing.

Fast Fourier Transforms in the Structured RC case. Sparsity is fixed at
𝑠 = 0.01.

We first confirm that GPU acceleration is useful for large reser-
voir sizes, with the threshold being at a few hundred neurons for all
techniques. CPUs, on the other hand, excel at small reservoir sizes.

For CPU-based computations, we find that sparse matrix operations
in PyTorch are not particularly efficient. In contrast, vanilla RC is
beneficial for small reservoir sizes while structured reservoir com-
puting demonstrates superior performance as reservoir sizes increase.
The results also demonstrate the quadratic computational complexity
associated with both dense and sparse matrix multiplications, while the
computational scaling of structured transforms is smaller.

In GPU-based computations, sparse matrix operations show im-
proved efficiency compared to their CPU counterparts. However, Struc-
tured Reservoir Computing still outperforms both dense and sparse
approaches. This indicates that for GPU implementations, structured
transforms may offer the best performance, particularly for applications
with reservoir sizes exceeding a few thousand nodes.

5. Discussion

In our study, we have derived the Recurrent Kernel limit of different
reservoir topologies. We have shown that different topologies can lead
to the same asymptotic limit. More specifically, the presence of sparsity
does not affect convergence at all, which justifies the sparse initializa-
tion of reservoir weights to speed up computation. Convergence has
been studied numerically and validated for a wide range of parameters,
especially for bounded activation functions. Furthermore, we have de-
rived how Recurrent Kernels extend to Deep Reservoir Computing, and
how it sheds new insight on how to set the consecutive reservoir sizes.
Finally, our timing benchmark has demonstrated the superior efficiency
of Structured Reservoir Computing, particularly for implementations
with large reservoir sizes.

The current study focused on theoretical convergence and speed
comparison. It may be interesting to provide a benchmark on a par-
ticular Reservoir Computing task (to verify the equivalence of different
topologies with the corresponding Recurrent Kernel limit) and optimize
further for computational cost, e.g. through the use of a dedicated
sparse linear algebra library. Other topologies based on random connec-
tions may also be explored theoretically such as: random features [18]
and extreme learning machines [19], which approximate a kernel
in expectation with non-recursive random embeddings; Gaussian pro-
cesses [20], stochastic processes defined by a mean and a covariance,
which can give an accurate estimate of the uncertainty in regression

G.A. D’Inverno and J. Dong

F
(
1

w
s
i
t
d
l
g
t
a

w
I

A

d

(

Neurocomputing 611 (2025) 128679
tasks ; and random vector functional link networks [21], wherein the
weights of the network are generated randomly and output weights are
computed analytically.

CRediT authorship contribution statement

Giuseppe Alessio D’Inverno: Writing – review & editing, Visualiza-
tion, Methodology, Investigation, Formal analysis, Conceptualization.
Jonathan Dong: Writing – review & editing, Visualization, Supervi-
sion, Methodology, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We would like to thank Rahul Parhi for insightful discussions and
review of the paper. Giuseppe Alessio D’Inverno is partially funded by
Indam GNCS group. Jonathan Dong is funded by the Swiss National
Science Foundation (SNSF) under Grant PZ00P2_216211.

Appendix A. Iterable kernels for any rotationally-invariant distri-
bution

We prove here that the kernel limit defined in Eq. (10) is iterable as
soon as the weight distribution 𝑝(𝐰) is rotationally invariant. For any
fixed timestep 𝑡, we can use this property to perform a change of basis:

{

𝐮(𝑡) = 𝑢1𝐞1
𝐯(𝑡) = 𝑣1𝐞1 + 𝑣2𝐞2

(A.1)

with 𝐞1 and 𝐞2 the first two vectors of an orthonormal basis. Impor-
tantly, 𝑢1, 𝑣1, and 𝑣2 only depend on scalar products ‖𝐮(𝑡)‖2, ‖𝐯(𝑡)‖2,
and

(

𝐮(𝑡)
)⊤ 𝐯(𝑡):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1 = ‖𝐮(𝑡)‖

𝑣1 =
(

𝐯(𝑡)
)⊤ 𝐞1 =

1
‖𝐮(𝑡)‖

(

𝐯(𝑡)
)⊤ 𝐮(𝑡)

𝑣2 =
√

‖𝐯(𝑡)‖2 − 𝑣21 =
√

‖𝐯(𝑡)‖2 − 1
‖𝐮(𝑡)‖2

(

(

𝐯(𝑡)
)⊤ 𝐮(𝑡)

)2

(A.2)

The kernel limit in Eq. (10) can be rewritten as an integral over two
Gaussian random variables 𝑤1 and 𝑤2:

𝑘0
(

𝐮(𝑡), 𝐯(𝑡)
)

= ∫ 𝑑𝑤1𝑑𝑤2𝑝(𝑤1)𝑝(𝑤2)𝑓 (𝑤1𝑢1)𝑓 (𝑤1𝑣1 +𝑤2𝑣2) (A.3)

≡ 𝑘
(

‖𝐮(𝑡)‖2, ‖𝐯(𝑡)‖2,
(

𝐮(𝑡)
)⊤ 𝐯(𝑡)

)

, (A.4)

since 𝑢1, 𝑣1, 𝑣2 only depend on ‖𝐮(𝑡)‖2, ‖𝐯(𝑡)‖2,
(

𝐮(𝑡)
)⊤ 𝐯(𝑡). Thus, the ker-

nel limit for all RC algorithms with random Gaussian weights is an
iterable kernel, allowing us to define an associated Recurrent Kernel.
As we see in this proof, it can be extended to any rotationally-invariant
distribution of weights 𝑝(𝐰).
7
Fig. B.6. Approximation error Eq. (B.2) of sparse Random Features as a function of
Random Feature dimension 𝑛. An example of non-sparse convergence is given with
dashed lines.

Appendix B. Sparse random features

We investigate the convergence of Eq. (9) to its single-step limit de-
fined in Eq. (10) when the weights 𝐰 are sparse. This can be interpreted
as a sparse Random Feature embedding.

We initialize a random vector 𝐮 ∈ R𝑑 (i.i.d. uniform between 0 and
1) and generate Random Features embedding following:

𝜓(𝐮) = 𝑓 (𝐖𝐮). (B.1)

𝐖 ∈ R𝑛×𝑑 is an i.i.d. random matrix and 𝑓 an element-wise non-
linearity. In this context, we can also define the single-step kernel
function 𝑘0(𝐮, 𝐯) of Eq. (10). The approximation error is given by:

𝑙 = | (𝜓(𝐮))⊤ 𝜓(𝐯) − 𝑘0(𝐮, 𝐯)|
2. (B.2)

This quantity is displayed in Fig. B.6 as a function of Random
eature dimension 𝑛, for different input dimension and for non-sparse
Gaussian) and sparse (𝑠 = 0.1) random vector 𝐰. It is averaged over
04 repetitions.

First, we see that in the non-sparse case, convergence is achieved
ith a linear rate in 1∕𝑛; only a single curve is displayed as the non-

parse curves only differ by a prefactor. In the sparse case, convergence
s similar for small 𝑛, until a certain value after which the approxima-
ion error reaches a plateau. This shows that the sparsity level 𝑠 = 0.1
oes not affect convergence of the Random Features to their kernel
imit up that threshold on the output dimension 𝑛. This threshold varies
reatly with the input dimension 𝑑. The greater the input dimension,
he greater the number of random weights, and the less sparsity is
ffecting the convergence of sparse Random Features.

In Reservoir Computing, input and output sizes 𝑑 and 𝑛 are similar,
e see that this operating point is before this threshold for 𝑠 = 0.1.

nstead, the sparsity level 𝑠 can be varied as displayed in Fig. 3.

ppendix C. Derivation of the limit for leaky reservoir computing

We motivate here the definition of the leaky Recurrent Kernel as
efined in Eq. (14). Using the leaky RC update Eq. (5), we have:

𝐱(𝑡+1)
)⊤ 𝐲(𝑡+1) =

(

𝑎
√

𝑁
𝑓
(

𝐖𝐮(𝑡)
)

+ (1 − 𝑎)𝐱(𝑡)
)⊤

(C.1)
(

𝑎
√

𝑓
(

𝐖𝐯(𝑡)
)

+ (1 − 𝑎)𝐲(𝑡)
)

𝑁

G.A. D’Inverno and J. Dong Neurocomputing 611 (2025) 128679
= 𝑎2

𝑁
𝑓
(

𝐖𝐮(𝑡)
)⊤ 𝑓

(

𝐖𝐯(𝑡)
)

(C.2)

+
𝑎(1 − 𝑎)
√

𝑁
𝑓
(

𝐖𝐮(𝑡)
)⊤ 𝐲(𝑡)

+
𝑎(1 − 𝑎)
√

𝑁
𝑓
(

𝐖𝐯(𝑡)
)⊤ 𝐱(𝑡)

+ (1 − 𝑎)2
(

𝐱(𝑡)
)⊤ 𝐲(𝑡)

The first term converges to the non-sparse limit 𝑘0
(

𝐮(𝑡), 𝐯(𝑡)
)

. The last
term corresponds to the previous recurrent kernel limit 𝑘(𝑡)(𝐢(𝑡−1), 𝐣(𝑡−1),
…). Furthermore, we neglect the two cross-product terms, which results
in Eq. (14). These cross-products are not straightforward to analyze as
the previous reservoir state 𝐲(𝑡) also depend on the random weights 𝐖.

References

[1] H. Jaeger, The Echo State Approach to Analysing and Training Recurrent Neural
Networks-With an Erratum Note, GMD Technical Report 148, German National
Research Center for Information Technology, Bonn, Germany, 2001, p. 13.

[2] M. Lukoševičius, H. Jaeger, Reservoir computing approaches to recurrent neural
network training, Comp. Sci. Rev. 3 (2009) 127–149.

[3] F. Damicelli, C.C. Hilgetag, A. Goulas, Brain connectivity meets reservoir
computing, PLoS Comput. Biol. 18 (2022) e1010639.

[4] H. Jaeger, M. Lukoševičius, D. Popovici, U. Siewert, Optimization and appli-
cations of echo state networks with leaky-integrator neurons, Neural Netw. 20
(2007) 335–352.

[5] J. Dong, R. Ohana, M. Rafayelyan, F. Krzakala, Reservoir computing meets
recurrent kernels and structured transforms, Adv. Neural Inf. Process. Syst. 33
(2020) 16785–16796.

[6] C. Gallicchio, A. Micheli, L. Pedrelli, Deep reservoir computing: A critical
experimental analysis, Neurocomputing 268 (2017) 87–99.

[7] G. Tanaka, T. Yamane, J.B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H.
Numata, D. Nakano, A. Hirose, Recent advances in physical reservoir computing:
A review, Neural Netw. 115 (2019) 100–123.

[8] J. Dong, M. Rafayelyan, F. Krzakala, S. Gigan, Optical reservoir computing
using multiple light scattering for chaotic systems prediction, IEEE J. Sel. Top.
Quantum Electron. 26 (2019) 1–12.

[9] M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, S. Gigan, Large-scale optical
reservoir computing for spatiotemporal chaotic systems prediction, Phys. Rev.
X 10 (2020) 041037.

[10] D.J. Gauthier, E. Bollt, A. Griffith, W.A. Barbosa, Next generation reservoir
computing, Nature Commun. 12 (5564) (2021).
8
[11] J. Dong, E. Börve, M. Rafayelyan, M. Unser, Asymptotic stability in reservoir
computing, in: 2022 International Joint Conference on Neural Networks, IJCNN,
IEEE, 2022, pp. 01–08.

[12] H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication, Science 304 (2004) 78–80.

[13] Y. Xue, L. Yang, S. Haykin, Decoupled echo state networks with lateral inhibition,
Neural Netw. 20 (2007) 365–376.

[14] C. Gallicchio, A. Micheli, Architectural and markovian factors of echo state
networks, Neural Netw. 24 (2011) 440–456.

[15] C. Gallicchio, Sparsity in reservoir computing neural networks, in: 2020 In-
ternational Conference on Innovations in Intelligent SysTems and Applications,
INISTA, IEEE, 2020, pp. 1–7.

[16] F.X.X. Yu, A.T. Suresh, K.M. Choromanski, D.N. Holtmann-Rice, S. Kumar,
Orthogonal random features, in: Advances in Neural Information Processing
Systems, vol. 29, 2016.

[17] C. Huang, V.J. Sorger, M. Miscuglio, M. Al-Qadasi, A. Mukherjee, L. Lampe,
M. Nichols, A.N. Tait, T. Ferreira de Lima, B.A. Marquez, et al., Prospects and
applications of photonic neural networks, Adv. Phys.: X 7 (2022) 1981155.

[18] A. Rahimi, B. Recht, Random features for large-scale kernel machines, in:
Advances in Neural Information Processing Systems, vol. 20, 2007.

[19] G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (2006) 489–501.

[20] D.J. MacKay, et al., Introduction to gaussian processes, NATO ASI Series F
Comput. Syst. Sci. 168 (1998) 133–166.

[21] A.K. Malik, R. Gao, M. Ganaie, M. Tanveer, P.N. Suganthan, Random vector
functional link network: recent developments, applications, and future directions,
Appl. Soft Comput. (2023) 110377.

Giuseppe Alessio d’Inverno is a researcher at SISSA, Trieste, Italy. He obtained his
Ph.D. from the University of Siena, Italy, under the supervision of Maria Lucia Sampoli,
Franco Scarselli, and Monica Bianchi. His research interests are the mathematical
foundations of deep learning, graph neural networks, scientific machine learning, and
Physics-Informed Neural Networks.

Jonathan Dong is currently an SNF Ambizione Fellow at the École Polytechnique
Fédérale de Lausanne (EPFL), Switzerland. He completed his Ph.D. at École Normale
Supérieure in Paris, France, under the supervision of Sylvain Gigan and Florent
Krzakala. His research focuses on computational imaging, non-linear optimization, and
efficient machine learning algorithms.

http://refhub.elsevier.com/S0925-2312(24)01450-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb3
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb3
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb3
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb13
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb13
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb13
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb14
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb14
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb14
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb18
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb18
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb18
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb19
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb19
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb19
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb21
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb21
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb21
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb21
http://refhub.elsevier.com/S0925-2312(24)01450-4/sb21

	Comparison of Reservoir Computing topologies using the Recurrent Kernel approach
	Introduction and related work
	Background
	Reservoir Computing
	Different variants of Reservoir Computing
	Recurrent Kernels

	Recurrent Kernel Limits for Various RC Topologies
	Results
	Convergence study
	How to choose sparsity level
	Optimal Deep Reservoir Computing sizes
	Computational benchmark

	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Iterable kernels for any rotationally-invariant distribution
	Appendix B. Sparse Random Features
	Appendix C. Derivation of the limit for leaky Reservoir Computing
	References

