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Abstract: Wood distillate (WD) is a bio-based product applied to crop plants for its known action
in terms of growth promotion and yield enhancement, but studies are lacking on its effects on the
germination of arable plants. To test such effects, we applied WD at six different concentrations
on the diaspores of three threatened arable plants: Bromus secalinus, Centaurea cyanus, and Legousia
speculum-veneris. For all the studied species, the effect of WD was dose-dependent and species-specific.
In B. secalinus, the germination percentage (GP) decreased at 0.125% WD but then remained stable at
higher concentrations up to 1%. At 2% WD, almost no germination was observed. Mean germination
time (MGT) was not influenced up to 1% WD but significantly increased at 2% WD. The germination
rate index (GRI) and germination energy (GE) remained unaffected up to 1% WD but decreased
at 2% WD. In C. cyanus, WD had no effects on GP and GE at any concentration. MGT showed no
difference with the control up to 1% WD, but significantly increased at 2% WD. GRI increased only
at low concentrations (0.125% and 0.25%). The germination performance of L. speculum-veneris was
unaffected up to 0.25% WD for all the tested parameters. From 0.5% WD, a reduction in GP, GRI, and
GE and an increase in MGT were observed. At 2% WD, germination was totally blocked. Our results
suggest that using WD at low concentrations (<0.5%), those commonly used in arable crops, does not
affect the germination of the three investigated plant species.

Keywords: arable weed; biodiversity; plant conservation; pyroligneous acid; segetal plant; sustainable
agriculture; wood vinegar

1. Introduction

Arable plants are those plant species that colonize arable land, living among crops.
They are usually annual species adapted to the regular disturbance of arable fields, and
their life cycle is synchronized with that of the crop they live with [1]. Although farmers
usually consider them undesired weeds, their value for biodiversity and ecosystem services
is now widely recognized [2–4]. The presence of species-rich but well-balanced arable
plant communities, i.e., with a low abundance of each species, can significantly reduce
yield losses compared to species-poor communities dominated by few very competitive
and harmful species [5]. Thus, the latest direction in sustainable weed management points
towards finding neutral arable plant communities, i.e., those coexisting with crops without
negatively affecting crop yield and quality compared to weed-free conditions, more than at
detecting solutions for the eradication of spontaneous vegetation in arable fields [6].

With the spread of modern, intensive agricultural practices and the gradual disap-
pearance of traditional farming, a large number of formerly common arable plants have
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undergone a noticeable regression in many areas [7–9]. Moreover, arable plant communities
were subjected to a major decrease in species richness and to relevant shifts in species
composition, with an increase in frequency and abundance of competitive, nitrophilous,
and herbicide-tolerant taxa [10–12]. For these reasons, several arable plant species and
one arable habitat are currently red-listed in Europe [13,14]. Such a decline in arable plant
diversity was especially due to the introduction of herbicides and chemical fertilizers,
which underlines the need to find biodiversity-friendly products in agriculture [7]. It is
well established that the application of chemical fertilizers to enhance crop yield nega-
tively affects the growth of arable plants, particularly during their early developmental
stages [15,16]. This detrimental effect poses a threat to the biodiversity of arable lands,
potentially impacting pollinating insects and delaying or even inhibiting the flowering and
development of crop species [17]. Therefore, there is an urgent need to explore alternative
approaches that improve crop performances while not damaging the spontaneous plant
diversity of arable fields, in line with the targets of the Agenda 2030 to achieve a sustainable
food production and to develop resilient agricultural practices [18].

Wood distillate (WD) is currently a very promising sustainable biostimulant, whose use
is allowed in organic farming [19]. It is obtained from the condensation of vapors produced
during the pyrolysis of woody biomass for green energy production. Several studies have
proved that WD exerts a significant influence on cultivated plants, leading to increased
yields and improved quality of their edible parts [20–22]. There is also evidence that WD
can largely mitigate the harmful effects of high ozone concentrations on crop plants [23].
However, the knowledge of the effects of WD on spontaneous plant diversity is still limited
to their seedling emergence and first-stage growth under laboratory conditions [24].

The scientific literature on the effects of WD on germination mainly deals with cul-
tivated plants. Studies have highlighted the absence of negative effects of WD at low
concentrations on the germination performance of rice (Orzya sativa L.) and kura clover
(Trifolium ambiguum M. Bieb) [25,26]. Conversely, there is evidence that low-dose WD
enhances the germination performance of cucumber (Cucumis sativus L.), lettuce (Lactuca
sativa L.) [27], chickpea (Cicer arietinum L.), and basil (Ocimum basilicum L.) [28]. The
mechanism of action of WD on germination is primarily linked to its content in several
bioactive compounds such as butanolide, a molecule belonging to the karrikin family of
phytohormones [29,30], which has a positive effect [31]. This compound likely plays a
crucial role in promoting seed germination, since karrikin phytohormones are known to
stimulate germination and to regulate seedling photomorphogenesis [32,33]. With regard
to rare and threatened arable plants, low-dose WD has been found to not have negative
effects on seedling emergence and first-stage growth in Bromus secalinus L., Centaurea cyanus
L., Lathyrus aphaca L., Legousia speculum-veneris (L.) Chaix, and Scandix pecten-veneris L. [24].

Treating crops with WD implies a possible indirect influence of this product on the
plants spontaneously growing in arable fields. However, to the best of our knowledge, no
study has so far investigated the effects of WD on the germination performance of arable
plants. Thus, in this study we tested whether WD at different concentrations affects the
germination parameters of three arable plant species of European conservation interest [7],
namely Bromus secalinus, Centaurea cyanus, and Legousia speculum-veneris. We tested its effects
at the concentrations used to enhance crop growth and yield (0.25% and 0.5%), at lower
concentrations (0.125%), and at the concentrations used to remove weeds (1% and 2%).

2. Results

We observed that different concentrations of WD had different and species-specific
effects on the investigated germination parameters (Table 1).

In B. secalinus, we observed a reduction of GP at 0.125% WD with respect to the control.
GP remained stable at increasing concentrations, up to 1% WD. At 2% WD, the germination
was almost completely inhibited. MGT was not affected by the treatments up to 1% WD,
while it significantly increased at 2% WD. GRI and GE showed a very similar trend, with no
effects observed up to 1% WD, while at 2% WD, both parameters approached zero (Figure 1).



Plants 2023, 12, 3028 3 of 10

Table 1. Effects of different wood distillate addition on the germination parameters of the three
selected species according to one-way ANOVA. GP: germination percentage; MGT: mean germination
time; GRI: germination rate index; GE: germination energy. WD: wood distillate.

Bromus secalinus L.

Source of variation GP MGT GRI GE

df MS F MS F MS F MS F

WD addition 5 2.33 94.33 *** 1.53 26.73 *** 2.64 58.65 *** 0.92 125.4 ***
Residuals 24 0.02 0.06 0.05 0.01

Centaurea cyanus L.

Source of variation GP MGT GRI GE

df MS F MS F MS F MS F

WD addition 5 0.03 2.34 0.11 3.81 * 0.34 4.47 ** 0.02 2.20
Residuals 24 0.01 0.69 0.08 0.01

Legousia
speculum-veneris (L.)

Chaix

Source of variation GP MGT GRI GE

df MS F MS F MS F MS F

WD addition 5 2.96 188.6 *** 5.29 405.1 *** 4.71 200.7 *** 2.26 447.2 ***
Residuals 24 0.01 0.01 0.02 0.01

* = p < 0.05; ** = p < 0.01; *** = p < 0.001.
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Figure 1. Error bar charts (mean ± standard deviation) showing the differences in the investigated
germination parameters under different WD treatments on Bromus secalinus. (A) GP: germination
percentage; (B) MGT: mean germination time; (C) GRI: germination rate index; (D) GE: germination
energy; WD: wood distillate. Different letters indicate statistically significant differences at p < 0.05.

For C. cyanus, WD did not influence GP and GE at any of the tested concentrations. WD
effects on MGT were variable according to the concentration, since no difference was found
from 0% up to 1%, while there was a significant increase at a 2% concentration compared to
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0.125% and 0.5% WD. GRI increased in dishes treated with 0.125% and 0.25% WD, while at
higher concentrations there were no differences with respect to the controls (Figure 2).
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Figure 2. Error bar charts (mean ± standard deviation) showing the differences in the investigated
germination parameters under different WD treatments on Centaurea cyanus. (A) GP: germination
percentage; (B) MGT: mean germination time; (C) GRI: germination rate index; (D) GE: germination
energy; WD: wood distillate. Different letters indicate statistically significant differences at p < 0.05.

A different trend was observed on the germination parameters of L. speculum-veneris.
In this species, WD clearly inhibited germination from 0.5% WD and at higher concen-
trations. Conversely, no effects were detected up to 0.25% WD for all the investigated
parameters. Conversely, 0.5% WD or more caused a reduction in GP, GRI, and GE and an
increase in MGT. At 2%WD, the germination was fully inhibited (Figure 3).
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at p < 0.05. n.d.: not determined.
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3. Discussion

Our work has highlighted how, at the low concentrations typically used to promote
crop plant growth (0.2 to 0.5% WD [34–36]), WD has no negative effects on the germination
performance of the three arable plant species investigated, with the exception of Legousia
speculum-veneris, whose germination already began to be negatively affected at 0.5% WD.
This is consistent with previous evidence showing that WD at such concentrations is not
detrimental for Bromus secalinus, Centaurea cyanus, and Legousia speculum-veneris as regards
their seedling emergence and first-stage development [24]. With regard to germination,
there was contrasting evidence on the effects of WD depending on the plant species, but
no negative effects were observed [27,37]. These findings are of significant interest as they
highlight that WD has the potential to increase yield and improve the quality of crops
without harming non-target plant species.

We observed that, with different effects according to the species, high concentrations
of WD (0.5 to 2%) worsen the germination performance of arable plants, but a concentration
lower than 0.5% WD (0.125 to 0.25%) never affects germination performance. Consistently,
WD at high concentrations is an effective herbicide that is used for weed management in
both agriculture and the conservation of cultural heritage, rather than for plant growth
promotion [38–40]. It is unclear which of the components of WD exert such negative effects
on seed germination. In fact, due to the complex chemical composition of WD, it is difficult
to disentangle the effects of its single components [27]. However, acetic acid seems to be
one of the most active compounds inhibiting plant development [41].

L. speculum-veneris was the species most sensitive to high WD concentrations, followed
by B. secalinus. On the contrary, C. cyanus was the most tolerant species. This evidence is
consistent with the biogeography and ecological specialization of these species, the latter
being reflected in the width of their distribution range. L. speculum-veneris is restricted to
Mediterranean areas, B. secalinus has a wider Eurosiberian distribution, and C. cyanus went
cosmopolitan after its spread with crop seeds [42]. From this perspective, it is known that
species with a wider distribution range are usually more competitive and stress-tolerant
than species with a narrow distribution range, since they are adapted to a wider range of
ecological conditions [43–45].

The differential response to the various treatments observed in the tested species may
also be due to the diaspore size. Seeds of B. secalinus and achenes of C. cyanus have a mean
size of 3 and 5 mm, respectively, while L. speculum-veneris seeds are about 1–2 mm long. It
is known that seed size is correlated with the size of the outer layer, i.e., the pericarp or
integument [46]. Consequently, bigger seeds have a thicker coat and a higher ability to
withstand external stress [47]. The pericarp has an essential role in safeguarding the seed
during dormancy and in ensuring its survival under unfavorable conditions [48]. The level
of seed tolerance to a given substance also depends on its pericarp permeability. Imperme-
able or low-permeability pericarps may prevent or limit the absorption of substances by
the seed. Conversely, permeable or moderately permeable pericarps facilitate the income of
substances, promoting their uptake. It is worth noting that pericarp permeability can not
only vary among different plant species, but also within the same species, being influenced
by specific seed characteristics [49]. Additionally, seed size does not always correlate with
relative germination speed [50]. It has been shown that species with small seeds only occa-
sionally have additional adaptations for rapid germination, beyond the inherent advantage
of small size for dispersal in the environment [50]. In our study, this tendency was not
evident, as lower MGT was found for C. cyanus but not for L. speculum-veneris.

4. Materials and Methods
4.1. Selected Plant Species

The investigated species were Bromus secalinus L. (Poaceae), Centaurea cyanus L. (Aster-
aceae), and Legousia speculum-veneris (L.) Chaix (Campanulaceae), which are all included in
the list of the rarest/most threatened European arable plants (Figure 4) [7]. All the species
are annuals and exhibit a winter–spring life cycle, being closely associated with winter
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cereal crops or related crop types [51]. Bromus secalinus is distributed across Europe and
temperate Asia, especially at high latitudes. Centaurea cyanus originated in the Mediter-
ranean area, but then went cosmopolitan after spreading with crop seeds and being grown
as an ornamental plant. The range of Legousia speculum-veneris is currently restricted to the
Mediterranean basin [43].

The seeds of the three species were requested through the “Botanic Gardens Con-
servation International” network [52]. The Agro-Botanical Garden of the University of
Cluj-Napoca (Romania) provided the achenes of C. cyanus, while the seeds of B. secalinus
and L. speculum-veneris were supplied by the Botanical Garden of the Ulm University
(Germany).
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4.2. Wood Distillate

Wood pyrolysis has two main residual components: a solid component known as
biochar and a liquid component referred to as WD or pyroligneous acid [56]. To max-
imize the quantity of WD compared to that of biochar, the most effective production
method is a fast pyrolysis caried out at temperatures ranging from 350 to 500 ◦C. This
process entails a rapid heating of woody biomass, followed by a fast cooling. As a result,
approximately 60–75% of the product comprises the liquid component, while the solid
component makes up 15–25%, and the gaseous component contributes for 10–20% of the
overall product. The composition of WD primarily consists of 80–90% water, along with
over 200 water-soluble organic chemical compounds encompassing organic acids, alkanes,
phenolics, alcohols, and esters [57–59]. The WD used in this experiment was produced
via the pyrolysis of sweet chestnut (Castanea sativa Mill.) wood originating from forest
management residuals. Its pH ranges from 3.5 to 4.5 and its density is of 1.05 kg/L. Its
main components are 2–2.3% acetic acid, 2.9–3.02 g/kg of phenols, and 23–26 g/kg of
polyphenols. The data from the producer indicate the following composition: total or-
ganic compounds = 33.8 g/L; organic acids = 32.3 g/kg; phenolic compounds = 13 g/L;
methanol = 13.4 g/L; total N = 0.43 g/L [60]. Moreover, our still-unpublished data indicate:
Ca = 326 mg/L; Na = 104 mg/L; K = 24 mg/L; P = 7 mg/L; Mg = 7 mg/L.

4.3. Seed Germination Assay

Seeds were surface sterilized via immersion in 3% sodium hypochlorite (NaClO) for
two minutes and then washed thoroughly with distilled H2O. Subsequently, Petri dishes
with a Whatman N1 filter paper (Whatman International, Maidstone, UK) were prepared
and immediately soaked with treatment solutions. The WD concentrations tested were 0%
(control), 0.125%, 0.25%, 0.5%, 1%, and 2%. For each species, 30 Petri dishes (5 for each
treatment, statistical replicates) were prepared, and 20 seeds were laid in each dish. The
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Petri dishes were then placed in a growth chamber with a day/night cycle of 12 h/12 h
and a 20 ± 3 ◦C temperature. From the time of sowing until the end of the experiment, the
number of germinated seeds were recorded every day in order to calculate the germination
percentage, the mean germination time, the Germination Rate Index, and the germination
energy. The experiment was concluded when no more germination occurred after 7 days.

4.4. Germination Parameters

Germination performance was assessed through the following parameters:

I. Germination percentage (GP), calculated according to Czabator [61]:

GP(%)=
(Number of total germinated seeds

Total number of tested seeds

)
×100

II. Mean germination time (MGT), calculated according to Ellis and Roberts [62]:

MGT=∑(n×d)/N

where n is the number of seeds germinated on each day, d is the number of days from
the beginning of the test, and N is the total number of seeds germinated at the end of the
experiment;

III. Germination rate index (GRI), calculated according to Hossein et al. [63]:

GRI=∑ (Gn/Dn)

where Gn is the number of germinated seeds and Dn is the number of days since the
beginning of observations.

IV. Germination energy (GE), calculated according to Czabator [61]:

GE (%)=
(Number of germinated seeds at 4 DAS

Total number of tested seeds

)
×100

where DAS is the number of days after sowing;

4.5. Statistical Analyses

Since the distribution of the values of some response variables was not normal, the
values of MGT and GRI were square-root transformed and the values of GP and GE were
log(x + 1) transformed to improve the normality of the data. The effect of WD addition
on GP, MGT, GRI, and GE for the three selected species was assessed by means of one-
way ANOVA tests, using the function, aov, in the package, stats, of R [64]. For significant
results of the main test, we carried out post-hoc Tukey tests using the function TukeyHSD
in the package, stats. We set α at 0.05. Graphs were created using the GraphPad Prism
(version 8.4.1) software [65].

5. Conclusions

With this study, we have provided further evidence that the use of low-concentration
(<0.5%) WD in agriculture is a sustainable practice, promoting higher yields and a higher
quality of crop plants without harming arable plant diversity. This makes WD a very
promising product for the ecologically sustainable management of crops and arable plant
communities. Further investigation under open-field conditions will be useful to better
understand the effects of WD on the germination parameters of arable plants under real
cultivation conditions, where the effect of atmospheric agents and of other external factors
may influence their response to the treatments.
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