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Abstract
A remarkable family of discrete sets which has recently attracted the attention of
the discrete geometry community is the family of convex polyominoes, that are the
discrete counterpart of Euclidean convex sets, and combine the constraints of convexity
and connectedness. In this paper we study the problem of their reconstruction from
orthogonal projections, relying on the approach defined by Barcucci et al. (Theor
Comput Sci 155(2):321–347, 1996). In particular, during the reconstruction process
it may be necessary to expand a convex subset of the interior part of the polyomino,
say the polyomino kernel, by adding points at specific positions of its contour, without
losing its convexity. To reach this goal we consider convexity in terms of certain
combinatorial properties of the boundary word encoding the polyomino. So, we first
show some conditions that allow us to extend the kernel maintaining the convexity.
Then, we provide examples where the addition of one or two points causes a loss of
convexity, which can be restored by adding other points, whose number and positions
cannot be determined a priori.
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1 Introduction

This paper aims at studying the tomographical problem of reconstructing convex poly-
ominoes from their orthogonal projections, using tools from the area of combinatorics
on words.

Discrete tomography has its own mathematical theory mostly based on discrete
mathematics. It shows connections with combinatorics and geometry, and the math-
ematical techniques developed in this area find applications in other scientific fields
such as: image processing (Shliferstein and Chien 1978), statistical data security (Irv-
ing and Jerrum 1994), biplane angiography (Prause and Onnasch 1996), graph theory
(Brlek and Frosini 2016; Frosini et al. 2013), to name a few. For a survey of the state
of the art of discrete tomography we refer the reader to the books edited by Herman
and Kuba (1999, 2007).

Interestingly, mathematicians have been concerned with abstract formulations of
these problems before the emergence of practical applications. Many problems of
discrete tomography were first considered as combinatorial problems during the late
1950s and early 1960s. Ryser (1963) and Gale (1957) in 1957 gave a necessary and
sufficient condition for a pair of vectors to be the row and column sums, later called
horizontal and vertical projections, of an m × n binary matrix, and they also defined
an O(nm) time algorithm to provide one of them. We refer the reader to an excellent
survey on binary matrices with given row and column sums by Brualdi (1980). In
general, the number ofmatrices sharing the same projections grows exponentially with
their dimension, so in most practical applications some extra information are needed
to achieve a solution as close as possible to a starting unknown object. So, researchers
tackle the algorithmic challenges of limiting the class of possible solutions in different
ways: increasing the number of projections (Gardner and Gritzmann 1997; Gardner
et al. 1999), fixing the wideness of the unknown object (Dulio et al. 2015, 2016,
2017b) or adding geometrical information (mainly connectedness and convexity).
Concerning this last, among connected sets a dominant role deserved polyominoes,
that are commonly intended as finite 4-connected sets of points of the integer lattice,
considered up to translation.

In particular, convex polyominoes are very natural objects, as they can be viewed
as the discrete counterpart of Euclidean convex sets. It is remarkable that several
problems from various research areas about them remain open.

For instance, concerning enumeration, no exact result has been determined about
them. Bodini et al. (2013) performed an asymptotic analysis to obtain a combinatorial
symbolic description of convex polyominoes, to analyze their limit properties and to
define a uniform sampler.

Our research follows themainstream of studying the reconstruction of convex poly-
ominoes from orthogonal projections. Different approaches to this problem have been
considered in the past (see for example Balazs and Gara 2008), providing interesting
results on several classes of polyominoes, and leaving the main problem still unsolved
(see again Herman and Kuba 1999, 2007).

In particular, Barcucci et al. (2001) defined an interesting strategy for the recon-
struction of polyominoes that are convex along the horizontal and vertical directions
only, say hv-convex polyominoes, from the projections along them. Their polynomial
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time algorithm consists of two separate parts: it first reconstructs an internal hv-convex
kernel of points which is common to all the convex polyominoes having the input pro-
jections; then, it expands the kernel maintaining the hv-convexity by means of a 2-SAT
logic formula, one of whose valuations, representing a solution of the problem, can be
computed in polynomial time. We underline that this reconstruction strategy provides
one convex polyomino among exponentially many that may satisfy a couple of given
projections.

The kernel reconstruction iteratively uses four filling operations that have become
quite common when dealing with convex sets. As a matter of fact several studies after
(Barcucci et al. 2001) have been devoted to enhance the efficiency and to modify
the target of the four filling operations by modifying them in order to speed up the
reconstruction process (Gȩbala 1998) [a fifth operation was also introduced in Brunetti
et al. (2001) and studied in Brunetti et al. (2006)] and to specialize the reconstruction
to different convex polyominoes subclasses (Brunetti et al. 2001).

Recently, the problem of reconstructing convex polyominoes from two projections
has been approached by Gérard (2017) who considered the possibility of a direct
extension of the second part of the strategy in Barcucci et al. (2001) on a convex kernel
whose reconstruction can be performed in polynomial time (Graham 1972). As Gérard
pointed out, such a direct approach has to manage, in general, complex relationships
between points and needs, at a first sight, a more complex logic formulation, not
belonging to 2-SAT any more.

In our study, we show a possible way of performing the kernel expansion that uses
an alternative characterization of convex polyominoes given by Brlek et al. in terms
of combinatorial properties of words coding their contour (Brlek et al. 2009). This
paper is an extended and enhanced version of Dulio et al. (2017a), where the authors
provided a local geometrical property that allows the addition of one single point along
the convex border of a kernel without losing its convexity. Here, we push this result
further by first characterizing a set of suitable positions where one point at a time can
be added, still preserving the convexity. Such a result provides a way of performing
multiple expansions of a convex kernel, one or more points at a time, until reaching
given horizontal and vertical projections, and following the reconstruction strategy of
Barcucci et al. (2001). Then, we show some cases where the addition of one or more
points cause a loss of convexity, so forcing new points to be added to re-establish the
property. The existence of these situations may prevent, in general, the convex kernel
from reaching the desired horizontal and vertical projections and may cause a failure
in the reconstruction process. Furthermore, in these cases, we show how convexity
can be recovered without the use of a logic formula as suggested in Gérard (2017).
Finally, an example of a class of convex polyominoes whose reconstruction can be
performed in polynomial time by the defined kernel expansion is also presented.

The paper is organized as follows:
In Sect. 2 we present the problem of reconstructing (finite) sets of points from

projections and we focus on hv-convex polyominoes sketching the reconstruction
strategy defined in Barcucci et al. (2001). Then, we introduce the notions of Christoffel
and Lyndon word, that will be used in Sect. 3 to characterize convexity.

In Sect. 3 we characterize some positions in the contour of a polyomino where
it is possible to add one or more points in order to maintain the convexity during
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(b) (c) (d)(a)

Fig. 1 a A discrete set and its representation as a set of cells inside the minimal bounding rectangle of
dimensions 7×6; b a v-convex polyomino; c a hv-convex polyomino that is not convex. The grey cell does
not belong to the polyomino, but it is included in its convex hull; d a convex polyomino. The convex hull
is represented and no cells outside the polyomino belong to it

the reconstruction process. Examples of single or double points additions that do not
maintain the convexity are also shown. Finally, we provide a class of WN-paths that
can be expanded by adding points obtained with the split operation.

The last section contains some comments on the presented results and some hints
for future researches that our study might open.

2 Preliminaries and known results

A planar discrete set S is a finite subset of points of the integer lattice Z2 considered
up to translation, and it is commonly represented as a set of cells on a squared surface.
The dimensions of the set are those of its minimal bounding rectangle, as shown in
Fig. 1a.

A polyomino is a 4-connected discrete set of cells (see Fig. 1b–d). There is a
vast literature on polyominoes, so for further definitions and results, we address the
interested reader to Guttmann (2009).

A column (resp. row) of a polyomino is the intersection between the polyomino
and an infinite strip of cells whose centers lie on a vertical (resp. horizontal) line.

Several subclasses of interest were considered by putting on polyominoes con-
straints defined by the notion of convexity along different directions. In particular,
considering the horizontal and vertical directions, it turns out that a polyomino is h-
convex (resp. v-convex) if each of its rows (resp. columns) is connected (see Fig. 1b).
A polyomino is hv-convex, if it is both h-convex and v-convex (see Fig. 1c).

Concerning the notion of convexity, there are different definitions in case of discrete
sets of points that take care of pathological situations that may arise when continuous
shapes are discretized and that are mainly due to the fact that the discretization process
does not preserve connectedness or convexity. Since the present research considers
polyominoes only, connectedness is assumed, so we consider a polyomino P to be
convex, if its convex hull contains no integer points outside P , where the convex hull of
P is defined as the intersection of all Euclidean convex sets containing P . Obviously,
a convex polyomino is also hv-convex.
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2.1 Outline of discrete tomography

To each discrete set S of dimensions m × n, we can associate two integer vectors
H = (h1, . . . , hm) and V = (v1, . . . , vn) such that for each 1 ≤ i ≤ m, 1 ≤ j ≤ n,
hi and v j are the number of cells of S which lie on row i and column j , respectively.
We call the vectors H and V horizontal and vertical projections of S, respectively. As
an example, the projections of the 7 × 6 discrete set in Fig. 1a are

H = (1, 1, 2, 0, 2, 2, 1) and V = (1, 3, 2, 1, 1, 1).

One of themain aims in the field of discrete tomography is the achievement of a faithful
reconstruction of an unknown object, regarded as a discrete set of points at a certain
resolution, froma set of projections along discrete directions. The existence of different
sets of points sharing the same projections may dramatically change into meaningless
the whole process, so the relevance of considering some a priori information that may
guide the reconstruction process toward an element or a smaller set of elements of a
specific subclass of discrete sets.

In particular, Barcucci et al. (2001) defined an algorithm that reconstructs an
hv-convex polyomino compatible with a given couple of horizontal and vertical pro-
jections, if it exists, and that runs in O(m4n4), where m × n are their dimensions. In
Del Lungo et al. (1996), it has been proved that imposing the reconstructed object to
belong to the class of hv-convex polyominoes does not guarantee its uniqueness.

The strategy of the algorithm concerns the possibility to let a preprocessed hv-
convex kernel grow by adding points in order both to keep the desired convexity, and
to satisfy the projections. This additions are performed by coding the two constraints
by a 2-SAT formula whose valuation can be obtained in polynomial time w.r.t. the
number of clauses.

More precisely, on the input vectors H and V , the two stages reconstruction can be
described as follows:

Stage 1: According to each possible placement of the elements of the polyomino
touching the minimal bounding rectangle, detect the cells that are common to all the
hv-convex polyominoes having H and V as horizontal and vertical projections, say
the kernel. At the same time, a common external area is also detected, called the shell;

Stage 2: Label each cell not yet assigned, i.e., that lies between the kernel and the
shell, with a boolean variable whose value determines the inclusion or the exclusion
of the cell in the polyomino. Finally, define a 2-SAT formula involving those variables
that encodes both the constraints imposed by the projections and the hv-convexity. The
valuations of the formula determine all the possible hv-convex polyominoes having
H and V as projections, if any.

A possible approach to the reconstruction of convex polyominoes consists in mod-
ifying the above algorithm as follows: Stage 1 is enriched with a further operation that
produces the convex hull of the detected kernel. The complexity of this new step can
be performed in polynomial time (Graham 1972).

In Stage 2, it can be defined a different formula to encode the convexity constraint
and whose valuations determine all the solution of the convex polyomino reconstruc-
tion problem. As underlined by Gérard (2017), this formula may involve clauses with
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at most three literals at a time (so belonging to 3-SAT) and whose valuation, in general,
is not available in polynomial time.

Our purpose is to provide some conditions to bypass the use of the 3-SAT formula
in Stage 2 and perform the kernel expansion maintaining both the convexity constraint
at each step, and the polynomiality of the whole process. These conditions rely on
the possibility of defining the geometry of the border of a convex kernel by means of
combinatorial properties of the related boundary word, as described below.

2.2 Notions of combinatorics of words related to discrete geometry

From Lothaire (1997) we borrow all the basic standard terminology in combinatorics
on words: alphabet, word, length of a word, occurrence of a letter, factor, prefix, suffix,
period, conjugate, primitive, reversal, palindrome etc. . . The related notations will be
recalled when used.

2.2.1 Christoffel words

In discrete geometry, the theory of Christoffel words started in Christoffel (1875), has
been considered in the last decades and has acquired a prominent role in the study of
digital straightness, see for example (Eckhardt 2001). For the discretization of line’s
segments: let a, b be two co-prime numbers, the lower Christoffel path of slope a/b
is defined as the connected path in the discrete plane joining the origin O(0, 0) to the
point (b, a) such that it is the nearest path strictly below the Euclidean line segment
joining these two points, that is, there are no points of the discrete plane between the
path and the line segment, see Fig. 2a.

Analogously, an upper Christoffel path is defined as the nearest path that lies above
the line segment, as depicted in Fig. 2b. By convention, the Christoffel path is exactly
the lower Christoffel path.

In this study, without loss of generality, we consider Christoffel paths whose point
(b, a) lies in the first quadrant. To each such Christoffel path it can be associated a
word, say Christoffel word, on the binary alphabet A = {0, 1}, such that the letter 0 is
associated with an horizontal step, and the letter 1 is associated with a vertical step.

Example 1 Consider the line segment joining the origin O(0, 0) to the point (8, 5).
We have a = 5, b = 8 and n = a + b = 13. The Christoffel word of slope 5/8 is
C( 58 ) = 0010010100101, as represented in Fig. 2a.

The slope a/b of a Christoffel path can be obtained from the related Christoffel
wordw as ρ(w) = |w|1|w|0 , where the notation |w|x stands for the number of occurrences

of the letter x in w. We further define ρ(ε) = 1 and ρ( k
0 ) = ∞, for k > 0. We recall

the following, well known property from (Berstel et al. 2008):

Property 1 Any Christoffel word w of length greater than one can be written as w =
0w′1, where w′ is a (possibly void) palindrome.

The part w′ of w of the previous property is called the central part of w. Note that
the lower and upper Christoffel words have the same central part.
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Fig. 2 The Lower a and Upper b Christoffel paths of the line segment of slope 5/8, and the minimal point
m(w). The related Christoffel words are 0010010100101 and 1010010100100, respectively

Fig. 3 The words, w, u and v are
Christoffel words with
palindromic central parts w1,
u1, and v1 resp. We have that u1
and v1 are palindromes,
u110v1 = w1 is also
palindrome, thus w1 = v101u1.
The property of palindromes
gives the palindromic
factorization of w = p1 p2

w

u v

0 u1 1 0 v1 1
0 w1 1
0 v1 0 1 u1 1

p1 p2

Finally, we define the minimal point m(w) of a Christoffel word w to be the unique
point of the related path that hasmaximumdistance from the line segment (see Fig. 2a).

The uniqueness of the minimal point of a Christoffel path can be obtained from the
uniqueness of another point of the Christoffel path that is the closest to the related line
segment. The standard factorization of a Christoffel word introduced by Borel and
Laubie split the word at this closest point:

Theorem 1 (Theorem 2 Borel and Laubie 1993). A Christoffel word w has a unique
factorization w = uv (indicated as standard factorization), where u and v are both
Christoffel words.

Later, Chuan (1997) defined the notion of palindromic factorization of a Christoffel
word as its unique factorization into two palindromic subwords that always occurs at
its minimal point.

The result can be obtained from Theorem 1 and Property 1: starting from the
standard factorization of a Christoffel word w = (u, v), we can apply Property 1 to
each of the Christoffel words w, u and v, and we obtain the results as sketched in the
Fig. 3.

So, since the standard factorization uses the unique minimal point of the Christoffel
path closest to the line segment, then by construction, the palindromic factorization
uses the unique furthest point, that turns out to be unique as well. The uniqueness of
the minimal point represents a crucial result in our study.
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2.2.2 Lyndon words

The second relevant class of words that we consider is that of Lyndon words introduced
by Lyndon in 1954. Among many different characterizations (see Lothaire 1997),
we present Lyndon words as those words that are strictly smaller than their proper
conjugateswith respect to the lexicographical order. By definition,we note that Lyndon
words are always primitive, i.e., they cannot be expressed as power of a strictly shorter
word. Lyndon words became immediately very popular and, among others, they have
applications in constructing bases in freeLie algebras andfinding the lexicographically
smallest or largest substring in a string.
The following factorization on Lyndon words is from Lothaire (1997)

Theorem 2 Every non-empty word w admits a unique factorization as a lexico-
graphically decreasing sequence of Lyndon words w = w

n1
1 w

n2
2 · · · wnk

k , such that
w1 >l w2 >l . . . >l wk , ni ≥ 1 and wi are Lyndon words for all 1 ≤ i ≤ k.

As an example, consider the word w = 0010101001001101001001. Its standard
factorization is (0010101)1(001001101)1(001)2. A linear time algorithm to factorize
a word can be found in Duval (1983).

Lyndon words are minimal under cyclic shift (in their conjugate class); cyclic shifts
of Cristoffel words are also studied, for instance, in Hegedus and Nagy (2016).

3 Adding points to a convex polyomino

The Freeman code associates to each polyomino its boundary word, see Freeman
(1961), i.e., the word on a four letter alphabet A′ = {0, 0, 1, 1} obtained by coding the
path that clockwise follows the boundary of the cell representation of the polyomino
starting from a specific point s. The letters 0 and 1 represent the horizontal step and
the vertical step when travelled in the opposite directions with respect to 0 and 1,
respectively. If the polyomino is hv-convex, we can identify four points W , N , E and
S as the points where the polyomino’s boundary first touches the west, north, east and
south sides of its minimal bounding rectangle, respectively, when moving clockwise
along it.

If we choose to set s = W , then the boundary word can be uniquely decomposed
into four different paths joining the four extremal points W , N , E and S defined by
their positions as depicted in Fig. 4. The path leading from W to N is called WN-
path, and it is WN-convex if it is the WN-path of a convex polyomino. The notions
of NE, ES, and SW paths and the related notions of NE, ES, and SW convexity can
be similarly defined. If convex, each path uses at most two of the four steps of the
Freeman alphabet.

3.1 Perturbations onWN-convex paths

From now on, we will consider theWN-path only, since all the obtained results can be
extended to the other three paths up to rotations. Brlek et al. (2009) characterized the
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Fig. 4 An hv-convex polyomino and its boundary word w = w1w2w3w4, where w1 = 10100101 is the
WN-path,w2 = 00110001010010 is theNE-path,w3 = 11001 is theES-path andw4 = 000011001001000
is the SW-path

boundary words of a convex polyomino using the combinatorial notions of Christoffel
and Lyndon words

Theorem 3 A word w is WN-convex if and only if its unique Lyndon factorization
w

n1
1 w

n2
2 . . . w

nk
k is such that all wi ’s are Christoffel words.

Such a result stresses the fact that the Lyndon factorization of a WN-convex path
can be decomposed in a sequence of Christoffel words arranged in decreasing slope.
Figure 5 depicts a part of a WN-convex path where there are highlighted the minimal
points m(wi ) of each Christoffel word wi , with i = 1 . . . 4. Let us indicate with
min(wi ) the length of the prefix of wi ending in m(wi ).

Our aim is now to use this decomposition to determine a set of positions of a WN-
convex path where it is possible to make local modifications, i.e., adding one single
point, without losing the property. As outlined in the Introduction, this result shows
its relevance in a reconstruction strategy for convex polyominoes that relies on the
approach in Barcucci et al. (1996). More precisely, the kernel expansion defined there,
asks to add points to the kernel border in order to satisfy some given projections: our
results characterize positions’ sets where such an expansion can be performed and
show some cases where multiple additions are required in order to preserve convexity.

The following proposition fromDulio et al. (2017a) stresses the role of the positions
min(w) and min(w) + 1 of a Christoffel word w, in order to decompose it into two
shortest Christoffel words:

Proposition 1 Let w be a Christoffel word of length n and k = min(w).

(i) The words u = w[1, k −1]1 and v = 0w[k +2, n], are two Christoffel words,
where the notation w[i, j] indicates the subword of w from position i to j ,
with 1 ≤ i ≤ j ≤ n.

(ii) For each nonnegative integer k′ different from k, the words u′ = w[1, k′ − 1] 1
and v′ = 0 w[k′ + 2, n] are not both Christoffel words.
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w

w

wm(w )3

m(w )4

m(w )2

m(w )1

Fig. 5 A (part of a) WN-convex path and its decomposition into four Christoffel words w1 = 001010101,
w2 = 001010010101, w3 = 0001001001, and w4 = 00000100001 arranged in decreasing slope. The four
minimal points of each segment are highlighted

A useful consequence follows.

Corollary 1 Let w, u and v be as defined in Proposition 1. It holds ρ(u) > ρ(v).

Proof We observe that, by definition of Christoffel path, the points (|u|0, |u|1) and
(|v|0, |v|1) lies above and below the segment associated to the Christoffel word w,
respectively. So, it holds that ρ(u) > ρ(w) > ρ(v). ��

3.2 Definition of the split operator

Relying on the previous results, let us define a split operator that acts on a Christoffel
word w and decomposes it into the concatenation of two Christoffel words u and v

by changing the subword 01 in positions w[m(w), m(w) + 1] into 10, as defined in
Proposition 1, i.e., spli t(w) = u v. The split operator can be naturally extended to
sequences of Christoffel words, by adding an index to indicate the word where the split
operator acts. More formally, if w = w1 w2 . . . wn is a sequence of Christoffel words,
then spli tt (w) = w1 w2 . . . spli t(wt ) . . . wn . Accordingly, consecutive applications
of the split operator will be indexed by the corresponding sequence of indexes, in
application order.
From a geometrical point of view, the split of the Christoffel word can be regarded
as the addition of one point in the minimal position of the related path, preserving
the Christoffel property of the obtained factors. If we consider the decomposition of a
WN-convex path defined in Theorem 3, then the split operator can be used to add one
point at a time on the boundary of a convex polyomino. Unfortunately, when sequences
of Christoffel words with decreasing slopes are involved as in a WN-convex path, the
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application of the split operator may not preserve the decreasing of the slopes and
cause the loss of the global convexity of the path.

As an example, Fig. 6 shows two cases of this action on w2: the added cells and
the factors u2 and v2 are highlighted.

Property 2 Let w be a Christoffel word of slope ρ(w) > 1. If spli t(w) = u v, then
ρ(u) > ρ(w) > ρ(v) ≥ 1.

Proof By Corollary 1, it only remains to prove that ρ(v) ≥ 1. By the geometrical def-
inition of Christoffel word, ρ(w) > 1 implies that w = w′11. Since v is a Christoffel
word, if its length is greater than two, then it ends with the factor 11 as well and its
slope is greater than one. On the other hand, if it has length equal to two, then v = 01
and its slope is one. ��

Asymmetric reasoning holds ifρ(w) < 1.We stress that, ifρ(w) = 1, i.e.,w = 01,
then the word wk with k ≥ 1, can be split into two different Christoffel words u and
v by changing any of the factors 01 into 10, and it holds that ρ(u) > 1 and ρ(v) < 1,
by changing any of the factors 01 into 10.

The previous property allows us to consider, without loss of generality, the action
of the split operator only on those words whose slopes range from one down to zero.

In the next section, we investigate different situations which may occur to a WN-
path as a consequence of one or more applications of the split operator. We also show
solutions and drawbacks when problems are caused. The following cases are classified
according to the number of points added at each step.

3.2.1 Classification of the splitting action

The split operator produces perturbations on the path, which can be classified in three
different types according to the slopes of the obtained factors:

Type 1: the added point performed by the split operator preserves both the Lyndon
factorization and the global convexity (see Fig. 6a). This means that the
two new factors ui and vi globally preserve the decreasing slope of the line
segments of the path.

Type 2: the added point preserves the convexity of the obtained path, but the Lyndon
factorization is not preserved. In practice,wi−1uiviwi+1, withwi+1 possibly
void, is not a Lyndon factorization, i.e. the slopes of the line segments of the
path are not decreasing. As an example, we can obtain a new Lyndon factor-
ization by joining wi−1 and ui in a new Christoffel word (wi−1ui )viwi+1, as
shown in Fig. 6b.

Type 3: the added point does not preserve both the convexity of the path, and the
Lyndon factorization. In practice, wi−1uiviwi+1, with wi+1 possibly void, is
not a Lyndon factorization and the new Lyndon factorization is not composed
by Christoffel words only, as we can see in Example 2. In this case it is
necessary to act on the path by adding at least a second point to get back the
convexity, as shown in the example below.
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Fig. 6 Two WN-paths of a convex polyomino. The application of the split operator to (the minimal point
of) w2 in a preserves the Lyndon factorization and the global convexity, while in b preserves the convexity
of the whole path, but not the initial Lyndon factorization, i.e., w1w2 = (001010101)(00101). The new
Lyndon factorization requires w1 to be concatenated with u2, obtaining the word w4 = w1 u2. The new
Lyndon factorization is w4v2 = (001010101 01)(001)

3.2.2 Adding one point

As simplest case, we consider the splitting of a single word wi in the Lyndon factor-
ization of the WN-convex path.

Example 2 Let w1 and w2 be two Christoffel words, with ρ(w1) = 3
5 > ρ(w2) = 11

20
as in Fig. 7. The application of the split operator to w1 produces spli t(w1) = u1 v1,
with ρ(u1) = 2

3 and ρ(v1) = 1
2 , so the sequence of slopes ρ(u1), ρ(v1) and ρ(w2) is

not decreasing. Furthermore, the Lyndon factorization after the split is u1 (v1w2), with
(v1 w2) that is not a Christoffel word, so the corresponding path is not WN-convex
any more. We can fix the problem by replacing a subword 01 with a subword 10 in
(v1 w2), obtaining the word w3 indicated below (changed elements are in boldface).
The change of 01 into 10 corresponds to the insertion of a second point in the initial
WN-path, as shown in Fig. 7:

(v1 w2) = 001 0010010010010 01 0100100100100101

w3 = 001 0010010010010 10 0100100100100101.

Now, the WN-convexity is acquired again and v1w2 changes into the Christoffel word
w3 (right path of Fig. 7).

3.2.3 Adding two points

Now, we push further our research by considering the case of the addition of two
points in consecutive line segments of a WN-convex path: the results we are going to
present can be generalized to the addition of a generic number of points.

A fortiori when adding two points in a path, one can expect to lose the WN-
convexity, so in Dulio et al. (2017a), sufficient conditions to its preservation are
provided:
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2
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w
1v

u u
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1
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Fig. 7 The split of the Christoffel word w1 into u1 and v1. The concatenation of v1 and w2 forces the
addition of a second point

Theorem 4 Let w1 and w2 be two consecutive Christoffel words of a WN-convex
path, and let spli t(w1) = u1 v1 and spli t(w2) = u2 v2. If ρ(v1) > ρ(w2) and
ρ(w1) > ρ(u2) (i.e. the split operator causes two perturbations of Type 1 to w1 and
w2, separately), then ρ(v1) > ρ(u2).

On the other hand, if the splitting of w1 and w2 causes ρ(v1) < ρ(u2) different
situations occur; in particular it may happen that one or more new points need to be
added to gain back the WN-convexity.

The next example shows the case when additional points have to be added to gain
back the WN-convexity of a path:

Example 3 Let w1 and w2 be two Christoffel words of a WN-convex path such that
ρ(w1) = 30

41 > ρ(w2) = 5
7 . Let spli t(w1) = u1 v1 and spli t(w2) = u2 v2 with

ρ(u1) = 11
15 , ρ(v1) = 19

26 , ρ(u2) = 3
4 and ρ(v2) = 2

3 as in Fig. 8. The four slopes are
not in decreasing order, in particular ρ(v1) < ρ(u2), with

v1 = 0010100101010010101001010 01 010100101010010101, and u2 = 0010101.

As in the previous section, the concatenation of v1 andu2 does not produce aChristoffel
word. Then, to get back the convexity, a third point has to be added to the path, precisely
by changing the boldface occurrence of 01 in v1 into 10, and obtaining the word:

w3 = 0010100101010010101001010 10 0101001010100101010010101.

In general, the point or the points to be added can be detected by checking where
(v1 u2) differs from the Christoffel word of slope w3 = |(v1 u2)|0|(v1 u2)|1 .

We underline that w3 is not primitive, being the concatenation of two Christoffel
words of slope 11

15 . With such an addition the slopes are in decreasing order as required
by the WN-convexity.

Finally, a second case occurs when splitting the two Christoffel words w1 and w2
produces factors u1, v1, u2, v2 and the concatenation of v1 and u2 gives a Christoffel
word w3, yet the convexity is not preserved (which means that the order of the slopes
is not correct). To solve this problem, again we need to add other points, as we can
see in Example 4.
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Fig. 8 A qualitative representation of the situation of Example 3. The splits of w1 into u1 and v1 and w2
into u2 and v2 do not preserve the convexity of the WN-path. A third point (in red) is added to obtain a new
Lyndon factorization u1w3v2 and to gain back the decreasing order of the slopes

Example 4 Let w1, w2 be two Christoffel words in the WN-path boundary of a poly-
omino P and such that ρ(w1) = 3

5 > ρ(w2) = 57
100 (the words w1 and w2 are

not reported for simplicity). By applying the split operator to both words, we get
spli t(w1) = u1v1 and spli t(w2) = u2v2, with v1 = 001 and u2 = 00100100101.
Now, the slopes of these four paths are: ρ(u1) = 2

3 , ρ(v1) = 1
2 , ρ(u2) = 4

7 ,
and ρ(v2) = 53

93 . We observe that the slopes are not in a decreasing order, since
ρ(v1) < ρ(u2). By concatenating v1 and u2 we get w3 = 00100100100101 that is
a Christoffel word of slope 5

9 . Unfortunately ρ(u1) > ρ(w3) < ρ(v2), which means
that the order of the slopes is still not correct and the convexity is not respected. Hence,
some more points have to be added to obtain back the convexity. In this case only one
more point is needed, placed exactly where the two Christoffel words w3 and v2 join.

3.3 A remarkable class ofWN-paths

In Dulio et al. (2017a) a stability result for WN-convex paths has been given, under
a sequence of split operations. However, no class of WN-convex paths to which such
a sequence of operations can be effectively applied has been presented. Indeed, all
the assumptions of Theorem 4 must be fulfilled at each step, so the problem of real
application of the method is not trivial. In what follows we define a family WN of
WN-convex paths with such a property.

Let us consider the set P E R, introduced in deLuca andMignosi (1994), of allwords
w having two periods p and q which are coprimes and such that |w| = p + q − 2,
i.e. those words having maximal length and not satisfying the Fine and Wilf theorem
in Fine and Wilf (1965). Also, we denote by C P the set of all Christoffel words, and
by P AL the set of all palindromes.
The following properties hold (see Berstel and de Luca 1997; de Luca 1997)

(a) P E R = 0∗ ∪ 1∗ ∪ (P AL ∩ (P AL 01 P AL)) (de Luca 1997, Proposition 7).
(b) C P = 0 P E R 1 ∪ {0, 1} (Berstel and de Luca 1997, Theorem 4.1).

We investigate the following set WN of words

WN =
{
wi, j ∈ {0, 1}�, wi, j = 0((0)i1) j , i, j ∈ N

}
.
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Theorem 5 For any three fixed positive integer numbers i, j, n, n ≤ i , let wi, j ∈ WN
and w j (n) = w1, jw2, j . . . wn, j . Then, the following holds

1. wi, j is a Christoffel word;
2. w j (n) represents a WN-path;
3. spli t(wi, j ) = (0)i1wi, j−1;
4. for each s ∈ {1, . . . , n}, spli ts(w j (n)) represents a WN-path;
5. for each s ∈ {1, . . . , n}, spli t1,2,...,s(w j (n)) represents a WN-path.

Proof For i, j < 2 all results are trivial, so, let us assume i, j ≥ 2.

1. The word wi, j can be written as

wi, j = 0
(
(0)i1

) j−1
(0)i1 = 0ri, j1,

where ri, j = (
(0)i1

) j−1
(0)i , so that ri, j ∈ P AL . Let P = (0)i−1 and Q =(

(0)i1
) j−2

(0)i . Then P, Q ∈ P AL , and ri, j = P 01 Q. Therefore, ri, j ∈
P AL ∩ (P AL 01 P AL), and consequently, by de Luca (1997, Proposition 7),
ri, j ∈ P E R. Therefore wi, j ∈ 0 P E R 1, and consequently, by Berstel and de
Luca (1997, Theorem 4.1), wi, j ∈ C P .

2. The prefix of length i + 1 of each conjugate word of wi, j has the form (0)h1(0)k

where h, k ∈ {0, 1, . . . , i − 1}, h + k = i . Since the prefix of length i + 1 of
wi, j is (0)i+1, then wi, j is the smallest among all its conjugate words with respect
to the lexicographic order. Therefore wi, j is a Lyndon word. Consequently, the
factorization w j (n) = w1, jw2, j . . . wn, j is precisely the Lyndon factorization
of w j (n). By 1., wi, j ∈ C P for all i , and consequently, by Brlek et al. (2009,
Proposition 7), w j (n) is WN-convex.

3. By definition of the Christoffel word wi, j , its slope is

ρ(wi, j ) = |wi, j |1
|wi, j |0 = j

i j + 1

Let Qi j = (α, β) be the minimal point of wi, j . Then Qi j has the maximal vertical
distance from the line segment from (0, 0) to (i j + 1, j). By Dulio et al. (2017a,
Lemma 1) it is obtained when α j − β(i j + 1) = −1[mod( j + i j + 1)], and
consequently when α = i + 1 and β = 0. Therefore independently of j we have

spli t(wi, j ) = (0)i10
(
(0)i1

) j−1 = (0)i1wi, j−1.

4. By 2. the word ws, j represents a WN-path for each s ∈ {1, . . . , n}. Consider two
consecutive words ws, j and ws+1, j of the Lyndon factorization of w j (n). By 3.
we have spli t(ws, j ) = us, jvs, j , where us, j = (0)s1 and vs, j = 0 ((0)s1) j−1.
Analogously, it results spli t(ws+1, j ) = us+1, jvs+1, j , where us+1, j = (0)s+11

and vs+1, j = 0
(
(0)s+11

) j−1
. Therefore we have
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ρ(vs, j ) = j−1
s j−s+1

ρ(ws+1, j ) = j
s j+ j+1

ρ(ws, j ) = j
s j+1

ρ(us+1, j ) = 1
s+1 .

Therefore we have ρ(vs, j ) > ρ(ws+1, j ) if and only if j2 − j − 1 > 0, which
is always satisfied for j > 1. Also we have ρ(ws, j ) > ρ(us+1, j ) if and only if
j > 1. Consequently, all the assumptions of Dulio et al. (2017a, Theorem 3) are
fulfilled, so that spli ts(w j (n)) = w1, jw2, j . . . spli t(ws, j ) . . . wn, j represents a
WN-path.

5. This immediately follows from Dulio et al. (2017a, Corollary 2). ��
Example 5 Below we list some words of WN , for small values of i and j :

w1,1 = 001 (i = j = 1)
w1,2 = 00101 (i = 1, j = 2)
w2,1 = 0001 (i = 2, j = 1)
w2,2 = 0001001 (i = j = 2).

For i = j = 1 we have wi, j = 0ri, j1, where ri, j is trivial, and the palindromic words
P, Q determined in the proof (part (1)) cannot be defined. The first non trivial word
of WN is obtained when i = j = 2, and, in this case we have r2,2 = 00100, so that
ri, j = P 01 Q, where P = 0 and Q = 00. Assuming n = i = 2, we also have
w2(2) = w1,2w2,2 = (00101)(000010001) = 00101000010001, and consequently

spli t1(w2(2)) = 01001000010001
spli t1,2(w2(2)) = 01001000100001.

Example 6 The cases when j = 2 represent a kind of extremal WN-path. In fact
ρ(vs,2) = ρ(us+1,2) for all s ∈ {1, . . . , n} (see the proof of point 4. in Theorem 5),
meaning that the application of the split operator to consecutive words of the Lyndon
factorization of wi,2 provides (independently of i), pairs of collinear segments. In
Fig. 9 it is shown the case when n = i = 3.

Example 7 If j > 2 the split operator provides four distinct segments from each pair
of consecutive words of the original WN-convex path. For instance, if i ≤ j = 3, we
have

w1,3 = 0010101
w2,3 = 0001001001
w3,3 = 0000100010001

w3(3) = 0010101 · 0001001001 · 0000100010001

spli t1,2,3(w3(3)) = 01 · 00101 · 001 · 0001001 · 0001 · 000010001,
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A

B

C

D

Fig. 9 The threewordsw1,2,w2,2,w3,2, corresponding to the line segments AB, BC , andC D, respectively.
The WN-convex path (bold solid line) determined by their concatenation w2(3) = w1,2w2,2w3,2, and the
WN-path (dashed line) obtained by the iterated application of the split operator

where each slot represents a different line segment of the resulting WN-path.

Example 8 In the case of the word ri, j associated with a genericwi, j ∈ WN , i, j > 1,
as described in the proof of Theorem 5, we have shown that P = (0)i−1 and Q =(
(0)i1

) j−2
(0)i . Therefore |P| = i − 1 and |Q| = i j + j − i − 2. By de Luca (1997,

Section 5), p = |P|+2 and q = |Q|+2 are periods of ri, j such that |ri, j | = p+q −2,
which, in our case, precisely equals i j + j − 1.

4 Conclusions and perspectives

In this paper we have studied the possibility of reconstructing convex polyominoes,
i.e. finite connected sets of points, from two orthogonal projections. Yan Gérard, in
a recent communication (Gérard 2017), suggested an approach to the problem that
resembles the strategy defined in Barcucci et al. (2001) for the super class of hv-
convex polyominoes. Interestingly, the mutual dependencies between points in the
contour of a convex polyomino are not clearly understood yet, preventing an immediate
generalization of the reconstruction.

We have studied under which conditions and how the addition of one or more points
to the contour of a convex polyomino may affect the neighboring areas, in the intent
of handling, step by step, its reconstruction process without falling into non polyno-
miality. The obtained results show, on one side, that strong geometrical constraints are
needed to maintain the convexity when the kernel of a convex polyomino is extended
by means of the addition of new point, on the other side that there exist some classes
of boundary paths where the addition of points can be performed in an unexpected
simple way.

We have provided several examples illustrating local strategies that can be adopted,
i.e., strategies involving one point or few close points, as well as some global results
on a special class of WN-paths.

Summing up, something more remains to be investigated in order to show that the
class of convex polyominoes can be reconstructed in polynomial time, as we would
expect, basing on experimental results. In particular, it has prominent relevance the
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characterization of the positions and the number of the points that are included into a
convex polyomino as consequence of a single further addition. A related research line
includes the study of the combinatorial properties of those paths that have a mutual
independent growth.
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